Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This program is free software; you can redistribute it and/or |
| 3 | * modify it under the terms of the GNU General Public License |
| 4 | * as published by the Free Software Foundation; either version 2 |
| 5 | * of the License, or (at your option) any later version. |
| 6 | * |
| 7 | * This program is distributed in the hope that it will be useful, |
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 10 | * GNU General Public License for more details. |
| 11 | * |
| 12 | * You should have received a copy of the GNU General Public License |
| 13 | * along with this program; if not, write to the Free Software |
| 14 | * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| 15 | * |
| 16 | * Copyright (C) 2000, 2001 Kanoj Sarcar |
| 17 | * Copyright (C) 2000, 2001 Ralf Baechle |
| 18 | * Copyright (C) 2000, 2001 Silicon Graphics, Inc. |
| 19 | * Copyright (C) 2000, 2001, 2003 Broadcom Corporation |
| 20 | */ |
| 21 | #include <linux/cache.h> |
| 22 | #include <linux/delay.h> |
| 23 | #include <linux/init.h> |
| 24 | #include <linux/interrupt.h> |
| 25 | #include <linux/smp.h> |
| 26 | #include <linux/spinlock.h> |
| 27 | #include <linux/threads.h> |
| 28 | #include <linux/export.h> |
| 29 | #include <linux/time.h> |
| 30 | #include <linux/timex.h> |
| 31 | #include <linux/sched/mm.h> |
| 32 | #include <linux/cpumask.h> |
| 33 | #include <linux/cpu.h> |
| 34 | #include <linux/err.h> |
| 35 | #include <linux/ftrace.h> |
| 36 | #include <linux/irqdomain.h> |
| 37 | #include <linux/of.h> |
| 38 | #include <linux/of_irq.h> |
| 39 | |
| 40 | #include <linux/atomic.h> |
| 41 | #include <asm/cpu.h> |
| 42 | #include <asm/processor.h> |
| 43 | #include <asm/idle.h> |
| 44 | #include <asm/r4k-timer.h> |
| 45 | #include <asm/mips-cps.h> |
| 46 | #include <asm/mmu_context.h> |
| 47 | #include <asm/time.h> |
| 48 | #include <asm/setup.h> |
| 49 | #include <asm/maar.h> |
| 50 | |
| 51 | int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */ |
| 52 | EXPORT_SYMBOL(__cpu_number_map); |
| 53 | |
| 54 | int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ |
| 55 | EXPORT_SYMBOL(__cpu_logical_map); |
| 56 | |
| 57 | /* Number of TCs (or siblings in Intel speak) per CPU core */ |
| 58 | int smp_num_siblings = 1; |
| 59 | EXPORT_SYMBOL(smp_num_siblings); |
| 60 | |
| 61 | /* representing the TCs (or siblings in Intel speak) of each logical CPU */ |
| 62 | cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; |
| 63 | EXPORT_SYMBOL(cpu_sibling_map); |
| 64 | |
| 65 | /* representing the core map of multi-core chips of each logical CPU */ |
| 66 | cpumask_t cpu_core_map[NR_CPUS] __read_mostly; |
| 67 | EXPORT_SYMBOL(cpu_core_map); |
| 68 | |
| 69 | static DECLARE_COMPLETION(cpu_starting); |
| 70 | static DECLARE_COMPLETION(cpu_running); |
| 71 | |
| 72 | /* |
| 73 | * A logcal cpu mask containing only one VPE per core to |
| 74 | * reduce the number of IPIs on large MT systems. |
| 75 | */ |
| 76 | cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly; |
| 77 | EXPORT_SYMBOL(cpu_foreign_map); |
| 78 | |
| 79 | /* representing cpus for which sibling maps can be computed */ |
| 80 | static cpumask_t cpu_sibling_setup_map; |
