blob: 5ff98d76a66cd20851ecd6b8fe5b5a84d53a4a2e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/bug.h>
21#include <asm/page.h>
22
23extern pgd_t swapper_pg_dir[];
24extern void paging_init(void);
25
26enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31};
32
33extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
35static inline void update_page_count(int level, long count)
36{
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39}
40
41struct seq_file;
42void arch_report_meminfo(struct seq_file *m);
43
44/*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48#define update_mmu_cache(vma, address, ptep) do { } while (0)
49#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51/*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56extern unsigned long empty_zero_page;
57extern unsigned long zero_page_mask;
58
59#define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62#define __HAVE_COLOR_ZERO_PAGE
63
64/* TODO: s390 cannot support io_remap_pfn_range... */
65
66#define FIRST_USER_ADDRESS 0UL
67
68#define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70#define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72#define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74#define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76#define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79/*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87extern unsigned long VMALLOC_START;
88extern unsigned long VMALLOC_END;
David Brazdil0f672f62019-12-10 10:32:29 +000089#define VMALLOC_DEFAULT_SIZE ((128UL << 30) - MODULES_LEN)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000090extern struct page *vmemmap;
91
92#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
93
94extern unsigned long MODULES_VADDR;
95extern unsigned long MODULES_END;
96#define MODULES_VADDR MODULES_VADDR
97#define MODULES_END MODULES_END
98#define MODULES_LEN (1UL << 31)
99
100static inline int is_module_addr(void *addr)
101{
102 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
103 if (addr < (void *)MODULES_VADDR)
104 return 0;
105 if (addr > (void *)MODULES_END)
106 return 0;
107 return 1;
108}
109
110/*
111 * A 64 bit pagetable entry of S390 has following format:
112 * | PFRA |0IPC| OS |
113 * 0000000000111111111122222222223333333333444444444455555555556666
114 * 0123456789012345678901234567890123456789012345678901234567890123
115 *
116 * I Page-Invalid Bit: Page is not available for address-translation
117 * P Page-Protection Bit: Store access not possible for page
118 * C Change-bit override: HW is not required to set change bit
119 *
120 * A 64 bit segmenttable entry of S390 has following format:
121 * | P-table origin | TT
122 * 0000000000111111111122222222223333333333444444444455555555556666
123 * 0123456789012345678901234567890123456789012345678901234567890123
124 *
125 * I Segment-Invalid Bit: Segment is not available for address-translation
126 * C Common-Segment Bit: Segment is not private (PoP 3-30)
127 * P Page-Protection Bit: Store access not possible for page
128 * TT Type 00
129 *
130 * A 64 bit region table entry of S390 has following format:
131 * | S-table origin | TF TTTL
132 * 0000000000111111111122222222223333333333444444444455555555556666
133 * 0123456789012345678901234567890123456789012345678901234567890123
134 *
135 * I Segment-Invalid Bit: Segment is not available for address-translation
136 * TT Type 01
137 * TF
138 * TL Table length
139 *
140 * The 64 bit regiontable origin of S390 has following format:
141 * | region table origon | DTTL
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * X Space-Switch event:
146 * G Segment-Invalid Bit:
147 * P Private-Space Bit:
148 * S Storage-Alteration:
149 * R Real space
150 * TL Table-Length:
151 *
152 * A storage key has the following format:
153 * | ACC |F|R|C|0|
154 * 0 3 4 5 6 7
155 * ACC: access key
156 * F : fetch protection bit
157 * R : referenced bit
158 * C : changed bit
159 */
160
161/* Hardware bits in the page table entry */
162#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
163#define _PAGE_PROTECT 0x200 /* HW read-only bit */
164#define _PAGE_INVALID 0x400 /* HW invalid bit */
165#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
166
167/* Software bits in the page table entry */
168#define _PAGE_PRESENT 0x001 /* SW pte present bit */
169#define _PAGE_YOUNG 0x004 /* SW pte young bit */
170#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
171#define _PAGE_READ 0x010 /* SW pte read bit */
172#define _PAGE_WRITE 0x020 /* SW pte write bit */
173#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
174#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
175
176#ifdef CONFIG_MEM_SOFT_DIRTY
177#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178#else
179#define _PAGE_SOFT_DIRTY 0x000
180#endif
181
182/* Set of bits not changed in pte_modify */
183#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185
186/*
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
191 *
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
195 *
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
217 *
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221 */
222
223/* Bits in the segment/region table address-space-control-element */
224#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228#define _ASCE_REAL_SPACE 0x20 /* real space control */
229#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235
236/* Bits in the region table entry */
237#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
David Brazdil0f672f62019-12-10 10:32:29 +0000242#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000243#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247
