Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 3 | |
| 4 | #include <linux/errno.h> |
| 5 | #include <linux/kernel.h> |
| 6 | #include <linux/mm.h> |
| 7 | #include <linux/smp.h> |
| 8 | #include <linux/prctl.h> |
| 9 | #include <linux/slab.h> |
| 10 | #include <linux/sched.h> |
| 11 | #include <linux/sched/idle.h> |
| 12 | #include <linux/sched/debug.h> |
| 13 | #include <linux/sched/task.h> |
| 14 | #include <linux/sched/task_stack.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/export.h> |
| 17 | #include <linux/pm.h> |
| 18 | #include <linux/tick.h> |
| 19 | #include <linux/random.h> |
| 20 | #include <linux/user-return-notifier.h> |
| 21 | #include <linux/dmi.h> |
| 22 | #include <linux/utsname.h> |
| 23 | #include <linux/stackprotector.h> |
| 24 | #include <linux/cpuidle.h> |
| 25 | #include <trace/events/power.h> |
| 26 | #include <linux/hw_breakpoint.h> |
| 27 | #include <asm/cpu.h> |
| 28 | #include <asm/apic.h> |
| 29 | #include <asm/syscalls.h> |
| 30 | #include <linux/uaccess.h> |
| 31 | #include <asm/mwait.h> |
| 32 | #include <asm/fpu/internal.h> |
| 33 | #include <asm/debugreg.h> |
| 34 | #include <asm/nmi.h> |
| 35 | #include <asm/tlbflush.h> |
| 36 | #include <asm/mce.h> |
| 37 | #include <asm/vm86.h> |
| 38 | #include <asm/switch_to.h> |
| 39 | #include <asm/desc.h> |
| 40 | #include <asm/prctl.h> |
| 41 | #include <asm/spec-ctrl.h> |
| 42 | |
| 43 | #include "process.h" |
| 44 | |
| 45 | /* |
| 46 | * per-CPU TSS segments. Threads are completely 'soft' on Linux, |
| 47 | * no more per-task TSS's. The TSS size is kept cacheline-aligned |
| 48 | * so they are allowed to end up in the .data..cacheline_aligned |
| 49 | * section. Since TSS's are completely CPU-local, we want them |
| 50 | * on exact cacheline boundaries, to eliminate cacheline ping-pong. |
| 51 | */ |
| 52 | __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = { |
| 53 | .x86_tss = { |
| 54 | /* |
| 55 | * .sp0 is only used when entering ring 0 from a lower |
| 56 | * privilege level. Since the init task never runs anything |
| 57 | * but ring 0 code, there is no need for a valid value here. |
| 58 | * Poison it. |
| 59 | */ |
| 60 | .sp0 = (1UL << (BITS_PER_LONG-1)) + 1, |
| 61 | |
| 62 | /* |
| 63 | * .sp1 is cpu_current_top_of_stack. The init task never |
| 64 | * runs user code, but cpu_current_top_of_stack should still |
| 65 | * be well defined before the first context switch. |
| 66 | */ |
| 67 | .sp1 = TOP_OF_INIT_STACK, |
| 68 | |
| 69 | #ifdef CONFIG_X86_32 |
| 70 | .ss0 = __KERNEL_DS, |
| 71 | .ss1 = __KERNEL_CS, |
| 72 | .io_bitmap_base = INVALID_IO_BITMAP_OFFSET, |
| 73 | #endif |
| 74 | }, |
| 75 | #ifdef CONFIG_X86_32 |
| 76 | /* |
| 77 | * Note that the .io_bitmap member must be extra-big. This is because |
| 78 | * the CPU will access an additional byte beyond the end of the IO |
| 79 | * permission bitmap. The extra byte must be all 1 bits, and must |
| 80 | * be within the limit. |
| 81 | */ |
| 82 | .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 }, |
| 83 | #endif |
| 84 | }; |
| 85 | EXPORT_PER_CPU_SYMBOL(cpu_tss_rw); |
| 86 | |
| 87 | DEFINE_PER_CPU(bool, __tss_limit_invalid); |
| 88 | EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid); |
| 89 | |
| 90 | /* |
| 91 | * this gets called so that we can store lazy state into memory and copy the |
| 92 | * current task into the new thread. |
| 93 | */ |
| 94 | int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) |
| 95 | { |
| 96 | memcpy(dst, src, arch_task_struct_size); |
| 97 | #ifdef CONFIG_VM86 |