| 81 | |
| 82 | /* representing cpus for which core maps can be computed */ |
| 83 | static cpumask_t cpu_core_setup_map; |
| 84 | |
| 85 | cpumask_t cpu_coherent_mask; |
| 86 | |
| 87 | #ifdef CONFIG_GENERIC_IRQ_IPI |
| 88 | static struct irq_desc *call_desc; |
| 89 | static struct irq_desc *sched_desc; |
| 90 | #endif |
| 91 | |
| 92 | static inline void set_cpu_sibling_map(int cpu) |
| 93 | { |
| 94 | int i; |
| 95 | |
| 96 | cpumask_set_cpu(cpu, &cpu_sibling_setup_map); |
| 97 | |
| 98 | if (smp_num_siblings > 1) { |
| 99 | for_each_cpu(i, &cpu_sibling_setup_map) { |
| 100 | if (cpus_are_siblings(cpu, i)) { |
| 101 | cpumask_set_cpu(i, &cpu_sibling_map[cpu]); |
| 102 | cpumask_set_cpu(cpu, &cpu_sibling_map[i]); |
| 103 | } |
| 104 | } |
| 105 | } else |
| 106 | cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]); |
| 107 | } |
| 108 | |
| 109 | static inline void set_cpu_core_map(int cpu) |
| 110 | { |
| 111 | int i; |
| 112 | |
| 113 | cpumask_set_cpu(cpu, &cpu_core_setup_map); |
| 114 | |
| 115 | for_each_cpu(i, &cpu_core_setup_map) { |
| 116 | if (cpu_data[cpu].package == cpu_data[i].package) { |
| 117 | cpumask_set_cpu(i, &cpu_core_map[cpu]); |
| 118 | cpumask_set_cpu(cpu, &cpu_core_map[i]); |
| 119 | } |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | * Calculate a new cpu_foreign_map mask whenever a |
| 125 | * new cpu appears or disappears. |
| 126 | */ |
| 127 | void calculate_cpu_foreign_map(void) |
| 128 | { |
| 129 | int i, k, core_present; |
| 130 | cpumask_t temp_foreign_map; |
| 131 | |
| 132 | /* Re-calculate the mask */ |
| 133 | cpumask_clear(&temp_foreign_map); |
| 134 | for_each_online_cpu(i) { |
| 135 | core_present = 0; |
| 136 | for_each_cpu(k, &temp_foreign_map) |
| 137 | if (cpus_are_siblings(i, k)) |
| 138 | core_present = 1; |
| 139 | if (!core_present) |
| 140 | cpumask_set_cpu(i, &temp_foreign_map); |
| 141 | } |
| 142 | |
| 143 | for_each_online_cpu(i) |
| 144 | cpumask_andnot(&cpu_foreign_map[i], |
| 145 | &temp_foreign_map, &cpu_sibling_map[i]); |
| 146 | } |
| 147 | |
| 148 | const struct plat_smp_ops *mp_ops; |
| 149 | EXPORT_SYMBOL(mp_ops); |
| 150 | |
| 151 | void register_smp_ops(const struct plat_smp_ops *ops) |
| 152 | { |
| 153 | if (mp_ops) |
| 154 | printk(KERN_WARNING "Overriding previously set SMP ops\n"); |
| 155 | |
| 156 | mp_ops = ops; |
| 157 | } |
| 158 | |
| 159 | #ifdef CONFIG_GENERIC_IRQ_IPI |
| 160 | void mips_smp_send_ipi_single(int cpu, unsigned int action) |
| 161 | { |
| 162 | mips_smp_send_ipi_mask(cpumask_of(cpu), action); |
| 163 | } |
| 164 | |
| 165 | void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action) |
| 166 | { |
| 167 | unsigned long flags; |
| 168 | unsigned int core; |
| 169 | int cpu; |
| 170 | |
| 171 | local_irq_save(flags); |
| 172 | |
| 173 | switch (action) { |
| 174 | case SMP_CALL_FUNCTION: |
| 175 | __ipi_send_mask(call_desc, mask); |
| 176 | break; |
| 177 | |
| 178 | case SMP_RESCHEDULE_YOURSELF: |
| 179 | __ipi_send_mask(sched_desc, mask); |
| 180 | break; |
| 181 | |
| 182 | default: |
| 183 | BUG(); |
| 184 | } |
| 185 | |
| 186 | if (mips_cpc_present()) { |
| 187 | for_each_cpu(cpu, mask) { |
| 188 | if (cpus_are_siblings(cpu, smp_processor_id())) |
