Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * PowerPC version |
| 3 | * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) |
| 4 | * |
| 5 | * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au) |
| 6 | * and Cort Dougan (PReP) (cort@cs.nmt.edu) |
| 7 | * Copyright (C) 1996 Paul Mackerras |
| 8 | * |
| 9 | * Derived from "arch/i386/mm/init.c" |
| 10 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds |
| 11 | * |
| 12 | * Dave Engebretsen <engebret@us.ibm.com> |
| 13 | * Rework for PPC64 port. |
| 14 | * |
| 15 | * This program is free software; you can redistribute it and/or |
| 16 | * modify it under the terms of the GNU General Public License |
| 17 | * as published by the Free Software Foundation; either version |
| 18 | * 2 of the License, or (at your option) any later version. |
| 19 | * |
| 20 | */ |
| 21 | |
| 22 | #undef DEBUG |
| 23 | |
| 24 | #include <linux/signal.h> |
| 25 | #include <linux/sched.h> |
| 26 | #include <linux/kernel.h> |
| 27 | #include <linux/errno.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/types.h> |
| 30 | #include <linux/mman.h> |
| 31 | #include <linux/mm.h> |
| 32 | #include <linux/swap.h> |
| 33 | #include <linux/stddef.h> |
| 34 | #include <linux/vmalloc.h> |
| 35 | #include <linux/init.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/highmem.h> |
| 38 | #include <linux/idr.h> |
| 39 | #include <linux/nodemask.h> |
| 40 | #include <linux/module.h> |
| 41 | #include <linux/poison.h> |
| 42 | #include <linux/memblock.h> |
| 43 | #include <linux/hugetlb.h> |
| 44 | #include <linux/slab.h> |
| 45 | #include <linux/of_fdt.h> |
| 46 | #include <linux/libfdt.h> |
| 47 | #include <linux/memremap.h> |
| 48 | |
| 49 | #include <asm/pgalloc.h> |
| 50 | #include <asm/page.h> |
| 51 | #include <asm/prom.h> |
| 52 | #include <asm/rtas.h> |
| 53 | #include <asm/io.h> |
| 54 | #include <asm/mmu_context.h> |
| 55 | #include <asm/pgtable.h> |
| 56 | #include <asm/mmu.h> |
| 57 | #include <linux/uaccess.h> |
| 58 | #include <asm/smp.h> |
| 59 | #include <asm/machdep.h> |
| 60 | #include <asm/tlb.h> |
| 61 | #include <asm/eeh.h> |
| 62 | #include <asm/processor.h> |
| 63 | #include <asm/mmzone.h> |
| 64 | #include <asm/cputable.h> |
| 65 | #include <asm/sections.h> |
| 66 | #include <asm/iommu.h> |
| 67 | #include <asm/vdso.h> |
| 68 | |
| 69 | #include "mmu_decl.h" |
| 70 | |
| 71 | phys_addr_t memstart_addr = ~0; |
| 72 | EXPORT_SYMBOL_GPL(memstart_addr); |
| 73 | phys_addr_t kernstart_addr; |
| 74 | EXPORT_SYMBOL_GPL(kernstart_addr); |
| 75 | |
| 76 | #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| 77 | /* |
| 78 | * Given an address within the vmemmap, determine the pfn of the page that |
| 79 | * represents the start of the section it is within. Note that we have to |
| 80 | * do this by hand as the proffered address may not be correctly aligned. |
| 81 | * Subtraction of non-aligned pointers produces undefined results. |
| 82 | */ |
| 83 | static unsigned long __meminit vmemmap_section_start(unsigned long page) |
| 84 | { |
| 85 | unsigned long offset = page - ((unsigned long)(vmemmap)); |
| 86 | |
| 87 | /* Return the pfn of the start of the section. */ |
| 88 | return (offset / sizeof(struct page)) & PAGE_SECTION_MASK; |
| 89 | } |
| 90 | |
| 91 | /* |
| 92 | * Check if this vmemmap page is already initialised. If any section |
| 93 | * which overlaps this vmemmap page is initialised then this page is |
| 94 | * initialised already. |
| 95 | */ |