248#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254
255#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261
262#ifdef CONFIG_MEM_SOFT_DIRTY
263#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264#else
265#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266#endif
267
268#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269#define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270
271/* Bits in the segment table entry */
272#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
David Brazdil0f672f62019-12-10 10:32:29 +0000281#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000282
283#define _SEGMENT_ENTRY (0)
284#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292#ifdef CONFIG_MEM_SOFT_DIRTY
293#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294#else
295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296#endif
297
298#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299#define _PAGE_ENTRIES 256 /* number of page table entries */
300
301#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304#define _REGION1_SHIFT 53
305#define _REGION2_SHIFT 42
306#define _REGION3_SHIFT 31
307#define _SEGMENT_SHIFT 20
308
309#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320#define _REGION1_MASK (~(_REGION1_SIZE - 1))
321#define _REGION2_MASK (~(_REGION2_SIZE - 1))
322#define _REGION3_MASK (~(_REGION3_SIZE - 1))
323#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325#define PMD_SHIFT _SEGMENT_SHIFT
326#define PUD_SHIFT _REGION3_SHIFT
327#define P4D_SHIFT _REGION2_SHIFT
328#define PGDIR_SHIFT _REGION1_SHIFT
329
330#define PMD_SIZE _SEGMENT_SIZE
331#define PUD_SIZE _REGION3_SIZE
332#define P4D_SIZE _REGION2_SIZE
333#define PGDIR_SIZE _REGION1_SIZE
334
335#define PMD_MASK _SEGMENT_MASK
336#define PUD_MASK _REGION3_MASK
337#define P4D_MASK _REGION2_MASK
338#define PGDIR_MASK _REGION1_MASK
339
340#define PTRS_PER_PTE _PAGE_ENTRIES
341#define PTRS_PER_PMD _CRST_ENTRIES
342#define PTRS_PER_PUD _CRST_ENTRIES
343#define PTRS_PER_P4D _CRST_ENTRIES
344#define PTRS_PER_PGD _CRST_ENTRIES
345
David Brazdil0f672f62019-12-10 10:32:29 +0000346#define MAX_PTRS_PER_P4D PTRS_PER_P4D
347
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000348/*
349 * Segment table and region3 table entry encoding
350 * (R = read-only, I = invalid, y = young bit):
351 * dy..R...I...wr
352 * prot-none, clean, old 00..1...1...00
353 * prot-none, clean, young 01..1...1...00
354 * prot-none, dirty, old 10..1...1...00
355 * prot-none, dirty, young 11..1...1...00
356 * read-only, clean, old 00..1...1...01
357 * read-only, clean, young 01..1...0...01
358 * read-only, dirty, old 10..1...1...01
359 * read-only, dirty, young 11..1...0...01
360 * read-write, clean, old 00..1...1...11
361 * read-write, clean, young 01..1...0...11
362 * read-write, dirty, old 10..0...1...11
363 * read-write, dirty, young 11..0...0...11
364 * The segment table origin is used to distinguish empty (origin==0) from
365 * read-write, old segment table entries (origin!=0)
366 * HW-bits: R read-only, I invalid
367 * SW-bits: y young, d dirty, r read, w write
368 */
369
370/* Page status table bits for virtualization */
371#define PGSTE_ACC_BITS 0xf000000000000000UL
372#define PGSTE_FP_BIT 0x0800000000000000UL
373#define PGSTE_PCL_BIT 0x0080000000000000UL
374#define PGSTE_HR_BIT 0x0040000000000000UL
375#define PGSTE_HC_BIT 0x0020000000000000UL
376#define PGSTE_GR_BIT 0x0004000000000000UL
377#define PGSTE_GC_BIT 0x0002000000000000UL
378#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
379#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
380#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
381
382/* Guest Page State used for virtualization */
383#define _PGSTE_GPS_ZERO 0x0000000080000000UL
384#define _PGSTE_GPS_NODAT 0x0000000040000000UL
385#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
386#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
387#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
388#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
389#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
390
391/*
392 * A user page table pointer has the space-switch-event bit, the
393 * private-space-control bit and the storage-alteration-event-control
394 * bit set. A kernel page table pointer doesn't need them.
395 */
396#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 _ASCE_ALT_EVENT)
398
399/*
400 * Page protection definitions.
401 */
402#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
405#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 _PAGE_INVALID | _PAGE_PROTECT)
407#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
409#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_INVALID | _PAGE_PROTECT)
411
412#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 _PAGE_PROTECT | _PAGE_NOEXEC)
418#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_YOUNG | _PAGE_DIRTY)
420
421/*
422 * On s390 the page table entry has an invalid bit and a read-only bit.
423 * Read permission implies execute permission and write permission
424 * implies read permission.
425 */
426 /*xwr*/
427#define __P000 PAGE_NONE
428#define __P001 PAGE_RO
429#define __P010 PAGE_RO
430#define __P011 PAGE_RO
431#define __P100 PAGE_RX
432#define __P101 PAGE_RX
433#define __P110 PAGE_RX
434#define __P111 PAGE_RX
435
436#define __S000 PAGE_NONE
437#define __S001 PAGE_RO
438#define __S010 PAGE_RW
439#define __S011 PAGE_RW
440#define __S100 PAGE_RX
441#define __S101 PAGE_RX
442#define __S110 PAGE_RWX
443#define __S111 PAGE_RWX
444
445/*
446 * Segment entry (large page) protection definitions.