| 189 | continue; |
| 190 | |
| 191 | core = cpu_core(&cpu_data[cpu]); |
| 192 | |
| 193 | while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) { |
| 194 | mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL); |
| 195 | mips_cpc_lock_other(core); |
| 196 | write_cpc_co_cmd(CPC_Cx_CMD_PWRUP); |
| 197 | mips_cpc_unlock_other(); |
| 198 | mips_cm_unlock_other(); |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | |
| 203 | local_irq_restore(flags); |
| 204 | } |
| 205 | |
| 206 | |
| 207 | static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id) |
| 208 | { |
| 209 | scheduler_ipi(); |
| 210 | |
| 211 | return IRQ_HANDLED; |
| 212 | } |
| 213 | |
| 214 | static irqreturn_t ipi_call_interrupt(int irq, void *dev_id) |
| 215 | { |
| 216 | generic_smp_call_function_interrupt(); |
| 217 | |
| 218 | return IRQ_HANDLED; |
| 219 | } |
| 220 | |
| 221 | static struct irqaction irq_resched = { |
| 222 | .handler = ipi_resched_interrupt, |
| 223 | .flags = IRQF_PERCPU, |
| 224 | .name = "IPI resched" |
| 225 | }; |
| 226 | |
| 227 | static struct irqaction irq_call = { |
| 228 | .handler = ipi_call_interrupt, |
| 229 | .flags = IRQF_PERCPU, |
| 230 | .name = "IPI call" |
| 231 | }; |
| 232 | |
| 233 | static void smp_ipi_init_one(unsigned int virq, |
| 234 | struct irqaction *action) |
| 235 | { |
| 236 | int ret; |
| 237 | |
| 238 | irq_set_handler(virq, handle_percpu_irq); |
| 239 | ret = setup_irq(virq, action); |
| 240 | BUG_ON(ret); |
| 241 | } |
| 242 | |
| 243 | static unsigned int call_virq, sched_virq; |
| 244 | |
| 245 | int mips_smp_ipi_allocate(const struct cpumask *mask) |
| 246 | { |
| 247 | int virq; |
| 248 | struct irq_domain *ipidomain; |
| 249 | struct device_node *node; |
| 250 | |
| 251 | node = of_irq_find_parent(of_root); |
| 252 | ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); |
| 253 | |
| 254 | /* |
| 255 | * Some platforms have half DT setup. So if we found irq node but |
| 256 | * didn't find an ipidomain, try to search for one that is not in the |
| 257 | * DT. |
| 258 | */ |
| 259 | if (node && !ipidomain) |
| 260 | ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); |
| 261 | |
| 262 | /* |
| 263 | * There are systems which use IPI IRQ domains, but only have one |
| 264 | * registered when some runtime condition is met. For example a Malta |
| 265 | * kernel may include support for GIC & CPU interrupt controller IPI |
| 266 | * IRQ domains, but if run on a system with no GIC & no MT ASE then |
| 267 | * neither will be supported or registered. |
| 268 | * |
| 269 | * We only have a problem if we're actually using multiple CPUs so fail |
| 270 | * loudly if that is the case. Otherwise simply return, skipping IPI |
| 271 | * setup, if we're running with only a single CPU. |
| 272 | */ |
| 273 | if (!ipidomain) { |
| 274 | BUG_ON(num_present_cpus() > 1); |
| 275 | return 0; |
| 276 | } |
| 277 | |
| 278 | virq = irq_reserve_ipi(ipidomain, mask); |
| 279 | BUG_ON(!virq); |
| 280 | if (!call_virq) |
| 281 | call_virq = virq; |
| 282 | |
| 283 | virq = irq_reserve_ipi(ipidomain, mask); |
| 284 | BUG_ON(!virq); |
| 285 | if (!sched_virq) |
| 286 | sched_virq = virq; |
| 287 | |
| 288 | if (irq_domain_is_ipi_per_cpu(ipidomain)) { |