| 98 | dst->thread.vm86 = NULL; |
| 99 | #endif |
| 100 | |
| 101 | return fpu__copy(&dst->thread.fpu, &src->thread.fpu); |
| 102 | } |
| 103 | |
| 104 | /* |
| 105 | * Free current thread data structures etc.. |
| 106 | */ |
| 107 | void exit_thread(struct task_struct *tsk) |
| 108 | { |
| 109 | struct thread_struct *t = &tsk->thread; |
| 110 | unsigned long *bp = t->io_bitmap_ptr; |
| 111 | struct fpu *fpu = &t->fpu; |
| 112 | |
| 113 | if (bp) { |
| 114 | struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu()); |
| 115 | |
| 116 | t->io_bitmap_ptr = NULL; |
| 117 | clear_thread_flag(TIF_IO_BITMAP); |
| 118 | /* |
| 119 | * Careful, clear this in the TSS too: |
| 120 | */ |
| 121 | memset(tss->io_bitmap, 0xff, t->io_bitmap_max); |
| 122 | t->io_bitmap_max = 0; |
| 123 | put_cpu(); |
| 124 | kfree(bp); |
| 125 | } |
| 126 | |
| 127 | free_vm86(t); |
| 128 | |
| 129 | fpu__drop(fpu); |
| 130 | } |
| 131 | |
| 132 | void flush_thread(void) |
| 133 | { |
| 134 | struct task_struct *tsk = current; |
| 135 | |
| 136 | flush_ptrace_hw_breakpoint(tsk); |
| 137 | memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); |
| 138 | |
| 139 | fpu__clear(&tsk->thread.fpu); |
| 140 | } |
| 141 | |
| 142 | void disable_TSC(void) |
| 143 | { |
| 144 | preempt_disable(); |
| 145 | if (!test_and_set_thread_flag(TIF_NOTSC)) |
| 146 | /* |
| 147 | * Must flip the CPU state synchronously with |
| 148 | * TIF_NOTSC in the current running context. |
| 149 | */ |
| 150 | cr4_set_bits(X86_CR4_TSD); |
| 151 | preempt_enable(); |
| 152 | } |
| 153 | |
| 154 | static void enable_TSC(void) |
| 155 | { |
| 156 | preempt_disable(); |
| 157 | if (test_and_clear_thread_flag(TIF_NOTSC)) |
| 158 | /* |
| 159 | * Must flip the CPU state synchronously with |
| 160 | * TIF_NOTSC in the current running context. |
| 161 | */ |
| 162 | cr4_clear_bits(X86_CR4_TSD); |
| 163 | preempt_enable(); |
| 164 | } |
| 165 | |
| 166 | int get_tsc_mode(unsigned long adr) |
| 167 | { |
| 168 | unsigned int val; |
| 169 | |
| 170 | if (test_thread_flag(TIF_NOTSC)) |
| 171 | val = PR_TSC_SIGSEGV; |
| 172 | else |
| 173 | val = PR_TSC_ENABLE; |
| 174 | |
| 175 | return put_user(val, (unsigned int __user *)adr); |
| 176 | } |
| 177 | |
| 178 | int set_tsc_mode(unsigned int val) |
| 179 | { |
| 180 | if (val == PR_TSC_SIGSEGV) |
| 181 | disable_TSC(); |
| 182 | else if (val == PR_TSC_ENABLE) |
| 183 | enable_TSC(); |
| 184 | else |
| 185 | return -EINVAL; |
| 186 | |
| 187 | return 0; |
| 188 | } |
| 189 | |
| 190 | DEFINE_PER_CPU(u64, msr_misc_features_shadow); |
| 191 | |
| 192 | static void set_cpuid_faulting(bool on) |
| 193 | { |
| 194 | u64 msrval; |
| 195 | |
| 196 | msrval = this_cpu_read(msr_misc_features_shadow); |
| 197 | msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT; |
| 198 | msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT); |
| 199 | this_cpu_write(msr_misc_features_shadow, msrval); |
| 200 | wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval); |
| 201 | } |
| 202 | |
| 203 | static void disable_cpuid(void) |
| 204 | { |
| 205 | preempt_disable(); |
| 206 | if (!test_and_set_thread_flag(TIF_NOCPUID)) { |
| 207 | /* |
| 208 | * Must flip the CPU state synchronously with |
| 209 | * TIF_NOCPUID in the current running context. |
| 210 | */ |
| 211 | set_cpuid_faulting(true); |
| 212 | } |
| 213 | preempt_enable(); |
| 214 | } |
| 215 | |
| 216 | static void enable_cpuid(void) |
| 217 | { |
| 218 | preempt_disable(); |
| 219 | if (test_and_clear_thread_flag(TIF_NOCPUID)) { |
| 220 | /* |