447 */
448#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
449 _SEGMENT_ENTRY_PROTECT)
450#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_NOEXEC)
453#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
454 _SEGMENT_ENTRY_READ)
455#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
456 _SEGMENT_ENTRY_WRITE | \
457 _SEGMENT_ENTRY_NOEXEC)
458#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_WRITE)
460#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
461 _SEGMENT_ENTRY_LARGE | \
462 _SEGMENT_ENTRY_READ | \
463 _SEGMENT_ENTRY_WRITE | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_DIRTY | \
466 _SEGMENT_ENTRY_NOEXEC)
467#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
468 _SEGMENT_ENTRY_LARGE | \
469 _SEGMENT_ENTRY_READ | \
470 _SEGMENT_ENTRY_YOUNG | \
471 _SEGMENT_ENTRY_PROTECT | \
472 _SEGMENT_ENTRY_NOEXEC)
David Brazdil0f672f62019-12-10 10:32:29 +0000473#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
474 _SEGMENT_ENTRY_LARGE | \
475 _SEGMENT_ENTRY_READ | \
476 _SEGMENT_ENTRY_WRITE | \
477 _SEGMENT_ENTRY_YOUNG | \
478 _SEGMENT_ENTRY_DIRTY)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000479
480/*
481 * Region3 entry (large page) protection definitions.
482 */
483
484#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
485 _REGION3_ENTRY_LARGE | \
486 _REGION3_ENTRY_READ | \
487 _REGION3_ENTRY_WRITE | \
488 _REGION3_ENTRY_YOUNG | \
489 _REGION3_ENTRY_DIRTY | \
490 _REGION_ENTRY_NOEXEC)
491#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
492 _REGION3_ENTRY_LARGE | \
493 _REGION3_ENTRY_READ | \
494 _REGION3_ENTRY_YOUNG | \
495 _REGION_ENTRY_PROTECT | \
496 _REGION_ENTRY_NOEXEC)
497
498static inline bool mm_p4d_folded(struct mm_struct *mm)
499{
500 return mm->context.asce_limit <= _REGION1_SIZE;
501}
502#define mm_p4d_folded(mm) mm_p4d_folded(mm)
503
504static inline bool mm_pud_folded(struct mm_struct *mm)
505{
506 return mm->context.asce_limit <= _REGION2_SIZE;
507}
508#define mm_pud_folded(mm) mm_pud_folded(mm)
509
510static inline bool mm_pmd_folded(struct mm_struct *mm)
511{
512 return mm->context.asce_limit <= _REGION3_SIZE;
513}
514#define mm_pmd_folded(mm) mm_pmd_folded(mm)
515
516static inline int mm_has_pgste(struct mm_struct *mm)
517{
518#ifdef CONFIG_PGSTE
519 if (unlikely(mm->context.has_pgste))
520 return 1;
521#endif
522 return 0;
523}
524
525static inline int mm_alloc_pgste(struct mm_struct *mm)
526{
527#ifdef CONFIG_PGSTE
528 if (unlikely(mm->context.alloc_pgste))
529 return 1;
530#endif
531 return 0;
532}
533
534/*
535 * In the case that a guest uses storage keys
536 * faults should no longer be backed by zero pages
537 */
538#define mm_forbids_zeropage mm_has_pgste
539static inline int mm_uses_skeys(struct mm_struct *mm)
540{
541#ifdef CONFIG_PGSTE
542 if (mm->context.uses_skeys)
543 return 1;
544#endif
545 return 0;
546}
547
548static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
549{
550 register unsigned long reg2 asm("2") = old;
551 register unsigned long reg3 asm("3") = new;
552 unsigned long address = (unsigned long)ptr | 1;
553
554 asm volatile(
555 " csp %0,%3"
556 : "+d" (reg2), "+m" (*ptr)
557 : "d" (reg3), "d" (address)
558 : "cc");
559}
560
561static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
562{
563 register unsigned long reg2 asm("2") = old;
564 register unsigned long reg3 asm("3") = new;
565 unsigned long address = (unsigned long)ptr | 1;
566
567 asm volatile(
568 " .insn rre,0xb98a0000,%0,%3"
569 : "+d" (reg2), "+m" (*ptr)
570 : "d" (reg3), "d" (address)
571 : "cc");
572}
573
574#define CRDTE_DTT_PAGE 0x00UL
575#define CRDTE_DTT_SEGMENT 0x10UL
576#define CRDTE_DTT_REGION3 0x14UL
577#define CRDTE_DTT_REGION2 0x18UL
578#define CRDTE_DTT_REGION1 0x1cUL
579
580static inline void crdte(unsigned long old, unsigned long new,
581 unsigned long table, unsigned long dtt,
582 unsigned long address, unsigned long asce)
583{
584 register unsigned long reg2 asm("2") = old;
585 register unsigned long reg3 asm("3") = new;
586 register unsigned long reg4 asm("4") = table | dtt;
587 register unsigned long reg5 asm("5") = address;
588
589 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
590 : "+d" (reg2)
591 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
592 : "memory", "cc");
593}
594
595/*
596 * pgd/p4d/pud/pmd/pte query functions
597 */
598static inline int pgd_folded(pgd_t pgd)
599{
600 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
601}
602
603static inline int pgd_present(pgd_t pgd)
604{
605 if (pgd_folded(pgd))
606 return 1;
607 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
608}
609
610static inline int pgd_none(pgd_t pgd)
611{
612 if (pgd_folded(pgd))
613 return 0;
614 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
615}
616
617static inline int pgd_bad(pgd_t pgd)
618{
David Brazdil0f672f62019-12-10 10:32:29 +0000619 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
620 return 0;
621 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
622}
623
624static inline unsigned long pgd_pfn(pgd_t pgd)
625{
626 unsigned long origin_mask;
627
628 origin_mask = _REGION_ENTRY_ORIGIN;
629 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000630}
631
632static inline int p4d_folded(p4d_t p4d)
633{
634 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
635}
636
637static inline int p4d_present(p4d_t p4d)
638{
639 if (p4d_folded(p4d))
640 return 1;
641 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
642}
643
644static inline int p4d_none(p4d_t p4d)
645{
646 if (p4d_folded(p4d))
647 return 0;