| 96 | static int __meminit vmemmap_populated(unsigned long start, int page_size) |
| 97 | { |
| 98 | unsigned long end = start + page_size; |
| 99 | start = (unsigned long)(pfn_to_page(vmemmap_section_start(start))); |
| 100 | |
| 101 | for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page))) |
| 102 | if (pfn_valid(page_to_pfn((struct page *)start))) |
| 103 | return 1; |
| 104 | |
| 105 | return 0; |
| 106 | } |
| 107 | |
| 108 | /* |
| 109 | * vmemmap virtual address space management does not have a traditonal page |
| 110 | * table to track which virtual struct pages are backed by physical mapping. |
| 111 | * The virtual to physical mappings are tracked in a simple linked list |
| 112 | * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at |
| 113 | * all times where as the 'next' list maintains the available |
| 114 | * vmemmap_backing structures which have been deleted from the |
| 115 | * 'vmemmap_global' list during system runtime (memory hotplug remove |
| 116 | * operation). The freed 'vmemmap_backing' structures are reused later when |
| 117 | * new requests come in without allocating fresh memory. This pointer also |
| 118 | * tracks the allocated 'vmemmap_backing' structures as we allocate one |
| 119 | * full page memory at a time when we dont have any. |
| 120 | */ |
| 121 | struct vmemmap_backing *vmemmap_list; |
| 122 | static struct vmemmap_backing *next; |
| 123 | |
| 124 | /* |
| 125 | * The same pointer 'next' tracks individual chunks inside the allocated |
| 126 | * full page during the boot time and again tracks the freeed nodes during |
| 127 | * runtime. It is racy but it does not happen as they are separated by the |
| 128 | * boot process. Will create problem if some how we have memory hotplug |
| 129 | * operation during boot !! |
| 130 | */ |
| 131 | static int num_left; |
| 132 | static int num_freed; |
| 133 | |
| 134 | static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node) |
| 135 | { |
| 136 | struct vmemmap_backing *vmem_back; |
| 137 | /* get from freed entries first */ |
| 138 | if (num_freed) { |
| 139 | num_freed--; |
| 140 | vmem_back = next; |
| 141 | next = next->list; |
| 142 | |
| 143 | return vmem_back; |
| 144 | } |
| 145 | |
| 146 | /* allocate a page when required and hand out chunks */ |
| 147 | if (!num_left) { |
| 148 | next = vmemmap_alloc_block(PAGE_SIZE, node); |
| 149 | if (unlikely(!next)) { |
| 150 | WARN_ON(1); |
| 151 | return NULL; |
| 152 | } |
| 153 | num_left = PAGE_SIZE / sizeof(struct vmemmap_backing); |
| 154 | } |
| 155 | |
| 156 | num_left--; |
| 157 | |
| 158 | return next++; |
| 159 | } |
| 160 | |
| 161 | static __meminit void vmemmap_list_populate(unsigned long phys, |
| 162 | unsigned long start, |
| 163 | int node) |
| 164 | { |
| 165 | struct vmemmap_backing *vmem_back; |
| 166 | |
| 167 | vmem_back = vmemmap_list_alloc(node); |
| 168 | if (unlikely(!vmem_back)) { |
| 169 | WARN_ON(1); |
| 170 | return; |
| 171 | } |
| 172 | |
| 173 | vmem_back->phys = phys; |
| 174 | vmem_back->virt_addr = start; |
| 175 | vmem_back->list = vmemmap_list; |
| 176 | |
| 177 | vmemmap_list = vmem_back; |
| 178 | } |
| 179 | |
| 180 | int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node, |
| 181 | struct vmem_altmap *altmap) |
| 182 | { |
| 183 | unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; |
| 184 | |
| 185 | /* Align to the page size of the linear mapping. */ |
| 186 | start = _ALIGN_DOWN(start, page_size); |
| 187 | |
| 188 | pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node); |
