Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | #include <linux/export.h> |
| 2 | #include <linux/bitops.h> |
| 3 | #include <linux/elf.h> |
| 4 | #include <linux/mm.h> |
| 5 | |
| 6 | #include <linux/io.h> |
| 7 | #include <linux/sched.h> |
| 8 | #include <linux/sched/clock.h> |
| 9 | #include <linux/random.h> |
| 10 | #include <asm/processor.h> |
| 11 | #include <asm/apic.h> |
| 12 | #include <asm/cacheinfo.h> |
| 13 | #include <asm/cpu.h> |
| 14 | #include <asm/spec-ctrl.h> |
| 15 | #include <asm/smp.h> |
| 16 | #include <asm/pci-direct.h> |
| 17 | #include <asm/delay.h> |
| 18 | |
| 19 | #ifdef CONFIG_X86_64 |
| 20 | # include <asm/mmconfig.h> |
| 21 | # include <asm/set_memory.h> |
| 22 | #endif |
| 23 | |
| 24 | #include "cpu.h" |
| 25 | |
| 26 | static const int amd_erratum_383[]; |
| 27 | static const int amd_erratum_400[]; |
| 28 | static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum); |
| 29 | |
| 30 | /* |
| 31 | * nodes_per_socket: Stores the number of nodes per socket. |
| 32 | * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX |
| 33 | * Node Identifiers[10:8] |
| 34 | */ |
| 35 | static u32 nodes_per_socket = 1; |
| 36 | |
| 37 | static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p) |
| 38 | { |
| 39 | u32 gprs[8] = { 0 }; |
| 40 | int err; |
| 41 | |
| 42 | WARN_ONCE((boot_cpu_data.x86 != 0xf), |
| 43 | "%s should only be used on K8!\n", __func__); |
| 44 | |
| 45 | gprs[1] = msr; |
| 46 | gprs[7] = 0x9c5a203a; |
| 47 | |
| 48 | err = rdmsr_safe_regs(gprs); |
| 49 | |
| 50 | *p = gprs[0] | ((u64)gprs[2] << 32); |
| 51 | |
| 52 | return err; |
| 53 | } |
| 54 | |
| 55 | static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val) |
| 56 | { |
| 57 | u32 gprs[8] = { 0 }; |
| 58 | |
| 59 | WARN_ONCE((boot_cpu_data.x86 != 0xf), |
| 60 | "%s should only be used on K8!\n", __func__); |
| 61 | |
| 62 | gprs[0] = (u32)val; |
| 63 | gprs[1] = msr; |
| 64 | gprs[2] = val >> 32; |
| 65 | gprs[7] = 0x9c5a203a; |
| 66 | |
| 67 | return wrmsr_safe_regs(gprs); |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * B step AMD K6 before B 9730xxxx have hardware bugs that can cause |
| 72 | * misexecution of code under Linux. Owners of such processors should |
| 73 | * contact AMD for precise details and a CPU swap. |
| 74 | * |
| 75 | * See http://www.multimania.com/poulot/k6bug.html |
| 76 | * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6" |
| 77 | * (Publication # 21266 Issue Date: August 1998) |
| 78 | * |
| 79 | * The following test is erm.. interesting. AMD neglected to up |
| 80 | * the chip setting when fixing the bug but they also tweaked some |
| 81 | * performance at the same time.. |
| 82 | */ |
| 83 | |
| 84 | extern __visible void vide(void); |
| 85 | __asm__(".globl vide\n" |
| 86 | ".type vide, @function\n" |
| 87 | ".align 4\n" |
| 88 | "vide: ret\n"); |
| 89 | |
| 90 | static void init_amd_k5(struct cpuinfo_x86 *c) |
| 91 | { |
| 92 | #ifdef CONFIG_X86_32 |
| 93 | /* |
| 94 | * General Systems BIOSen alias the cpu frequency registers |
| 95 | * of the Elan at 0x000df000. Unfortunately, one of the Linux |
| 96 | * drivers subsequently pokes it, and changes the CPU speed. |
| 97 | * Workaround : Remove the unneeded alias. |
| 98 | */ |
| 99 | #define CBAR (0xfffc) /* Configuration Base Address (32-bit) */ |
| 100 | #define CBAR_ENB (0x80000000) |
| 101 | #define CBAR_KEY (0X000000CB) |
| 102 | if (c->x86_model == 9 || c->x86_model == 10) { |
| 103 | if (inl(CBAR) & CBAR_ENB) |
| 104 | outl(0 | CBAR_KEY, CBAR); |
| 105 | } |
| 106 | #endif |
| 107 | } |
| 108 | |
| 109 | static void init_amd_k6(struct cpuinfo_x86 *c) |
| 110 | { |
| 111 | #ifdef CONFIG_X86_32 |
| 112 | u32 l, h; |
| 113 | int mbytes = get_num_physpages() >> (20-PAGE_SHIFT); |
| 114 | |
| 115 | if (c->x86_model < 6) { |
| 116 | /* Based on AMD doc 20734R - June 2000 */ |
| 117 | if (c->x86_model == 0) { |
| 118 | clear_cpu_cap(c, X86_FEATURE_APIC); |
| 119 | set_cpu_cap(c, X86_FEATURE_PGE); |
| 120 | } |
| 121 | return; |
| 122 | } |
| 123 | |
| 124 | if (c->x86_model == 6 && c->x86_stepping == 1) { |
| 125 | const int K6_BUG_LOOP = 1000000; |
| 126 | int n; |
| 127 | void (*f_vide)(void); |
| 128 | u64 d, d2; |
| 129 | |
| 130 | pr_info("AMD K6 stepping B detected - "); |
| 131 | |
| 132 | /* |
| 133 | * It looks like AMD fixed the 2.6.2 bug and improved indirect |
| 134 | * calls at the same time. |
| 135 | */ |
| 136 | |
| 137 | n = K6_BUG_LOOP; |
| 138 | f_vide = vide; |
| 139 | OPTIMIZER_HIDE_VAR(f_vide); |
| 140 | d = rdtsc(); |
| 141 | while (n--) |
| 142 | f_vide(); |
| 143 | d2 = rdtsc(); |
| 144 | d = d2-d; |
| 145 | |
| 146 | if (d > 20*K6_BUG_LOOP) |