648 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
649}
650
651static inline unsigned long p4d_pfn(p4d_t p4d)
652{
653 unsigned long origin_mask;
654
655 origin_mask = _REGION_ENTRY_ORIGIN;
656 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
657}
658
659static inline int pud_folded(pud_t pud)
660{
661 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
662}
663
664static inline int pud_present(pud_t pud)
665{
666 if (pud_folded(pud))
667 return 1;
668 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
669}
670
671static inline int pud_none(pud_t pud)
672{
673 if (pud_folded(pud))
674 return 0;
675 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
676}
677
678static inline int pud_large(pud_t pud)
679{
680 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
681 return 0;
682 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
683}
684
685static inline unsigned long pud_pfn(pud_t pud)
686{
687 unsigned long origin_mask;
688
689 origin_mask = _REGION_ENTRY_ORIGIN;
690 if (pud_large(pud))
691 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
692 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
693}
694
695static inline int pmd_large(pmd_t pmd)
696{
697 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
698}
699
700static inline int pmd_bad(pmd_t pmd)
701{
David Brazdil0f672f62019-12-10 10:32:29 +0000702 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0)
703 return 1;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000704 if (pmd_large(pmd))
705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
706 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
707}
708
709static inline int pud_bad(pud_t pud)
710{
David Brazdil0f672f62019-12-10 10:32:29 +0000711 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
712
713 if (type > _REGION_ENTRY_TYPE_R3)
714 return 1;
715 if (type < _REGION_ENTRY_TYPE_R3)
716 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000717 if (pud_large(pud))
718 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
719 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
720}
721
722static inline int p4d_bad(p4d_t p4d)
723{
David Brazdil0f672f62019-12-10 10:32:29 +0000724 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
725
726 if (type > _REGION_ENTRY_TYPE_R2)
727 return 1;
728 if (type < _REGION_ENTRY_TYPE_R2)
729 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000730 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
731}
732
733static inline int pmd_present(pmd_t pmd)
734{
735 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
736}
737
738static inline int pmd_none(pmd_t pmd)
739{
740 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
741}
742
743static inline unsigned long pmd_pfn(pmd_t pmd)
744{
745 unsigned long origin_mask;
746
747 origin_mask = _SEGMENT_ENTRY_ORIGIN;
748 if (pmd_large(pmd))
749 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
750 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
751}
752
753#define pmd_write pmd_write
754static inline int pmd_write(pmd_t pmd)
755{
756 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
757}
758
759static inline int pmd_dirty(pmd_t pmd)
760{
761 int dirty = 1;
762 if (pmd_large(pmd))
763 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764 return dirty;
765}
766
767static inline int pmd_young(pmd_t pmd)
768{
769 int young = 1;
770 if (pmd_large(pmd))
771 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
772 return young;
773}
774
775static inline int pte_present(pte_t pte)
776{
777 /* Bit pattern: (pte & 0x001) == 0x001 */
778 return (pte_val(pte) & _PAGE_PRESENT) != 0;
779}
780
781static inline int pte_none(pte_t pte)
782{
783 /* Bit pattern: pte == 0x400 */
784 return pte_val(pte) == _PAGE_INVALID;
785}
786
787static inline int pte_swap(pte_t pte)
788{
789 /* Bit pattern: (pte & 0x201) == 0x200 */
790 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
791 == _PAGE_PROTECT;
792}
793
794static inline int pte_special(pte_t pte)
795{
796 return (pte_val(pte) & _PAGE_SPECIAL);
797}
798
799#define __HAVE_ARCH_PTE_SAME
800static inline int pte_same(pte_t a, pte_t b)
801{
802 return pte_val(a) == pte_val(b);
803}
804
805#ifdef CONFIG_NUMA_BALANCING
806static inline int pte_protnone(pte_t pte)
807{
808 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
809}
810
811static inline int pmd_protnone(pmd_t pmd)
812{
813 /* pmd_large(pmd) implies pmd_present(pmd) */
814 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
815}
816#endif
817
818static inline int pte_soft_dirty(pte_t pte)
819{
820 return pte_val(pte) & _PAGE_SOFT_DIRTY;
821}
822#define pte_swp_soft_dirty pte_soft_dirty
823
824static inline pte_t pte_mksoft_dirty(pte_t pte)
825{
826 pte_val(pte) |= _PAGE_SOFT_DIRTY;
827 return pte;
828}
829#define pte_swp_mksoft_dirty pte_mksoft_dirty
830
831static inline pte_t pte_clear_soft_dirty(pte_t pte)
832{
833 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
834 return pte;
835}
836#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
837
838static inline int pmd_soft_dirty(pmd_t pmd)
839{
840 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
841}
842
843static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
844{
845 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
846 return pmd;
847}
848
849static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
850{
851 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
852 return pmd;
853}
854
855/*
856 * query functions pte_write/pte_dirty/pte_young only work if
857 * pte_present() is true. Undefined behaviour if not..