| 189 | |
| 190 | for (; start < end; start += page_size) { |
| 191 | void *p; |
| 192 | int rc; |
| 193 | |
| 194 | if (vmemmap_populated(start, page_size)) |
| 195 | continue; |
| 196 | |
| 197 | if (altmap) |
| 198 | p = altmap_alloc_block_buf(page_size, altmap); |
| 199 | else |
| 200 | p = vmemmap_alloc_block_buf(page_size, node); |
| 201 | if (!p) |
| 202 | return -ENOMEM; |
| 203 | |
| 204 | vmemmap_list_populate(__pa(p), start, node); |
| 205 | |
| 206 | pr_debug(" * %016lx..%016lx allocated at %p\n", |
| 207 | start, start + page_size, p); |
| 208 | |
| 209 | rc = vmemmap_create_mapping(start, page_size, __pa(p)); |
| 210 | if (rc < 0) { |
| 211 | pr_warn("%s: Unable to create vmemmap mapping: %d\n", |
| 212 | __func__, rc); |
| 213 | return -EFAULT; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | return 0; |
| 218 | } |
| 219 | |
| 220 | #ifdef CONFIG_MEMORY_HOTPLUG |
| 221 | static unsigned long vmemmap_list_free(unsigned long start) |
| 222 | { |
| 223 | struct vmemmap_backing *vmem_back, *vmem_back_prev; |
| 224 | |
| 225 | vmem_back_prev = vmem_back = vmemmap_list; |
| 226 | |
| 227 | /* look for it with prev pointer recorded */ |
| 228 | for (; vmem_back; vmem_back = vmem_back->list) { |
| 229 | if (vmem_back->virt_addr == start) |
| 230 | break; |
| 231 | vmem_back_prev = vmem_back; |
| 232 | } |
| 233 | |
| 234 | if (unlikely(!vmem_back)) { |
| 235 | WARN_ON(1); |
| 236 | return 0; |
| 237 | } |
| 238 | |
| 239 | /* remove it from vmemmap_list */ |
| 240 | if (vmem_back == vmemmap_list) /* remove head */ |
| 241 | vmemmap_list = vmem_back->list; |
| 242 | else |
| 243 | vmem_back_prev->list = vmem_back->list; |
| 244 | |
| 245 | /* next point to this freed entry */ |
| 246 | vmem_back->list = next; |
| 247 | next = vmem_back; |
| 248 | num_freed++; |
| 249 | |
| 250 | return vmem_back->phys; |
| 251 | } |
| 252 | |
| 253 | void __ref vmemmap_free(unsigned long start, unsigned long end, |
| 254 | struct vmem_altmap *altmap) |
| 255 | { |
| 256 | unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift; |
| 257 | unsigned long page_order = get_order(page_size); |
| 258 | |
| 259 | start = _ALIGN_DOWN(start, page_size); |
| 260 | |
| 261 | pr_debug("vmemmap_free %lx...%lx\n", start, end); |
| 262 | |
| 263 | for (; start < end; start += page_size) { |
| 264 | unsigned long nr_pages, addr; |
| 265 | struct page *section_base; |
| 266 | struct page *page; |
| 267 | |
| 268 | /* |
| 269 | * the section has already be marked as invalid, so |
| 270 | * vmemmap_populated() true means some other sections still |
| 271 | * in this page, so skip it. |
| 272 | */ |
| 273 | if (vmemmap_populated(start, page_size)) |
| 274 | continue; |
| 275 | |
| 276 | addr = vmemmap_list_free(start); |
| 277 | if (!addr) |
| 278 | continue; |
| 279 | |
| 280 | page = pfn_to_page(addr >> PAGE_SHIFT); |
| 281 | section_base = pfn_to_page(vmemmap_section_start(start)); |
| 282 | nr_pages = 1 << page_order; |
| 283 | |
| 284 | if (altmap) { |
| 285 | vmem_altmap_free(altmap, nr_pages); |
| 286 | } else if (PageReserved(page)) { |
| 287 | /* allocated from bootmem */ |
| 288 | if (page_size < PAGE_SIZE) { |
| 289 | /* |
| 290 | * this shouldn't happen, but if it is |
| 291 | * the case, leave the memory there |
| 292 | */ |
| 293 | WARN_ON_ONCE(1); |
| 294 | } else { |
| 295 | while (nr_pages--) |
| 296 | free_reserved_page(page++); |
| 297 | } |
| 298 | } else { |
| 299 | free_pages((unsigned long)(__va(addr)), page_order); |
| 300 | } |
| 301 | |