| 221 | * Must flip the CPU state synchronously with |
| 222 | * TIF_NOCPUID in the current running context. |
| 223 | */ |
| 224 | set_cpuid_faulting(false); |
| 225 | } |
| 226 | preempt_enable(); |
| 227 | } |
| 228 | |
| 229 | static int get_cpuid_mode(void) |
| 230 | { |
| 231 | return !test_thread_flag(TIF_NOCPUID); |
| 232 | } |
| 233 | |
| 234 | static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled) |
| 235 | { |
| 236 | if (!static_cpu_has(X86_FEATURE_CPUID_FAULT)) |
| 237 | return -ENODEV; |
| 238 | |
| 239 | if (cpuid_enabled) |
| 240 | enable_cpuid(); |
| 241 | else |
| 242 | disable_cpuid(); |
| 243 | |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | * Called immediately after a successful exec. |
| 249 | */ |
| 250 | void arch_setup_new_exec(void) |
| 251 | { |
| 252 | /* If cpuid was previously disabled for this task, re-enable it. */ |
| 253 | if (test_thread_flag(TIF_NOCPUID)) |
| 254 | enable_cpuid(); |
| 255 | } |
| 256 | |
| 257 | static inline void switch_to_bitmap(struct thread_struct *prev, |
| 258 | struct thread_struct *next, |
| 259 | unsigned long tifp, unsigned long tifn) |
| 260 | { |
| 261 | struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw); |
| 262 | |
| 263 | if (tifn & _TIF_IO_BITMAP) { |
| 264 | /* |
| 265 | * Copy the relevant range of the IO bitmap. |
| 266 | * Normally this is 128 bytes or less: |
| 267 | */ |
| 268 | memcpy(tss->io_bitmap, next->io_bitmap_ptr, |
| 269 | max(prev->io_bitmap_max, next->io_bitmap_max)); |
| 270 | /* |
| 271 | * Make sure that the TSS limit is correct for the CPU |
| 272 | * to notice the IO bitmap. |
| 273 | */ |
| 274 | refresh_tss_limit(); |
| 275 | } else if (tifp & _TIF_IO_BITMAP) { |
| 276 | /* |
| 277 | * Clear any possible leftover bits: |
| 278 | */ |
| 279 | memset(tss->io_bitmap, 0xff, prev->io_bitmap_max); |
| 280 | } |
| 281 | } |
| 282 | |
| 283 | #ifdef CONFIG_SMP |
| 284 | |
| 285 | struct ssb_state { |
| 286 | struct ssb_state *shared_state; |
| 287 | raw_spinlock_t lock; |
| 288 | unsigned int disable_state; |
| 289 | unsigned long local_state; |
| 290 | }; |
| 291 | |
| 292 | #define LSTATE_SSB 0 |
| 293 | |
| 294 | static DEFINE_PER_CPU(struct ssb_state, ssb_state); |
| 295 | |
| 296 | void speculative_store_bypass_ht_init(void) |
| 297 | { |
| 298 | struct ssb_state *st = this_cpu_ptr(&ssb_state); |
| 299 | unsigned int this_cpu = smp_processor_id(); |
| 300 | unsigned int cpu; |
| 301 | |
| 302 | st->local_state = 0; |
| 303 | |
| 304 | /* |
| 305 | * Shared state setup happens once on the first bringup |
| 306 | * of the CPU. It's not destroyed on CPU hotunplug. |
| 307 | */ |
| 308 | if (st->shared_state) |
| 309 | return; |
| 310 | |
| 311 | raw_spin_lock_init(&st->lock); |
| 312 | |
| 313 | /* |
| 314 | * Go over HT siblings and check whether one of them has set up the |
| 315 | * shared state pointer already. |
| 316 | */ |
| 317 | for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) { |
| 318 | if (cpu == this_cpu) |
| 319 | continue; |
| 320 | |
| 321 | if (!per_cpu(ssb_state, cpu).shared_state) |
| 322 | continue; |
| 323 | |
| 324 | /* Link it to the state of the sibling: */ |
| 325 | st->shared_state = per_cpu(ssb_state, cpu).shared_state; |
| 326 | return; |
| 327 | } |
| 328 | |
| 329 | /* |
| 330 | * First HT sibling to come up on the core. Link shared state of |
| 331 | * the first HT sibling to itself. The siblings on the same core |
| 332 | * which come up later will see the shared state pointer and link |
| 333 | * themself to the state of this CPU. |
