blob: eeea634bee0a73291a6f879706ef2e280f8e0d4f [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001#include <linux/export.h>
2#include <linux/bitops.h>
3#include <linux/elf.h>
4#include <linux/mm.h>
5
6#include <linux/io.h>
7#include <linux/sched.h>
8#include <linux/sched/clock.h>
9#include <linux/random.h>
10#include <asm/processor.h>
11#include <asm/apic.h>
12#include <asm/cacheinfo.h>
13#include <asm/cpu.h>
14#include <asm/spec-ctrl.h>
15#include <asm/smp.h>
16#include <asm/pci-direct.h>
17#include <asm/delay.h>
18
19#ifdef CONFIG_X86_64
20# include <asm/mmconfig.h>
21# include <asm/set_memory.h>
22#endif
23
24#include "cpu.h"
25
26static const int amd_erratum_383[];
27static const int amd_erratum_400[];
28static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum);
29
30/*
31 * nodes_per_socket: Stores the number of nodes per socket.
32 * Refer to Fam15h Models 00-0fh BKDG - CPUID Fn8000_001E_ECX
33 * Node Identifiers[10:8]
34 */
35static u32 nodes_per_socket = 1;
36
37static inline int rdmsrl_amd_safe(unsigned msr, unsigned long long *p)
38{
39 u32 gprs[8] = { 0 };
40 int err;
41
42 WARN_ONCE((boot_cpu_data.x86 != 0xf),
43 "%s should only be used on K8!\n", __func__);
44
45 gprs[1] = msr;
46 gprs[7] = 0x9c5a203a;
47
48 err = rdmsr_safe_regs(gprs);
49
50 *p = gprs[0] | ((u64)gprs[2] << 32);
51
52 return err;
53}
54
55static inline int wrmsrl_amd_safe(unsigned msr, unsigned long long val)
56{
57 u32 gprs[8] = { 0 };
58
59 WARN_ONCE((boot_cpu_data.x86 != 0xf),
60 "%s should only be used on K8!\n", __func__);
61
62 gprs[0] = (u32)val;
63 gprs[1] = msr;
64 gprs[2] = val >> 32;
65 gprs[7] = 0x9c5a203a;
66
67 return wrmsr_safe_regs(gprs);
68}
69
70/*
71 * B step AMD K6 before B 9730xxxx have hardware bugs that can cause
72 * misexecution of code under Linux. Owners of such processors should
73 * contact AMD for precise details and a CPU swap.
74 *
75 * See http://www.multimania.com/poulot/k6bug.html
76 * and section 2.6.2 of "AMD-K6 Processor Revision Guide - Model 6"
77 * (Publication # 21266 Issue Date: August 1998)
78 *
79 * The following test is erm.. interesting. AMD neglected to up
80 * the chip setting when fixing the bug but they also tweaked some
81 * performance at the same time..
82 */
83
84extern __visible void vide(void);
85__asm__(".globl vide\n"
86 ".type vide, @function\n"
87 ".align 4\n"
88 "vide: ret\n");
89
90static void init_amd_k5(struct cpuinfo_x86 *c)
91{
92#ifdef CONFIG_X86_32
93/*
94 * General Systems BIOSen alias the cpu frequency registers
95 * of the Elan at 0x000df000. Unfortunately, one of the Linux
96 * drivers subsequently pokes it, and changes the CPU speed.
97 * Workaround : Remove the unneeded alias.
98 */
99#define CBAR (0xfffc) /* Configuration Base Address (32-bit) */
100#define CBAR_ENB (0x80000000)
101#define CBAR_KEY (0X000000CB)
102 if (c->x86_model == 9 || c->x86_model == 10) {
103 if (inl(CBAR) & CBAR_ENB)
104 outl(0 | CBAR_KEY, CBAR);
105 }
106#endif
107}
108
109static void init_amd_k6(struct cpuinfo_x86 *c)
110{
111#ifdef CONFIG_X86_32
112 u32 l, h;
113 int mbytes = get_num_physpages() >> (20-PAGE_SHIFT);
114
115 if (c->x86_model < 6) {
116 /* Based on AMD doc 20734R - June 2000 */
117 if (c->x86_model == 0) {
118 clear_cpu_cap(c, X86_FEATURE_APIC);
119 set_cpu_cap(c, X86_FEATURE_PGE);
120 }
121 return;
122 }
123
124 if (c->x86_model == 6 && c->x86_stepping == 1) {
125 const int K6_BUG_LOOP = 1000000;
126 int n;
127 void (*f_vide)(void);
128 u64 d, d2;
129
130 pr_info("AMD K6 stepping B detected - ");
131
132 /*
133 * It looks like AMD fixed the 2.6.2 bug and improved indirect
134 * calls at the same time.
135 */
136
137 n = K6_BUG_LOOP;
138 f_vide = vide;
139 OPTIMIZER_HIDE_VAR(f_vide);
140 d = rdtsc();
141 while (n--)
142 f_vide();
143 d2 = rdtsc();
144 d = d2-d;
145
146 if (d > 20*K6_BUG_LOOP)
147 pr_cont("system stability may be impaired when more than 32 MB are used.\n");
148 else
149 pr_cont("probably OK (after B9730xxxx).\n");
150 }
151
152 /* K6 with old style WHCR */
153 if (c->x86_model < 8 ||
154 (c->x86_model == 8 && c->x86_stepping < 8)) {
155 /* We can only write allocate on the low 508Mb */
156 if (mbytes > 508)
157 mbytes = 508;
158
159 rdmsr(MSR_K6_WHCR, l, h);
160 if ((l&0x0000FFFF) == 0) {
161 unsigned long flags;
162 l = (1<<0)|((mbytes/4)<<1);
163 local_irq_save(flags);
164 wbinvd();
165 wrmsr(MSR_K6_WHCR, l, h);
166 local_irq_restore(flags);
167 pr_info("Enabling old style K6 write allocation for %d Mb\n",
168 mbytes);
169 }
170 return;
171 }
172
173 if ((c->x86_model == 8 && c->x86_stepping > 7) ||
174 c->x86_model == 9 || c->x86_model == 13) {
175 /* The more serious chips .. */
176
177 if (mbytes > 4092)
178 mbytes = 4092;
179
180 rdmsr(MSR_K6_WHCR, l, h);
181 if ((l&0xFFFF0000) == 0) {
182 unsigned long flags;
183 l = ((mbytes>>2)<<22)|(1<<16);
184 local_irq_save(flags);
185 wbinvd();
186 wrmsr(MSR_K6_WHCR, l, h);
187 local_irq_restore(flags);
188 pr_info("Enabling new style K6 write allocation for %d Mb\n",
189 mbytes);
190 }
191
192 return;
193 }
194
195 if (c->x86_model == 10) {
196 /* AMD Geode LX is model 10 */
197 /* placeholder for any needed mods */
198 return;
199 }
200#endif
201}
202
203static void init_amd_k7(struct cpuinfo_x86 *c)
204{
205#ifdef CONFIG_X86_32
206 u32 l, h;
207
208 /*
209 * Bit 15 of Athlon specific MSR 15, needs to be 0
210 * to enable SSE on Palomino/Morgan/Barton CPU's.
211 * If the BIOS didn't enable it already, enable it here.
212 */
213 if (c->x86_model >= 6 && c->x86_model <= 10) {
214 if (!cpu_has(c, X86_FEATURE_XMM)) {
215 pr_info("Enabling disabled K7/SSE Support.\n");
216 msr_clear_bit(MSR_K7_HWCR, 15);
217 set_cpu_cap(c, X86_FEATURE_XMM);
218 }
219 }
220
221 /*
222 * It's been determined by AMD that Athlons since model 8 stepping 1
223 * are more robust with CLK_CTL set to 200xxxxx instead of 600xxxxx
224 * As per AMD technical note 27212 0.2
225 */
226 if ((c->x86_model == 8 && c->x86_stepping >= 1) || (c->x86_model > 8)) {
227 rdmsr(MSR_K7_CLK_CTL, l, h);
228 if ((l & 0xfff00000) != 0x20000000) {
229 pr_info("CPU: CLK_CTL MSR was %x. Reprogramming to %x\n",
230 l, ((l & 0x000fffff)|0x20000000));
231 wrmsr(MSR_K7_CLK_CTL, (l & 0x000fffff)|0x20000000, h);
232 }
233 }
234
235 /* calling is from identify_secondary_cpu() ? */
236 if (!c->cpu_index)
237 return;
238
239 /*
240 * Certain Athlons might work (for various values of 'work') in SMP
241 * but they are not certified as MP capable.
242 */
243 /* Athlon 660/661 is valid. */
244 if ((c->x86_model == 6) && ((c->x86_stepping == 0) ||
245 (c->x86_stepping == 1)))
246 return;
247
248 /* Duron 670 is valid */
249 if ((c->x86_model == 7) && (c->x86_stepping == 0))
250 return;
251
252 /*
253 * Athlon 662, Duron 671, and Athlon >model 7 have capability
254 * bit. It's worth noting that the A5 stepping (662) of some
255 * Athlon XP's have the MP bit set.
256 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for
257 * more.
258 */
259 if (((c->x86_model == 6) && (c->x86_stepping >= 2)) ||
260 ((c->x86_model == 7) && (c->x86_stepping >= 1)) ||
261 (c->x86_model > 7))
262 if (cpu_has(c, X86_FEATURE_MP))
263 return;
264
265 /* If we get here, not a certified SMP capable AMD system. */
266
267 /*
268 * Don't taint if we are running SMP kernel on a single non-MP
269 * approved Athlon
270 */
271 WARN_ONCE(1, "WARNING: This combination of AMD"
272 " processors is not suitable for SMP.\n");
273 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
274#endif
275}
276
277#ifdef CONFIG_NUMA
278/*
279 * To workaround broken NUMA config. Read the comment in
280 * srat_detect_node().
281 */
282static int nearby_node(int apicid)
283{
284 int i, node;
285
286 for (i = apicid - 1; i >= 0; i--) {
287 node = __apicid_to_node[i];
288 if (node != NUMA_NO_NODE && node_online(node))
289 return node;
290 }
291 for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
292 node = __apicid_to_node[i];
293 if (node != NUMA_NO_NODE && node_online(node))
294 return node;
295 }
296 return first_node(node_online_map); /* Shouldn't happen */
297}
298#endif
299
300/*
301 * Fix up cpu_core_id for pre-F17h systems to be in the
302 * [0 .. cores_per_node - 1] range. Not really needed but
303 * kept so as not to break existing setups.
304 */
305static void legacy_fixup_core_id(struct cpuinfo_x86 *c)
306{
307 u32 cus_per_node;
308
309 if (c->x86 >= 0x17)
310 return;
311
312 cus_per_node = c->x86_max_cores / nodes_per_socket;
313 c->cpu_core_id %= cus_per_node;
314}
315
316
317static void amd_get_topology_early(struct cpuinfo_x86 *c)
318{
319 if (cpu_has(c, X86_FEATURE_TOPOEXT))
320 smp_num_siblings = ((cpuid_ebx(0x8000001e) >> 8) & 0xff) + 1;
321}
322
323/*
324 * Fixup core topology information for
325 * (1) AMD multi-node processors
326 * Assumption: Number of cores in each internal node is the same.
327 * (2) AMD processors supporting compute units
328 */
329static void amd_get_topology(struct cpuinfo_x86 *c)
330{
331 u8 node_id;
332 int cpu = smp_processor_id();
333
334 /* get information required for multi-node processors */
335 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
336 int err;
337 u32 eax, ebx, ecx, edx;
338
339 cpuid(0x8000001e, &eax, &ebx, &ecx, &edx);
340
341 node_id = ecx & 0xff;
342
343 if (c->x86 == 0x15)
344 c->cu_id = ebx & 0xff;
345
346 if (c->x86 >= 0x17) {
347 c->cpu_core_id = ebx & 0xff;
348
349 if (smp_num_siblings > 1)
350 c->x86_max_cores /= smp_num_siblings;
351 }
352
353 /*
354 * In case leaf B is available, use it to derive
355 * topology information.
356 */
357 err = detect_extended_topology(c);
358 if (!err)
359 c->x86_coreid_bits = get_count_order(c->x86_max_cores);
360
361 cacheinfo_amd_init_llc_id(c, cpu, node_id);
362
363 } else if (cpu_has(c, X86_FEATURE_NODEID_MSR)) {
364 u64 value;
365
366 rdmsrl(MSR_FAM10H_NODE_ID, value);
367 node_id = value & 7;
368
369 per_cpu(cpu_llc_id, cpu) = node_id;
370 } else
371 return;
372
373 if (nodes_per_socket > 1) {
374 set_cpu_cap(c, X86_FEATURE_AMD_DCM);
375 legacy_fixup_core_id(c);
376 }
377}
378
379/*
380 * On a AMD dual core setup the lower bits of the APIC id distinguish the cores.
381 * Assumes number of cores is a power of two.
382 */
383static void amd_detect_cmp(struct cpuinfo_x86 *c)
384{
385 unsigned bits;
386 int cpu = smp_processor_id();
387
388 bits = c->x86_coreid_bits;
389 /* Low order bits define the core id (index of core in socket) */
390 c->cpu_core_id = c->initial_apicid & ((1 << bits)-1);
391 /* Convert the initial APIC ID into the socket ID */
392 c->phys_proc_id = c->initial_apicid >> bits;
393 /* use socket ID also for last level cache */
394 per_cpu(cpu_llc_id, cpu) = c->phys_proc_id;
395}
396
397u16 amd_get_nb_id(int cpu)
398{
399 return per_cpu(cpu_llc_id, cpu);
400}
401EXPORT_SYMBOL_GPL(amd_get_nb_id);
402
403u32 amd_get_nodes_per_socket(void)
404{
405 return nodes_per_socket;
406}
407EXPORT_SYMBOL_GPL(amd_get_nodes_per_socket);
408
409static void srat_detect_node(struct cpuinfo_x86 *c)
410{
411#ifdef CONFIG_NUMA
412 int cpu = smp_processor_id();
413 int node;
414 unsigned apicid = c->apicid;
415
416 node = numa_cpu_node(cpu);
417 if (node == NUMA_NO_NODE)
418 node = per_cpu(cpu_llc_id, cpu);
419
420 /*
421 * On multi-fabric platform (e.g. Numascale NumaChip) a
422 * platform-specific handler needs to be called to fixup some
423 * IDs of the CPU.
424 */
425 if (x86_cpuinit.fixup_cpu_id)
426 x86_cpuinit.fixup_cpu_id(c, node);
427
428 if (!node_online(node)) {
429 /*
430 * Two possibilities here:
431 *
432 * - The CPU is missing memory and no node was created. In
433 * that case try picking one from a nearby CPU.
434 *
435 * - The APIC IDs differ from the HyperTransport node IDs
436 * which the K8 northbridge parsing fills in. Assume
437 * they are all increased by a constant offset, but in
438 * the same order as the HT nodeids. If that doesn't
439 * result in a usable node fall back to the path for the
440 * previous case.
441 *
442 * This workaround operates directly on the mapping between
443 * APIC ID and NUMA node, assuming certain relationship
444 * between APIC ID, HT node ID and NUMA topology. As going
445 * through CPU mapping may alter the outcome, directly
446 * access __apicid_to_node[].
447 */
448 int ht_nodeid = c->initial_apicid;
449
450 if (__apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
451 node = __apicid_to_node[ht_nodeid];
452 /* Pick a nearby node */
453 if (!node_online(node))
454 node = nearby_node(apicid);
455 }
456 numa_set_node(cpu, node);
457#endif
458}
459
460static void early_init_amd_mc(struct cpuinfo_x86 *c)
461{
462#ifdef CONFIG_SMP
463 unsigned bits, ecx;
464
465 /* Multi core CPU? */
466 if (c->extended_cpuid_level < 0x80000008)
467 return;
468
469 ecx = cpuid_ecx(0x80000008);
470
471 c->x86_max_cores = (ecx & 0xff) + 1;
472
473 /* CPU telling us the core id bits shift? */
474 bits = (ecx >> 12) & 0xF;
475
476 /* Otherwise recompute */
477 if (bits == 0) {
478 while ((1 << bits) < c->x86_max_cores)
479 bits++;
480 }
481
482 c->x86_coreid_bits = bits;
483#endif
484}
485
486static void bsp_init_amd(struct cpuinfo_x86 *c)
487{
488
489#ifdef CONFIG_X86_64
490 if (c->x86 >= 0xf) {
491 unsigned long long tseg;
492
493 /*
494 * Split up direct mapping around the TSEG SMM area.
495 * Don't do it for gbpages because there seems very little
496 * benefit in doing so.
497 */
498 if (!rdmsrl_safe(MSR_K8_TSEG_ADDR, &tseg)) {
499 unsigned long pfn = tseg >> PAGE_SHIFT;
500
501 pr_debug("tseg: %010llx\n", tseg);
502 if (pfn_range_is_mapped(pfn, pfn + 1))
503 set_memory_4k((unsigned long)__va(tseg), 1);
504 }
505 }
506#endif
507
508 if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
509
510 if (c->x86 > 0x10 ||
511 (c->x86 == 0x10 && c->x86_model >= 0x2)) {
512 u64 val;
513
514 rdmsrl(MSR_K7_HWCR, val);
515 if (!(val & BIT(24)))
516 pr_warn(FW_BUG "TSC doesn't count with P0 frequency!\n");
517 }
518 }
519
520 if (c->x86 == 0x15) {
521 unsigned long upperbit;
522 u32 cpuid, assoc;
523
524 cpuid = cpuid_edx(0x80000005);
525 assoc = cpuid >> 16 & 0xff;
526 upperbit = ((cpuid >> 24) << 10) / assoc;
527
528 va_align.mask = (upperbit - 1) & PAGE_MASK;
529 va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
530
531 /* A random value per boot for bit slice [12:upper_bit) */
532 va_align.bits = get_random_int() & va_align.mask;
533 }
534
535 if (cpu_has(c, X86_FEATURE_MWAITX))
536 use_mwaitx_delay();
537
538 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
539 u32 ecx;
540
541 ecx = cpuid_ecx(0x8000001e);
542 nodes_per_socket = ((ecx >> 8) & 7) + 1;
543 } else if (boot_cpu_has(X86_FEATURE_NODEID_MSR)) {
544 u64 value;
545
546 rdmsrl(MSR_FAM10H_NODE_ID, value);
547 nodes_per_socket = ((value >> 3) & 7) + 1;
548 }
549
550 if (!boot_cpu_has(X86_FEATURE_AMD_SSBD) &&
551 !boot_cpu_has(X86_FEATURE_VIRT_SSBD) &&
552 c->x86 >= 0x15 && c->x86 <= 0x17) {
553 unsigned int bit;
554
555 switch (c->x86) {
556 case 0x15: bit = 54; break;
557 case 0x16: bit = 33; break;
558 case 0x17: bit = 10; break;
559 default: return;
560 }
561 /*
562 * Try to cache the base value so further operations can
563 * avoid RMW. If that faults, do not enable SSBD.
564 */
565 if (!rdmsrl_safe(MSR_AMD64_LS_CFG, &x86_amd_ls_cfg_base)) {
566 setup_force_cpu_cap(X86_FEATURE_LS_CFG_SSBD);
567 setup_force_cpu_cap(X86_FEATURE_SSBD);
568 x86_amd_ls_cfg_ssbd_mask = 1ULL << bit;
569 }
570 }
571}
572
573static void early_detect_mem_encrypt(struct cpuinfo_x86 *c)
574{
575 u64 msr;
576
577 /*
578 * BIOS support is required for SME and SEV.
579 * For SME: If BIOS has enabled SME then adjust x86_phys_bits by
580 * the SME physical address space reduction value.
581 * If BIOS has not enabled SME then don't advertise the
582 * SME feature (set in scattered.c).
583 * For SEV: If BIOS has not enabled SEV then don't advertise the
584 * SEV feature (set in scattered.c).
585 *
586 * In all cases, since support for SME and SEV requires long mode,
587 * don't advertise the feature under CONFIG_X86_32.
588 */
589 if (cpu_has(c, X86_FEATURE_SME) || cpu_has(c, X86_FEATURE_SEV)) {
590 /* Check if memory encryption is enabled */
591 rdmsrl(MSR_K8_SYSCFG, msr);
592 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
593 goto clear_all;
594
595 /*
596 * Always adjust physical address bits. Even though this
597 * will be a value above 32-bits this is still done for
598 * CONFIG_X86_32 so that accurate values are reported.
599 */
600 c->x86_phys_bits -= (cpuid_ebx(0x8000001f) >> 6) & 0x3f;
601
602 if (IS_ENABLED(CONFIG_X86_32))
603 goto clear_all;
604
605 rdmsrl(MSR_K7_HWCR, msr);
606 if (!(msr & MSR_K7_HWCR_SMMLOCK))
607 goto clear_sev;
608
609 return;
610
611clear_all:
612 clear_cpu_cap(c, X86_FEATURE_SME);
613clear_sev:
614 clear_cpu_cap(c, X86_FEATURE_SEV);
615 }
616}
617
618static void early_init_amd(struct cpuinfo_x86 *c)
619{
620 u64 value;
621 u32 dummy;
622
623 early_init_amd_mc(c);
624
625#ifdef CONFIG_X86_32
626 if (c->x86 == 6)
627 set_cpu_cap(c, X86_FEATURE_K7);
628#endif
629
630 if (c->x86 >= 0xf)
631 set_cpu_cap(c, X86_FEATURE_K8);
632
633 rdmsr_safe(MSR_AMD64_PATCH_LEVEL, &c->microcode, &dummy);
634
635 /*
636 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
637 * with P/T states and does not stop in deep C-states
638 */
639 if (c->x86_power & (1 << 8)) {
640 set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
641 set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
642 }
643
644 /* Bit 12 of 8000_0007 edx is accumulated power mechanism. */
645 if (c->x86_power & BIT(12))
646 set_cpu_cap(c, X86_FEATURE_ACC_POWER);
647
648#ifdef CONFIG_X86_64
649 set_cpu_cap(c, X86_FEATURE_SYSCALL32);
650#else
651 /* Set MTRR capability flag if appropriate */
652 if (c->x86 == 5)
653 if (c->x86_model == 13 || c->x86_model == 9 ||
654 (c->x86_model == 8 && c->x86_stepping >= 8))
655 set_cpu_cap(c, X86_FEATURE_K6_MTRR);
656#endif
657#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_PCI)
658 /*
659 * ApicID can always be treated as an 8-bit value for AMD APIC versions
660 * >= 0x10, but even old K8s came out of reset with version 0x10. So, we
661 * can safely set X86_FEATURE_EXTD_APICID unconditionally for families
662 * after 16h.
663 */
664 if (boot_cpu_has(X86_FEATURE_APIC)) {
665 if (c->x86 > 0x16)
666 set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
667 else if (c->x86 >= 0xf) {
668 /* check CPU config space for extended APIC ID */
669 unsigned int val;
670
671 val = read_pci_config(0, 24, 0, 0x68);
672 if ((val >> 17 & 0x3) == 0x3)
673 set_cpu_cap(c, X86_FEATURE_EXTD_APICID);
674 }
675 }
676#endif
677
678 /*
679 * This is only needed to tell the kernel whether to use VMCALL
680 * and VMMCALL. VMMCALL is never executed except under virt, so
681 * we can set it unconditionally.
682 */
683 set_cpu_cap(c, X86_FEATURE_VMMCALL);
684
685 /* F16h erratum 793, CVE-2013-6885 */
686 if (c->x86 == 0x16 && c->x86_model <= 0xf)
687 msr_set_bit(MSR_AMD64_LS_CFG, 15);
688
689 /*
690 * Check whether the machine is affected by erratum 400. This is
691 * used to select the proper idle routine and to enable the check
692 * whether the machine is affected in arch_post_acpi_init(), which
693 * sets the X86_BUG_AMD_APIC_C1E bug depending on the MSR check.
694 */
695 if (cpu_has_amd_erratum(c, amd_erratum_400))
696 set_cpu_bug(c, X86_BUG_AMD_E400);
697
698 early_detect_mem_encrypt(c);
699
700 /* Re-enable TopologyExtensions if switched off by BIOS */
701 if (c->x86 == 0x15 &&
702 (c->x86_model >= 0x10 && c->x86_model <= 0x6f) &&
703 !cpu_has(c, X86_FEATURE_TOPOEXT)) {
704
705 if (msr_set_bit(0xc0011005, 54) > 0) {
706 rdmsrl(0xc0011005, value);
707 if (value & BIT_64(54)) {
708 set_cpu_cap(c, X86_FEATURE_TOPOEXT);
709 pr_info_once(FW_INFO "CPU: Re-enabling disabled Topology Extensions Support.\n");
710 }
711 }
712 }
713
714 amd_get_topology_early(c);
715}
716
717static void init_amd_k8(struct cpuinfo_x86 *c)
718{
719 u32 level;
720 u64 value;
721
722 /* On C+ stepping K8 rep microcode works well for copy/memset */
723 level = cpuid_eax(1);
724 if ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)
725 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
726
727 /*
728 * Some BIOSes incorrectly force this feature, but only K8 revision D
729 * (model = 0x14) and later actually support it.
730 * (AMD Erratum #110, docId: 25759).
731 */
732 if (c->x86_model < 0x14 && cpu_has(c, X86_FEATURE_LAHF_LM)) {
733 clear_cpu_cap(c, X86_FEATURE_LAHF_LM);
734 if (!rdmsrl_amd_safe(0xc001100d, &value)) {
735 value &= ~BIT_64(32);
736 wrmsrl_amd_safe(0xc001100d, value);
737 }
738 }
739
740 if (!c->x86_model_id[0])
741 strcpy(c->x86_model_id, "Hammer");
742
743#ifdef CONFIG_SMP
744 /*
745 * Disable TLB flush filter by setting HWCR.FFDIS on K8
746 * bit 6 of msr C001_0015
747 *
748 * Errata 63 for SH-B3 steppings
749 * Errata 122 for all steppings (F+ have it disabled by default)
750 */
751 msr_set_bit(MSR_K7_HWCR, 6);
752#endif
753 set_cpu_bug(c, X86_BUG_SWAPGS_FENCE);
754}
755
756static void init_amd_gh(struct cpuinfo_x86 *c)
757{
758#ifdef CONFIG_MMCONF_FAM10H
759 /* do this for boot cpu */
760 if (c == &boot_cpu_data)
761 check_enable_amd_mmconf_dmi();
762
763 fam10h_check_enable_mmcfg();
764#endif
765
766 /*
767 * Disable GART TLB Walk Errors on Fam10h. We do this here because this
768 * is always needed when GART is enabled, even in a kernel which has no
769 * MCE support built in. BIOS should disable GartTlbWlk Errors already.
770 * If it doesn't, we do it here as suggested by the BKDG.
771 *
772 * Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=33012
773 */
774 msr_set_bit(MSR_AMD64_MCx_MASK(4), 10);
775
776 /*
777 * On family 10h BIOS may not have properly enabled WC+ support, causing
778 * it to be converted to CD memtype. This may result in performance
779 * degradation for certain nested-paging guests. Prevent this conversion
780 * by clearing bit 24 in MSR_AMD64_BU_CFG2.
781 *
782 * NOTE: we want to use the _safe accessors so as not to #GP kvm
783 * guests on older kvm hosts.
784 */
785 msr_clear_bit(MSR_AMD64_BU_CFG2, 24);
786
787 if (cpu_has_amd_erratum(c, amd_erratum_383))
788 set_cpu_bug(c, X86_BUG_AMD_TLB_MMATCH);
789}
790
791#define MSR_AMD64_DE_CFG 0xC0011029
792
793static void init_amd_ln(struct cpuinfo_x86 *c)
794{
795 /*
796 * Apply erratum 665 fix unconditionally so machines without a BIOS
797 * fix work.
798 */
799 msr_set_bit(MSR_AMD64_DE_CFG, 31);
800}
801
802static void init_amd_bd(struct cpuinfo_x86 *c)
803{
804 u64 value;
805
806 /*
807 * The way access filter has a performance penalty on some workloads.
808 * Disable it on the affected CPUs.
809 */
810 if ((c->x86_model >= 0x02) && (c->x86_model < 0x20)) {
811 if (!rdmsrl_safe(MSR_F15H_IC_CFG, &value) && !(value & 0x1E)) {
812 value |= 0x1E;
813 wrmsrl_safe(MSR_F15H_IC_CFG, value);
814 }
815 }
816}
817
818static void init_amd_zn(struct cpuinfo_x86 *c)
819{
820 set_cpu_cap(c, X86_FEATURE_ZEN);
821 /*
822 * Fix erratum 1076: CPB feature bit not being set in CPUID. It affects
823 * all up to and including B1.
824 */
825 if (c->x86_model <= 1 && c->x86_stepping <= 1)
826 set_cpu_cap(c, X86_FEATURE_CPB);
827}
828
829static void init_amd(struct cpuinfo_x86 *c)
830{
831 early_init_amd(c);
832
833 /*
834 * Bit 31 in normal CPUID used for nonstandard 3DNow ID;
835 * 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway
836 */
837 clear_cpu_cap(c, 0*32+31);
838
839 if (c->x86 >= 0x10)
840 set_cpu_cap(c, X86_FEATURE_REP_GOOD);
841
842 /* get apicid instead of initial apic id from cpuid */
843 c->apicid = hard_smp_processor_id();
844
845 /* K6s reports MCEs but don't actually have all the MSRs */
846 if (c->x86 < 6)
847 clear_cpu_cap(c, X86_FEATURE_MCE);
848
849 switch (c->x86) {
850 case 4: init_amd_k5(c); break;
851 case 5: init_amd_k6(c); break;
852 case 6: init_amd_k7(c); break;
853 case 0xf: init_amd_k8(c); break;
854 case 0x10: init_amd_gh(c); break;
855 case 0x12: init_amd_ln(c); break;
856 case 0x15: init_amd_bd(c); break;
857 case 0x17: init_amd_zn(c); break;
858 }
859
860 /*
861 * Enable workaround for FXSAVE leak on CPUs
862 * without a XSaveErPtr feature
863 */
864 if ((c->x86 >= 6) && (!cpu_has(c, X86_FEATURE_XSAVEERPTR)))
865 set_cpu_bug(c, X86_BUG_FXSAVE_LEAK);
866
867 cpu_detect_cache_sizes(c);
868
869 amd_detect_cmp(c);
870 amd_get_topology(c);
871 srat_detect_node(c);
872
873 init_amd_cacheinfo(c);
874
875 if (cpu_has(c, X86_FEATURE_XMM2)) {
876 unsigned long long val;
877 int ret;
878
879 /*
880 * A serializing LFENCE has less overhead than MFENCE, so
881 * use it for execution serialization. On families which
882 * don't have that MSR, LFENCE is already serializing.
883 * msr_set_bit() uses the safe accessors, too, even if the MSR
884 * is not present.
885 */
886 msr_set_bit(MSR_F10H_DECFG,
887 MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT);
888
889 /*
890 * Verify that the MSR write was successful (could be running
891 * under a hypervisor) and only then assume that LFENCE is
892 * serializing.
893 */
894 ret = rdmsrl_safe(MSR_F10H_DECFG, &val);
895 if (!ret && (val & MSR_F10H_DECFG_LFENCE_SERIALIZE)) {
896 /* A serializing LFENCE stops RDTSC speculation */
897 set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
898 } else {
899 /* MFENCE stops RDTSC speculation */
900 set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
901 }
902 }
903
904 /*
905 * Family 0x12 and above processors have APIC timer
906 * running in deep C states.
907 */
908 if (c->x86 > 0x11)
909 set_cpu_cap(c, X86_FEATURE_ARAT);
910
911 /* 3DNow or LM implies PREFETCHW */
912 if (!cpu_has(c, X86_FEATURE_3DNOWPREFETCH))
913 if (cpu_has(c, X86_FEATURE_3DNOW) || cpu_has(c, X86_FEATURE_LM))
914 set_cpu_cap(c, X86_FEATURE_3DNOWPREFETCH);
915
916 /* AMD CPUs don't reset SS attributes on SYSRET, Xen does. */
917 if (!cpu_has(c, X86_FEATURE_XENPV))
918 set_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
919}
920
921#ifdef CONFIG_X86_32
922static unsigned int amd_size_cache(struct cpuinfo_x86 *c, unsigned int size)
923{
924 /* AMD errata T13 (order #21922) */
925 if (c->x86 == 6) {
926 /* Duron Rev A0 */
927 if (c->x86_model == 3 && c->x86_stepping == 0)
928 size = 64;
929 /* Tbird rev A1/A2 */
930 if (c->x86_model == 4 &&
931 (c->x86_stepping == 0 || c->x86_stepping == 1))
932 size = 256;
933 }
934 return size;
935}
936#endif
937
938static void cpu_detect_tlb_amd(struct cpuinfo_x86 *c)
939{
940 u32 ebx, eax, ecx, edx;
941 u16 mask = 0xfff;
942
943 if (c->x86 < 0xf)
944 return;
945
946 if (c->extended_cpuid_level < 0x80000006)
947 return;
948
949 cpuid(0x80000006, &eax, &ebx, &ecx, &edx);
950
951 tlb_lld_4k[ENTRIES] = (ebx >> 16) & mask;
952 tlb_lli_4k[ENTRIES] = ebx & mask;
953
954 /*
955 * K8 doesn't have 2M/4M entries in the L2 TLB so read out the L1 TLB
956 * characteristics from the CPUID function 0x80000005 instead.
957 */
958 if (c->x86 == 0xf) {
959 cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
960 mask = 0xff;
961 }
962
963 /* Handle DTLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
964 if (!((eax >> 16) & mask))
965 tlb_lld_2m[ENTRIES] = (cpuid_eax(0x80000005) >> 16) & 0xff;
966 else
967 tlb_lld_2m[ENTRIES] = (eax >> 16) & mask;
968
969 /* a 4M entry uses two 2M entries */
970 tlb_lld_4m[ENTRIES] = tlb_lld_2m[ENTRIES] >> 1;
971
972 /* Handle ITLB 2M and 4M sizes, fall back to L1 if L2 is disabled */
973 if (!(eax & mask)) {
974 /* Erratum 658 */
975 if (c->x86 == 0x15 && c->x86_model <= 0x1f) {
976 tlb_lli_2m[ENTRIES] = 1024;
977 } else {
978 cpuid(0x80000005, &eax, &ebx, &ecx, &edx);
979 tlb_lli_2m[ENTRIES] = eax & 0xff;
980 }
981 } else
982 tlb_lli_2m[ENTRIES] = eax & mask;
983
984 tlb_lli_4m[ENTRIES] = tlb_lli_2m[ENTRIES] >> 1;
985}
986
987static const struct cpu_dev amd_cpu_dev = {
988 .c_vendor = "AMD",
989 .c_ident = { "AuthenticAMD" },
990#ifdef CONFIG_X86_32
991 .legacy_models = {
992 { .family = 4, .model_names =
993 {
994 [3] = "486 DX/2",
995 [7] = "486 DX/2-WB",
996 [8] = "486 DX/4",
997 [9] = "486 DX/4-WB",
998 [14] = "Am5x86-WT",
999 [15] = "Am5x86-WB"
1000 }
1001 },
1002 },
1003 .legacy_cache_size = amd_size_cache,
1004#endif
1005 .c_early_init = early_init_amd,
1006 .c_detect_tlb = cpu_detect_tlb_amd,
1007 .c_bsp_init = bsp_init_amd,
1008 .c_init = init_amd,
1009 .c_x86_vendor = X86_VENDOR_AMD,
1010};
1011
1012cpu_dev_register(amd_cpu_dev);
1013
1014/*
1015 * AMD errata checking
1016 *
1017 * Errata are defined as arrays of ints using the AMD_LEGACY_ERRATUM() or
1018 * AMD_OSVW_ERRATUM() macros. The latter is intended for newer errata that
1019 * have an OSVW id assigned, which it takes as first argument. Both take a
1020 * variable number of family-specific model-stepping ranges created by
1021 * AMD_MODEL_RANGE().
1022 *
1023 * Example:
1024 *
1025 * const int amd_erratum_319[] =
1026 * AMD_LEGACY_ERRATUM(AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0x4, 0x2),
1027 * AMD_MODEL_RANGE(0x10, 0x8, 0x0, 0x8, 0x0),
1028 * AMD_MODEL_RANGE(0x10, 0x9, 0x0, 0x9, 0x0));
1029 */
1030
1031#define AMD_LEGACY_ERRATUM(...) { -1, __VA_ARGS__, 0 }
1032#define AMD_OSVW_ERRATUM(osvw_id, ...) { osvw_id, __VA_ARGS__, 0 }
1033#define AMD_MODEL_RANGE(f, m_start, s_start, m_end, s_end) \
1034 ((f << 24) | (m_start << 16) | (s_start << 12) | (m_end << 4) | (s_end))
1035#define AMD_MODEL_RANGE_FAMILY(range) (((range) >> 24) & 0xff)
1036#define AMD_MODEL_RANGE_START(range) (((range) >> 12) & 0xfff)
1037#define AMD_MODEL_RANGE_END(range) ((range) & 0xfff)
1038
1039static const int amd_erratum_400[] =
1040 AMD_OSVW_ERRATUM(1, AMD_MODEL_RANGE(0xf, 0x41, 0x2, 0xff, 0xf),
1041 AMD_MODEL_RANGE(0x10, 0x2, 0x1, 0xff, 0xf));
1042
1043static const int amd_erratum_383[] =
1044 AMD_OSVW_ERRATUM(3, AMD_MODEL_RANGE(0x10, 0, 0, 0xff, 0xf));
1045
1046
1047static bool cpu_has_amd_erratum(struct cpuinfo_x86 *cpu, const int *erratum)
1048{
1049 int osvw_id = *erratum++;
1050 u32 range;
1051 u32 ms;
1052
1053 if (osvw_id >= 0 && osvw_id < 65536 &&
1054 cpu_has(cpu, X86_FEATURE_OSVW)) {
1055 u64 osvw_len;
1056
1057 rdmsrl(MSR_AMD64_OSVW_ID_LENGTH, osvw_len);
1058 if (osvw_id < osvw_len) {
1059 u64 osvw_bits;
1060
1061 rdmsrl(MSR_AMD64_OSVW_STATUS + (osvw_id >> 6),
1062 osvw_bits);
1063 return osvw_bits & (1ULL << (osvw_id & 0x3f));
1064 }
1065 }
1066
1067 /* OSVW unavailable or ID unknown, match family-model-stepping range */
1068 ms = (cpu->x86_model << 4) | cpu->x86_stepping;
1069 while ((range = *erratum++))
1070 if ((cpu->x86 == AMD_MODEL_RANGE_FAMILY(range)) &&
1071 (ms >= AMD_MODEL_RANGE_START(range)) &&
1072 (ms <= AMD_MODEL_RANGE_END(range)))
1073 return true;
1074
1075 return false;
1076}
1077
1078void set_dr_addr_mask(unsigned long mask, int dr)
1079{
1080 if (!boot_cpu_has(X86_FEATURE_BPEXT))
1081 return;
1082
1083 switch (dr) {
1084 case 0:
1085 wrmsr(MSR_F16H_DR0_ADDR_MASK, mask, 0);
1086 break;
1087 case 1:
1088 case 2:
1089 case 3:
1090 wrmsr(MSR_F16H_DR1_ADDR_MASK - 1 + dr, mask, 0);
1091 break;
1092 default:
1093 break;
1094 }
1095}