blob: 7d31192296a87d09104ab605540ce4264d56f6bf [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/errno.h>
5#include <linux/kernel.h>
6#include <linux/mm.h>
7#include <linux/smp.h>
8#include <linux/prctl.h>
9#include <linux/slab.h>
10#include <linux/sched.h>
11#include <linux/sched/idle.h>
12#include <linux/sched/debug.h>
13#include <linux/sched/task.h>
14#include <linux/sched/task_stack.h>
15#include <linux/init.h>
16#include <linux/export.h>
17#include <linux/pm.h>
18#include <linux/tick.h>
19#include <linux/random.h>
20#include <linux/user-return-notifier.h>
21#include <linux/dmi.h>
22#include <linux/utsname.h>
23#include <linux/stackprotector.h>
24#include <linux/cpuidle.h>
25#include <trace/events/power.h>
26#include <linux/hw_breakpoint.h>
27#include <asm/cpu.h>
28#include <asm/apic.h>
29#include <asm/syscalls.h>
30#include <linux/uaccess.h>
31#include <asm/mwait.h>
32#include <asm/fpu/internal.h>
33#include <asm/debugreg.h>
34#include <asm/nmi.h>
35#include <asm/tlbflush.h>
36#include <asm/mce.h>
37#include <asm/vm86.h>
38#include <asm/switch_to.h>
39#include <asm/desc.h>
40#include <asm/prctl.h>
41#include <asm/spec-ctrl.h>
42
43#include "process.h"
44
45/*
46 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
47 * no more per-task TSS's. The TSS size is kept cacheline-aligned
48 * so they are allowed to end up in the .data..cacheline_aligned
49 * section. Since TSS's are completely CPU-local, we want them
50 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
51 */
52__visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
53 .x86_tss = {
54 /*
55 * .sp0 is only used when entering ring 0 from a lower
56 * privilege level. Since the init task never runs anything
57 * but ring 0 code, there is no need for a valid value here.
58 * Poison it.
59 */
60 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
61
62 /*
63 * .sp1 is cpu_current_top_of_stack. The init task never
64 * runs user code, but cpu_current_top_of_stack should still
65 * be well defined before the first context switch.
66 */
67 .sp1 = TOP_OF_INIT_STACK,
68
69#ifdef CONFIG_X86_32
70 .ss0 = __KERNEL_DS,
71 .ss1 = __KERNEL_CS,
72 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
73#endif
74 },
75#ifdef CONFIG_X86_32
76 /*
77 * Note that the .io_bitmap member must be extra-big. This is because
78 * the CPU will access an additional byte beyond the end of the IO
79 * permission bitmap. The extra byte must be all 1 bits, and must
80 * be within the limit.
81 */
82 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
83#endif
84};
85EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
86
87DEFINE_PER_CPU(bool, __tss_limit_invalid);
88EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
89
90/*
91 * this gets called so that we can store lazy state into memory and copy the
92 * current task into the new thread.
93 */
94int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
95{
96 memcpy(dst, src, arch_task_struct_size);
97#ifdef CONFIG_VM86
98 dst->thread.vm86 = NULL;
99#endif
100
101 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
102}
103
104/*
105 * Free current thread data structures etc..
106 */
107void exit_thread(struct task_struct *tsk)
108{
109 struct thread_struct *t = &tsk->thread;
110 unsigned long *bp = t->io_bitmap_ptr;
111 struct fpu *fpu = &t->fpu;
112
113 if (bp) {
114 struct tss_struct *tss = &per_cpu(cpu_tss_rw, get_cpu());
115
116 t->io_bitmap_ptr = NULL;
117 clear_thread_flag(TIF_IO_BITMAP);
118 /*
119 * Careful, clear this in the TSS too:
120 */
121 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
122 t->io_bitmap_max = 0;
123 put_cpu();
124 kfree(bp);
125 }
126
127 free_vm86(t);
128
129 fpu__drop(fpu);
130}
131
132void flush_thread(void)
133{
134 struct task_struct *tsk = current;
135
136 flush_ptrace_hw_breakpoint(tsk);
137 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
138
139 fpu__clear(&tsk->thread.fpu);
140}
141
142void disable_TSC(void)
143{
144 preempt_disable();
145 if (!test_and_set_thread_flag(TIF_NOTSC))
146 /*
147 * Must flip the CPU state synchronously with
148 * TIF_NOTSC in the current running context.