| 334 | */ |
| 335 | st->shared_state = st; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * Logic is: First HT sibling enables SSBD for both siblings in the core |
| 340 | * and last sibling to disable it, disables it for the whole core. This how |
| 341 | * MSR_SPEC_CTRL works in "hardware": |
| 342 | * |
| 343 | * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL |
| 344 | */ |
| 345 | static __always_inline void amd_set_core_ssb_state(unsigned long tifn) |
| 346 | { |
| 347 | struct ssb_state *st = this_cpu_ptr(&ssb_state); |
| 348 | u64 msr = x86_amd_ls_cfg_base; |
| 349 | |
| 350 | if (!static_cpu_has(X86_FEATURE_ZEN)) { |
| 351 | msr |= ssbd_tif_to_amd_ls_cfg(tifn); |
| 352 | wrmsrl(MSR_AMD64_LS_CFG, msr); |
| 353 | return; |
| 354 | } |
| 355 | |
| 356 | if (tifn & _TIF_SSBD) { |
| 357 | /* |
| 358 | * Since this can race with prctl(), block reentry on the |
| 359 | * same CPU. |
| 360 | */ |
| 361 | if (__test_and_set_bit(LSTATE_SSB, &st->local_state)) |
| 362 | return; |
| 363 | |
| 364 | msr |= x86_amd_ls_cfg_ssbd_mask; |
| 365 | |
| 366 | raw_spin_lock(&st->shared_state->lock); |
| 367 | /* First sibling enables SSBD: */ |
| 368 | if (!st->shared_state->disable_state) |
| 369 | wrmsrl(MSR_AMD64_LS_CFG, msr); |
| 370 | st->shared_state->disable_state++; |
| 371 | raw_spin_unlock(&st->shared_state->lock); |
| 372 | } else { |
| 373 | if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state)) |
| 374 | return; |
| 375 | |
| 376 | raw_spin_lock(&st->shared_state->lock); |
| 377 | st->shared_state->disable_state--; |
| 378 | if (!st->shared_state->disable_state) |
| 379 | wrmsrl(MSR_AMD64_LS_CFG, msr); |
| 380 | raw_spin_unlock(&st->shared_state->lock); |
| 381 | } |
| 382 | } |
| 383 | #else |
| 384 | static __always_inline void amd_set_core_ssb_state(unsigned long tifn) |
| 385 | { |
| 386 | u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn); |
| 387 | |
| 388 | wrmsrl(MSR_AMD64_LS_CFG, msr); |
| 389 | } |
| 390 | #endif |
| 391 | |
| 392 | static __always_inline void amd_set_ssb_virt_state(unsigned long tifn) |
| 393 | { |
| 394 | /* |
| 395 | * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL, |
| 396 | * so ssbd_tif_to_spec_ctrl() just works. |
| 397 | */ |
| 398 | wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn)); |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Update the MSRs managing speculation control, during context switch. |
| 403 | * |
| 404 | * tifp: Previous task's thread flags |
| 405 | * tifn: Next task's thread flags |
| 406 | */ |
| 407 | static __always_inline void __speculation_ctrl_update(unsigned long tifp, |
| 408 | unsigned long tifn) |
| 409 | { |
| 410 | unsigned long tif_diff = tifp ^ tifn; |
| 411 | u64 msr = x86_spec_ctrl_base; |
| 412 | bool updmsr = false; |
| 413 | |
| 414 | /* |
| 415 | * If TIF_SSBD is different, select the proper mitigation |
| 416 | * method. Note that if SSBD mitigation is disabled or permanentely |
| 417 | * enabled this branch can't be taken because nothing can set |
| 418 | * TIF_SSBD. |
| 419 | */ |
| 420 | if (tif_diff & _TIF_SSBD) { |
| 421 | if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) { |
| 422 | amd_set_ssb_virt_state(tifn); |
| 423 | } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) { |
| 424 | amd_set_core_ssb_state(tifn); |
| 425 | } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) || |
| 426 | static_cpu_has(X86_FEATURE_AMD_SSBD)) { |
| 427 | msr |= ssbd_tif_to_spec_ctrl(tifn); |
| 428 | updmsr = true; |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | /* |
