Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/bitops.h> |
| 3 | #include <linux/types.h> |
| 4 | #include <linux/slab.h> |
| 5 | |
| 6 | #include <asm/cpu_entry_area.h> |
| 7 | #include <asm/perf_event.h> |
| 8 | #include <asm/tlbflush.h> |
| 9 | #include <asm/insn.h> |
| 10 | |
| 11 | #include "../perf_event.h" |
| 12 | |
| 13 | /* Waste a full page so it can be mapped into the cpu_entry_area */ |
| 14 | DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store); |
| 15 | |
| 16 | /* The size of a BTS record in bytes: */ |
| 17 | #define BTS_RECORD_SIZE 24 |
| 18 | |
| 19 | #define PEBS_FIXUP_SIZE PAGE_SIZE |
| 20 | |
| 21 | /* |
| 22 | * pebs_record_32 for p4 and core not supported |
| 23 | |
| 24 | struct pebs_record_32 { |
| 25 | u32 flags, ip; |
| 26 | u32 ax, bc, cx, dx; |
| 27 | u32 si, di, bp, sp; |
| 28 | }; |
| 29 | |
| 30 | */ |
| 31 | |
| 32 | union intel_x86_pebs_dse { |
| 33 | u64 val; |
| 34 | struct { |
| 35 | unsigned int ld_dse:4; |
| 36 | unsigned int ld_stlb_miss:1; |
| 37 | unsigned int ld_locked:1; |
| 38 | unsigned int ld_reserved:26; |
| 39 | }; |
| 40 | struct { |
| 41 | unsigned int st_l1d_hit:1; |
| 42 | unsigned int st_reserved1:3; |
| 43 | unsigned int st_stlb_miss:1; |
| 44 | unsigned int st_locked:1; |
| 45 | unsigned int st_reserved2:26; |
| 46 | }; |
| 47 | }; |
| 48 | |
| 49 | |
| 50 | /* |
| 51 | * Map PEBS Load Latency Data Source encodings to generic |
| 52 | * memory data source information |
| 53 | */ |
| 54 | #define P(a, b) PERF_MEM_S(a, b) |
| 55 | #define OP_LH (P(OP, LOAD) | P(LVL, HIT)) |
| 56 | #define LEVEL(x) P(LVLNUM, x) |
| 57 | #define REM P(REMOTE, REMOTE) |
| 58 | #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS)) |
| 59 | |
| 60 | /* Version for Sandy Bridge and later */ |
| 61 | static u64 pebs_data_source[] = { |
| 62 | P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */ |
| 63 | OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */ |
| 64 | OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */ |
| 65 | OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */ |
| 66 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */ |
| 67 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */ |
| 68 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */ |
| 69 | OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */ |
| 70 | OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */ |
| 71 | OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/ |
| 72 | OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */ |
| 73 | OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */ |
| 74 | OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */ |
| 75 | OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */ |
| 76 | OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */ |
| 77 | OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */ |
| 78 | }; |
| 79 | |
| 80 | /* Patch up minor differences in the bits */ |
| 81 | void __init intel_pmu_pebs_data_source_nhm(void) |
| 82 | { |
| 83 | pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT); |
| 84 | pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| 85 | pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM); |
| 86 | } |
| 87 | |
| 88 | void __init intel_pmu_pebs_data_source_skl(bool pmem) |
| 89 | { |
| 90 | u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4); |
| 91 | |
| 92 | pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT); |
| 93 | pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT); |
| 94 | pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE); |
| 95 | pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD); |
| 96 | pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM); |
| 97 | } |
| 98 | |
| 99 | static u64 precise_store_data(u64 status) |
| 100 | { |
| 101 | union intel_x86_pebs_dse dse; |
| 102 | u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2); |
| 103 | |
| 104 | dse.val = status; |
| 105 | |
| 106 | /* |
| 107 | * bit 4: TLB access |
| 108 | * 1 = stored missed 2nd level TLB |
| 109 | * |
| 110 | * so it either hit the walker or the OS |
| 111 | * otherwise hit 2nd level TLB |
| 112 | */ |
| 113 | if (dse.st_stlb_miss) |
| 114 | val |= P(TLB, MISS); |
| 115 | else |
| 116 | val |= P(TLB, HIT); |
| 117 | |
| 118 | /* |
| 119 | * bit 0: hit L1 data cache |
| 120 | * if not set, then all we know is that |
| 121 | * it missed L1D |
| 122 | */ |
| 123 | if (dse.st_l1d_hit) |
| 124 | val |= P(LVL, HIT); |
| 125 | else |
| 126 | val |= P(LVL, MISS); |
| 127 | |
| 128 | /* |
| 129 | * bit 5: Locked prefix |
| 130 | */ |
| 131 | if (dse.st_locked) |
| 132 | val |= P(LOCK, LOCKED); |
| 133 | |
| 134 | return val; |
| 135 | } |
| 136 | |
| 137 | static u64 precise_datala_hsw(struct perf_event *event, u64 status) |
| 138 | { |
| 139 | union perf_mem_data_src dse; |
| 140 | |
| 141 | dse.val = PERF_MEM_NA; |
| 142 | |
| 143 | if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) |
| 144 | dse.mem_op = PERF_MEM_OP_STORE; |
| 145 | else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW) |
| 146 | dse.mem_op = PERF_MEM_OP_LOAD; |
| 147 | |
| 148 | /* |
| 149 | * L1 info only valid for following events: |
| 150 | * |
| 151 | * MEM_UOPS_RETIRED.STLB_MISS_STORES |
| 152 | * MEM_UOPS_RETIRED.LOCK_STORES |
| 153 | * MEM_UOPS_RETIRED.SPLIT_STORES |
| 154 | * MEM_UOPS_RETIRED.ALL_STORES |
| 155 | */ |
| 156 | if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) { |
| 157 | if (status & 1) |
| 158 | dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT; |
| 159 | else |
| 160 | dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS; |
| 161 | } |
| 162 | return dse.val; |
| 163 | } |
| 164 | |
| 165 | static u64 load_latency_data(u64 status) |
| 166 | { |
| 167 | union intel_x86_pebs_dse dse; |
| 168 | u64 val; |
| 169 | |
| 170 | dse.val = status; |
| 171 | |
| 172 | /* |
| 173 | * use the mapping table for bit 0-3 |
| 174 | */ |
| 175 | val = pebs_data_source[dse.ld_dse]; |
| 176 | |
| 177 | /* |
| 178 | * Nehalem models do not support TLB, Lock infos |
| 179 | */ |
| 180 | if (x86_pmu.pebs_no_tlb) { |
| 181 | val |= P(TLB, NA) | P(LOCK, NA); |
| 182 | return val; |
| 183 | } |
| 184 | /* |
| 185 | * bit 4: TLB access |
| 186 | * 0 = did not miss 2nd level TLB |
| 187 | * 1 = missed 2nd level TLB |
| 188 | */ |
| 189 | if (dse.ld_stlb_miss) |
| 190 | val |= P(TLB, MISS) | P(TLB, L2); |
| 191 | else |
| 192 | val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2); |
| 193 | |
| 194 | /* |
| 195 | * bit 5: locked prefix |
| 196 | */ |
| 197 | if (dse.ld_locked) |
| 198 | val |= P(LOCK, LOCKED); |
| 199 | |
| 200 | return val; |
| 201 | } |
| 202 | |
| 203 | struct pebs_record_core { |
| 204 | u64 flags, ip; |
| 205 | u64 ax, bx, cx, dx; |
| 206 | u64 si, di, bp, sp; |
| 207 | u64 r8, r9, r10, r11; |
| 208 | u64 r12, r13, r14, r15; |
| 209 | }; |
| 210 | |
| 211 | struct pebs_record_nhm { |
| 212 | u64 flags, ip; |
| 213 | u64 ax, bx, cx, dx; |
| 214 | u64 si, di, bp, sp; |
| 215 | u64 r8, r9, r10, r11; |
| 216 | u64 r12, r13, r14, r15; |
| 217 | u64 status, dla, dse, lat; |
| 218 | }; |
| 219 | |
| 220 | /* |
| 221 | * Same as pebs_record_nhm, with two additional fields. |
| 222 | */ |
| 223 | struct pebs_record_hsw { |
| 224 | u64 flags, ip; |
| 225 | u64 ax, bx, cx, dx; |
| 226 | u64 si, di, bp, sp; |
| 227 | u64 r8, r9, r10, r11; |
| 228 | u64 r12, r13, r14, r15; |
| 229 | u64 status, dla, dse, lat; |
| 230 | u64 real_ip, tsx_tuning; |
| 231 | }; |
| 232 | |
| 233 | union hsw_tsx_tuning { |