| 289 | int cpu; |
| 290 | |
| 291 | for_each_cpu(cpu, mask) { |
| 292 | smp_ipi_init_one(call_virq + cpu, &irq_call); |
| 293 | smp_ipi_init_one(sched_virq + cpu, &irq_resched); |
| 294 | } |
| 295 | } else { |
| 296 | smp_ipi_init_one(call_virq, &irq_call); |
| 297 | smp_ipi_init_one(sched_virq, &irq_resched); |
| 298 | } |
| 299 | |
| 300 | return 0; |
| 301 | } |
| 302 | |
| 303 | int mips_smp_ipi_free(const struct cpumask *mask) |
| 304 | { |
| 305 | struct irq_domain *ipidomain; |
| 306 | struct device_node *node; |
| 307 | |
| 308 | node = of_irq_find_parent(of_root); |
| 309 | ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI); |
| 310 | |
| 311 | /* |
| 312 | * Some platforms have half DT setup. So if we found irq node but |
| 313 | * didn't find an ipidomain, try to search for one that is not in the |
| 314 | * DT. |
| 315 | */ |
| 316 | if (node && !ipidomain) |
| 317 | ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI); |
| 318 | |
| 319 | BUG_ON(!ipidomain); |
| 320 | |
| 321 | if (irq_domain_is_ipi_per_cpu(ipidomain)) { |
| 322 | int cpu; |
| 323 | |
| 324 | for_each_cpu(cpu, mask) { |
| 325 | remove_irq(call_virq + cpu, &irq_call); |
| 326 | remove_irq(sched_virq + cpu, &irq_resched); |
| 327 | } |
| 328 | } |
| 329 | irq_destroy_ipi(call_virq, mask); |
| 330 | irq_destroy_ipi(sched_virq, mask); |
| 331 | return 0; |
| 332 | } |
| 333 | |
| 334 | |
| 335 | static int __init mips_smp_ipi_init(void) |
| 336 | { |
| 337 | if (num_possible_cpus() == 1) |
| 338 | return 0; |
| 339 | |
| 340 | mips_smp_ipi_allocate(cpu_possible_mask); |
| 341 | |
| 342 | call_desc = irq_to_desc(call_virq); |
| 343 | sched_desc = irq_to_desc(sched_virq); |
| 344 | |
| 345 | return 0; |
| 346 | } |
| 347 | early_initcall(mips_smp_ipi_init); |
| 348 | #endif |
| 349 | |
| 350 | /* |
| 351 | * First C code run on the secondary CPUs after being started up by |
| 352 | * the master. |
| 353 | */ |
| 354 | asmlinkage void start_secondary(void) |
| 355 | { |
| 356 | unsigned int cpu; |
| 357 | |
| 358 | cpu_probe(); |
| 359 | per_cpu_trap_init(false); |
| 360 | mips_clockevent_init(); |
| 361 | mp_ops->init_secondary(); |
| 362 | cpu_report(); |
| 363 | maar_init(); |
| 364 | |
| 365 | /* |
| 366 | * XXX parity protection should be folded in here when it's converted |
| 367 | * to an option instead of something based on .cputype |
| 368 | */ |
| 369 | |
| 370 | calibrate_delay(); |
| 371 | preempt_disable(); |
| 372 | cpu = smp_processor_id(); |
| 373 | cpu_data[cpu].udelay_val = loops_per_jiffy; |
| 374 | |
| 375 | cpumask_set_cpu(cpu, &cpu_coherent_mask); |
| 376 | notify_cpu_starting(cpu); |
| 377 | |
| 378 | /* Notify boot CPU that we're starting & ready to sync counters */ |
| 379 | complete(&cpu_starting); |
| 380 | |
| 381 | synchronise_count_slave(cpu); |
| 382 | |
| 383 | /* The CPU is running and counters synchronised, now mark it online */ |
| 384 | set_cpu_online(cpu, true); |
| 385 | |
| 386 | set_cpu_sibling_map(cpu); |
| 387 | set_cpu_core_map(cpu); |
| 388 | |
| 389 | calculate_cpu_foreign_map(); |
| 390 | |
| 391 | /* |
| 392 | * Notify boot CPU that we're up & online and it can safely return |
| 393 | * from __cpu_up |
| 394 | */ |
| 395 | complete(&cpu_running); |