| 433 | * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled, |
| 434 | * otherwise avoid the MSR write. |
| 435 | */ |
| 436 | if (IS_ENABLED(CONFIG_SMP) && |
| 437 | static_branch_unlikely(&switch_to_cond_stibp)) { |
| 438 | updmsr |= !!(tif_diff & _TIF_SPEC_IB); |
| 439 | msr |= stibp_tif_to_spec_ctrl(tifn); |
| 440 | } |
| 441 | |
| 442 | if (updmsr) |
| 443 | wrmsrl(MSR_IA32_SPEC_CTRL, msr); |
| 444 | } |
| 445 | |
| 446 | static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk) |
| 447 | { |
| 448 | if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) { |
| 449 | if (task_spec_ssb_disable(tsk)) |
| 450 | set_tsk_thread_flag(tsk, TIF_SSBD); |
| 451 | else |
| 452 | clear_tsk_thread_flag(tsk, TIF_SSBD); |
| 453 | |
| 454 | if (task_spec_ib_disable(tsk)) |
| 455 | set_tsk_thread_flag(tsk, TIF_SPEC_IB); |
| 456 | else |
| 457 | clear_tsk_thread_flag(tsk, TIF_SPEC_IB); |
| 458 | } |
| 459 | /* Return the updated threadinfo flags*/ |
| 460 | return task_thread_info(tsk)->flags; |
| 461 | } |
| 462 | |
| 463 | void speculation_ctrl_update(unsigned long tif) |
| 464 | { |
| 465 | /* Forced update. Make sure all relevant TIF flags are different */ |
| 466 | preempt_disable(); |
| 467 | __speculation_ctrl_update(~tif, tif); |
| 468 | preempt_enable(); |
| 469 | } |
| 470 | |
| 471 | /* Called from seccomp/prctl update */ |
| 472 | void speculation_ctrl_update_current(void) |
| 473 | { |
| 474 | preempt_disable(); |
| 475 | speculation_ctrl_update(speculation_ctrl_update_tif(current)); |
| 476 | preempt_enable(); |
| 477 | } |
| 478 | |
| 479 | void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p) |
| 480 | { |
| 481 | struct thread_struct *prev, *next; |
| 482 | unsigned long tifp, tifn; |
| 483 | |
| 484 | prev = &prev_p->thread; |
| 485 | next = &next_p->thread; |
| 486 | |
| 487 | tifn = READ_ONCE(task_thread_info(next_p)->flags); |
| 488 | tifp = READ_ONCE(task_thread_info(prev_p)->flags); |
| 489 | switch_to_bitmap(prev, next, tifp, tifn); |
| 490 | |
| 491 | propagate_user_return_notify(prev_p, next_p); |
| 492 | |
| 493 | if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) && |
| 494 | arch_has_block_step()) { |
| 495 | unsigned long debugctl, msk; |
| 496 | |
| 497 | rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| 498 | debugctl &= ~DEBUGCTLMSR_BTF; |
| 499 | msk = tifn & _TIF_BLOCKSTEP; |
| 500 | debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT; |
| 501 | wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl); |
| 502 | } |
| 503 | |
| 504 | if ((tifp ^ tifn) & _TIF_NOTSC) |
| 505 | cr4_toggle_bits_irqsoff(X86_CR4_TSD); |
| 506 | |
| 507 | if ((tifp ^ tifn) & _TIF_NOCPUID) |
| 508 | set_cpuid_faulting(!!(tifn & _TIF_NOCPUID)); |
| 509 | |
| 510 | if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) { |
| 511 | __speculation_ctrl_update(tifp, tifn); |
| 512 | } else { |
| 513 | speculation_ctrl_update_tif(prev_p); |
| 514 | tifn = speculation_ctrl_update_tif(next_p); |
| 515 | |
| 516 | /* Enforce MSR update to ensure consistent state */ |
| 517 | __speculation_ctrl_update(~tifn, tifn); |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | /* |
| 522 | * Idle related variables and functions |
| 523 | */ |
| 524 | unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE; |
| 525 | EXPORT_SYMBOL(boot_option_idle_override); |
| 526 | |
| 527 | static void (*x86_idle)(void); |
| 528 | |
| 529 | #ifndef CONFIG_SMP |
| 530 | static inline void play_dead(void) |
| 531 | { |
| 532 | BUG(); |
| 533 | } |
| 534 | #endif |