| 147 | pr_cont("system stability may be impaired when more than 32 MB are used.\n"); |
| 148 | else |
| 149 | pr_cont("probably OK (after B9730xxxx).\n"); |
| 150 | } |
| 151 | |
| 152 | /* K6 with old style WHCR */ |
| 153 | if (c->x86_model < 8 || |
| 154 | (c->x86_model == 8 && c->x86_stepping < 8)) { |
| 155 | /* We can only write allocate on the low 508Mb */ |
| 156 | if (mbytes > 508) |
| 157 | mbytes = 508; |
| 158 | |
| 159 | rdmsr(MSR_K6_WHCR, l, h); |
| 160 | if ((l&0x0000FFFF) == 0) { |
| 161 | unsigned long flags; |
| 162 | l = (1<<0)|((mbytes/4)<<1); |
| 163 | local_irq_save(flags); |
| 164 | wbinvd(); |
| 165 | wrmsr(MSR_K6_WHCR, l, h); |
| 166 | local_irq_restore(flags); |
| 167 | pr_info("Enabling old style K6 write allocation for %d Mb\n", |
| 168 | mbytes); |
| 169 | } |
| 170 | return; |
| 171 | } |
| 172 | |
| 173 | if ((c->x86_model == 8 && c->x86_stepping > 7) || |
| 174 | c->x86_model == 9 || c->x86_model == 13) { |
| 175 | /* The more serious chips .. */ |
| 176 | |
| 177 | if (mbytes > 4092) |
| 178 | mbytes = 4092; |
| 179 | |
| 180 | rdmsr(MSR_K6_WHCR, l, h); |
| 181 | if ((l&0xFFFF0000) == 0) { |
| 182 | unsigned long flags; |
| 183 | l = ((mbytes>>2)<<22)|(1<<16); |
| 184 | local_irq_save(flags); |
| 185 | wbinvd(); |
| 186 | wrmsr(MSR_K6_WHCR, l, h); |
| 187 | local_irq_restore(flags); |
| 188 | pr_info("Enabling new style K6 write allocation for %d Mb\n", |
| 189 | mbytes); |
| 190 | } |
| 191 | |
| 192 | return; |
| 193 | } |
| 194 | |
| 195 | if (c->x86_model == 10) { |
| 196 | /* AMD Geode LX is model 10 */ |
| 197 | /* placeholder for any needed mods */ |
| 198 | return; |
| 199 | } |
| 200 | #endif |
| 201 | } |
| 202 | |
| 203 | static void init_amd_k7(struct cpuinfo_x86 *c) |
| 204 | { |
| 205 | #ifdef CONFIG_X86_32 |
| 206 | u32 l, h; |
| 207 | |
| 208 | /* |
| 209 | * Bit 15 of Athlon specific MSR 15, needs to be 0 |
| 210 | * to enable SSE on Palomino/Morgan/Barton CPU's. |
| 211 | * If the BIOS didn't enable it already, enable it here. |
| 212 | */ |
| 213 | if (c->x86_model >= 6 && c->x86_model <= 10) { |
| 214 | if (!cpu_has(c, X86_FEATURE_XMM)) { |
| 215 | pr_info("Enabling disabled K7/SSE Support.\n"); |
| 216 | msr_clear_bit(MSR_K7_HWCR, 15); |
| 217 | set_cpu_cap(c, X86_FEATURE_XMM); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | /* |
| 222 | * It's been determined by AMD that Athlons since model 8 stepping 1 |
| 223 | * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx |
| 224 | * As per AMD technical note 27212 0.2 |
| 225 | */ |
| 226 | if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) { |
| 227 | rdmsr(MSR_K7_CLK_CTL, l, h); |
| 228 | if ((l & 0xfff00000) != 0x20000000) { |
| 229 | pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n", |
| 230 | l, ((l & 0x000fffff)|0x20000000)); |
| 231 | wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h); |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | /* calling is from identify_secondary_cpu() ? */ |
| 236 | if (!c->cpu_index) |
| 237 | return; |
| 238 | |
| 239 | /* |
| 240 | * Certain Athlons might work (for various values of 'work') in SMP |
| 241 | * but they are not certified as MP capable. |
| 242 | */ |
| 243 | /* Athlon 660/661 is valid. */ |
| 244 | if ((c->x86_model == 6) && ((c->x86_stepping == 0) || |
| 245 | (c->x86_stepping == 1))) |
| 246 | return; |
| 247 | |
| 248 | /* Duron 670 is valid */ |
| 249 | if ((c->x86_model == 7) && (c->x86_stepping == 0)) |
| 250 | return; |
| 251 | |
| 252 | /* |
| 253 | * Athlon 662, Duron 671, and Athlon >model 7 have capability |
| 254 | * bit. It's worth noting that the A5 stepping (662) of some |
| 255 | * Athlon XP's have the MP bit set. |
| 256 | * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for |
| 257 | * more. |
| 258 | */ |
| 259 | if (((c->x86_model == 6) && (c->x86_stepping >= 2)) || |
| 260 | ((c->x86_model == 7) && (c->x86_stepping >= 1)) || |
| 261 | (c->x86_model > 7)) |
| 262 | if (cpu_has(c, X86_FEATURE_MP)) |
| 263 | return; |
| 264 | |
| 265 | /* If we get here, not a certified SMP capable AMD system. */ |
| 266 | |
| 267 | /* |
| 268 | * Don't taint if we are running SMP kernel on a single non-MP |
| 269 | * approved Athlon |
| 270 | */ |
| 271 | WARN_ONCE(1, "WARNING: This combination of AMD" |
| 272 | " processors is not suitable for SMP.\n"); |
| 273 | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); |
| 274 | #endif |
| 275 | } |
| 276 | |
| 277 | #ifdef CONFIG_NUMA |
| 278 | /* |
| 279 | * To workaround broken NUMA config. Read the comment in |
| 280 | * srat_detect_node(). |
| 281 | */ |
| 282 | static int nearby_node(int apicid) |
| 283 | { |
| 284 | int i, node; |
| 285 | |
| 286 | for (i = apicid - 1; i >= 0; i--) { |
| 287 | node = __apicid_to_node[i]; |
| 288 | if (node != NUMA_NO_NODE && node_online(node)) |
| 289 | return node; |
| 290 | } |
| 291 | for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { |
| 292 | node = __apicid_to_node[i]; |
| 293 | if (node != NUMA_NO_NODE && node_online(node)) |
| 294 | return node; |
| 295 | } |
| 296 | return first_node(node_online_map); /* Shouldn't happen */ |
| 297 | } |
| 298 | #endif |
| 299 | |
| 300 | /* |
| 301 | * Fix up cpu_core_id for pre-F17h systems to be in the |
| 302 | * [0 .. cores_per_node - 1] range. Not really needed but |
| 303 | * kept so as not to break existing setups. |
| 304 | */ |
| 305 | static void legacy_fixup_core_id(struct cpuinfo_x86 *c) |
| 306 | { |
| 307 | u32 cus_per_node; |
| 308 | |
| 309 | if (c->x86 >= 0x17) |
| 310 | return; |
| 311 | |
| 312 | cus_per_node = c->x86_max_cores / nodes_per_socket; |
| 313 | c->cpu_core_id %= cus_per_node; |
| 314 | } |
| 315 | |
| 316 | |
| 317 | static void amd_get_topology_early(struct cpuinfo_x86 *c) |
| 318 | { |
| 319 | if (cpu_has(c, X86_FEATURE_TOPOEXT)) |
| 320 | smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1; |
| 321 | } |
| 322 | |
| 323 | /* |
| 324 | * Fixup core topology information for |
| 325 | * (1) AMD multi-node processors |
| 326 | * Assumption: Number of cores in each internal node is the same. |
| 327 | * (2) AMD processors supporting compute units |
| 328 | */ |
| 329 | static void amd_get_topology(struct cpuinfo_x86 *c) |
| 330 | { |
| 331 | u8 node_id; |
| 332 | int cpu = smp_processor_id(); |
| 333 | |
| 334 | /* get information required for multi-node processors */ |
| 335 | if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { |
| 336 | int err; |
| 337 | u32 eax, ebx, ecx, edx; |
| 338 | |
| 339 | cpuid(0x8000001e, &eax, &ebx, &ecx, &edx); |
| 340 | |
| 341 | node_id = ecx & 0xff; |
| 342 | |
| 343 | if (c->x86 == 0x15) |
| 344 | c->cu_id = ebx & 0xff; |
| 345 | |
| 346 | if (c->x86 >= 0x17) { |
| 347 | c->cpu_core_id = ebx & 0xff; |
| 348 | |
| 349 | if (smp_num_siblings > 1) |
| 350 | c->x86_max_cores /= smp_num_siblings; |
| 351 | } |
| 352 | |
| 353 | /* |
| 354 | * In case leaf B is available, use it to derive |
| 355 | * topology information. |
| 356 | */ |
| 357 | err = detect_extended_topology(c); |
| 358 | if (!err) |
| 359 | c->x86_coreid_bits = get_count_order(c->x86_max_cores); |
| 360 | |
| 361 | cacheinfo_amd_init_llc_id(c, cpu, node_id); |
| 362 | |
| 363 | } else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) { |
| 364 | u64 value; |
| 365 | |
| 366 | rdmsrl(MSR_FAM10H_NODE_ID, value); |
| 367 | node_id = value & 7; |
| 368 | |
| 369 | per_cpu(cpu_llc_id, cpu) = node_id; |
| 370 | } else |
| 371 | return; |
| 372 | |
| 373 | if (nodes_per_socket > 1) { |
| 374 | set_cpu_cap(c, X86_FEATURE_AMD_DCM); |
| 375 | legacy_fixup_core_id(c); |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | /* |
| 380 | * On a AMD dual core setup the lower bits of the APIC id distinguish the cores. |
| 381 | * Assumes number of cores is a power of two. |
| 382 | */ |
| 383 | static void amd_detect_cmp(struct cpuinfo_x86 *c) |
| 384 | { |
| 385 | unsigned bits; |
| 386 | int cpu = smp_processor_id(); |
| 387 | |
| 388 | bits = c->x86_coreid_bits; |
| 389 | /* Low order bits define the core id (index of core in socket) */ |
| 390 | c->cpu_core_id = c->initial_apicid & ((1 << bits)-1); |
| 391 | /* Convert the initial APIC ID into the socket ID */ |
| 392 | c->phys_proc_id = c->initial_apicid >> bits; |
| 393 | /* use socket ID also for last level cache */ |
| 394 | per_cpu(cpu_llc_id, cpu) = c->phys_proc_id; |
| 395 | } |
| 396 | |
| 397 | u16 amd_get_nb_id(int cpu) |
| 398 | { |
| 399 | return per_cpu(cpu_llc_id, cpu); |
| 400 | } |
| 401 | EXPORT_SYMBOL_GPL(amd_get_nb_id); |
| 402 | |
| 403 | u32 amd_get_nodes_per_socket(void) |
| 404 | { |
| 405 | return nodes_per_socket; |
| 406 | } |
| 407 | EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket); |
| 408 | |
| 409 | static void srat_detect_node(struct cpuinfo_x86 *c) |
| 410 | { |
| 411 | #ifdef CONFIG_NUMA |
| 412 | int cpu = smp_processor_id(); |
| 413 | int node; |
| 414 | unsigned apicid = c->apicid; |
| 415 | |
| 416 | node = numa_cpu_node(cpu); |
| 417 | if (node == NUMA_NO_NODE) |
| 418 | node = per_cpu(cpu_llc_id, cpu); |
| 419 | |
| 420 | /* |
| 421 | * On multi-fabric platform (e.g. Numascale NumaChip) a |
| 422 | * platform-specific handler needs to be called to fixup some |
| 423 | * IDs of the CPU. |
| 424 | */ |
| 425 | if (x86_cpuinit.fixup_cpu_id) |
| 426 | x86_cpuinit.fixup_cpu_id(c, node); |
| 427 | |
| 428 | if (!node_online(node)) { |
| 429 | /* |
| 430 | * Two possibilities here: |
| 431 | * |
| 432 | * - The CPU is missing memory and no node was created. In |
| 433 | * that case try picking one from a nearby CPU. |
| 434 | * |
| 435 | * - The APIC IDs differ from the HyperTransport node IDs |
| 436 | * which the K8 northbridge parsing fills in. Assume |
| 437 | * they are all increased by a constant offset, but in |
| 438 | * the same order as the HT nodeids. If that doesn't |
| 439 | * result in a usable node fall back to the path for the |
| 440 | * previous case. |
| 441 | * |
| 442 | * This workaround operates directly on the mapping between |
| 443 | * APIC ID and NUMA node, assuming certain relationship |
| 444 | * between APIC ID, HT node ID and NUMA topology. As going |
| 445 | * through CPU mapping may alter the outcome, directly |
| 446 | * access __apicid_to_node[]. |
| 447 | */ |
| 448 | int ht_nodeid = c->initial_apicid; |
| 449 | |
| 450 | if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE) |
| 451 | node = __apicid_to_node[ht_nodeid]; |
| 452 | /* Pick a nearby node */ |
| 453 | if (!node_online(node)) |
| 454 | node = nearby_node(apicid); |
| 455 | } |
| 456 | numa_set_node(cpu, node); |
| 457 | #endif |
| 458 | } |
| 459 | |
| 460 | static void early_init_amd_mc(struct cpuinfo_x86 *c) |
| 461 | { |
| 462 | #ifdef CONFIG_SMP |
| 463 | unsigned bits, ecx; |
| 464 | |
| 465 | /* Multi core CPU? */ |
| 466 | if (c->extended_cpuid_level < 0x80000008) |
| 467 | return; |
| 468 | |
| 469 | ecx = cpuid_ecx(0x80000008); |
| 470 | |
| 471 | c->x86_max_cores = (ecx & 0xff) + 1; |
| 472 | |
| 473 | /* CPU telling us the core id bits shift? */ |
| 474 | bits = (ecx >> 12) & 0xF; |
| 475 | |
| 476 | /* Otherwise recompute */ |
| 477 | if (bits == 0) { |
| 478 | while ((1 << bits) < c->x86_max_cores) |
| 479 | bits++; |
| 480 | } |
| 481 | |
| 482 | c->x86_coreid_bits = bits; |
| 483 | #endif |
| 484 | } |
| 485 | |
| 486 | static void bsp_init_amd(struct cpuinfo_x86 *c) |
| 487 | { |
| 488 | |
| 489 | #ifdef CONFIG_X86_64 |
| 490 | if (c->x86 >= 0xf) { |
| 491 | unsigned long long tseg; |
| 492 | |
| 493 | /* |
| 494 | * Split up direct mapping around the TSEG SMM area. |
| 495 | * Don't do it for gbpages because there seems very little |
| 496 | * benefit in doing so. |
| 497 | */ |
| 498 | if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) { |
| 499 | unsigned long pfn = tseg >> PAGE_SHIFT; |
| 500 | |
| 501 | pr_debug("tseg: %010llx\n", tseg); |
| 502 | if (pfn_range_is_mapped(pfn, pfn + 1)) |
| 503 | set_memory_4k((unsigned long)__va(tseg), 1); |
| 504 | } |
| 505 | } |
| 506 | #endif |
| 507 | |
| 508 | if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) { |
| 509 | |
| 510 | if (c->x86 > 0x10 || |
| 511 | (c->x86 == 0x10 && c->x86_model >= 0x2)) { |
| 512 | u64 val; |
| 513 | |
| 514 | rdmsrl(MSR_K7_HWCR, val); |
| 515 | if (!(val & BIT(24))) |
| 516 | pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n"); |
| 517 | } |
| 518 | } |
| 519 | |
| 520 | if (c->x86 == 0x15) { |
| 521 | unsigned long upperbit; |
| 522 | u32 cpuid, assoc; |
| 523 | |
| 524 | cpuid = cpuid_edx(0x80000005); |
| 525 | assoc = cpuid >> 16 & 0xff; |
| 526 | upperbit = ((cpuid >> 24) << 10) / assoc; |
| 527 | |
| 528 | va_align.mask = (upperbit - 1) & PAGE_MASK; |
| 529 | va_align.flags = ALIGN_VA_32 | ALIGN_VA_64; |
| 530 | |
| 531 | /* A random value per boot for bit slice [12:upper_bit) */ |
| 532 | va_align.bits = get_random_int() & va_align.mask; |
| 533 | } |
| 534 | |
| 535 | if (cpu_has(c, X86_FEATURE_MWAITX)) |
| 536 | use_mwaitx_delay(); |
| 537 | |
| 538 | if (boot_cpu_has(X86_FEATURE_TOPOEXT)) { |
| 539 | u32 ecx; |
| 540 | |
| 541 | ecx = cpuid_ecx(0x8000001e); |
| 542 | nodes_per_socket = ((ecx >> 8) & 7) + 1; |
| 543 | } else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) { |
| 544 | u64 value; |
| 545 | |
| 546 | rdmsrl(MSR_FAM10H_NODE_ID, value); |
| 547 | nodes_per_socket = ((value >> 3) & 7) + 1; |
| 548 | } |
| 549 | |
| 550 | if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) && |
| 551 | !boot_cpu_has(X86_FEATURE_VIRT_SSBD) && |
| 552 | c->x86 >= 0x15 && c->x86 <= 0x17) { |
| 553 | unsigned int bit; |
| 554 | |
| 555 | switch (c->x86) { |
| 556 | case 0x15: bit = 54; break; |
| 557 | case 0x16: bit = 33; break; |
| 558 | case 0x17: bit = 10; break; |
| 559 | default: return; |
| 560 | } |
| 561 | /* |
| 562 | * Try to cache the base value so further operations can |
| 563 | * avoid RMW. If that faults, do not enable SSBD. |
| 564 | */ |
| 565 | if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) { |
| 566 | setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD); |
| 567 | setup_force_cpu_cap(X86_FEATURE_SSBD); |
| 568 | x86_amd_ls_cfg_ssbd_mask = 1ULL << bit; |
| 569 | } |
| 570 | } |
| 571 | } |
| 572 | |
| 573 | static void early_detect_mem_encrypt(struct cpuinfo_x86 *c) |
| 574 | { |
| 575 | u64 msr; |
| 576 | |
| 577 | /* |
| 578 | * BIOS support is required for SME and SEV. |
| 579 | * For SME: If BIOS has enabled SME then adjust x86_phys_bits by |
| 580 | * the SME physical address space reduction value. |
| 581 | * If BIOS has not enabled SME then don't advertise the |
| 582 | * SME feature (set in scattered.c). |
| 583 | * For SEV: If BIOS has not enabled SEV then don't advertise the |
| 584 | * SEV feature (set in scattered.c). |
| 585 | * |
| 586 | * In all cases, since support for SME and SEV requires long mode, |
| 587 | * don't advertise the feature under CONFIG_X86_32. |
| 588 | */ |
| 589 | if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) { |
| 590 | /* Check if memory encryption is enabled */ |
| 591 | rdmsrl(MSR_K8_SYSCFG, msr); |
| 592 | if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) |
| 593 | goto clear_all; |
| 594 | |
| 595 | /* |
| 596 | * Always adjust physical address bits. Even though this |
| 597 | * will be a value above 32-bits this is still done for |
| 598 | * CONFIG_X86_32 so that accurate values are reported. |
| 599 | */ |
| 600 | c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f; |
| 601 | |
| 602 | if (IS_ENABLED(CONFIG_X86_32)) |
| 603 | goto clear_all; |
| 604 | |
| 605 | rdmsrl(MSR_K7_HWCR, msr); |
| 606 | if (!(msr & MSR_K7_HWCR_SMMLOCK)) |
| 607 | goto clear_sev; |
| 608 | |
| 609 | return; |
| 610 | |
| 611 | clear_all: |
| 612 | clear_cpu_cap(c, X86_FEATURE_SME); |
| 613 | clear_sev: |
| 614 | clear_cpu_cap(c, X86_FEATURE_SEV); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | static void early_init_amd(struct cpuinfo_x86 *c) |
| 619 | { |
| 620 | u64 value; |
| 621 | u32 dummy; |
| 622 | |
| 623 | early_init_amd_mc(c); |
| 624 | |
| 625 | #ifdef CONFIG_X86_32 |
| 626 | if (c->x86 == 6) |
| 627 | set_cpu_cap(c, X86_FEATURE_K7); |
| 628 | #endif |
| 629 | |
| 630 | if (c->x86 >= 0xf) |
| 631 | set_cpu_cap(c, X86_FEATURE_K8); |
| 632 | |
| 633 | rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy); |
| 634 | |
| 635 | /* |
| 636 | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate |
| 637 | * with P/T states and does not stop in deep C-states |
| 638 | */ |
| 639 | if (c->x86_power & (1 << 8)) { |
| 640 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| 641 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
| 642 | } |
| 643 | |
| 644 | /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */ |
| 645 | if (c->x86_power & BIT(12)) |
| 646 | set_cpu_cap(c, X86_FEATURE_ACC_POWER); |
| 647 | |
| 648 | #ifdef CONFIG_X86_64 |
| 649 | set_cpu_cap(c, X86_FEATURE_SYSCALL32); |
| 650 | #else |
| 651 | /* Set MTRR capability flag if appropriate */ |
| 652 | if (c->x86 == 5) |
| 653 | if (c->x86_model == 13 || c->x86_model == 9 || |
| 654 | (c->x86_model == 8 && c->x86_stepping >= 8)) |
| 655 | set_cpu_cap(c, X86_FEATURE_K6_MTRR); |
| 656 | #endif |
| 657 | #if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI) |
| 658 | /* |
| 659 | * ApicID can always be treated as an 8-bit value for AMD APIC versions |
| 660 | * >= 0x10, but even old K8s came out of reset with version 0x10. So, we |
| 661 | * can safely set X86_FEATURE_EXTD_APICID unconditionally for families |
| 662 | * after 16h. |
| 663 | */ |
| 664 | if (boot_cpu_has(X86_FEATURE_APIC)) { |
| 665 | if (c->x86 > 0x16) |
| 666 | set_cpu_cap(c, X86_FEATURE_EXTD_APICID); |
| 667 | else if (c->x86 >= 0xf) { |
| 668 | /* check CPU config space for extended APIC ID */ |
| 669 | unsigned int val; |
| 670 | |
| 671 | val = read_pci_config(0, 24, 0, 0x68); |
| 672 | if ((val >> 17 & 0x3) == 0x3) |
| 673 | set_cpu_cap(c, X86_FEATURE_EXTD_APICID); |
| 674 | } |
| 675 | } |
| 676 | #endif |
| 677 | |
| 678 | /* |
| 679 | * This is only needed to tell the kernel whether to use VMCALL |
| 680 | * and VMMCALL. VMMCALL is never executed except under virt, so |
| 681 | * we can set it unconditionally. |
| 682 | */ |
| 683 | set_cpu_cap(c, X86_FEATURE_VMMCALL); |
| 684 | |
| 685 | /* F16h erratum 793, CVE-2013-6885 */ |
| 686 | if (c->x86 == 0x16 && c->x86_model <= 0xf) |
| 687 | msr_set_bit(MSR_AMD64_LS_CFG, 15); |
| 688 | |
| 689 | /* |
| 690 | * Check whether the machine is affected by erratum 400. This is |
| 691 | * used to select the proper idle routine and to enable the check |
| 692 | * whether the machine is affected in arch_post_acpi_init(), which |
| 693 | * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check. |
| 694 | */ |
| 695 | if (cpu_has_amd_erratum(c, amd_erratum_400)) |
| 696 | set_cpu_bug(c, X86_BUG_AMD_E400); |