| 396 | |
| 397 | /* |
| 398 | * irq will be enabled in ->smp_finish(), enabling it too early |
| 399 | * is dangerous. |
| 400 | */ |
| 401 | WARN_ON_ONCE(!irqs_disabled()); |
| 402 | mp_ops->smp_finish(); |
| 403 | |
| 404 | cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| 405 | } |
| 406 | |
| 407 | static void stop_this_cpu(void *dummy) |
| 408 | { |
| 409 | /* |
| 410 | * Remove this CPU: |
| 411 | */ |
| 412 | |
| 413 | set_cpu_online(smp_processor_id(), false); |
| 414 | calculate_cpu_foreign_map(); |
| 415 | local_irq_disable(); |
| 416 | while (1); |
| 417 | } |
| 418 | |
| 419 | void smp_send_stop(void) |
| 420 | { |
| 421 | smp_call_function(stop_this_cpu, NULL, 0); |
| 422 | } |
| 423 | |
| 424 | void __init smp_cpus_done(unsigned int max_cpus) |
| 425 | { |
| 426 | } |
| 427 | |
| 428 | /* called from main before smp_init() */ |
| 429 | void __init smp_prepare_cpus(unsigned int max_cpus) |
| 430 | { |
| 431 | init_new_context(current, &init_mm); |
| 432 | current_thread_info()->cpu = 0; |
| 433 | mp_ops->prepare_cpus(max_cpus); |
| 434 | set_cpu_sibling_map(0); |
| 435 | set_cpu_core_map(0); |
| 436 | calculate_cpu_foreign_map(); |
| 437 | #ifndef CONFIG_HOTPLUG_CPU |
| 438 | init_cpu_present(cpu_possible_mask); |
| 439 | #endif |
| 440 | cpumask_copy(&cpu_coherent_mask, cpu_possible_mask); |
| 441 | } |
| 442 | |
| 443 | /* preload SMP state for boot cpu */ |
| 444 | void smp_prepare_boot_cpu(void) |
| 445 | { |
| 446 | set_cpu_possible(0, true); |
| 447 | set_cpu_online(0, true); |
| 448 | } |
| 449 | |
| 450 | int __cpu_up(unsigned int cpu, struct task_struct *tidle) |
| 451 | { |
| 452 | int err; |
| 453 | |
| 454 | err = mp_ops->boot_secondary(cpu, tidle); |
| 455 | if (err) |
| 456 | return err; |
| 457 | |
| 458 | /* Wait for CPU to start and be ready to sync counters */ |
| 459 | if (!wait_for_completion_timeout(&cpu_starting, |
| 460 | msecs_to_jiffies(1000))) { |
| 461 | pr_crit("CPU%u: failed to start\n", cpu); |
| 462 | return -EIO; |
| 463 | } |
| 464 | |
| 465 | synchronise_count_master(cpu); |
| 466 | |
| 467 | /* Wait for CPU to finish startup & mark itself online before return */ |
| 468 | wait_for_completion(&cpu_running); |
| 469 | return 0; |
| 470 | } |
| 471 | |
| 472 | /* Not really SMP stuff ... */ |
| 473 | int setup_profiling_timer(unsigned int multiplier) |
| 474 | { |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | static void flush_tlb_all_ipi(void *info) |
| 479 | { |
| 480 | local_flush_tlb_all(); |
| 481 | } |
| 482 | |
| 483 | void flush_tlb_all(void) |
| 484 | { |
| 485 | on_each_cpu(flush_tlb_all_ipi, NULL, 1); |
| 486 | } |
| 487 | |
| 488 | static void flush_tlb_mm_ipi(void *mm) |
| 489 | { |
| 490 | local_flush_tlb_mm((struct mm_struct *)mm); |
| 491 | } |
| 492 | |
| 493 | /* |
| 494 | * Special Variant of smp_call_function for use by TLB functions: |
| 495 | * |
| 496 | * o No return value |
| 497 | * o collapses to normal function call on UP kernels |
| 498 | * o collapses to normal function call on systems with a single shared |
| 499 | * primary cache. |
| 500 | */ |
| 501 | static inline void smp_on_other_tlbs(void (*func) (void *info), void *info) |
| 502 | { |
| 503 | smp_call_function(func, info, 1); |