| 535 | |
| 536 | void arch_cpu_idle_enter(void) |
| 537 | { |
| 538 | tsc_verify_tsc_adjust(false); |
| 539 | local_touch_nmi(); |
| 540 | } |
| 541 | |
| 542 | void arch_cpu_idle_dead(void) |
| 543 | { |
| 544 | play_dead(); |
| 545 | } |
| 546 | |
| 547 | /* |
| 548 | * Called from the generic idle code. |
| 549 | */ |
| 550 | void arch_cpu_idle(void) |
| 551 | { |
| 552 | x86_idle(); |
| 553 | } |
| 554 | |
| 555 | /* |
| 556 | * We use this if we don't have any better idle routine.. |
| 557 | */ |
| 558 | void __cpuidle default_idle(void) |
| 559 | { |
| 560 | trace_cpu_idle_rcuidle(1, smp_processor_id()); |
| 561 | safe_halt(); |
| 562 | trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
| 563 | } |
| 564 | #ifdef CONFIG_APM_MODULE |
| 565 | EXPORT_SYMBOL(default_idle); |
| 566 | #endif |
| 567 | |
| 568 | #ifdef CONFIG_XEN |
| 569 | bool xen_set_default_idle(void) |
| 570 | { |
| 571 | bool ret = !!x86_idle; |
| 572 | |
| 573 | x86_idle = default_idle; |
| 574 | |
| 575 | return ret; |
| 576 | } |
| 577 | #endif |
| 578 | |
| 579 | void stop_this_cpu(void *dummy) |
| 580 | { |
| 581 | local_irq_disable(); |
| 582 | /* |
| 583 | * Remove this CPU: |
| 584 | */ |
| 585 | set_cpu_online(smp_processor_id(), false); |
| 586 | disable_local_APIC(); |
| 587 | mcheck_cpu_clear(this_cpu_ptr(&cpu_info)); |
| 588 | |
| 589 | /* |
| 590 | * Use wbinvd on processors that support SME. This provides support |
| 591 | * for performing a successful kexec when going from SME inactive |
| 592 | * to SME active (or vice-versa). The cache must be cleared so that |
| 593 | * if there are entries with the same physical address, both with and |
| 594 | * without the encryption bit, they don't race each other when flushed |
| 595 | * and potentially end up with the wrong entry being committed to |
| 596 | * memory. |
| 597 | */ |
| 598 | if (boot_cpu_has(X86_FEATURE_SME)) |
| 599 | native_wbinvd(); |
| 600 | for (;;) { |
| 601 | /* |
| 602 | * Use native_halt() so that memory contents don't change |
| 603 | * (stack usage and variables) after possibly issuing the |
| 604 | * native_wbinvd() above. |
| 605 | */ |
| 606 | native_halt(); |
| 607 | } |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power |
| 612 | * states (local apic timer and TSC stop). |
| 613 | */ |
| 614 | static void amd_e400_idle(void) |
| 615 | { |
| 616 | /* |
| 617 | * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E |
| 618 | * gets set after static_cpu_has() places have been converted via |
| 619 | * alternatives. |
| 620 | */ |
| 621 | if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { |
| 622 | default_idle(); |
| 623 | return; |
| 624 | } |
| 625 | |
| 626 | tick_broadcast_enter(); |
| 627 | |
| 628 | default_idle(); |
| 629 | |
| 630 | /* |
| 631 | * The switch back from broadcast mode needs to be called with |
| 632 | * interrupts disabled. |
| 633 | */ |
| 634 | local_irq_disable(); |
| 635 | tick_broadcast_exit(); |
| 636 | local_irq_enable(); |
| 637 | } |
| 638 | |
| 639 | /* |
| 640 | * Intel Core2 and older machines prefer MWAIT over HALT for C1. |
| 641 | * We can't rely on cpuidle installing MWAIT, because it will not load |
| 642 | * on systems that support only C1 -- so the boot default must be MWAIT. |
| 643 | * |
| 644 | * Some AMD machines are the opposite, they depend on using HALT. |
| 645 | * |
| 646 | * So for default C1, which is used during boot until cpuidle loads, |
| 647 | * use MWAIT-C1 on Intel HW that has it, else use HALT. |
| 648 | */ |