149 */
150 cr4_set_bits(X86_CR4_TSD);
151 preempt_enable();
152}
153
154static void enable_TSC(void)
155{
156 preempt_disable();
157 if (test_and_clear_thread_flag(TIF_NOTSC))
158 /*
159 * Must flip the CPU state synchronously with
160 * TIF_NOTSC in the current running context.
161 */
162 cr4_clear_bits(X86_CR4_TSD);
163 preempt_enable();
164}
165
166int get_tsc_mode(unsigned long adr)
167{
168 unsigned int val;
169
170 if (test_thread_flag(TIF_NOTSC))
171 val = PR_TSC_SIGSEGV;
172 else
173 val = PR_TSC_ENABLE;
174
175 return put_user(val, (unsigned int __user *)adr);
176}
177
178int set_tsc_mode(unsigned int val)
179{
180 if (val == PR_TSC_SIGSEGV)
181 disable_TSC();
182 else if (val == PR_TSC_ENABLE)
183 enable_TSC();
184 else
185 return -EINVAL;
186
187 return 0;
188}
189
190DEFINE_PER_CPU(u64, msr_misc_features_shadow);
191
192static void set_cpuid_faulting(bool on)
193{
194 u64 msrval;
195
196 msrval = this_cpu_read(msr_misc_features_shadow);
197 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
198 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
199 this_cpu_write(msr_misc_features_shadow, msrval);
200 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
201}
202
203static void disable_cpuid(void)
204{
205 preempt_disable();
206 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
207 /*
208 * Must flip the CPU state synchronously with
209 * TIF_NOCPUID in the current running context.
210 */
211 set_cpuid_faulting(true);
212 }
213 preempt_enable();
214}
215
216static void enable_cpuid(void)
217{
218 preempt_disable();
219 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
220 /*
221 * Must flip the CPU state synchronously with
222 * TIF_NOCPUID in the current running context.
223 */
224 set_cpuid_faulting(false);
225 }
226 preempt_enable();
227}
228
229static int get_cpuid_mode(void)
230{
231 return !test_thread_flag(TIF_NOCPUID);
232}
233
234static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
235{
236 if (!static_cpu_has(X86_FEATURE_CPUID_FAULT))
237 return -ENODEV;
238
239 if (cpuid_enabled)
240 enable_cpuid();
241 else
242 disable_cpuid();
243
244 return 0;
245}
246
247/*
248 * Called immediately after a successful exec.
249 */
250void arch_setup_new_exec(void)
251{
252 /* If cpuid was previously disabled for this task, re-enable it. */
253 if (test_thread_flag(TIF_NOCPUID))
254 enable_cpuid();
255}
256
257static inline void switch_to_bitmap(struct thread_struct *prev,
258 struct thread_struct *next,
259 unsigned long tifp, unsigned long tifn)
260{
261 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
262
263 if (tifn & _TIF_IO_BITMAP) {
264 /*
265 * Copy the relevant range of the IO bitmap.
266 * Normally this is 128 bytes or less:
267 */
268 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
269 max(prev->io_bitmap_max, next->io_bitmap_max));
270 /*
271 * Make sure that the TSS limit is correct for the CPU
272 * to notice the IO bitmap.