| 697 | |
| 698 | early_detect_mem_encrypt(c); |
| 699 | |
| 700 | /* Re-enable TopologyExtensions if switched off by BIOS */ |
| 701 | if (c->x86 == 0x15 && |
| 702 | (c->x86_model >= 0x10 && c->x86_model <= 0x6f) && |
| 703 | !cpu_has(c, X86_FEATURE_TOPOEXT)) { |
| 704 | |
| 705 | if (msr_set_bit(0xc0011005, 54) > 0) { |
| 706 | rdmsrl(0xc0011005, value); |
| 707 | if (value & BIT_64(54)) { |
| 708 | set_cpu_cap(c, X86_FEATURE_TOPOEXT); |
| 709 | pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n"); |
| 710 | } |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | amd_get_topology_early(c); |
| 715 | } |
| 716 | |
| 717 | static void init_amd_k8(struct cpuinfo_x86 *c) |
| 718 | { |
| 719 | u32 level; |
| 720 | u64 value; |
| 721 | |
| 722 | /* On C+ stepping K8 rep microcode works well for copy/memset */ |
| 723 | level = cpuid_eax(1); |
| 724 | if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58) |
| 725 | set_cpu_cap(c, X86_FEATURE_REP_GOOD); |
| 726 | |
| 727 | /* |
| 728 | * Some BIOSes incorrectly force this feature, but only K8 revision D |
| 729 | * (model = 0x14) and later actually support it. |
| 730 | * (AMD Erratum #110, docId: 25759). |
| 731 | */ |
| 732 | if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) { |
| 733 | clear_cpu_cap(c, X86_FEATURE_LAHF_LM); |
| 734 | if (!rdmsrl_amd_safe(0xc001100d, &value)) { |
| 735 | value &= ~BIT_64(32); |
| 736 | wrmsrl_amd_safe(0xc001100d, value); |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | if (!c->x86_model_id[0]) |
| 741 | strcpy(c->x86_model_id, "Hammer"); |
| 742 | |
| 743 | #ifdef CONFIG_SMP |
| 744 | /* |
| 745 | * Disable TLB flush filter by setting HWCR.FFDIS on K8 |
| 746 | * bit 6 of msr C001_0015 |
| 747 | * |
| 748 | * Errata 63 for SH-B3 steppings |
| 749 | * Errata 122 for all steppings (F+ have it disabled by default) |
| 750 | */ |
| 751 | msr_set_bit(MSR_K7_HWCR, 6); |
| 752 | #endif |
| 753 | set_cpu_bug(c, X86_BUG_SWAPGS_FENCE); |
| 754 | } |
| 755 | |
| 756 | static void init_amd_gh(struct cpuinfo_x86 *c) |
| 757 | { |
| 758 | #ifdef CONFIG_MMCONF_FAM10H |
| 759 | /* do this for boot cpu */ |
| 760 | if (c == &boot_cpu_data) |
| 761 | check_enable_amd_mmconf_dmi(); |
| 762 | |
| 763 | fam10h_check_enable_mmcfg(); |
| 764 | #endif |
| 765 | |
| 766 | /* |
| 767 | * Disable GART TLB Walk Errors on Fam10h. We do this here because this |
| 768 | * is always needed when GART is enabled, even in a kernel which has no |
| 769 | * MCE support built in. BIOS should disable GartTlbWlk Errors already. |
| 770 | * If it doesn't, we do it here as suggested by the BKDG. |
| 771 | * |
| 772 | * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012 |
| 773 | */ |
| 774 | msr_set_bit(MSR_AMD64_MCx_MASK(4), 10); |
| 775 | |
| 776 | /* |
| 777 | * On family 10h BIOS may not have properly enabled WC+ support, causing |
| 778 | * it to be converted to CD memtype. This may result in performance |
| 779 | * degradation for certain nested-paging guests. Prevent this conversion |
| 780 | * by clearing bit 24 in MSR_AMD64_BU_CFG2. |
| 781 | * |
| 782 | * NOTE: we want to use the _safe accessors so as not to #GP kvm |
| 783 | * guests on older kvm hosts. |
| 784 | */ |
| 785 | msr_clear_bit(MSR_AMD64_BU_CFG2, 24); |
| 786 | |
| 787 | if (cpu_has_amd_erratum(c, amd_erratum_383)) |
| 788 | set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH); |
| 789 | } |
| 790 | |
| 791 | #define MSR_AMD64_DE_CFG 0xC0011029 |
| 792 | |
| 793 | static void init_amd_ln(struct cpuinfo_x86 *c) |
| 794 | { |
| 795 | /* |
| 796 | * Apply erratum 665 fix unconditionally so machines without a BIOS |
| 797 | * fix work. |
| 798 | */ |
| 799 | msr_set_bit(MSR_AMD64_DE_CFG, 31); |
| 800 | } |
| 801 | |
| 802 | static void init_amd_bd(struct cpuinfo_x86 *c) |
| 803 | { |
| 804 | u64 value; |
| 805 | |
| 806 | /* |
| 807 | * The way access filter has a performance penalty on some workloads. |
| 808 | * Disable it on the affected CPUs. |
| 809 | */ |
| 810 | if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) { |
| 811 | if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) { |
| 812 | value |= 0x1E; |
| 813 | wrmsrl_safe(MSR_F15H_IC_CFG, value); |
| 814 | } |
| 815 | } |
| 816 | } |
| 817 | |
| 818 | static void init_amd_zn(struct cpuinfo_x86 *c) |
| 819 | { |
| 820 | set_cpu_cap(c, X86_FEATURE_ZEN); |
| 821 | /* |
| 822 | * Fix erratum 1076: CPB feature bit not being set in CPUID. It affects |
| 823 | * all up to and including B1. |
| 824 | */ |
| 825 | if (c->x86_model <= 1 && c->x86_stepping <= 1) |
| 826 | set_cpu_cap(c, X86_FEATURE_CPB); |
| 827 | } |
| 828 | |
| 829 | static void init_amd(struct cpuinfo_x86 *c) |
| 830 | { |
| 831 | early_init_amd(c); |
| 832 | |
| 833 | /* |
| 834 | * Bit 31 in normal CPUID used for nonstandard 3DNow ID; |
| 835 | * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway |
| 836 | */ |
| 837 | clear_cpu_cap(c, 0*32+31); |
| 838 | |
| 839 | if (c->x86 >= 0x10) |
| 840 | set_cpu_cap(c, X86_FEATURE_REP_GOOD); |
| 841 | |
| 842 | /* get apicid instead of initial apic id from cpuid */ |
| 843 | c->apicid = hard_smp_processor_id(); |
| 844 | |
| 845 | /* K6s reports MCEs but don't actually have all the MSRs */ |
| 846 | if (c->x86 < 6) |
| 847 | clear_cpu_cap(c, X86_FEATURE_MCE); |
| 848 | |
| 849 | switch (c->x86) { |
| 850 | case 4: init_amd_k5(c); break; |
| 851 | case 5: init_amd_k6(c); break; |
| 852 | case 6: init_amd_k7(c); break; |
| 853 | case 0xf: init_amd_k8(c); break; |
| 854 | case 0x10: init_amd_gh(c); break; |
| 855 | case 0x12: init_amd_ln(c); break; |
| 856 | case 0x15: init_amd_bd(c); break; |
| 857 | case 0x17: init_amd_zn(c); break; |
| 858 | } |
| 859 | |
| 860 | /* |
| 861 | * Enable workaround for FXSAVE leak on CPUs |
| 862 | * without a XSaveErPtr feature |
| 863 | */ |
| 864 | if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR))) |
| 865 | set_cpu_bug(c, X86_BUG_FXSAVE_LEAK); |
| 866 | |
| 867 | cpu_detect_cache_sizes(c); |
| 868 | |
| 869 | amd_detect_cmp(c); |
| 870 | amd_get_topology(c); |
| 871 | srat_detect_node(c); |
| 872 | |
| 873 | init_amd_cacheinfo(c); |
| 874 | |
| 875 | if (cpu_has(c, X86_FEATURE_XMM2)) { |
| 876 | unsigned long long val; |
| 877 | int ret; |
| 878 | |
| 879 | /* |
| 880 | * A serializing LFENCE has less overhead than MFENCE, so |
| 881 | * use it for execution serialization. On families which |
| 882 | * don't have that MSR, LFENCE is already serializing. |
| 883 | * msr_set_bit() uses the safe accessors, too, even if the MSR |
| 884 | * is not present. |
| 885 | */ |
| 886 | msr_set_bit(MSR_F10H_DECFG, |
| 887 | MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT); |
| 888 | |
| 889 | /* |
| 890 | * Verify that the MSR write was successful (could be running |
| 891 | * under a hypervisor) and only then assume that LFENCE is |
| 892 | * serializing. |
| 893 | */ |
| 894 | ret = rdmsrl_safe(MSR_F10H_DECFG, &val); |
| 895 | if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) { |
| 896 | /* A serializing LFENCE stops RDTSC speculation */ |
| 897 | set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); |
| 898 | } else { |
| 899 | /* MFENCE stops RDTSC speculation */ |
| 900 | set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC); |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | /* |
| 905 | * Family 0x12 and above processors have APIC timer |
| 906 | * running in deep C states. |
| 907 | */ |
| 908 | if (c->x86 > 0x11) |
| 909 | set_cpu_cap(c, X86_FEATURE_ARAT); |
| 910 | |
| 911 | /* 3DNow or LM implies PREFETCHW */ |
| 912 | if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH)) |
| 913 | if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM)) |
| 914 | set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH); |
| 915 | |
| 916 | /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */ |
| 917 | if (!cpu_has(c, X86_FEATURE_XENPV)) |
| 918 | set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS); |
| 919 | } |
| 920 | |
| 921 | #ifdef CONFIG_X86_32 |
| 922 | static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size) |
| 923 | { |
| 924 | /* AMD errata T13 (order #21922) */ |
| 925 | if (c->x86 == 6) { |
| 926 | /* Duron Rev A0 */ |
| 927 | if (c->x86_model == 3 && c->x86_stepping == 0) |
| 928 | size = 64; |
| 929 | /* Tbird rev A1/A2 */ |
| 930 | if (c->x86_model == 4 && |
| 931 | (c->x86_stepping == 0 || c->x86_stepping == 1)) |
| 932 | size = 256; |
| 933 | } |
| 934 | return size; |
| 935 | } |
| 936 | #endif |
| 937 | |
| 938 | static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c) |
| 939 | { |
| 940 | u32 ebx, eax, ecx, edx; |
| 941 | u16 mask = 0xfff; |
| 942 | |
| 943 | if (c->x86 < 0xf) |
| 944 | return; |
| 945 | |
| 946 | if (c->extended_cpuid_level < 0x80000006) |
| 947 | return; |
| 948 | |
| 949 | cpuid(0x80000006, &eax, &ebx, &ecx, &edx); |
| 950 | |
| 951 | tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask; |
| 952 | tlb_lli_4k[ENTRIES] = ebx & mask; |
| 953 | |
| 954 | /* |
| 955 | * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB |
| 956 | * characteristics from the CPUID function 0x80000005 instead. |
| 957 | */ |
| 958 | if (c->x86 == 0xf) { |
| 959 | cpuid(0x80000005, &eax, &ebx, &ecx, &edx); |
| 960 | mask = 0xff; |
| 961 | } |
| 962 | |
| 963 | /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ |
| 964 | if (!((eax >> 16) & mask)) |
| 965 | tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff; |
| 966 | else |
| 967 | tlb_lld_2m[ENTRIES] = (eax >> 16) & mask; |
| 968 | |
| 969 | /* a 4M entry uses two 2M entries */ |
| 970 | tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1; |
| 971 | |
| 972 | /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */ |
| 973 | if (!(eax & mask)) { |
| 974 | /* Erratum 658 */ |
| 975 | if (c->x86 == 0x15 && c->x86_model <= 0x1f) { |
| 976 | tlb_lli_2m[ENTRIES] = 1024; |
| 977 | } else { |
| 978 | cpuid(0x80000005, &eax, &ebx, &ecx, &edx); |
| 979 | tlb_lli_2m[ENTRIES] = eax & 0xff; |
| 980 | } |
| 981 | } else |
| 982 | tlb_lli_2m[ENTRIES] = eax & mask; |
| 983 | |
| 984 | tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1; |
| 985 | } |
| 986 | |
| 987 | static const struct cpu_dev amd_cpu_dev = { |
| 988 | .c_vendor = "AMD", |
| 989 | .c_ident = { "AuthenticAMD" }, |
| 990 | #ifdef CONFIG_X86_32 |
| 991 | .legacy_models = { |
| 992 | { .family = 4, .model_names = |
| 993 | { |
| 994 | [3] = "486 DX/2", |
| 995 | [7] = "486 DX/2-WB", |
| 996 | [8] = "486 DX/4", |
| 997 | [9] = "486 DX/4-WB", |
| 998 | [14] = "Am5x86-WT", |
| 999 | [15] = "Am5x86-WB" |
| 1000 | } |
| 1001 | }, |
| 1002 | }, |
| 1003 | .legacy_cache_size = amd_size_cache, |
| 1004 | #endif |
| 1005 | .c_early_init = early_init_amd, |
| 1006 | .c_detect_tlb = cpu_detect_tlb_amd, |
| 1007 | .c_bsp_init = bsp_init_amd, |
| 1008 | .c_init = init_amd, |
| 1009 | .c_x86_vendor = X86_VENDOR_AMD, |
| 1010 | }; |
| 1011 | |
| 1012 | cpu_dev_register(amd_cpu_dev); |
| 1013 | |
| 1014 | /* |
| 1015 | * AMD errata checking |
| 1016 | * |
| 1017 | * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or |
| 1018 | * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that |
| 1019 | * have an OSVW id assigned, which it takes as first argument. Both take a |
| 1020 | * variable number of family-specific model-stepping ranges created by |
| 1021 | * AMD_MODEL_RANGE(). |
| 1022 | * |
| 1023 | * Example: |
| 1024 | * |
| 1025 | * const int amd_erratum_319[] = |
| 1026 | * AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2), |
| 1027 | * AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0), |
| 1028 | * AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0)); |
| 1029 | */ |
| 1030 | |
| 1031 | #define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 } |
| 1032 | #define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 } |
| 1033 | #define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \ |
| 1034 | ((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end)) |
| 1035 | #define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff) |
| 1036 | #define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff) |
| 1037 | #define AMD_MODEL_RANGE_END(range) ((range) & 0xfff) |
| 1038 | |
| 1039 | static const int amd_erratum_400[] = |
| 1040 | AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf), |
| 1041 | AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf)); |
| 1042 | |
| 1043 | static const int amd_erratum_383[] = |
| 1044 | AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf)); |
| 1045 | |
| 1046 | |
| 1047 | static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum) |
| 1048 | { |
| 1049 | int osvw_id = *erratum++; |
| 1050 | u32 range; |
| 1051 | u32 ms; |
| 1052 | |
| 1053 | if (osvw_id >= 0 && osvw_id < 65536 && |
| 1054 | cpu_has(cpu, X86_FEATURE_OSVW)) { |
| 1055 | u64 osvw_len; |
| 1056 | |
| 1057 | rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len); |
| 1058 | if (osvw_id < osvw_len) { |
| 1059 | u64 osvw_bits; |
| 1060 | |
| 1061 | rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6), |
| 1062 | osvw_bits); |
| 1063 | return osvw_bits & (1ULL << (osvw_id & 0x3f)); |
| 1064 | } |
| 1065 | } |
| 1066 | |
| 1067 | /* OSVW unavailable or ID unknown, match family-model-stepping range */ |
| 1068 | ms = (cpu->x86_model << 4) | cpu->x86_stepping; |
| 1069 | while ((range = *erratum++)) |
| 1070 | if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) && |
| 1071 | (ms >= AMD_MODEL_RANGE_START(range)) && |
| 1072 | (ms <= AMD_MODEL_RANGE_END(range))) |
| 1073 | return true; |
| 1074 | |
| 1075 | return false; |
| 1076 | } |
| 1077 | |
| 1078 | void set_dr_addr_mask(unsigned long mask, int dr) |
| 1079 | { |
| 1080 | if (!boot_cpu_has(X86_FEATURE_BPEXT)) |
| 1081 | return; |
| 1082 | |
| 1083 | switch (dr) { |
| 1084 | case 0: |
| 1085 | wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0); |
| 1086 | break; |
| 1087 | case 1: |
| 1088 | case 2: |
| 1089 | case 3: |
| 1090 | wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0); |
| 1091 | break; |
| 1092 | default: |
| 1093 | break; |
| 1094 | } |
| 1095 | } |