| 649 | static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c) |
| 650 | { |
| 651 | if (c->x86_vendor != X86_VENDOR_INTEL) |
| 652 | return 0; |
| 653 | |
| 654 | if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR)) |
| 655 | return 0; |
| 656 | |
| 657 | return 1; |
| 658 | } |
| 659 | |
| 660 | /* |
| 661 | * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT |
| 662 | * with interrupts enabled and no flags, which is backwards compatible with the |
| 663 | * original MWAIT implementation. |
| 664 | */ |
| 665 | static __cpuidle void mwait_idle(void) |
| 666 | { |
| 667 | if (!current_set_polling_and_test()) { |
| 668 | trace_cpu_idle_rcuidle(1, smp_processor_id()); |
| 669 | if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) { |
| 670 | mb(); /* quirk */ |
| 671 | clflush((void *)¤t_thread_info()->flags); |
| 672 | mb(); /* quirk */ |
| 673 | } |
| 674 | |
| 675 | __monitor((void *)¤t_thread_info()->flags, 0, 0); |
| 676 | if (!need_resched()) |
| 677 | __sti_mwait(0, 0); |
| 678 | else |
| 679 | local_irq_enable(); |
| 680 | trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id()); |
| 681 | } else { |
| 682 | local_irq_enable(); |
| 683 | } |
| 684 | __current_clr_polling(); |
| 685 | } |
| 686 | |
| 687 | void select_idle_routine(const struct cpuinfo_x86 *c) |
| 688 | { |
| 689 | #ifdef CONFIG_SMP |
| 690 | if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1) |
| 691 | pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n"); |
| 692 | #endif |
| 693 | if (x86_idle || boot_option_idle_override == IDLE_POLL) |
| 694 | return; |
| 695 | |
| 696 | if (boot_cpu_has_bug(X86_BUG_AMD_E400)) { |
| 697 | pr_info("using AMD E400 aware idle routine\n"); |
| 698 | x86_idle = amd_e400_idle; |
| 699 | } else if (prefer_mwait_c1_over_halt(c)) { |
| 700 | pr_info("using mwait in idle threads\n"); |
| 701 | x86_idle = mwait_idle; |
| 702 | } else |
| 703 | x86_idle = default_idle; |
| 704 | } |
| 705 | |
| 706 | void amd_e400_c1e_apic_setup(void) |
| 707 | { |
| 708 | if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) { |
| 709 | pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id()); |
| 710 | local_irq_disable(); |
| 711 | tick_broadcast_force(); |
| 712 | local_irq_enable(); |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | void __init arch_post_acpi_subsys_init(void) |
| 717 | { |
| 718 | u32 lo, hi; |
| 719 | |
| 720 | if (!boot_cpu_has_bug(X86_BUG_AMD_E400)) |
| 721 | return; |
| 722 | |
| 723 | /* |
| 724 | * AMD E400 detection needs to happen after ACPI has been enabled. If |
| 725 | * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in |
| 726 | * MSR_K8_INT_PENDING_MSG. |
| 727 | */ |
| 728 | rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi); |
| 729 | if (!(lo & K8_INTP_C1E_ACTIVE_MASK)) |
| 730 | return; |
| 731 | |
| 732 | boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E); |
| 733 | |
| 734 | if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) |
| 735 | mark_tsc_unstable("TSC halt in AMD C1E"); |
| 736 | pr_info("System has AMD C1E enabled\n"); |
| 737 | } |
| 738 | |
| 739 | static int __init idle_setup(char *str) |
| 740 | { |
| 741 | if (!str) |
| 742 | return -EINVAL; |
| 743 | |
| 744 | if (!strcmp(str, "poll")) { |
| 745 | pr_info("using polling idle threads\n"); |
| 746 | boot_option_idle_override = IDLE_POLL; |
| 747 | cpu_idle_poll_ctrl(true); |
| 748 | } else if (!strcmp(str, "halt")) { |
| 749 | /* |
| 750 | * When the boot option of idle=halt is added, halt is |
| 751 | * forced to be used for CPU idle. In such case CPU C2/C3 |