273 */
274 refresh_tss_limit();
275 } else if (tifp & _TIF_IO_BITMAP) {
276 /*
277 * Clear any possible leftover bits:
278 */
279 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
280 }
281}
282
283#ifdef CONFIG_SMP
284
285struct ssb_state {
286 struct ssb_state *shared_state;
287 raw_spinlock_t lock;
288 unsigned int disable_state;
289 unsigned long local_state;
290};
291
292#define LSTATE_SSB 0
293
294static DEFINE_PER_CPU(struct ssb_state, ssb_state);
295
296void speculative_store_bypass_ht_init(void)
297{
298 struct ssb_state *st = this_cpu_ptr(&ssb_state);
299 unsigned int this_cpu = smp_processor_id();
300 unsigned int cpu;
301
302 st->local_state = 0;
303
304 /*
305 * Shared state setup happens once on the first bringup
306 * of the CPU. It's not destroyed on CPU hotunplug.
307 */
308 if (st->shared_state)
309 return;
310
311 raw_spin_lock_init(&st->lock);
312
313 /*
314 * Go over HT siblings and check whether one of them has set up the
315 * shared state pointer already.
316 */
317 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
318 if (cpu == this_cpu)
319 continue;
320
321 if (!per_cpu(ssb_state, cpu).shared_state)
322 continue;
323
324 /* Link it to the state of the sibling: */
325 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
326 return;
327 }
328
329 /*
330 * First HT sibling to come up on the core. Link shared state of
331 * the first HT sibling to itself. The siblings on the same core
332 * which come up later will see the shared state pointer and link
333 * themself to the state of this CPU.
334 */
335 st->shared_state = st;
336}
337
338/*
339 * Logic is: First HT sibling enables SSBD for both siblings in the core
340 * and last sibling to disable it, disables it for the whole core. This how
341 * MSR_SPEC_CTRL works in "hardware":
342 *
343 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
344 */
345static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
346{
347 struct ssb_state *st = this_cpu_ptr(&ssb_state);
348 u64 msr = x86_amd_ls_cfg_base;
349
350 if (!static_cpu_has(X86_FEATURE_ZEN)) {
351 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
352 wrmsrl(MSR_AMD64_LS_CFG, msr);
353 return;
354 }
355
356 if (tifn & _TIF_SSBD) {
357 /*
358 * Since this can race with prctl(), block reentry on the
359 * same CPU.
360 */
361 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
362 return;
363
364 msr |= x86_amd_ls_cfg_ssbd_mask;
365
366 raw_spin_lock(&st->shared_state->lock);
367 /* First sibling enables SSBD: */
368 if (!st->shared_state->disable_state)
369 wrmsrl(MSR_AMD64_LS_CFG, msr);
370 st->shared_state->disable_state++;
371 raw_spin_unlock(&st->shared_state->lock);
372 } else {
373 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
374 return;
375
376 raw_spin_lock(&st->shared_state->lock);
377 st->shared_state->disable_state--;
378 if (!st->shared_state->disable_state)
379 wrmsrl(MSR_AMD64_LS_CFG, msr);
380 raw_spin_unlock(&st->shared_state->lock);
381 }
382}
383#else
384static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
385{
386 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
387
388 wrmsrl(MSR_AMD64_LS_CFG, msr);
389}
390#endif
391
392static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
393{
394 /*
395 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
396 * so ssbd_tif_to_spec_ctrl() just works.
397 */
398 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
399}
400
401/*
402 * Update the MSRs managing speculation control, during context switch.
403 *
404 * tifp: Previous task's thread flags
405 * tifn: Next task's thread flags
406 */
407static __always_inline void __speculation_ctrl_update(unsigned long tifp,
408 unsigned long tifn)
409{
410 unsigned long tif_diff = tifp ^ tifn;
411 u64 msr = x86_spec_ctrl_base;
412 bool updmsr = false;
413
414 /*
415 * If TIF_SSBD is different, select the proper mitigation
416 * method. Note that if SSBD mitigation is disabled or permanentely
417 * enabled this branch can't be taken because nothing can set
418 * TIF_SSBD.