858 */
859static inline int pte_write(pte_t pte)
860{
861 return (pte_val(pte) & _PAGE_WRITE) != 0;
862}
863
864static inline int pte_dirty(pte_t pte)
865{
866 return (pte_val(pte) & _PAGE_DIRTY) != 0;
867}
868
869static inline int pte_young(pte_t pte)
870{
871 return (pte_val(pte) & _PAGE_YOUNG) != 0;
872}
873
874#define __HAVE_ARCH_PTE_UNUSED
875static inline int pte_unused(pte_t pte)
876{
877 return pte_val(pte) & _PAGE_UNUSED;
878}
879
880/*
881 * pgd/pmd/pte modification functions
882 */
883
884static inline void pgd_clear(pgd_t *pgd)
885{
886 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
888}
889
890static inline void p4d_clear(p4d_t *p4d)
891{
892 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
894}
895
896static inline void pud_clear(pud_t *pud)
897{
898 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
900}
901
902static inline void pmd_clear(pmd_t *pmdp)
903{
904 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
905}
906
907static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908{
909 pte_val(*ptep) = _PAGE_INVALID;
910}
911
912/*
913 * The following pte modification functions only work if
914 * pte_present() is true. Undefined behaviour if not..
915 */
916static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917{
918 pte_val(pte) &= _PAGE_CHG_MASK;
919 pte_val(pte) |= pgprot_val(newprot);
920 /*
921 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 * has the invalid bit set, clear it again for readable, young pages
923 */
924 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 pte_val(pte) &= ~_PAGE_INVALID;
926 /*
927 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 * protection bit set, clear it again for writable, dirty pages
929 */
930 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 pte_val(pte) &= ~_PAGE_PROTECT;
932 return pte;
933}
934
935static inline pte_t pte_wrprotect(pte_t pte)
936{
937 pte_val(pte) &= ~_PAGE_WRITE;
938 pte_val(pte) |= _PAGE_PROTECT;
939 return pte;
940}
941
942static inline pte_t pte_mkwrite(pte_t pte)
943{
944 pte_val(pte) |= _PAGE_WRITE;
945 if (pte_val(pte) & _PAGE_DIRTY)
946 pte_val(pte) &= ~_PAGE_PROTECT;
947 return pte;
948}
949
950static inline pte_t pte_mkclean(pte_t pte)
951{
952 pte_val(pte) &= ~_PAGE_DIRTY;
953 pte_val(pte) |= _PAGE_PROTECT;
954 return pte;
955}
956
957static inline pte_t pte_mkdirty(pte_t pte)
958{
959 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 if (pte_val(pte) & _PAGE_WRITE)
961 pte_val(pte) &= ~_PAGE_PROTECT;
962 return pte;
963}
964
965static inline pte_t pte_mkold(pte_t pte)
966{
967 pte_val(pte) &= ~_PAGE_YOUNG;
968 pte_val(pte) |= _PAGE_INVALID;
969 return pte;
970}
971
972static inline pte_t pte_mkyoung(pte_t pte)
973{
974 pte_val(pte) |= _PAGE_YOUNG;
975 if (pte_val(pte) & _PAGE_READ)
976 pte_val(pte) &= ~_PAGE_INVALID;
977 return pte;
978}
979
980static inline pte_t pte_mkspecial(pte_t pte)
981{
982 pte_val(pte) |= _PAGE_SPECIAL;
983 return pte;
984}
985
986#ifdef CONFIG_HUGETLB_PAGE
987static inline pte_t pte_mkhuge(pte_t pte)
988{
989 pte_val(pte) |= _PAGE_LARGE;
990 return pte;
991}
992#endif
993
994#define IPTE_GLOBAL 0
995#define IPTE_LOCAL 1
996
997#define IPTE_NODAT 0x400
998#define IPTE_GUEST_ASCE 0x800
999
David Brazdil0f672f62019-12-10 10:32:29 +00001000static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 unsigned long opt, unsigned long asce,
1002 int local)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001003{
1004 unsigned long pto = (unsigned long) ptep;
1005
1006 if (__builtin_constant_p(opt) && opt == 0) {
1007 /* Invalidation + TLB flush for the pte */
1008 asm volatile(
1009 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011 [m4] "i" (local));
1012 return;
1013 }
1014
1015 /* Invalidate ptes with options + TLB flush of the ptes */
1016 opt = opt | (asce & _ASCE_ORIGIN);
1017 asm volatile(
1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 : [r2] "+a" (address), [r3] "+a" (opt)
1020 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1021}
1022
David Brazdil0f672f62019-12-10 10:32:29 +00001023static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 pte_t *ptep, int local)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001025{
1026 unsigned long pto = (unsigned long) ptep;
1027
1028 /* Invalidate a range of ptes + TLB flush of the ptes */
1029 do {
1030 asm volatile(
1031 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 : [r2] "+a" (address), [r3] "+a" (nr)
1033 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 } while (nr != 255);
1035}
1036
1037/*
1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039 * both clear the TLB for the unmapped pte. The reason is that
1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041 * to modify an active pte. The sequence is
1042 * 1) ptep_get_and_clear
1043 * 2) set_pte_at
1044 * 3) flush_tlb_range
1045 * On s390 the tlb needs to get flushed with the modification of the pte
1046 * if the pte is active. The only way how this can be implemented is to
1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048 * is a nop.