| 752 | * won't be used again. |
| 753 | * To continue to load the CPU idle driver, don't touch |
| 754 | * the boot_option_idle_override. |
| 755 | */ |
| 756 | x86_idle = default_idle; |
| 757 | boot_option_idle_override = IDLE_HALT; |
| 758 | } else if (!strcmp(str, "nomwait")) { |
| 759 | /* |
| 760 | * If the boot option of "idle=nomwait" is added, |
| 761 | * it means that mwait will be disabled for CPU C2/C3 |
| 762 | * states. In such case it won't touch the variable |
| 763 | * of boot_option_idle_override. |
| 764 | */ |
| 765 | boot_option_idle_override = IDLE_NOMWAIT; |
| 766 | } else |
| 767 | return -1; |
| 768 | |
| 769 | return 0; |
| 770 | } |
| 771 | early_param("idle", idle_setup); |
| 772 | |
| 773 | unsigned long arch_align_stack(unsigned long sp) |
| 774 | { |
| 775 | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| 776 | sp -= get_random_int() % 8192; |
| 777 | return sp & ~0xf; |
| 778 | } |
| 779 | |
| 780 | unsigned long arch_randomize_brk(struct mm_struct *mm) |
| 781 | { |
| 782 | return randomize_page(mm->brk, 0x02000000); |
| 783 | } |
| 784 | |
| 785 | /* |
| 786 | * Called from fs/proc with a reference on @p to find the function |
| 787 | * which called into schedule(). This needs to be done carefully |
| 788 | * because the task might wake up and we might look at a stack |
| 789 | * changing under us. |
| 790 | */ |
| 791 | unsigned long get_wchan(struct task_struct *p) |
| 792 | { |
| 793 | unsigned long start, bottom, top, sp, fp, ip, ret = 0; |
| 794 | int count = 0; |
| 795 | |
| 796 | if (!p || p == current || p->state == TASK_RUNNING) |
| 797 | return 0; |
| 798 | |
| 799 | if (!try_get_task_stack(p)) |
| 800 | return 0; |
| 801 | |
| 802 | start = (unsigned long)task_stack_page(p); |
| 803 | if (!start) |
| 804 | goto out; |
| 805 | |
| 806 | /* |
| 807 | * Layout of the stack page: |
| 808 | * |
| 809 | * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long) |
| 810 | * PADDING |
| 811 | * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING |
| 812 | * stack |
| 813 | * ----------- bottom = start |
| 814 | * |
| 815 | * The tasks stack pointer points at the location where the |
| 816 | * framepointer is stored. The data on the stack is: |
| 817 | * ... IP FP ... IP FP |
| 818 | * |
| 819 | * We need to read FP and IP, so we need to adjust the upper |
| 820 | * bound by another unsigned long. |
| 821 | */ |
| 822 | top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; |
| 823 | top -= 2 * sizeof(unsigned long); |
| 824 | bottom = start; |
| 825 | |
| 826 | sp = READ_ONCE(p->thread.sp); |
| 827 | if (sp < bottom || sp > top) |
| 828 | goto out; |
| 829 | |
| 830 | fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp); |
| 831 | do { |
| 832 | if (fp < bottom || fp > top) |
| 833 | goto out; |
| 834 | ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long))); |
| 835 | if (!in_sched_functions(ip)) { |
| 836 | ret = ip; |
| 837 | goto out; |
| 838 | } |
| 839 | fp = READ_ONCE_NOCHECK(*(unsigned long *)fp); |
| 840 | } while (count++ < 16 && p->state != TASK_RUNNING); |
| 841 | |
| 842 | out: |
| 843 | put_task_stack(p); |
| 844 | return ret; |
| 845 | } |
| 846 | |
| 847 | long do_arch_prctl_common(struct task_struct *task, int option, |
| 848 | unsigned long cpuid_enabled) |
| 849 | { |
| 850 | switch (option) { |
| 851 | case ARCH_GET_CPUID: |
| 852 | return get_cpuid_mode(); |
| 853 | case ARCH_SET_CPUID: |
| 854 | return set_cpuid_mode(task, cpuid_enabled); |
| 855 | } |
| 856 | |
| 857 | return -EINVAL; |
| 858 | } |