419 */
420 if (tif_diff & _TIF_SSBD) {
421 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
422 amd_set_ssb_virt_state(tifn);
423 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
424 amd_set_core_ssb_state(tifn);
425 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
426 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
427 msr |= ssbd_tif_to_spec_ctrl(tifn);
428 updmsr = true;
429 }
430 }
431
432 /*
433 * Only evaluate TIF_SPEC_IB if conditional STIBP is enabled,
434 * otherwise avoid the MSR write.
435 */
436 if (IS_ENABLED(CONFIG_SMP) &&
437 static_branch_unlikely(&switch_to_cond_stibp)) {
438 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
439 msr |= stibp_tif_to_spec_ctrl(tifn);
440 }
441
442 if (updmsr)
443 wrmsrl(MSR_IA32_SPEC_CTRL, msr);
444}
445
446static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
447{
448 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
449 if (task_spec_ssb_disable(tsk))
450 set_tsk_thread_flag(tsk, TIF_SSBD);
451 else
452 clear_tsk_thread_flag(tsk, TIF_SSBD);
453
454 if (task_spec_ib_disable(tsk))
455 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
456 else
457 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
458 }
459 /* Return the updated threadinfo flags*/
460 return task_thread_info(tsk)->flags;
461}
462
463void speculation_ctrl_update(unsigned long tif)
464{
465 /* Forced update. Make sure all relevant TIF flags are different */
466 preempt_disable();
467 __speculation_ctrl_update(~tif, tif);
468 preempt_enable();
469}
470
471/* Called from seccomp/prctl update */
472void speculation_ctrl_update_current(void)
473{
474 preempt_disable();
475 speculation_ctrl_update(speculation_ctrl_update_tif(current));
476 preempt_enable();
477}
478
479void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
480{
481 struct thread_struct *prev, *next;
482 unsigned long tifp, tifn;
483
484 prev = &prev_p->thread;
485 next = &next_p->thread;
486
487 tifn = READ_ONCE(task_thread_info(next_p)->flags);
488 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
489 switch_to_bitmap(prev, next, tifp, tifn);
490
491 propagate_user_return_notify(prev_p, next_p);
492
493 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
494 arch_has_block_step()) {
495 unsigned long debugctl, msk;
496
497 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
498 debugctl &= ~DEBUGCTLMSR_BTF;
499 msk = tifn & _TIF_BLOCKSTEP;
500 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
501 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
502 }
503
504 if ((tifp ^ tifn) & _TIF_NOTSC)
505 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
506
507 if ((tifp ^ tifn) & _TIF_NOCPUID)
508 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
509
510 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
511 __speculation_ctrl_update(tifp, tifn);
512 } else {
513 speculation_ctrl_update_tif(prev_p);
514 tifn = speculation_ctrl_update_tif(next_p);
515
516 /* Enforce MSR update to ensure consistent state */
517 __speculation_ctrl_update(~tifn, tifn);
518 }
519}
520
521/*
522 * Idle related variables and functions
523 */
524unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
525EXPORT_SYMBOL(boot_option_idle_override);
526
527static void (*x86_idle)(void);
528
529#ifndef CONFIG_SMP
530static inline void play_dead(void)
531{
532 BUG();
533}
534#endif
535
536void arch_cpu_idle_enter(void)
537{
538 tsc_verify_tsc_adjust(false);
539 local_touch_nmi();
540}
541
542void arch_cpu_idle_dead(void)
543{
544 play_dead();
545}
546
547/*
548 * Called from the generic idle code.
549 */
550void arch_cpu_idle(void)
551{
552 x86_idle();
553}
554
555/*
556 * We use this if we don't have any better idle routine..