1049 */
1050pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052
1053#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1054static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *ptep)
1056{
1057 pte_t pte = *ptep;
1058
1059 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 return pte_young(pte);
1061}
1062
1063#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1064static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pte_t *ptep)
1066{
1067 return ptep_test_and_clear_young(vma, address, ptep);
1068}
1069
1070#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1071static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 unsigned long addr, pte_t *ptep)
1073{
1074 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1075}
1076
1077#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
David Brazdil0f672f62019-12-10 10:32:29 +00001078pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1079void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1080 pte_t *, pte_t, pte_t);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001081
1082#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1083static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1084 unsigned long addr, pte_t *ptep)
1085{
1086 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1087}
1088
1089/*
1090 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1091 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1092 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1093 * cannot be accessed while the batched unmap is running. In this case
1094 * full==1 and a simple pte_clear is enough. See tlb.h.
1095 */
1096#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1097static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1098 unsigned long addr,
1099 pte_t *ptep, int full)
1100{
1101 if (full) {
1102 pte_t pte = *ptep;
1103 *ptep = __pte(_PAGE_INVALID);
1104 return pte;
1105 }
1106 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1107}
1108
1109#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1110static inline void ptep_set_wrprotect(struct mm_struct *mm,
1111 unsigned long addr, pte_t *ptep)
1112{
1113 pte_t pte = *ptep;
1114
1115 if (pte_write(pte))
1116 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1117}
1118
1119#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1120static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1121 unsigned long addr, pte_t *ptep,
1122 pte_t entry, int dirty)
1123{
1124 if (pte_same(*ptep, entry))
1125 return 0;
1126 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1127 return 1;
1128}
1129
1130/*
1131 * Additional functions to handle KVM guest page tables
1132 */
1133void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1134 pte_t *ptep, pte_t entry);
1135void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1136void ptep_notify(struct mm_struct *mm, unsigned long addr,
1137 pte_t *ptep, unsigned long bits);
1138int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1139 pte_t *ptep, int prot, unsigned long bit);
1140void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1141 pte_t *ptep , int reset);
1142void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1143int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1144 pte_t *sptep, pte_t *tptep, pte_t pte);
1145void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1146
1147bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1148 pte_t *ptep);
1149int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1150 unsigned char key, bool nq);
1151int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1152 unsigned char key, unsigned char *oldkey,
1153 bool nq, bool mr, bool mc);
1154int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1155int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1156 unsigned char *key);
1157
1158int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1159 unsigned long bits, unsigned long value);
1160int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1161int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1162 unsigned long *oldpte, unsigned long *oldpgste);
1163void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1164void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1165void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1166void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1167
1168/*
1169 * Certain architectures need to do special things when PTEs
1170 * within a page table are directly modified. Thus, the following
1171 * hook is made available.
1172 */
1173static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1174 pte_t *ptep, pte_t entry)
1175{
1176 if (!MACHINE_HAS_NX)
1177 pte_val(entry) &= ~_PAGE_NOEXEC;
1178 if (pte_present(entry))
1179 pte_val(entry) &= ~_PAGE_UNUSED;
1180 if (mm_has_pgste(mm))
1181 ptep_set_pte_at(mm, addr, ptep, entry);
1182 else
1183 *ptep = entry;
1184}
1185
1186/*
1187 * Conversion functions: convert a page and protection to a page entry,
1188 * and a page entry and page directory to the page they refer to.
1189 */
1190static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1191{
1192 pte_t __pte;
1193 pte_val(__pte) = physpage + pgprot_val(pgprot);
1194 return pte_mkyoung(__pte);
1195}
1196
1197static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1198{
1199 unsigned long physpage = page_to_phys(page);
1200 pte_t __pte = mk_pte_phys(physpage, pgprot);
1201
1202 if (pte_write(__pte) && PageDirty(page))
1203 __pte = pte_mkdirty(__pte);
1204 return __pte;
1205}
1206
1207#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1208#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1209#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1210#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1211#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1212
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001213#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1214#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1215#define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1216#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1217
David Brazdil0f672f62019-12-10 10:32:29 +00001218/*
1219 * The pgd_offset function *always* adds the index for the top-level
1220 * region/segment table. This is done to get a sequence like the
1221 * following to work:
1222 * pgdp = pgd_offset(current->mm, addr);
1223 * pgd = READ_ONCE(*pgdp);
1224 * p4dp = p4d_offset(&pgd, addr);
1225 * ...
1226 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1227 * only add an index if they dereferenced the pointer.
1228 */
1229static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1230{
1231 unsigned long rste;
1232 unsigned int shift;
1233
1234 /* Get the first entry of the top level table */
1235 rste = pgd_val(*pgd);
1236 /* Pick up the shift from the table type of the first entry */
1237 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1238 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1239}
1240
1241#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1242#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1243
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001244static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1245{
David Brazdil0f672f62019-12-10 10:32:29 +00001246 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1247 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1248 return (p4d_t *) pgd;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001249}
1250
1251static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1252{
David Brazdil0f672f62019-12-10 10:32:29 +00001253 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1254 return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1255 return (pud_t *) p4d;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001256}
1257
1258static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1259{
David Brazdil0f672f62019-12-10 10:32:29 +00001260 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1261 return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1262 return (pmd_t *) pud;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001263}
1264
David Brazdil0f672f62019-12-10 10:32:29 +00001265static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address)
1266{
1267 return (pte_t *) pmd_deref(*pmd) + pte_index(address);
1268}
1269
1270#define pte_offset_kernel(pmd, address) pte_offset(pmd, address)
1271#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1272
1273static inline void pte_unmap(pte_t *pte) { }
1274
1275static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1276{
1277 return end <= current->mm->context.asce_limit;
1278}
1279#define gup_fast_permitted gup_fast_permitted
1280
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001281#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1282#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1283#define pte_page(x) pfn_to_page(pte_pfn(x))
1284
1285#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1286#define pud_page(pud) pfn_to_page(pud_pfn(pud))
David Brazdil0f672f62019-12-10 10:32:29 +00001287#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1288#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001289
1290static inline pmd_t pmd_wrprotect(pmd_t pmd)
1291{
1292 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1293 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1294 return pmd;
1295}
1296
1297static inline pmd_t pmd_mkwrite(pmd_t pmd)
1298{
1299 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1300 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1301 return pmd;
1302 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1303 return pmd;
1304}
1305
1306static inline pmd_t pmd_mkclean(pmd_t pmd)
1307{
1308 if (pmd_large(pmd)) {
1309 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1310 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1311 }
1312 return pmd;
1313}
1314
1315static inline pmd_t pmd_mkdirty(pmd_t pmd)
1316{
1317 if (pmd_large(pmd)) {
1318 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1319 _SEGMENT_ENTRY_SOFT_DIRTY;
1320 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1321 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1322 }
1323 return pmd;
1324}
1325
1326static inline pud_t pud_wrprotect(pud_t pud)
1327{
1328 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1329 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1330 return pud;
1331}
1332
1333static inline pud_t pud_mkwrite(pud_t pud)
1334{
1335 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1336 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1337 return pud;
1338 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1339 return pud;
1340}
1341
1342static inline pud_t pud_mkclean(pud_t pud)
1343{
1344 if (pud_large(pud)) {
1345 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1346 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1347 }
1348 return pud;
1349}
1350
1351static inline pud_t pud_mkdirty(pud_t pud)
1352{
1353 if (pud_large(pud)) {
1354 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1355 _REGION3_ENTRY_SOFT_DIRTY;
1356 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1357 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1358 }
1359 return pud;
1360}
1361
1362#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1363static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1364{
1365 /*
1366 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1367 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1368 */
1369 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1370 return pgprot_val(SEGMENT_NONE);
1371 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1372 return pgprot_val(SEGMENT_RO);
1373 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1374 return pgprot_val(SEGMENT_RX);
1375 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1376 return pgprot_val(SEGMENT_RW);
1377 return pgprot_val(SEGMENT_RWX);
1378}
1379
1380static inline pmd_t pmd_mkyoung(pmd_t pmd)
1381{
1382 if (pmd_large(pmd)) {
1383 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1384 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1385 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1386 }
1387 return pmd;
1388}
1389
1390static inline pmd_t pmd_mkold(pmd_t pmd)
1391{
1392 if (pmd_large(pmd)) {
1393 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1394 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1395 }
1396 return pmd;
1397}
1398
1399static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1400{
1401 if (pmd_large(pmd)) {
1402 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1403 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1404 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1405 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1406 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1407 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1408 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1409 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1410 return pmd;
1411 }
1412 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1413 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1414 return pmd;
1415}
1416
1417static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1418{
1419 pmd_t __pmd;
1420 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1421 return __pmd;
1422}
1423
1424#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1425
1426static inline void __pmdp_csp(pmd_t *pmdp)
1427{
1428 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1429 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1430}
1431
1432#define IDTE_GLOBAL 0
1433#define IDTE_LOCAL 1
1434
1435#define IDTE_PTOA 0x0800
1436#define IDTE_NODAT 0x1000
1437#define IDTE_GUEST_ASCE 0x2000
1438
David Brazdil0f672f62019-12-10 10:32:29 +00001439static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1440 unsigned long opt, unsigned long asce,
1441 int local)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001442{
1443 unsigned long sto;
1444
1445 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1446 if (__builtin_constant_p(opt) && opt == 0) {
1447 /* flush without guest asce */
1448 asm volatile(
1449 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1450 : "+m" (*pmdp)
1451 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1452 [m4] "i" (local)
1453 : "cc" );
1454 } else {
1455 /* flush with guest asce */
1456 asm volatile(
1457 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1458 : "+m" (*pmdp)
1459 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1460 [r3] "a" (asce), [m4] "i" (local)
1461 : "cc" );
1462 }
1463}
1464
David Brazdil0f672f62019-12-10 10:32:29 +00001465static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1466 unsigned long opt, unsigned long asce,
1467 int local)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001468{
1469 unsigned long r3o;
1470
1471 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1472 r3o |= _ASCE_TYPE_REGION3;
1473 if (__builtin_constant_p(opt) && opt == 0) {
1474 /* flush without guest asce */
1475 asm volatile(
1476 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1477 : "+m" (*pudp)
1478 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1479 [m4] "i" (local)
1480 : "cc");
1481 } else {
1482 /* flush with guest asce */
1483 asm volatile(
1484 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1485 : "+m" (*pudp)
1486 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1487 [r3] "a" (asce), [m4] "i" (local)
1488 : "cc" );
1489 }
1490}
1491
1492pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1493pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1494pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1495
1496#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1497
1498#define __HAVE_ARCH_PGTABLE_DEPOSIT
1499void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1500 pgtable_t pgtable);
1501
1502#define __HAVE_ARCH_PGTABLE_WITHDRAW
1503pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1504
1505#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1506static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1507 unsigned long addr, pmd_t *pmdp,
1508 pmd_t entry, int dirty)
1509{
1510 VM_BUG_ON(addr & ~HPAGE_MASK);
1511
1512 entry = pmd_mkyoung(entry);
1513 if (dirty)
1514 entry = pmd_mkdirty(entry);
1515 if (pmd_val(*pmdp) == pmd_val(entry))
1516 return 0;
1517 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1518 return 1;
1519}
1520
1521#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1522static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1523 unsigned long addr, pmd_t *pmdp)
1524{
1525 pmd_t pmd = *pmdp;
1526
1527 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1528 return pmd_young(pmd);
1529}
1530
1531#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1532static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1533 unsigned long addr, pmd_t *pmdp)
1534{
1535 VM_BUG_ON(addr & ~HPAGE_MASK);
1536 return pmdp_test_and_clear_young(vma, addr, pmdp);
1537}
1538
1539static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1540 pmd_t *pmdp, pmd_t entry)
1541{
1542 if (!MACHINE_HAS_NX)
1543 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1544 *pmdp = entry;
1545}
1546
1547static inline pmd_t pmd_mkhuge(pmd_t pmd)
1548{
1549 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1550 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1551 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1552 return pmd;
1553}
1554
1555#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1556static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1557 unsigned long addr, pmd_t *pmdp)
1558{
1559 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1560}
1561
1562#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1563static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1564 unsigned long addr,
1565 pmd_t *pmdp, int full)
1566{
1567 if (full) {
1568 pmd_t pmd = *pmdp;
1569 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1570 return pmd;
1571 }
1572 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1573}
1574
1575#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1576static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1577 unsigned long addr, pmd_t *pmdp)
1578{
1579 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1580}
1581
1582#define __HAVE_ARCH_PMDP_INVALIDATE
1583static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1584 unsigned long addr, pmd_t *pmdp)
1585{
1586 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1587
1588 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1589}
1590
1591#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1592static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1593 unsigned long addr, pmd_t *pmdp)
1594{
1595 pmd_t pmd = *pmdp;
1596
1597 if (pmd_write(pmd))
1598 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1599}
1600
1601static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1602 unsigned long address,
1603 pmd_t *pmdp)
1604{
1605 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1606}
1607#define pmdp_collapse_flush pmdp_collapse_flush
1608
1609#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1610#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1611
1612static inline int pmd_trans_huge(pmd_t pmd)
1613{
1614 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1615}
1616
1617#define has_transparent_hugepage has_transparent_hugepage
1618static inline int has_transparent_hugepage(void)
1619{
1620 return MACHINE_HAS_EDAT1 ? 1 : 0;
1621}
1622#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1623
1624/*
1625 * 64 bit swap entry format:
1626 * A page-table entry has some bits we have to treat in a special way.
1627 * Bits 52 and bit 55 have to be zero, otherwise a specification
1628 * exception will occur instead of a page translation exception. The
1629 * specification exception has the bad habit not to store necessary
1630 * information in the lowcore.
1631 * Bits 54 and 63 are used to indicate the page type.
1632 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1633 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1634 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1635 * for the offset.
1636 * | offset |01100|type |00|
1637 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1638 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1639 */
1640
1641#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1642#define __SWP_OFFSET_SHIFT 12
1643#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1644#define __SWP_TYPE_SHIFT 2
1645
1646static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1647{
1648 pte_t pte;
1649
1650 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1651 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1652 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1653 return pte;
1654}
1655
1656static inline unsigned long __swp_type(swp_entry_t entry)
1657{
1658 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1659}
1660
1661static inline unsigned long __swp_offset(swp_entry_t entry)
1662{
1663 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1664}
1665
1666static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1667{
1668 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1669}
1670
1671#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1672#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1673
1674#define kern_addr_valid(addr) (1)
1675
1676extern int vmem_add_mapping(unsigned long start, unsigned long size);
1677extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1678extern int s390_enable_sie(void);
1679extern int s390_enable_skey(void);
1680extern void s390_reset_cmma(struct mm_struct *mm);
1681
1682/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1683#define HAVE_ARCH_UNMAPPED_AREA
1684#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1685
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001686#include <asm-generic/pgtable.h>
1687
1688#endif /* _S390_PAGE_H */