| 504 | } |
| 505 | |
| 506 | static inline void smp_on_each_tlb(void (*func) (void *info), void *info) |
| 507 | { |
| 508 | preempt_disable(); |
| 509 | |
| 510 | smp_on_other_tlbs(func, info); |
| 511 | func(info); |
| 512 | |
| 513 | preempt_enable(); |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * The following tlb flush calls are invoked when old translations are |
| 518 | * being torn down, or pte attributes are changing. For single threaded |
| 519 | * address spaces, a new context is obtained on the current cpu, and tlb |
| 520 | * context on other cpus are invalidated to force a new context allocation |
| 521 | * at switch_mm time, should the mm ever be used on other cpus. For |
| 522 | * multithreaded address spaces, intercpu interrupts have to be sent. |
| 523 | * Another case where intercpu interrupts are required is when the target |
| 524 | * mm might be active on another cpu (eg debuggers doing the flushes on |
| 525 | * behalf of debugees, kswapd stealing pages from another process etc). |
| 526 | * Kanoj 07/00. |
| 527 | */ |
| 528 | |
| 529 | void flush_tlb_mm(struct mm_struct *mm) |
| 530 | { |
| 531 | preempt_disable(); |
| 532 | |
| 533 | if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { |
| 534 | smp_on_other_tlbs(flush_tlb_mm_ipi, mm); |
| 535 | } else { |
| 536 | unsigned int cpu; |
| 537 | |
| 538 | for_each_online_cpu(cpu) { |
| 539 | if (cpu != smp_processor_id() && cpu_context(cpu, mm)) |
| 540 | cpu_context(cpu, mm) = 0; |
| 541 | } |
| 542 | } |
| 543 | local_flush_tlb_mm(mm); |
| 544 | |
| 545 | preempt_enable(); |
| 546 | } |
| 547 | |
| 548 | struct flush_tlb_data { |
| 549 | struct vm_area_struct *vma; |
| 550 | unsigned long addr1; |
| 551 | unsigned long addr2; |
| 552 | }; |
| 553 | |
| 554 | static void flush_tlb_range_ipi(void *info) |
| 555 | { |
| 556 | struct flush_tlb_data *fd = info; |
| 557 | |
| 558 | local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); |
| 559 | } |
| 560 | |
| 561 | void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) |
| 562 | { |
| 563 | struct mm_struct *mm = vma->vm_mm; |
| 564 | |
| 565 | preempt_disable(); |
| 566 | if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { |
| 567 | struct flush_tlb_data fd = { |
| 568 | .vma = vma, |
| 569 | .addr1 = start, |
| 570 | .addr2 = end, |
| 571 | }; |
| 572 | |
| 573 | smp_on_other_tlbs(flush_tlb_range_ipi, &fd); |
| 574 | } else { |
| 575 | unsigned int cpu; |
| 576 | int exec = vma->vm_flags & VM_EXEC; |
| 577 | |
| 578 | for_each_online_cpu(cpu) { |
| 579 | /* |
| 580 | * flush_cache_range() will only fully flush icache if |
| 581 | * the VMA is executable, otherwise we must invalidate |
| 582 | * ASID without it appearing to has_valid_asid() as if |
| 583 | * mm has been completely unused by that CPU. |
| 584 | */ |
| 585 | if (cpu != smp_processor_id() && cpu_context(cpu, mm)) |
| 586 | cpu_context(cpu, mm) = !exec; |
| 587 | } |
| 588 | } |
| 589 | local_flush_tlb_range(vma, start, end); |
| 590 | preempt_enable(); |
| 591 | } |
| 592 | |
| 593 | static void flush_tlb_kernel_range_ipi(void *info) |
| 594 | { |
| 595 | struct flush_tlb_data *fd = info; |
| 596 | |
| 597 | local_flush_tlb_kernel_range(fd->addr1, fd->addr2); |