557 */
558void __cpuidle default_idle(void)
559{
560 trace_cpu_idle_rcuidle(1, smp_processor_id());
561 safe_halt();
562 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
563}
564#ifdef CONFIG_APM_MODULE
565EXPORT_SYMBOL(default_idle);
566#endif
567
568#ifdef CONFIG_XEN
569bool xen_set_default_idle(void)
570{
571 bool ret = !!x86_idle;
572
573 x86_idle = default_idle;
574
575 return ret;
576}
577#endif
578
579void stop_this_cpu(void *dummy)
580{
581 local_irq_disable();
582 /*
583 * Remove this CPU:
584 */
585 set_cpu_online(smp_processor_id(), false);
586 disable_local_APIC();
587 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
588
589 /*
590 * Use wbinvd on processors that support SME. This provides support
591 * for performing a successful kexec when going from SME inactive
592 * to SME active (or vice-versa). The cache must be cleared so that
593 * if there are entries with the same physical address, both with and
594 * without the encryption bit, they don't race each other when flushed
595 * and potentially end up with the wrong entry being committed to
596 * memory.
597 */
598 if (boot_cpu_has(X86_FEATURE_SME))
599 native_wbinvd();
600 for (;;) {
601 /*
602 * Use native_halt() so that memory contents don't change
603 * (stack usage and variables) after possibly issuing the
604 * native_wbinvd() above.
605 */
606 native_halt();
607 }
608}
609
610/*
611 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
612 * states (local apic timer and TSC stop).
613 */
614static void amd_e400_idle(void)
615{
616 /*
617 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
618 * gets set after static_cpu_has() places have been converted via
619 * alternatives.
620 */
621 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
622 default_idle();
623 return;
624 }
625
626 tick_broadcast_enter();
627
628 default_idle();
629
630 /*
631 * The switch back from broadcast mode needs to be called with
632 * interrupts disabled.
633 */
634 local_irq_disable();
635 tick_broadcast_exit();
636 local_irq_enable();
637}
638
639/*
640 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
641 * We can't rely on cpuidle installing MWAIT, because it will not load
642 * on systems that support only C1 -- so the boot default must be MWAIT.
643 *
644 * Some AMD machines are the opposite, they depend on using HALT.
645 *
646 * So for default C1, which is used during boot until cpuidle loads,
647 * use MWAIT-C1 on Intel HW that has it, else use HALT.
648 */
649static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
650{
651 if (c->x86_vendor != X86_VENDOR_INTEL)
652 return 0;
653
654 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
655 return 0;
656
657 return 1;
658}
659
660/*
661 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
662 * with interrupts enabled and no flags, which is backwards compatible with the
663 * original MWAIT implementation.
664 */
665static __cpuidle void mwait_idle(void)
666{
667 if (!current_set_polling_and_test()) {
668 trace_cpu_idle_rcuidle(1, smp_processor_id());
669 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
670 mb(); /* quirk */
671 clflush((void *)&current_thread_info()->flags);
672 mb(); /* quirk */
673 }
674
675 __monitor((void *)&current_thread_info()->flags, 0, 0);
676 if (!need_resched())
677 __sti_mwait(0, 0);
678 else
679 local_irq_enable();
680 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
681 } else {
682 local_irq_enable();
683 }
684 __current_clr_polling();
685}
686
687void select_idle_routine(const struct cpuinfo_x86 *c)
688{
689#ifdef CONFIG_SMP
690 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
691 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
692#endif
693 if (x86_idle || boot_option_idle_override == IDLE_POLL)
694 return;
695
696 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
697 pr_info("using AMD E400 aware idle routine\n");
698 x86_idle = amd_e400_idle;
699 } else if (prefer_mwait_c1_over_halt(c)) {
700 pr_info("using mwait in idle threads\n");
701 x86_idle = mwait_idle;
702 } else
703 x86_idle = default_idle;
704}
705
706void amd_e400_c1e_apic_setup(void)
707{
708 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
709 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
710 local_irq_disable();
711 tick_broadcast_force();
712 local_irq_enable();
713 }
714}
715
716void __init arch_post_acpi_subsys_init(void)
717{
718 u32 lo, hi;
719
720 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
721 return;
722
723 /*
724 * AMD E400 detection needs to happen after ACPI has been enabled. If
725 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
726 * MSR_K8_INT_PENDING_MSG.
727 */
728 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
729 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
730 return;
731
732 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
733
734 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
735 mark_tsc_unstable("TSC halt in AMD C1E");
736 pr_info("System has AMD C1E enabled\n");
737}
738
739static int __init idle_setup(char *str)
740{
741 if (!str)
742 return -EINVAL;
743
744 if (!strcmp(str, "poll")) {
745 pr_info("using polling idle threads\n");
746 boot_option_idle_override = IDLE_POLL;
747 cpu_idle_poll_ctrl(true);
748 } else if (!strcmp(str, "halt")) {
749 /*
750 * When the boot option of idle=halt is added, halt is
751 * forced to be used for CPU idle. In such case CPU C2/C3
752 * won't be used again.
753 * To continue to load the CPU idle driver, don't touch
754 * the boot_option_idle_override.
755 */
756 x86_idle = default_idle;
757 boot_option_idle_override = IDLE_HALT;
758 } else if (!strcmp(str, "nomwait")) {
759 /*
760 * If the boot option of "idle=nomwait" is added,
761 * it means that mwait will be disabled for CPU C2/C3
762 * states. In such case it won't touch the variable
763 * of boot_option_idle_override.
764 */
765 boot_option_idle_override = IDLE_NOMWAIT;
766 } else
767 return -1;
768
769 return 0;
770}
771early_param("idle", idle_setup);
772
773unsigned long arch_align_stack(unsigned long sp)
774{
775 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
776 sp -= get_random_int() % 8192;
777 return sp & ~0xf;
778}
779
780unsigned long arch_randomize_brk(struct mm_struct *mm)
781{
782 return randomize_page(mm->brk, 0x02000000);
783}
784
785/*
786 * Called from fs/proc with a reference on @p to find the function
787 * which called into schedule(). This needs to be done carefully
788 * because the task might wake up and we might look at a stack
789 * changing under us.
790 */
791unsigned long get_wchan(struct task_struct *p)
792{
793 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
794 int count = 0;
795
796 if (!p || p == current || p->state == TASK_RUNNING)
797 return 0;
798
799 if (!try_get_task_stack(p))
800 return 0;
801
802 start = (unsigned long)task_stack_page(p);
803 if (!start)
804 goto out;
805
806 /*
807 * Layout of the stack page:
808 *
809 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
810 * PADDING
811 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
812 * stack
813 * ----------- bottom = start
814 *
815 * The tasks stack pointer points at the location where the
816 * framepointer is stored. The data on the stack is:
817 * ... IP FP ... IP FP
818 *
819 * We need to read FP and IP, so we need to adjust the upper
820 * bound by another unsigned long.
821 */
822 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
823 top -= 2 * sizeof(unsigned long);
824 bottom = start;
825
826 sp = READ_ONCE(p->thread.sp);
827 if (sp < bottom || sp > top)
828 goto out;
829
830 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
831 do {
832 if (fp < bottom || fp > top)
833 goto out;
834 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
835 if (!in_sched_functions(ip)) {
836 ret = ip;
837 goto out;
838 }
839 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
840 } while (count++ < 16 && p->state != TASK_RUNNING);
841
842out:
843 put_task_stack(p);
844 return ret;
845}
846
847long do_arch_prctl_common(struct task_struct *task, int option,
848 unsigned long cpuid_enabled)
849{
850 switch (option) {
851 case ARCH_GET_CPUID:
852 return get_cpuid_mode();
853 case ARCH_SET_CPUID:
854 return set_cpuid_mode(task, cpuid_enabled);
855 }
856
857 return -EINVAL;
858}