| 234 | struct { |
| 235 | u32 cycles_last_block : 32, |
| 236 | hle_abort : 1, |
| 237 | rtm_abort : 1, |
| 238 | instruction_abort : 1, |
| 239 | non_instruction_abort : 1, |
| 240 | retry : 1, |
| 241 | data_conflict : 1, |
| 242 | capacity_writes : 1, |
| 243 | capacity_reads : 1; |
| 244 | }; |
| 245 | u64 value; |
| 246 | }; |
| 247 | |
| 248 | #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL |
| 249 | |
| 250 | /* Same as HSW, plus TSC */ |
| 251 | |
| 252 | struct pebs_record_skl { |
| 253 | u64 flags, ip; |
| 254 | u64 ax, bx, cx, dx; |
| 255 | u64 si, di, bp, sp; |
| 256 | u64 r8, r9, r10, r11; |
| 257 | u64 r12, r13, r14, r15; |
| 258 | u64 status, dla, dse, lat; |
| 259 | u64 real_ip, tsx_tuning; |
| 260 | u64 tsc; |
| 261 | }; |
| 262 | |
| 263 | void init_debug_store_on_cpu(int cpu) |
| 264 | { |
| 265 | struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds; |
| 266 | |
| 267 | if (!ds) |
| 268 | return; |
| 269 | |
| 270 | wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, |
| 271 | (u32)((u64)(unsigned long)ds), |
| 272 | (u32)((u64)(unsigned long)ds >> 32)); |
| 273 | } |
| 274 | |
| 275 | void fini_debug_store_on_cpu(int cpu) |
| 276 | { |
| 277 | if (!per_cpu(cpu_hw_events, cpu).ds) |
| 278 | return; |
| 279 | |
| 280 | wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0); |
| 281 | } |
| 282 | |
| 283 | static DEFINE_PER_CPU(void *, insn_buffer); |
| 284 | |
| 285 | static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot) |
| 286 | { |
| 287 | unsigned long start = (unsigned long)cea; |
| 288 | phys_addr_t pa; |
| 289 | size_t msz = 0; |
| 290 | |
| 291 | pa = virt_to_phys(addr); |
| 292 | |
| 293 | preempt_disable(); |
| 294 | for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE) |
| 295 | cea_set_pte(cea, pa, prot); |
| 296 | |
| 297 | /* |
| 298 | * This is a cross-CPU update of the cpu_entry_area, we must shoot down |
| 299 | * all TLB entries for it. |
| 300 | */ |
| 301 | flush_tlb_kernel_range(start, start + size); |
| 302 | preempt_enable(); |
| 303 | } |
| 304 | |
| 305 | static void ds_clear_cea(void *cea, size_t size) |
| 306 | { |
| 307 | unsigned long start = (unsigned long)cea; |
| 308 | size_t msz = 0; |
| 309 | |
| 310 | preempt_disable(); |
| 311 | for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE) |
| 312 | cea_set_pte(cea, 0, PAGE_NONE); |
| 313 | |
| 314 | flush_tlb_kernel_range(start, start + size); |
| 315 | preempt_enable(); |
| 316 | } |
| 317 | |
| 318 | static void *dsalloc_pages(size_t size, gfp_t flags, int cpu) |
| 319 | { |
| 320 | unsigned int order = get_order(size); |
| 321 | int node = cpu_to_node(cpu); |
| 322 | struct page *page; |
| 323 | |
| 324 | page = __alloc_pages_node(node, flags | __GFP_ZERO, order); |
| 325 | return page ? page_address(page) : NULL; |
| 326 | } |
| 327 | |
| 328 | static void dsfree_pages(const void *buffer, size_t size) |
| 329 | { |
| 330 | if (buffer) |
| 331 | free_pages((unsigned long)buffer, get_order(size)); |
| 332 | } |
| 333 | |
| 334 | static int alloc_pebs_buffer(int cpu) |
| 335 | { |
| 336 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 337 | struct debug_store *ds = hwev->ds; |
| 338 | size_t bsiz = x86_pmu.pebs_buffer_size; |
| 339 | int max, node = cpu_to_node(cpu); |
| 340 | void *buffer, *ibuffer, *cea; |
| 341 | |
| 342 | if (!x86_pmu.pebs) |
| 343 | return 0; |
| 344 | |
| 345 | buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu); |
| 346 | if (unlikely(!buffer)) |
| 347 | return -ENOMEM; |
| 348 | |
| 349 | /* |
| 350 | * HSW+ already provides us the eventing ip; no need to allocate this |
| 351 | * buffer then. |
| 352 | */ |
| 353 | if (x86_pmu.intel_cap.pebs_format < 2) { |
| 354 | ibuffer = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node); |
| 355 | if (!ibuffer) { |
| 356 | dsfree_pages(buffer, bsiz); |
| 357 | return -ENOMEM; |
| 358 | } |
| 359 | per_cpu(insn_buffer, cpu) = ibuffer; |
| 360 | } |
| 361 | hwev->ds_pebs_vaddr = buffer; |
| 362 | /* Update the cpu entry area mapping */ |
| 363 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; |
| 364 | ds->pebs_buffer_base = (unsigned long) cea; |
| 365 | ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL); |
| 366 | ds->pebs_index = ds->pebs_buffer_base; |
| 367 | max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size); |
| 368 | ds->pebs_absolute_maximum = ds->pebs_buffer_base + max; |
| 369 | return 0; |
| 370 | } |
| 371 | |
| 372 | static void release_pebs_buffer(int cpu) |
| 373 | { |
| 374 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 375 | void *cea; |
| 376 | |
| 377 | if (!x86_pmu.pebs) |
| 378 | return; |
| 379 | |
| 380 | kfree(per_cpu(insn_buffer, cpu)); |
| 381 | per_cpu(insn_buffer, cpu) = NULL; |
| 382 | |
| 383 | /* Clear the fixmap */ |
| 384 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer; |
| 385 | ds_clear_cea(cea, x86_pmu.pebs_buffer_size); |
| 386 | dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size); |
| 387 | hwev->ds_pebs_vaddr = NULL; |
| 388 | } |
| 389 | |
| 390 | static int alloc_bts_buffer(int cpu) |
| 391 | { |
| 392 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 393 | struct debug_store *ds = hwev->ds; |
| 394 | void *buffer, *cea; |
| 395 | int max; |
| 396 | |
| 397 | if (!x86_pmu.bts) |
| 398 | return 0; |
| 399 | |
| 400 | buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu); |
| 401 | if (unlikely(!buffer)) { |
| 402 | WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__); |
| 403 | return -ENOMEM; |
| 404 | } |
| 405 | hwev->ds_bts_vaddr = buffer; |
| 406 | /* Update the fixmap */ |
| 407 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; |
| 408 | ds->bts_buffer_base = (unsigned long) cea; |
| 409 | ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL); |
| 410 | ds->bts_index = ds->bts_buffer_base; |
| 411 | max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE; |
| 412 | ds->bts_absolute_maximum = ds->bts_buffer_base + |
| 413 | max * BTS_RECORD_SIZE; |
| 414 | ds->bts_interrupt_threshold = ds->bts_absolute_maximum - |
| 415 | (max / 16) * BTS_RECORD_SIZE; |
| 416 | return 0; |
| 417 | } |
| 418 | |
| 419 | static void release_bts_buffer(int cpu) |
| 420 | { |
| 421 | struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu); |
| 422 | void *cea; |
| 423 | |
| 424 | if (!x86_pmu.bts) |
| 425 | return; |
| 426 | |
| 427 | /* Clear the fixmap */ |
| 428 | cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer; |
| 429 | ds_clear_cea(cea, BTS_BUFFER_SIZE); |
| 430 | dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE); |
| 431 | hwev->ds_bts_vaddr = NULL; |
| 432 | } |
| 433 | |
| 434 | static int alloc_ds_buffer(int cpu) |
| 435 | { |
| 436 | struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store; |
| 437 | |
| 438 | memset(ds, 0, sizeof(*ds)); |
| 439 | per_cpu(cpu_hw_events, cpu).ds = ds; |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | static void release_ds_buffer(int cpu) |
| 444 | { |
| 445 | per_cpu(cpu_hw_events, cpu).ds = NULL; |
| 446 | } |
| 447 | |
| 448 | void release_ds_buffers(void) |
| 449 | { |
| 450 | int cpu; |
| 451 | |
| 452 | if (!x86_pmu.bts && !x86_pmu.pebs) |
| 453 | return; |
| 454 | |
| 455 | for_each_possible_cpu(cpu) |
| 456 | release_ds_buffer(cpu); |
| 457 | |
| 458 | for_each_possible_cpu(cpu) { |
| 459 | /* |
| 460 | * Again, ignore errors from offline CPUs, they will no longer |
| 461 | * observe cpu_hw_events.ds and not program the DS_AREA when |
| 462 | * they come up. |
| 463 | */ |
| 464 | fini_debug_store_on_cpu(cpu); |
| 465 | } |
| 466 | |
| 467 | for_each_possible_cpu(cpu) { |
| 468 | release_pebs_buffer(cpu); |
| 469 | release_bts_buffer(cpu); |
| 470 | } |
| 471 | } |
| 472 | |
| 473 | void reserve_ds_buffers(void) |
| 474 | { |
| 475 | int bts_err = 0, pebs_err = 0; |
| 476 | int cpu; |
| 477 | |
| 478 | x86_pmu.bts_active = 0; |
| 479 | x86_pmu.pebs_active = 0; |
| 480 | |
| 481 | if (!x86_pmu.bts && !x86_pmu.pebs) |
| 482 | return; |
| 483 | |
| 484 | if (!x86_pmu.bts) |
| 485 | bts_err = 1; |
| 486 | |
| 487 | if (!x86_pmu.pebs) |
| 488 | pebs_err = 1; |
| 489 | |
| 490 | for_each_possible_cpu(cpu) { |
| 491 | if (alloc_ds_buffer(cpu)) { |
| 492 | bts_err = 1; |
| 493 | pebs_err = 1; |
| 494 | } |
| 495 | |
| 496 | if (!bts_err && alloc_bts_buffer(cpu)) |
| 497 | bts_err = 1; |
| 498 | |
| 499 | if (!pebs_err && alloc_pebs_buffer(cpu)) |
| 500 | pebs_err = 1; |
| 501 | |
| 502 | if (bts_err && pebs_err) |
| 503 | break; |
| 504 | } |
| 505 | |
| 506 | if (bts_err) { |
| 507 | for_each_possible_cpu(cpu) |
| 508 | release_bts_buffer(cpu); |
| 509 | } |
| 510 | |
| 511 | if (pebs_err) { |
| 512 | for_each_possible_cpu(cpu) |
| 513 | release_pebs_buffer(cpu); |
| 514 | } |
| 515 | |
| 516 | if (bts_err && pebs_err) { |
| 517 | for_each_possible_cpu(cpu) |
| 518 | release_ds_buffer(cpu); |
| 519 | } else { |
| 520 | if (x86_pmu.bts && !bts_err) |
| 521 | x86_pmu.bts_active = 1; |
| 522 | |
| 523 | if (x86_pmu.pebs && !pebs_err) |
| 524 | x86_pmu.pebs_active = 1; |
| 525 | |
| 526 | for_each_possible_cpu(cpu) { |
| 527 | /* |
| 528 | * Ignores wrmsr_on_cpu() errors for offline CPUs they |
| 529 | * will get this call through intel_pmu_cpu_starting(). |
| 530 | */ |
| 531 | init_debug_store_on_cpu(cpu); |
| 532 | } |
| 533 | } |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * BTS |
| 538 | */ |
| 539 | |
| 540 | struct event_constraint bts_constraint = |
| 541 | EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0); |
| 542 | |
| 543 | void intel_pmu_enable_bts(u64 config) |
| 544 | { |
| 545 | unsigned long debugctlmsr; |
| 546 | |
| 547 | debugctlmsr = get_debugctlmsr(); |
| 548 | |
| 549 | debugctlmsr |= DEBUGCTLMSR_TR; |
| 550 | debugctlmsr |= DEBUGCTLMSR_BTS; |
| 551 | if (config & ARCH_PERFMON_EVENTSEL_INT) |
| 552 | debugctlmsr |= DEBUGCTLMSR_BTINT; |
| 553 | |
| 554 | if (!(config & ARCH_PERFMON_EVENTSEL_OS)) |
| 555 | debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS; |
| 556 | |
| 557 | if (!(config & ARCH_PERFMON_EVENTSEL_USR)) |
| 558 | debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR; |
| 559 | |
| 560 | update_debugctlmsr(debugctlmsr); |
| 561 | } |
| 562 | |
| 563 | void intel_pmu_disable_bts(void) |
| 564 | { |
| 565 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 566 | unsigned long debugctlmsr; |
| 567 | |
| 568 | if (!cpuc->ds) |
| 569 | return; |
| 570 | |
| 571 | debugctlmsr = get_debugctlmsr(); |
| 572 | |
| 573 | debugctlmsr &= |
| 574 | ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT | |
| 575 | DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR); |
| 576 | |
| 577 | update_debugctlmsr(debugctlmsr); |
| 578 | } |
| 579 | |
| 580 | int intel_pmu_drain_bts_buffer(void) |
| 581 | { |
| 582 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 583 | struct debug_store *ds = cpuc->ds; |
| 584 | struct bts_record { |
| 585 | u64 from; |
| 586 | u64 to; |
| 587 | u64 flags; |
| 588 | }; |
| 589 | struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; |
| 590 | struct bts_record *at, *base, *top; |
| 591 | struct perf_output_handle handle; |
| 592 | struct perf_event_header header; |
| 593 | struct perf_sample_data data; |
| 594 | unsigned long skip = 0; |
| 595 | struct pt_regs regs; |
| 596 | |
| 597 | if (!event) |
| 598 | return 0; |
| 599 | |
| 600 | if (!x86_pmu.bts_active) |
| 601 | return 0; |
| 602 | |
| 603 | base = (struct bts_record *)(unsigned long)ds->bts_buffer_base; |
| 604 | top = (struct bts_record *)(unsigned long)ds->bts_index; |
| 605 | |
| 606 | if (top <= base) |
| 607 | return 0; |
| 608 | |
| 609 | memset(®s, 0, sizeof(regs)); |
| 610 | |
| 611 | ds->bts_index = ds->bts_buffer_base; |
| 612 | |
| 613 | perf_sample_data_init(&data, 0, event->hw.last_period); |
| 614 | |
| 615 | /* |
| 616 | * BTS leaks kernel addresses in branches across the cpl boundary, |
| 617 | * such as traps or system calls, so unless the user is asking for |
| 618 | * kernel tracing (and right now it's not possible), we'd need to |
| 619 | * filter them out. But first we need to count how many of those we |
| 620 | * have in the current batch. This is an extra O(n) pass, however, |
| 621 | * it's much faster than the other one especially considering that |
| 622 | * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the |
| 623 | * alloc_bts_buffer()). |
| 624 | */ |
| 625 | for (at = base; at < top; at++) { |
| 626 | /* |
| 627 | * Note that right now *this* BTS code only works if |
| 628 | * attr::exclude_kernel is set, but let's keep this extra |
| 629 | * check here in case that changes. |
| 630 | */ |
| 631 | if (event->attr.exclude_kernel && |
| 632 | (kernel_ip(at->from) || kernel_ip(at->to))) |
| 633 | skip++; |
| 634 | } |
| 635 | |
| 636 | /* |
| 637 | * Prepare a generic sample, i.e. fill in the invariant fields. |
| 638 | * We will overwrite the from and to address before we output |
| 639 | * the sample. |
| 640 | */ |
| 641 | rcu_read_lock(); |
| 642 | perf_prepare_sample(&header, &data, event, ®s); |
| 643 | |
| 644 | if (perf_output_begin(&handle, event, header.size * |
| 645 | (top - base - skip))) |
| 646 | goto unlock; |
| 647 | |
| 648 | for (at = base; at < top; at++) { |
| 649 | /* Filter out any records that contain kernel addresses. */ |
| 650 | if (event->attr.exclude_kernel && |
| 651 | (kernel_ip(at->from) || kernel_ip(at->to))) |
| 652 | continue; |
| 653 | |
| 654 | data.ip = at->from; |
| 655 | data.addr = at->to; |
| 656 | |
| 657 | perf_output_sample(&handle, &header, &data, event); |
| 658 | } |
| 659 | |
| 660 | perf_output_end(&handle); |
| 661 | |
| 662 | /* There's new data available. */ |
| 663 | event->hw.interrupts++; |
| 664 | event->pending_kill = POLL_IN; |
| 665 | unlock: |
| 666 | rcu_read_unlock(); |
| 667 | return 1; |
| 668 | } |
| 669 | |
| 670 | static inline void intel_pmu_drain_pebs_buffer(void) |
| 671 | { |
| 672 | struct pt_regs regs; |
| 673 | |
| 674 | x86_pmu.drain_pebs(®s); |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * PEBS |
| 679 | */ |
| 680 | struct event_constraint intel_core2_pebs_event_constraints[] = { |
| 681 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ |
| 682 | INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */ |
| 683 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */ |
| 684 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */ |
| 685 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ |
| 686 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 687 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), |
| 688 | EVENT_CONSTRAINT_END |
| 689 | }; |
| 690 | |
| 691 | struct event_constraint intel_atom_pebs_event_constraints[] = { |
| 692 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */ |
| 693 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */ |
| 694 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */ |
| 695 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 696 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x01), |
| 697 | /* Allow all events as PEBS with no flags */ |
| 698 | INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| 699 | EVENT_CONSTRAINT_END |
| 700 | }; |
| 701 | |
| 702 | struct event_constraint intel_slm_pebs_event_constraints[] = { |
| 703 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 704 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x1), |
| 705 | /* Allow all events as PEBS with no flags */ |
| 706 | INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| 707 | EVENT_CONSTRAINT_END |
| 708 | }; |
| 709 | |
| 710 | struct event_constraint intel_glm_pebs_event_constraints[] = { |
| 711 | /* Allow all events as PEBS with no flags */ |
| 712 | INTEL_ALL_EVENT_CONSTRAINT(0, 0x1), |
| 713 | EVENT_CONSTRAINT_END |
| 714 | }; |
| 715 | |
| 716 | struct event_constraint intel_nehalem_pebs_event_constraints[] = { |
| 717 | INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ |
| 718 | INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ |
| 719 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ |
| 720 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */ |
| 721 | INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ |
| 722 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ |
| 723 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */ |
| 724 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ |
| 725 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ |
| 726 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ |
| 727 | INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ |
| 728 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 729 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), |
| 730 | EVENT_CONSTRAINT_END |
| 731 | }; |
| 732 | |
| 733 | struct event_constraint intel_westmere_pebs_event_constraints[] = { |
| 734 | INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */ |
| 735 | INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */ |
| 736 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */ |
| 737 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */ |
| 738 | INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */ |
| 739 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */ |
| 740 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */ |
| 741 | INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */ |
| 742 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */ |
| 743 | INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */ |
| 744 | INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */ |
| 745 | /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */ |
| 746 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), |
| 747 | EVENT_CONSTRAINT_END |
| 748 | }; |
| 749 | |
| 750 | struct event_constraint intel_snb_pebs_event_constraints[] = { |
| 751 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 752 | INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ |
| 753 | INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ |
| 754 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 755 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), |
| 756 | INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ |
| 757 | INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 758 | INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| 759 | INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| 760 | /* Allow all events as PEBS with no flags */ |
| 761 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 762 | EVENT_CONSTRAINT_END |
| 763 | }; |
| 764 | |
| 765 | struct event_constraint intel_ivb_pebs_event_constraints[] = { |
| 766 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 767 | INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */ |
| 768 | INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */ |
| 769 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 770 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), |
| 771 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 772 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), |
| 773 | INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */ |
| 774 | INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 775 | INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ |
| 776 | INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ |
| 777 | /* Allow all events as PEBS with no flags */ |
| 778 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 779 | EVENT_CONSTRAINT_END |
| 780 | }; |
| 781 | |
| 782 | struct event_constraint intel_hsw_pebs_event_constraints[] = { |
| 783 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 784 | INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| 785 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 786 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), |
| 787 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 788 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), |
| 789 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ |
| 790 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ |
| 791 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ |
| 792 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ |
| 793 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| 794 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ |
| 795 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ |
| 796 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ |
| 797 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 798 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ |
| 799 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ |
| 800 | /* Allow all events as PEBS with no flags */ |
| 801 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 802 | EVENT_CONSTRAINT_END |
| 803 | }; |
| 804 | |
| 805 | struct event_constraint intel_bdw_pebs_event_constraints[] = { |
| 806 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */ |
| 807 | INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| 808 | /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */ |
| 809 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c2, 0xf), |
| 810 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 811 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), |
| 812 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */ |
| 813 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */ |
| 814 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */ |
| 815 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */ |
| 816 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */ |
| 817 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */ |
| 818 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */ |
| 819 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */ |
| 820 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */ |
| 821 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */ |
| 822 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */ |
| 823 | /* Allow all events as PEBS with no flags */ |
| 824 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 825 | EVENT_CONSTRAINT_END |
| 826 | }; |
| 827 | |
| 828 | |
| 829 | struct event_constraint intel_skl_pebs_event_constraints[] = { |
| 830 | INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */ |
| 831 | /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */ |
| 832 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108001c0, 0x2), |
| 833 | /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */ |
| 834 | INTEL_FLAGS_EVENT_CONSTRAINT(0x108000c0, 0x0f), |
| 835 | INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */ |
| 836 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */ |
| 837 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */ |
| 838 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */ |
| 839 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */ |
| 840 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */ |
| 841 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */ |
| 842 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */ |
| 843 | INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */ |
| 844 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */ |
| 845 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */ |
| 846 | INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */ |
| 847 | /* Allow all events as PEBS with no flags */ |
| 848 | INTEL_ALL_EVENT_CONSTRAINT(0, 0xf), |
| 849 | EVENT_CONSTRAINT_END |
| 850 | }; |
| 851 | |
| 852 | struct event_constraint *intel_pebs_constraints(struct perf_event *event) |
| 853 | { |
| 854 | struct event_constraint *c; |
| 855 | |
| 856 | if (!event->attr.precise_ip) |
| 857 | return NULL; |
| 858 | |
| 859 | if (x86_pmu.pebs_constraints) { |
| 860 | for_each_event_constraint(c, x86_pmu.pebs_constraints) { |
| 861 | if ((event->hw.config & c->cmask) == c->code) { |
| 862 | event->hw.flags |= c->flags; |
| 863 | return c; |
| 864 | } |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | /* |
| 869 | * Extended PEBS support |
| 870 | * Makes the PEBS code search the normal constraints. |
| 871 | */ |
| 872 | if (x86_pmu.flags & PMU_FL_PEBS_ALL) |
| 873 | return NULL; |
| 874 | |
| 875 | return &emptyconstraint; |
| 876 | } |
| 877 | |
| 878 | /* |
| 879 | * We need the sched_task callback even for per-cpu events when we use |
| 880 | * the large interrupt threshold, such that we can provide PID and TID |
| 881 | * to PEBS samples. |
| 882 | */ |
| 883 | static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc) |
| 884 | { |
| 885 | return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs); |
| 886 | } |
| 887 | |
| 888 | void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in) |
| 889 | { |
| 890 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 891 | |
| 892 | if (!sched_in && pebs_needs_sched_cb(cpuc)) |
| 893 | intel_pmu_drain_pebs_buffer(); |
| 894 | } |
| 895 | |
| 896 | static inline void pebs_update_threshold(struct cpu_hw_events *cpuc) |
| 897 | { |
| 898 | struct debug_store *ds = cpuc->ds; |
| 899 | u64 threshold; |
| 900 | int reserved; |
| 901 | |
| 902 | if (x86_pmu.flags & PMU_FL_PEBS_ALL) |
| 903 | reserved = x86_pmu.max_pebs_events + x86_pmu.num_counters_fixed; |
| 904 | else |
| 905 | reserved = x86_pmu.max_pebs_events; |
| 906 | |
| 907 | if (cpuc->n_pebs == cpuc->n_large_pebs) { |
| 908 | threshold = ds->pebs_absolute_maximum - |
| 909 | reserved * x86_pmu.pebs_record_size; |
| 910 | } else { |
| 911 | threshold = ds->pebs_buffer_base + x86_pmu.pebs_record_size; |
| 912 | } |
| 913 | |
| 914 | ds->pebs_interrupt_threshold = threshold; |
| 915 | } |
| 916 | |
| 917 | static void |
| 918 | pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc, struct pmu *pmu) |
| 919 | { |
| 920 | /* |
| 921 | * Make sure we get updated with the first PEBS |
| 922 | * event. It will trigger also during removal, but |
| 923 | * that does not hurt: |
| 924 | */ |
| 925 | bool update = cpuc->n_pebs == 1; |
| 926 | |
| 927 | if (needed_cb != pebs_needs_sched_cb(cpuc)) { |
| 928 | if (!needed_cb) |
| 929 | perf_sched_cb_inc(pmu); |
| 930 | else |
| 931 | perf_sched_cb_dec(pmu); |
| 932 | |
| 933 | update = true; |
| 934 | } |
| 935 | |
| 936 | if (update) |
| 937 | pebs_update_threshold(cpuc); |
| 938 | } |
| 939 | |
| 940 | void intel_pmu_pebs_add(struct perf_event *event) |
| 941 | { |
| 942 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 943 | struct hw_perf_event *hwc = &event->hw; |
| 944 | bool needed_cb = pebs_needs_sched_cb(cpuc); |
| 945 | |
| 946 | cpuc->n_pebs++; |
| 947 | if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) |
| 948 | cpuc->n_large_pebs++; |
| 949 | |
| 950 | pebs_update_state(needed_cb, cpuc, event->ctx->pmu); |
| 951 | } |
| 952 | |
| 953 | void intel_pmu_pebs_enable(struct perf_event *event) |
| 954 | { |
| 955 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 956 | struct hw_perf_event *hwc = &event->hw; |
| 957 | struct debug_store *ds = cpuc->ds; |
| 958 | |
| 959 | hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT; |
| 960 | |
| 961 | cpuc->pebs_enabled |= 1ULL << hwc->idx; |
| 962 | |
| 963 | if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) |
| 964 | cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32); |
| 965 | else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) |
| 966 | cpuc->pebs_enabled |= 1ULL << 63; |
| 967 | |
| 968 | /* |
| 969 | * Use auto-reload if possible to save a MSR write in the PMI. |
| 970 | * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD. |
| 971 | */ |
| 972 | if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { |
| 973 | unsigned int idx = hwc->idx; |
| 974 | |
| 975 | if (idx >= INTEL_PMC_IDX_FIXED) |
| 976 | idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED); |
| 977 | ds->pebs_event_reset[idx] = |
| 978 | (u64)(-hwc->sample_period) & x86_pmu.cntval_mask; |
| 979 | } else { |
| 980 | ds->pebs_event_reset[hwc->idx] = 0; |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | void intel_pmu_pebs_del(struct perf_event *event) |
| 985 | { |
| 986 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 987 | struct hw_perf_event *hwc = &event->hw; |
| 988 | bool needed_cb = pebs_needs_sched_cb(cpuc); |
| 989 | |
| 990 | cpuc->n_pebs--; |
| 991 | if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS) |
| 992 | cpuc->n_large_pebs--; |
| 993 | |
| 994 | pebs_update_state(needed_cb, cpuc, event->ctx->pmu); |
| 995 | } |
| 996 | |
| 997 | void intel_pmu_pebs_disable(struct perf_event *event) |
| 998 | { |
| 999 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1000 | struct hw_perf_event *hwc = &event->hw; |
| 1001 | |
| 1002 | if (cpuc->n_pebs == cpuc->n_large_pebs) |
| 1003 | intel_pmu_drain_pebs_buffer(); |
| 1004 | |
| 1005 | cpuc->pebs_enabled &= ~(1ULL << hwc->idx); |
| 1006 | |
| 1007 | if (event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) |
| 1008 | cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32)); |
| 1009 | else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST) |
| 1010 | cpuc->pebs_enabled &= ~(1ULL << 63); |
| 1011 | |
| 1012 | if (cpuc->enabled) |
| 1013 | wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); |
| 1014 | |
| 1015 | hwc->config |= ARCH_PERFMON_EVENTSEL_INT; |
| 1016 | } |
| 1017 | |
| 1018 | void intel_pmu_pebs_enable_all(void) |
| 1019 | { |
| 1020 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1021 | |
| 1022 | if (cpuc->pebs_enabled) |
| 1023 | wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled); |
| 1024 | } |
| 1025 | |
| 1026 | void intel_pmu_pebs_disable_all(void) |
| 1027 | { |
| 1028 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1029 | |
| 1030 | if (cpuc->pebs_enabled) |
| 1031 | wrmsrl(MSR_IA32_PEBS_ENABLE, 0); |
| 1032 | } |
| 1033 | |
| 1034 | static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs) |
| 1035 | { |
| 1036 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1037 | unsigned long from = cpuc->lbr_entries[0].from; |
| 1038 | unsigned long old_to, to = cpuc->lbr_entries[0].to; |
| 1039 | unsigned long ip = regs->ip; |
| 1040 | int is_64bit = 0; |
| 1041 | void *kaddr; |
| 1042 | int size; |
| 1043 | |
| 1044 | /* |
| 1045 | * We don't need to fixup if the PEBS assist is fault like |
| 1046 | */ |
| 1047 | if (!x86_pmu.intel_cap.pebs_trap) |
| 1048 | return 1; |
| 1049 | |
| 1050 | /* |
| 1051 | * No LBR entry, no basic block, no rewinding |
| 1052 | */ |
| 1053 | if (!cpuc->lbr_stack.nr || !from || !to) |
| 1054 | return 0; |
| 1055 | |
| 1056 | /* |
| 1057 | * Basic blocks should never cross user/kernel boundaries |
| 1058 | */ |
| 1059 | if (kernel_ip(ip) != kernel_ip(to)) |
| 1060 | return 0; |
| 1061 | |
| 1062 | /* |
| 1063 | * unsigned math, either ip is before the start (impossible) or |
| 1064 | * the basic block is larger than 1 page (sanity) |
| 1065 | */ |
| 1066 | if ((ip - to) > PEBS_FIXUP_SIZE) |
| 1067 | return 0; |
| 1068 | |
| 1069 | /* |
| 1070 | * We sampled a branch insn, rewind using the LBR stack |
| 1071 | */ |
| 1072 | if (ip == to) { |
| 1073 | set_linear_ip(regs, from); |
| 1074 | return 1; |
| 1075 | } |
| 1076 | |
| 1077 | size = ip - to; |
| 1078 | if (!kernel_ip(ip)) { |
| 1079 | int bytes; |
| 1080 | u8 *buf = this_cpu_read(insn_buffer); |
| 1081 | |
| 1082 | /* 'size' must fit our buffer, see above */ |
| 1083 | bytes = copy_from_user_nmi(buf, (void __user *)to, size); |
| 1084 | if (bytes != 0) |
| 1085 | return 0; |
| 1086 | |
| 1087 | kaddr = buf; |
| 1088 | } else { |
| 1089 | kaddr = (void *)to; |
| 1090 | } |
| 1091 | |
| 1092 | do { |
| 1093 | struct insn insn; |
| 1094 | |
| 1095 | old_to = to; |
| 1096 | |
| 1097 | #ifdef CONFIG_X86_64 |
| 1098 | is_64bit = kernel_ip(to) || !test_thread_flag(TIF_IA32); |
| 1099 | #endif |
| 1100 | insn_init(&insn, kaddr, size, is_64bit); |
| 1101 | insn_get_length(&insn); |
| 1102 | /* |
| 1103 | * Make sure there was not a problem decoding the |
| 1104 | * instruction and getting the length. This is |
| 1105 | * doubly important because we have an infinite |
| 1106 | * loop if insn.length=0. |
| 1107 | */ |
| 1108 | if (!insn.length) |
| 1109 | break; |
| 1110 | |
| 1111 | to += insn.length; |
| 1112 | kaddr += insn.length; |
| 1113 | size -= insn.length; |
| 1114 | } while (to < ip); |
| 1115 | |
| 1116 | if (to == ip) { |
| 1117 | set_linear_ip(regs, old_to); |
| 1118 | return 1; |
| 1119 | } |
| 1120 | |
| 1121 | /* |
| 1122 | * Even though we decoded the basic block, the instruction stream |
| 1123 | * never matched the given IP, either the TO or the IP got corrupted. |
| 1124 | */ |
| 1125 | return 0; |
| 1126 | } |
| 1127 | |
| 1128 | static inline u64 intel_hsw_weight(struct pebs_record_skl *pebs) |
| 1129 | { |
| 1130 | if (pebs->tsx_tuning) { |
| 1131 | union hsw_tsx_tuning tsx = { .value = pebs->tsx_tuning }; |
| 1132 | return tsx.cycles_last_block; |
| 1133 | } |
| 1134 | return 0; |
| 1135 | } |
| 1136 | |
| 1137 | static inline u64 intel_hsw_transaction(struct pebs_record_skl *pebs) |
| 1138 | { |
| 1139 | u64 txn = (pebs->tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32; |
| 1140 | |
| 1141 | /* For RTM XABORTs also log the abort code from AX */ |
| 1142 | if ((txn & PERF_TXN_TRANSACTION) && (pebs->ax & 1)) |
| 1143 | txn |= ((pebs->ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT; |
| 1144 | return txn; |
| 1145 | } |
| 1146 | |
| 1147 | static void setup_pebs_sample_data(struct perf_event *event, |
| 1148 | struct pt_regs *iregs, void *__pebs, |
| 1149 | struct perf_sample_data *data, |
| 1150 | struct pt_regs *regs) |
| 1151 | { |
| 1152 | #define PERF_X86_EVENT_PEBS_HSW_PREC \ |
| 1153 | (PERF_X86_EVENT_PEBS_ST_HSW | \ |
| 1154 | PERF_X86_EVENT_PEBS_LD_HSW | \ |
| 1155 | PERF_X86_EVENT_PEBS_NA_HSW) |
| 1156 | /* |
| 1157 | * We cast to the biggest pebs_record but are careful not to |
| 1158 | * unconditionally access the 'extra' entries. |
| 1159 | */ |
| 1160 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1161 | struct pebs_record_skl *pebs = __pebs; |
| 1162 | u64 sample_type; |
| 1163 | int fll, fst, dsrc; |
| 1164 | int fl = event->hw.flags; |
| 1165 | |
| 1166 | if (pebs == NULL) |
| 1167 | return; |
| 1168 | |
| 1169 | sample_type = event->attr.sample_type; |
| 1170 | dsrc = sample_type & PERF_SAMPLE_DATA_SRC; |
| 1171 | |
| 1172 | fll = fl & PERF_X86_EVENT_PEBS_LDLAT; |
| 1173 | fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC); |
| 1174 | |
| 1175 | perf_sample_data_init(data, 0, event->hw.last_period); |
| 1176 | |
| 1177 | data->period = event->hw.last_period; |
| 1178 | |
| 1179 | /* |
| 1180 | * Use latency for weight (only avail with PEBS-LL) |
| 1181 | */ |
| 1182 | if (fll && (sample_type & PERF_SAMPLE_WEIGHT)) |
| 1183 | data->weight = pebs->lat; |
| 1184 | |
| 1185 | /* |
| 1186 | * data.data_src encodes the data source |
| 1187 | */ |
| 1188 | if (dsrc) { |
| 1189 | u64 val = PERF_MEM_NA; |
| 1190 | if (fll) |
| 1191 | val = load_latency_data(pebs->dse); |
| 1192 | else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC)) |
| 1193 | val = precise_datala_hsw(event, pebs->dse); |
| 1194 | else if (fst) |
| 1195 | val = precise_store_data(pebs->dse); |
| 1196 | data->data_src.val = val; |
| 1197 | } |
| 1198 | |
| 1199 | /* |
| 1200 | * We must however always use iregs for the unwinder to stay sane; the |
| 1201 | * record BP,SP,IP can point into thin air when the record is from a |
| 1202 | * previous PMI context or an (I)RET happend between the record and |
| 1203 | * PMI. |
| 1204 | */ |
| 1205 | if (sample_type & PERF_SAMPLE_CALLCHAIN) |
| 1206 | data->callchain = perf_callchain(event, iregs); |
| 1207 | |
| 1208 | /* |
| 1209 | * We use the interrupt regs as a base because the PEBS record does not |
| 1210 | * contain a full regs set, specifically it seems to lack segment |
| 1211 | * descriptors, which get used by things like user_mode(). |
| 1212 | * |
| 1213 | * In the simple case fix up only the IP for PERF_SAMPLE_IP. |
| 1214 | */ |
| 1215 | *regs = *iregs; |
| 1216 | |
| 1217 | /* |
| 1218 | * Initialize regs_>flags from PEBS, |
| 1219 | * Clear exact bit (which uses x86 EFLAGS Reserved bit 3), |
| 1220 | * i.e., do not rely on it being zero: |
| 1221 | */ |
| 1222 | regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT; |
| 1223 | |
| 1224 | if (sample_type & PERF_SAMPLE_REGS_INTR) { |
| 1225 | regs->ax = pebs->ax; |
| 1226 | regs->bx = pebs->bx; |
| 1227 | regs->cx = pebs->cx; |
| 1228 | regs->dx = pebs->dx; |
| 1229 | regs->si = pebs->si; |
| 1230 | regs->di = pebs->di; |
| 1231 | |
| 1232 | regs->bp = pebs->bp; |
| 1233 | regs->sp = pebs->sp; |
| 1234 | |
| 1235 | #ifndef CONFIG_X86_32 |
| 1236 | regs->r8 = pebs->r8; |
| 1237 | regs->r9 = pebs->r9; |
| 1238 | regs->r10 = pebs->r10; |
| 1239 | regs->r11 = pebs->r11; |
| 1240 | regs->r12 = pebs->r12; |
| 1241 | regs->r13 = pebs->r13; |
| 1242 | regs->r14 = pebs->r14; |
| 1243 | regs->r15 = pebs->r15; |
| 1244 | #endif |
| 1245 | } |
| 1246 | |
| 1247 | if (event->attr.precise_ip > 1) { |
| 1248 | /* |
| 1249 | * Haswell and later processors have an 'eventing IP' |
| 1250 | * (real IP) which fixes the off-by-1 skid in hardware. |
| 1251 | * Use it when precise_ip >= 2 : |
| 1252 | */ |
| 1253 | if (x86_pmu.intel_cap.pebs_format >= 2) { |
| 1254 | set_linear_ip(regs, pebs->real_ip); |
| 1255 | regs->flags |= PERF_EFLAGS_EXACT; |
| 1256 | } else { |
| 1257 | /* Otherwise, use PEBS off-by-1 IP: */ |
| 1258 | set_linear_ip(regs, pebs->ip); |
| 1259 | |
| 1260 | /* |
| 1261 | * With precise_ip >= 2, try to fix up the off-by-1 IP |
| 1262 | * using the LBR. If successful, the fixup function |
| 1263 | * corrects regs->ip and calls set_linear_ip() on regs: |
| 1264 | */ |
| 1265 | if (intel_pmu_pebs_fixup_ip(regs)) |
| 1266 | regs->flags |= PERF_EFLAGS_EXACT; |
| 1267 | } |
| 1268 | } else { |
| 1269 | /* |
| 1270 | * When precise_ip == 1, return the PEBS off-by-1 IP, |
| 1271 | * no fixup attempted: |
| 1272 | */ |
| 1273 | set_linear_ip(regs, pebs->ip); |
| 1274 | } |
| 1275 | |
| 1276 | |
| 1277 | if ((sample_type & (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR)) && |
| 1278 | x86_pmu.intel_cap.pebs_format >= 1) |
| 1279 | data->addr = pebs->dla; |
| 1280 | |
| 1281 | if (x86_pmu.intel_cap.pebs_format >= 2) { |
| 1282 | /* Only set the TSX weight when no memory weight. */ |
| 1283 | if ((sample_type & PERF_SAMPLE_WEIGHT) && !fll) |
| 1284 | data->weight = intel_hsw_weight(pebs); |
| 1285 | |
| 1286 | if (sample_type & PERF_SAMPLE_TRANSACTION) |
| 1287 | data->txn = intel_hsw_transaction(pebs); |
| 1288 | } |
| 1289 | |
| 1290 | /* |
| 1291 | * v3 supplies an accurate time stamp, so we use that |
| 1292 | * for the time stamp. |
| 1293 | * |
| 1294 | * We can only do this for the default trace clock. |
| 1295 | */ |
| 1296 | if (x86_pmu.intel_cap.pebs_format >= 3 && |
| 1297 | event->attr.use_clockid == 0) |
| 1298 | data->time = native_sched_clock_from_tsc(pebs->tsc); |
| 1299 | |
| 1300 | if (has_branch_stack(event)) |
| 1301 | data->br_stack = &cpuc->lbr_stack; |
| 1302 | } |
| 1303 | |
| 1304 | static inline void * |
| 1305 | get_next_pebs_record_by_bit(void *base, void *top, int bit) |
| 1306 | { |
| 1307 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1308 | void *at; |
| 1309 | u64 pebs_status; |
| 1310 | |
| 1311 | /* |
| 1312 | * fmt0 does not have a status bitfield (does not use |
| 1313 | * perf_record_nhm format) |
| 1314 | */ |
| 1315 | if (x86_pmu.intel_cap.pebs_format < 1) |
| 1316 | return base; |
| 1317 | |
| 1318 | if (base == NULL) |
| 1319 | return NULL; |
| 1320 | |
| 1321 | for (at = base; at < top; at += x86_pmu.pebs_record_size) { |
| 1322 | struct pebs_record_nhm *p = at; |
| 1323 | |
| 1324 | if (test_bit(bit, (unsigned long *)&p->status)) { |
| 1325 | /* PEBS v3 has accurate status bits */ |
| 1326 | if (x86_pmu.intel_cap.pebs_format >= 3) |
| 1327 | return at; |
| 1328 | |
| 1329 | if (p->status == (1 << bit)) |
| 1330 | return at; |
| 1331 | |
| 1332 | /* clear non-PEBS bit and re-check */ |
| 1333 | pebs_status = p->status & cpuc->pebs_enabled; |
| 1334 | pebs_status &= PEBS_COUNTER_MASK; |
| 1335 | if (pebs_status == (1 << bit)) |
| 1336 | return at; |
| 1337 | } |
| 1338 | } |
| 1339 | return NULL; |
| 1340 | } |
| 1341 | |
| 1342 | void intel_pmu_auto_reload_read(struct perf_event *event) |
| 1343 | { |
| 1344 | WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)); |
| 1345 | |
| 1346 | perf_pmu_disable(event->pmu); |
| 1347 | intel_pmu_drain_pebs_buffer(); |
| 1348 | perf_pmu_enable(event->pmu); |
| 1349 | } |
| 1350 | |
| 1351 | /* |
| 1352 | * Special variant of intel_pmu_save_and_restart() for auto-reload. |
| 1353 | */ |
| 1354 | static int |
| 1355 | intel_pmu_save_and_restart_reload(struct perf_event *event, int count) |
| 1356 | { |
| 1357 | struct hw_perf_event *hwc = &event->hw; |
| 1358 | int shift = 64 - x86_pmu.cntval_bits; |
| 1359 | u64 period = hwc->sample_period; |
| 1360 | u64 prev_raw_count, new_raw_count; |
| 1361 | s64 new, old; |
| 1362 | |
| 1363 | WARN_ON(!period); |
| 1364 | |
| 1365 | /* |
| 1366 | * drain_pebs() only happens when the PMU is disabled. |
| 1367 | */ |
| 1368 | WARN_ON(this_cpu_read(cpu_hw_events.enabled)); |
| 1369 | |
| 1370 | prev_raw_count = local64_read(&hwc->prev_count); |
| 1371 | rdpmcl(hwc->event_base_rdpmc, new_raw_count); |
| 1372 | local64_set(&hwc->prev_count, new_raw_count); |
| 1373 | |
| 1374 | /* |
| 1375 | * Since the counter increments a negative counter value and |
| 1376 | * overflows on the sign switch, giving the interval: |
| 1377 | * |
| 1378 | * [-period, 0] |
| 1379 | * |
| 1380 | * the difference between two consequtive reads is: |
| 1381 | * |
| 1382 | * A) value2 - value1; |
| 1383 | * when no overflows have happened in between, |
| 1384 | * |
| 1385 | * B) (0 - value1) + (value2 - (-period)); |
| 1386 | * when one overflow happened in between, |
| 1387 | * |
| 1388 | * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period)); |
| 1389 | * when @n overflows happened in between. |
| 1390 | * |
| 1391 | * Here A) is the obvious difference, B) is the extension to the |
| 1392 | * discrete interval, where the first term is to the top of the |
| 1393 | * interval and the second term is from the bottom of the next |
| 1394 | * interval and C) the extension to multiple intervals, where the |
| 1395 | * middle term is the whole intervals covered. |
| 1396 | * |
| 1397 | * An equivalent of C, by reduction, is: |
| 1398 | * |
| 1399 | * value2 - value1 + n * period |
| 1400 | */ |
| 1401 | new = ((s64)(new_raw_count << shift) >> shift); |
| 1402 | old = ((s64)(prev_raw_count << shift) >> shift); |
| 1403 | local64_add(new - old + count * period, &event->count); |
| 1404 | |
| 1405 | perf_event_update_userpage(event); |
| 1406 | |
| 1407 | return 0; |
| 1408 | } |
| 1409 | |
| 1410 | static void __intel_pmu_pebs_event(struct perf_event *event, |
| 1411 | struct pt_regs *iregs, |
| 1412 | void *base, void *top, |
| 1413 | int bit, int count) |
| 1414 | { |
| 1415 | struct hw_perf_event *hwc = &event->hw; |
| 1416 | struct perf_sample_data data; |
| 1417 | struct pt_regs regs; |
| 1418 | void *at = get_next_pebs_record_by_bit(base, top, bit); |
| 1419 | |
| 1420 | if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) { |
| 1421 | /* |
| 1422 | * Now, auto-reload is only enabled in fixed period mode. |
| 1423 | * The reload value is always hwc->sample_period. |
| 1424 | * May need to change it, if auto-reload is enabled in |
| 1425 | * freq mode later. |
| 1426 | */ |
| 1427 | intel_pmu_save_and_restart_reload(event, count); |
| 1428 | } else if (!intel_pmu_save_and_restart(event)) |
| 1429 | return; |
| 1430 | |
| 1431 | while (count > 1) { |
| 1432 | setup_pebs_sample_data(event, iregs, at, &data, ®s); |
| 1433 | perf_event_output(event, &data, ®s); |
| 1434 | at += x86_pmu.pebs_record_size; |
| 1435 | at = get_next_pebs_record_by_bit(at, top, bit); |
| 1436 | count--; |
| 1437 | } |
| 1438 | |
| 1439 | setup_pebs_sample_data(event, iregs, at, &data, ®s); |
| 1440 | |
| 1441 | /* |
| 1442 | * All but the last records are processed. |
| 1443 | * The last one is left to be able to call the overflow handler. |
| 1444 | */ |
| 1445 | if (perf_event_overflow(event, &data, ®s)) { |
| 1446 | x86_pmu_stop(event, 0); |
| 1447 | return; |
| 1448 | } |
| 1449 | |
| 1450 | } |
| 1451 | |
| 1452 | static void intel_pmu_drain_pebs_core(struct pt_regs *iregs) |
| 1453 | { |
| 1454 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1455 | struct debug_store *ds = cpuc->ds; |
| 1456 | struct perf_event *event = cpuc->events[0]; /* PMC0 only */ |
| 1457 | struct pebs_record_core *at, *top; |
| 1458 | int n; |
| 1459 | |
| 1460 | if (!x86_pmu.pebs_active) |
| 1461 | return; |
| 1462 | |
| 1463 | at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base; |
| 1464 | top = (struct pebs_record_core *)(unsigned long)ds->pebs_index; |
| 1465 | |
| 1466 | /* |
| 1467 | * Whatever else happens, drain the thing |
| 1468 | */ |
| 1469 | ds->pebs_index = ds->pebs_buffer_base; |
| 1470 | |
| 1471 | if (!test_bit(0, cpuc->active_mask)) |
| 1472 | return; |
| 1473 | |
| 1474 | WARN_ON_ONCE(!event); |
| 1475 | |
| 1476 | if (!event->attr.precise_ip) |
| 1477 | return; |
| 1478 | |
| 1479 | n = top - at; |
| 1480 | if (n <= 0) { |
| 1481 | if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| 1482 | intel_pmu_save_and_restart_reload(event, 0); |
| 1483 | return; |
| 1484 | } |
| 1485 | |
| 1486 | __intel_pmu_pebs_event(event, iregs, at, top, 0, n); |
| 1487 | } |
| 1488 | |
| 1489 | static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs) |
| 1490 | { |
| 1491 | struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events); |
| 1492 | struct debug_store *ds = cpuc->ds; |
| 1493 | struct perf_event *event; |
| 1494 | void *base, *at, *top; |
| 1495 | short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| 1496 | short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {}; |
| 1497 | int bit, i, size; |
| 1498 | u64 mask; |
| 1499 | |
| 1500 | if (!x86_pmu.pebs_active) |
| 1501 | return; |
| 1502 | |
| 1503 | base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base; |
| 1504 | top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index; |
| 1505 | |
| 1506 | ds->pebs_index = ds->pebs_buffer_base; |
| 1507 | |
| 1508 | mask = (1ULL << x86_pmu.max_pebs_events) - 1; |
| 1509 | size = x86_pmu.max_pebs_events; |
| 1510 | if (x86_pmu.flags & PMU_FL_PEBS_ALL) { |
| 1511 | mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED; |
| 1512 | size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed; |
| 1513 | } |
| 1514 | |
| 1515 | if (unlikely(base >= top)) { |
| 1516 | /* |
| 1517 | * The drain_pebs() could be called twice in a short period |
| 1518 | * for auto-reload event in pmu::read(). There are no |
| 1519 | * overflows have happened in between. |
| 1520 | * It needs to call intel_pmu_save_and_restart_reload() to |
| 1521 | * update the event->count for this case. |
| 1522 | */ |
| 1523 | for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, |
| 1524 | size) { |
| 1525 | event = cpuc->events[bit]; |
| 1526 | if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD) |
| 1527 | intel_pmu_save_and_restart_reload(event, 0); |
| 1528 | } |
| 1529 | return; |
| 1530 | } |
| 1531 | |
| 1532 | for (at = base; at < top; at += x86_pmu.pebs_record_size) { |
| 1533 | struct pebs_record_nhm *p = at; |
| 1534 | u64 pebs_status; |
| 1535 | |
| 1536 | pebs_status = p->status & cpuc->pebs_enabled; |
| 1537 | pebs_status &= mask; |
| 1538 | |
| 1539 | /* PEBS v3 has more accurate status bits */ |
| 1540 | if (x86_pmu.intel_cap.pebs_format >= 3) { |
| 1541 | for_each_set_bit(bit, (unsigned long *)&pebs_status, |
| 1542 | size) |
| 1543 | counts[bit]++; |
| 1544 | |
| 1545 | continue; |
| 1546 | } |
| 1547 | |
| 1548 | /* |
| 1549 | * On some CPUs the PEBS status can be zero when PEBS is |
| 1550 | * racing with clearing of GLOBAL_STATUS. |
| 1551 | * |
| 1552 | * Normally we would drop that record, but in the |
| 1553 | * case when there is only a single active PEBS event |
| 1554 | * we can assume it's for that event. |
| 1555 | */ |
| 1556 | if (!pebs_status && cpuc->pebs_enabled && |
| 1557 | !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1))) |
| 1558 | pebs_status = cpuc->pebs_enabled; |
| 1559 | |
| 1560 | bit = find_first_bit((unsigned long *)&pebs_status, |
| 1561 | x86_pmu.max_pebs_events); |
| 1562 | if (bit >= x86_pmu.max_pebs_events) |
| 1563 | continue; |
| 1564 | |
| 1565 | /* |
| 1566 | * The PEBS hardware does not deal well with the situation |
| 1567 | * when events happen near to each other and multiple bits |
| 1568 | * are set. But it should happen rarely. |
| 1569 | * |
| 1570 | * If these events include one PEBS and multiple non-PEBS |
| 1571 | * events, it doesn't impact PEBS record. The record will |
| 1572 | * be handled normally. (slow path) |
| 1573 | * |
| 1574 | * If these events include two or more PEBS events, the |
| 1575 | * records for the events can be collapsed into a single |
| 1576 | * one, and it's not possible to reconstruct all events |
| 1577 | * that caused the PEBS record. It's called collision. |
| 1578 | * If collision happened, the record will be dropped. |
| 1579 | */ |
| 1580 | if (p->status != (1ULL << bit)) { |
| 1581 | for_each_set_bit(i, (unsigned long *)&pebs_status, |
| 1582 | x86_pmu.max_pebs_events) |
| 1583 | error[i]++; |
| 1584 | continue; |
| 1585 | } |
| 1586 | |
| 1587 | counts[bit]++; |
| 1588 | } |
| 1589 | |
| 1590 | for (bit = 0; bit < size; bit++) { |
| 1591 | if ((counts[bit] == 0) && (error[bit] == 0)) |
| 1592 | continue; |
| 1593 | |
| 1594 | event = cpuc->events[bit]; |
| 1595 | if (WARN_ON_ONCE(!event)) |
| 1596 | continue; |
| 1597 | |
| 1598 | if (WARN_ON_ONCE(!event->attr.precise_ip)) |
| 1599 | continue; |
| 1600 | |
| 1601 | /* log dropped samples number */ |
| 1602 | if (error[bit]) { |
| 1603 | perf_log_lost_samples(event, error[bit]); |
| 1604 | |
| 1605 | if (perf_event_account_interrupt(event)) |
| 1606 | x86_pmu_stop(event, 0); |
| 1607 | } |
| 1608 | |
| 1609 | if (counts[bit]) { |
| 1610 | __intel_pmu_pebs_event(event, iregs, base, |
| 1611 | top, bit, counts[bit]); |
| 1612 | } |
| 1613 | } |
| 1614 | } |
| 1615 | |
| 1616 | /* |
| 1617 | * BTS, PEBS probe and setup |
| 1618 | */ |
| 1619 | |
| 1620 | void __init intel_ds_init(void) |
| 1621 | { |
| 1622 | /* |
| 1623 | * No support for 32bit formats |
| 1624 | */ |
| 1625 | if (!boot_cpu_has(X86_FEATURE_DTES64)) |
| 1626 | return; |
| 1627 | |
| 1628 | x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS); |
| 1629 | x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS); |
| 1630 | x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE; |
| 1631 | if (x86_pmu.pebs) { |
| 1632 | char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-'; |
| 1633 | int format = x86_pmu.intel_cap.pebs_format; |
| 1634 | |
| 1635 | switch (format) { |
| 1636 | case 0: |
| 1637 | pr_cont("PEBS fmt0%c, ", pebs_type); |
| 1638 | x86_pmu.pebs_record_size = sizeof(struct pebs_record_core); |
| 1639 | /* |
| 1640 | * Using >PAGE_SIZE buffers makes the WRMSR to |
| 1641 | * PERF_GLOBAL_CTRL in intel_pmu_enable_all() |
| 1642 | * mysteriously hang on Core2. |
| 1643 | * |
| 1644 | * As a workaround, we don't do this. |
| 1645 | */ |
| 1646 | x86_pmu.pebs_buffer_size = PAGE_SIZE; |
| 1647 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_core; |
| 1648 | break; |
| 1649 | |
| 1650 | case 1: |
| 1651 | pr_cont("PEBS fmt1%c, ", pebs_type); |
| 1652 | x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm); |
| 1653 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| 1654 | break; |
| 1655 | |
| 1656 | case 2: |
| 1657 | pr_cont("PEBS fmt2%c, ", pebs_type); |
| 1658 | x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw); |
| 1659 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| 1660 | break; |
| 1661 | |
| 1662 | case 3: |
| 1663 | pr_cont("PEBS fmt3%c, ", pebs_type); |
| 1664 | x86_pmu.pebs_record_size = |
| 1665 | sizeof(struct pebs_record_skl); |
| 1666 | x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm; |
| 1667 | x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME; |
| 1668 | break; |
| 1669 | |
| 1670 | default: |
| 1671 | pr_cont("no PEBS fmt%d%c, ", format, pebs_type); |
| 1672 | x86_pmu.pebs = 0; |
| 1673 | } |
| 1674 | } |
| 1675 | } |
| 1676 | |
| 1677 | void perf_restore_debug_store(void) |
| 1678 | { |
| 1679 | struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); |
| 1680 | |
| 1681 | if (!x86_pmu.bts && !x86_pmu.pebs) |
| 1682 | return; |
| 1683 | |
| 1684 | wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds); |
| 1685 | } |