| 302 | vmemmap_remove_mapping(start, page_size); |
| 303 | } |
| 304 | } |
| 305 | #endif |
| 306 | void register_page_bootmem_memmap(unsigned long section_nr, |
| 307 | struct page *start_page, unsigned long size) |
| 308 | { |
| 309 | } |
| 310 | |
| 311 | #endif /* CONFIG_SPARSEMEM_VMEMMAP */ |
| 312 | |
| 313 | #ifdef CONFIG_PPC_BOOK3S_64 |
| 314 | static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); |
| 315 | |
| 316 | static int __init parse_disable_radix(char *p) |
| 317 | { |
| 318 | bool val; |
| 319 | |
| 320 | if (!p) |
| 321 | val = true; |
| 322 | else if (kstrtobool(p, &val)) |
| 323 | return -EINVAL; |
| 324 | |
| 325 | disable_radix = val; |
| 326 | |
| 327 | return 0; |
| 328 | } |
| 329 | early_param("disable_radix", parse_disable_radix); |
| 330 | |
| 331 | /* |
| 332 | * If we're running under a hypervisor, we need to check the contents of |
| 333 | * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do |
| 334 | * radix. If not, we clear the radix feature bit so we fall back to hash. |
| 335 | */ |
| 336 | static void __init early_check_vec5(void) |
| 337 | { |
| 338 | unsigned long root, chosen; |
| 339 | int size; |
| 340 | const u8 *vec5; |
| 341 | u8 mmu_supported; |
| 342 | |
| 343 | root = of_get_flat_dt_root(); |
| 344 | chosen = of_get_flat_dt_subnode_by_name(root, "chosen"); |
| 345 | if (chosen == -FDT_ERR_NOTFOUND) { |
| 346 | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| 347 | return; |
| 348 | } |
| 349 | vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size); |
| 350 | if (!vec5) { |
| 351 | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| 352 | return; |
| 353 | } |
| 354 | if (size <= OV5_INDX(OV5_MMU_SUPPORT)) { |
| 355 | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| 356 | return; |
| 357 | } |
| 358 | |
| 359 | /* Check for supported configuration */ |
| 360 | mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] & |
| 361 | OV5_FEAT(OV5_MMU_SUPPORT); |
| 362 | if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) { |
| 363 | /* Hypervisor only supports radix - check enabled && GTSE */ |
| 364 | if (!early_radix_enabled()) { |
| 365 | pr_warn("WARNING: Ignoring cmdline option disable_radix\n"); |
| 366 | } |
| 367 | if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] & |
| 368 | OV5_FEAT(OV5_RADIX_GTSE))) { |
| 369 | pr_warn("WARNING: Hypervisor doesn't support RADIX with GTSE\n"); |
| 370 | } |
| 371 | /* Do radix anyway - the hypervisor said we had to */ |
| 372 | cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX; |
| 373 | } else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) { |
| 374 | /* Hypervisor only supports hash - disable radix */ |
| 375 | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | void __init mmu_early_init_devtree(void) |
| 380 | { |
| 381 | /* Disable radix mode based on kernel command line. */ |
| 382 | if (disable_radix) |
| 383 | cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX; |
| 384 | |
| 385 | /* |
| 386 | * Check /chosen/ibm,architecture-vec-5 if running as a guest. |
| 387 | * When running bare-metal, we can use radix if we like |
| 388 | * even though the ibm,architecture-vec-5 property created by |
| 389 | * skiboot doesn't have the necessary bits set. |
| 390 | */ |
| 391 | if (!(mfmsr() & MSR_HV)) |
| 392 | early_check_vec5(); |
| 393 | |
| 394 | if (early_radix_enabled()) |
| 395 | radix__early_init_devtree(); |
| 396 | else |
| 397 | hash__early_init_devtree(); |
| 398 | } |
| 399 | #endif /* CONFIG_PPC_BOOK3S_64 */ |