| 598 | } |
| 599 | |
| 600 | void flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| 601 | { |
| 602 | struct flush_tlb_data fd = { |
| 603 | .addr1 = start, |
| 604 | .addr2 = end, |
| 605 | }; |
| 606 | |
| 607 | on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1); |
| 608 | } |
| 609 | |
| 610 | static void flush_tlb_page_ipi(void *info) |
| 611 | { |
| 612 | struct flush_tlb_data *fd = info; |
| 613 | |
| 614 | local_flush_tlb_page(fd->vma, fd->addr1); |
| 615 | } |
| 616 | |
| 617 | void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) |
| 618 | { |
| 619 | preempt_disable(); |
| 620 | if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { |
| 621 | struct flush_tlb_data fd = { |
| 622 | .vma = vma, |
| 623 | .addr1 = page, |
| 624 | }; |
| 625 | |
| 626 | smp_on_other_tlbs(flush_tlb_page_ipi, &fd); |
| 627 | } else { |
| 628 | unsigned int cpu; |
| 629 | |
| 630 | for_each_online_cpu(cpu) { |
| 631 | /* |
| 632 | * flush_cache_page() only does partial flushes, so |
| 633 | * invalidate ASID without it appearing to |
| 634 | * has_valid_asid() as if mm has been completely unused |
| 635 | * by that CPU. |
| 636 | */ |
| 637 | if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm)) |
| 638 | cpu_context(cpu, vma->vm_mm) = 1; |
| 639 | } |
| 640 | } |
| 641 | local_flush_tlb_page(vma, page); |
| 642 | preempt_enable(); |
| 643 | } |
| 644 | |
| 645 | static void flush_tlb_one_ipi(void *info) |
| 646 | { |
| 647 | unsigned long vaddr = (unsigned long) info; |
| 648 | |
| 649 | local_flush_tlb_one(vaddr); |
| 650 | } |
| 651 | |
| 652 | void flush_tlb_one(unsigned long vaddr) |
| 653 | { |
| 654 | smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr); |
| 655 | } |
| 656 | |
| 657 | EXPORT_SYMBOL(flush_tlb_page); |
| 658 | EXPORT_SYMBOL(flush_tlb_one); |
| 659 | |
| 660 | #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST |
| 661 | |
| 662 | static DEFINE_PER_CPU(atomic_t, tick_broadcast_count); |
| 663 | static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd); |
| 664 | |
| 665 | void tick_broadcast(const struct cpumask *mask) |
| 666 | { |
| 667 | atomic_t *count; |
| 668 | call_single_data_t *csd; |
| 669 | int cpu; |
| 670 | |
| 671 | for_each_cpu(cpu, mask) { |
| 672 | count = &per_cpu(tick_broadcast_count, cpu); |
| 673 | csd = &per_cpu(tick_broadcast_csd, cpu); |
| 674 | |
| 675 | if (atomic_inc_return(count) == 1) |
| 676 | smp_call_function_single_async(cpu, csd); |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | static void tick_broadcast_callee(void *info) |
| 681 | { |
| 682 | int cpu = smp_processor_id(); |
| 683 | tick_receive_broadcast(); |
| 684 | atomic_set(&per_cpu(tick_broadcast_count, cpu), 0); |
| 685 | } |
| 686 | |
| 687 | static int __init tick_broadcast_init(void) |
| 688 | { |
| 689 | call_single_data_t *csd; |
| 690 | int cpu; |
| 691 | |
| 692 | for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| 693 | csd = &per_cpu(tick_broadcast_csd, cpu); |
| 694 | csd->func = tick_broadcast_callee; |
| 695 | } |
| 696 | |
| 697 | return 0; |
| 698 | } |
| 699 | early_initcall(tick_broadcast_init); |
| 700 | |
| 701 | #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */ |