v4.19.13 snapshot.
diff --git a/mm/filemap.c b/mm/filemap.c
new file mode 100644
index 0000000..52517f2
--- /dev/null
+++ b/mm/filemap.c
@@ -0,0 +1,3331 @@
+/*
+ *	linux/mm/filemap.c
+ *
+ * Copyright (C) 1994-1999  Linus Torvalds
+ */
+
+/*
+ * This file handles the generic file mmap semantics used by
+ * most "normal" filesystems (but you don't /have/ to use this:
+ * the NFS filesystem used to do this differently, for example)
+ */
+#include <linux/export.h>
+#include <linux/compiler.h>
+#include <linux/dax.h>
+#include <linux/fs.h>
+#include <linux/sched/signal.h>
+#include <linux/uaccess.h>
+#include <linux/capability.h>
+#include <linux/kernel_stat.h>
+#include <linux/gfp.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/mman.h>
+#include <linux/pagemap.h>
+#include <linux/file.h>
+#include <linux/uio.h>
+#include <linux/hash.h>
+#include <linux/writeback.h>
+#include <linux/backing-dev.h>
+#include <linux/pagevec.h>
+#include <linux/blkdev.h>
+#include <linux/security.h>
+#include <linux/cpuset.h>
+#include <linux/hugetlb.h>
+#include <linux/memcontrol.h>
+#include <linux/cleancache.h>
+#include <linux/shmem_fs.h>
+#include <linux/rmap.h>
+#include "internal.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/filemap.h>
+
+/*
+ * FIXME: remove all knowledge of the buffer layer from the core VM
+ */
+#include <linux/buffer_head.h> /* for try_to_free_buffers */
+
+#include <asm/mman.h>
+
+/*
+ * Shared mappings implemented 30.11.1994. It's not fully working yet,
+ * though.
+ *
+ * Shared mappings now work. 15.8.1995  Bruno.
+ *
+ * finished 'unifying' the page and buffer cache and SMP-threaded the
+ * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
+ *
+ * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
+ */
+
+/*
+ * Lock ordering:
+ *
+ *  ->i_mmap_rwsem		(truncate_pagecache)
+ *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
+ *      ->swap_lock		(exclusive_swap_page, others)
+ *        ->i_pages lock
+ *
+ *  ->i_mutex
+ *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
+ *
+ *  ->mmap_sem
+ *    ->i_mmap_rwsem
+ *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
+ *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
+ *
+ *  ->mmap_sem
+ *    ->lock_page		(access_process_vm)
+ *
+ *  ->i_mutex			(generic_perform_write)
+ *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
+ *
+ *  bdi->wb.list_lock
+ *    sb_lock			(fs/fs-writeback.c)
+ *    ->i_pages lock		(__sync_single_inode)
+ *
+ *  ->i_mmap_rwsem
+ *    ->anon_vma.lock		(vma_adjust)
+ *
+ *  ->anon_vma.lock
+ *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
+ *
+ *  ->page_table_lock or pte_lock
+ *    ->swap_lock		(try_to_unmap_one)
+ *    ->private_lock		(try_to_unmap_one)
+ *    ->i_pages lock		(try_to_unmap_one)
+ *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
+ *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
+ *    ->private_lock		(page_remove_rmap->set_page_dirty)
+ *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
+ *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
+ *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
+ *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
+ *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
+ *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
+ *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
+ *
+ * ->i_mmap_rwsem
+ *   ->tasklist_lock            (memory_failure, collect_procs_ao)
+ */
+
+static int page_cache_tree_insert(struct address_space *mapping,
+				  struct page *page, void **shadowp)
+{
+	struct radix_tree_node *node;
+	void **slot;
+	int error;
+
+	error = __radix_tree_create(&mapping->i_pages, page->index, 0,
+				    &node, &slot);
+	if (error)
+		return error;
+	if (*slot) {
+		void *p;
+
+		p = radix_tree_deref_slot_protected(slot,
+						    &mapping->i_pages.xa_lock);
+		if (!radix_tree_exceptional_entry(p))
+			return -EEXIST;
+
+		mapping->nrexceptional--;
+		if (shadowp)
+			*shadowp = p;
+	}
+	__radix_tree_replace(&mapping->i_pages, node, slot, page,
+			     workingset_lookup_update(mapping));
+	mapping->nrpages++;
+	return 0;
+}
+
+static void page_cache_tree_delete(struct address_space *mapping,
+				   struct page *page, void *shadow)
+{
+	int i, nr;
+
+	/* hugetlb pages are represented by one entry in the radix tree */
+	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
+
+	VM_BUG_ON_PAGE(!PageLocked(page), page);
+	VM_BUG_ON_PAGE(PageTail(page), page);
+	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
+
+	for (i = 0; i < nr; i++) {
+		struct radix_tree_node *node;
+		void **slot;
+
+		__radix_tree_lookup(&mapping->i_pages, page->index + i,
+				    &node, &slot);
+
+		VM_BUG_ON_PAGE(!node && nr != 1, page);
+
+		radix_tree_clear_tags(&mapping->i_pages, node, slot);
+		__radix_tree_replace(&mapping->i_pages, node, slot, shadow,
+				workingset_lookup_update(mapping));
+	}
+
+	page->mapping = NULL;
+	/* Leave page->index set: truncation lookup relies upon it */
+
+	if (shadow) {
+		mapping->nrexceptional += nr;
+		/*
+		 * Make sure the nrexceptional update is committed before
+		 * the nrpages update so that final truncate racing
+		 * with reclaim does not see both counters 0 at the
+		 * same time and miss a shadow entry.
+		 */
+		smp_wmb();
+	}
+	mapping->nrpages -= nr;
+}
+
+static void unaccount_page_cache_page(struct address_space *mapping,
+				      struct page *page)
+{
+	int nr;
+
+	/*
+	 * if we're uptodate, flush out into the cleancache, otherwise
+	 * invalidate any existing cleancache entries.  We can't leave
+	 * stale data around in the cleancache once our page is gone
+	 */
+	if (PageUptodate(page) && PageMappedToDisk(page))
+		cleancache_put_page(page);
+	else
+		cleancache_invalidate_page(mapping, page);
+
+	VM_BUG_ON_PAGE(PageTail(page), page);
+	VM_BUG_ON_PAGE(page_mapped(page), page);
+	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
+		int mapcount;
+
+		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
+			 current->comm, page_to_pfn(page));
+		dump_page(page, "still mapped when deleted");
+		dump_stack();
+		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
+
+		mapcount = page_mapcount(page);
+		if (mapping_exiting(mapping) &&
+		    page_count(page) >= mapcount + 2) {
+			/*
+			 * All vmas have already been torn down, so it's
+			 * a good bet that actually the page is unmapped,
+			 * and we'd prefer not to leak it: if we're wrong,
+			 * some other bad page check should catch it later.
+			 */
+			page_mapcount_reset(page);
+			page_ref_sub(page, mapcount);
+		}
+	}
+
+	/* hugetlb pages do not participate in page cache accounting. */
+	if (PageHuge(page))
+		return;
+
+	nr = hpage_nr_pages(page);
+
+	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
+	if (PageSwapBacked(page)) {
+		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
+		if (PageTransHuge(page))
+			__dec_node_page_state(page, NR_SHMEM_THPS);
+	} else {
+		VM_BUG_ON_PAGE(PageTransHuge(page), page);
+	}
+
+	/*
+	 * At this point page must be either written or cleaned by
+	 * truncate.  Dirty page here signals a bug and loss of
+	 * unwritten data.
+	 *
+	 * This fixes dirty accounting after removing the page entirely
+	 * but leaves PageDirty set: it has no effect for truncated
+	 * page and anyway will be cleared before returning page into
+	 * buddy allocator.
+	 */
+	if (WARN_ON_ONCE(PageDirty(page)))
+		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
+}
+
+/*
+ * Delete a page from the page cache and free it. Caller has to make
+ * sure the page is locked and that nobody else uses it - or that usage
+ * is safe.  The caller must hold the i_pages lock.
+ */
+void __delete_from_page_cache(struct page *page, void *shadow)
+{
+	struct address_space *mapping = page->mapping;
+
+	trace_mm_filemap_delete_from_page_cache(page);
+
+	unaccount_page_cache_page(mapping, page);
+	page_cache_tree_delete(mapping, page, shadow);
+}
+
+static void page_cache_free_page(struct address_space *mapping,
+				struct page *page)
+{
+	void (*freepage)(struct page *);
+
+	freepage = mapping->a_ops->freepage;
+	if (freepage)
+		freepage(page);
+
+	if (PageTransHuge(page) && !PageHuge(page)) {
+		page_ref_sub(page, HPAGE_PMD_NR);
+		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
+	} else {
+		put_page(page);
+	}
+}
+
+/**
+ * delete_from_page_cache - delete page from page cache
+ * @page: the page which the kernel is trying to remove from page cache
+ *
+ * This must be called only on pages that have been verified to be in the page
+ * cache and locked.  It will never put the page into the free list, the caller
+ * has a reference on the page.
+ */
+void delete_from_page_cache(struct page *page)
+{
+	struct address_space *mapping = page_mapping(page);
+	unsigned long flags;
+
+	BUG_ON(!PageLocked(page));
+	xa_lock_irqsave(&mapping->i_pages, flags);
+	__delete_from_page_cache(page, NULL);
+	xa_unlock_irqrestore(&mapping->i_pages, flags);
+
+	page_cache_free_page(mapping, page);
+}
+EXPORT_SYMBOL(delete_from_page_cache);
+
+/*
+ * page_cache_tree_delete_batch - delete several pages from page cache
+ * @mapping: the mapping to which pages belong
+ * @pvec: pagevec with pages to delete
+ *
+ * The function walks over mapping->i_pages and removes pages passed in @pvec
+ * from the mapping. The function expects @pvec to be sorted by page index.
+ * It tolerates holes in @pvec (mapping entries at those indices are not
+ * modified). The function expects only THP head pages to be present in the
+ * @pvec and takes care to delete all corresponding tail pages from the
+ * mapping as well.
+ *
+ * The function expects the i_pages lock to be held.
+ */
+static void
+page_cache_tree_delete_batch(struct address_space *mapping,
+			     struct pagevec *pvec)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	int total_pages = 0;
+	int i = 0, tail_pages = 0;
+	struct page *page;
+	pgoff_t start;
+
+	start = pvec->pages[0]->index;
+	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
+		if (i >= pagevec_count(pvec) && !tail_pages)
+			break;
+		page = radix_tree_deref_slot_protected(slot,
+						       &mapping->i_pages.xa_lock);
+		if (radix_tree_exceptional_entry(page))
+			continue;
+		if (!tail_pages) {
+			/*
+			 * Some page got inserted in our range? Skip it. We
+			 * have our pages locked so they are protected from
+			 * being removed.
+			 */
+			if (page != pvec->pages[i])
+				continue;
+			WARN_ON_ONCE(!PageLocked(page));
+			if (PageTransHuge(page) && !PageHuge(page))
+				tail_pages = HPAGE_PMD_NR - 1;
+			page->mapping = NULL;
+			/*
+			 * Leave page->index set: truncation lookup relies
+			 * upon it
+			 */
+			i++;
+		} else {
+			tail_pages--;
+		}
+		radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
+		__radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
+				workingset_lookup_update(mapping));
+		total_pages++;
+	}
+	mapping->nrpages -= total_pages;
+}
+
+void delete_from_page_cache_batch(struct address_space *mapping,
+				  struct pagevec *pvec)
+{
+	int i;
+	unsigned long flags;
+
+	if (!pagevec_count(pvec))
+		return;
+
+	xa_lock_irqsave(&mapping->i_pages, flags);
+	for (i = 0; i < pagevec_count(pvec); i++) {
+		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
+
+		unaccount_page_cache_page(mapping, pvec->pages[i]);
+	}
+	page_cache_tree_delete_batch(mapping, pvec);
+	xa_unlock_irqrestore(&mapping->i_pages, flags);
+
+	for (i = 0; i < pagevec_count(pvec); i++)
+		page_cache_free_page(mapping, pvec->pages[i]);
+}
+
+int filemap_check_errors(struct address_space *mapping)
+{
+	int ret = 0;
+	/* Check for outstanding write errors */
+	if (test_bit(AS_ENOSPC, &mapping->flags) &&
+	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
+		ret = -ENOSPC;
+	if (test_bit(AS_EIO, &mapping->flags) &&
+	    test_and_clear_bit(AS_EIO, &mapping->flags))
+		ret = -EIO;
+	return ret;
+}
+EXPORT_SYMBOL(filemap_check_errors);
+
+static int filemap_check_and_keep_errors(struct address_space *mapping)
+{
+	/* Check for outstanding write errors */
+	if (test_bit(AS_EIO, &mapping->flags))
+		return -EIO;
+	if (test_bit(AS_ENOSPC, &mapping->flags))
+		return -ENOSPC;
+	return 0;
+}
+
+/**
+ * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
+ * @mapping:	address space structure to write
+ * @start:	offset in bytes where the range starts
+ * @end:	offset in bytes where the range ends (inclusive)
+ * @sync_mode:	enable synchronous operation
+ *
+ * Start writeback against all of a mapping's dirty pages that lie
+ * within the byte offsets <start, end> inclusive.
+ *
+ * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
+ * opposed to a regular memory cleansing writeback.  The difference between
+ * these two operations is that if a dirty page/buffer is encountered, it must
+ * be waited upon, and not just skipped over.
+ */
+int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
+				loff_t end, int sync_mode)
+{
+	int ret;
+	struct writeback_control wbc = {
+		.sync_mode = sync_mode,
+		.nr_to_write = LONG_MAX,
+		.range_start = start,
+		.range_end = end,
+	};
+
+	if (!mapping_cap_writeback_dirty(mapping))
+		return 0;
+
+	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
+	ret = do_writepages(mapping, &wbc);
+	wbc_detach_inode(&wbc);
+	return ret;
+}
+
+static inline int __filemap_fdatawrite(struct address_space *mapping,
+	int sync_mode)
+{
+	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
+}
+
+int filemap_fdatawrite(struct address_space *mapping)
+{
+	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
+}
+EXPORT_SYMBOL(filemap_fdatawrite);
+
+int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
+				loff_t end)
+{
+	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
+}
+EXPORT_SYMBOL(filemap_fdatawrite_range);
+
+/**
+ * filemap_flush - mostly a non-blocking flush
+ * @mapping:	target address_space
+ *
+ * This is a mostly non-blocking flush.  Not suitable for data-integrity
+ * purposes - I/O may not be started against all dirty pages.
+ */
+int filemap_flush(struct address_space *mapping)
+{
+	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
+}
+EXPORT_SYMBOL(filemap_flush);
+
+/**
+ * filemap_range_has_page - check if a page exists in range.
+ * @mapping:           address space within which to check
+ * @start_byte:        offset in bytes where the range starts
+ * @end_byte:          offset in bytes where the range ends (inclusive)
+ *
+ * Find at least one page in the range supplied, usually used to check if
+ * direct writing in this range will trigger a writeback.
+ */
+bool filemap_range_has_page(struct address_space *mapping,
+			   loff_t start_byte, loff_t end_byte)
+{
+	pgoff_t index = start_byte >> PAGE_SHIFT;
+	pgoff_t end = end_byte >> PAGE_SHIFT;
+	struct page *page;
+
+	if (end_byte < start_byte)
+		return false;
+
+	if (mapping->nrpages == 0)
+		return false;
+
+	if (!find_get_pages_range(mapping, &index, end, 1, &page))
+		return false;
+	put_page(page);
+	return true;
+}
+EXPORT_SYMBOL(filemap_range_has_page);
+
+static void __filemap_fdatawait_range(struct address_space *mapping,
+				     loff_t start_byte, loff_t end_byte)
+{
+	pgoff_t index = start_byte >> PAGE_SHIFT;
+	pgoff_t end = end_byte >> PAGE_SHIFT;
+	struct pagevec pvec;
+	int nr_pages;
+
+	if (end_byte < start_byte)
+		return;
+
+	pagevec_init(&pvec);
+	while (index <= end) {
+		unsigned i;
+
+		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
+				end, PAGECACHE_TAG_WRITEBACK);
+		if (!nr_pages)
+			break;
+
+		for (i = 0; i < nr_pages; i++) {
+			struct page *page = pvec.pages[i];
+
+			wait_on_page_writeback(page);
+			ClearPageError(page);
+		}
+		pagevec_release(&pvec);
+		cond_resched();
+	}
+}
+
+/**
+ * filemap_fdatawait_range - wait for writeback to complete
+ * @mapping:		address space structure to wait for
+ * @start_byte:		offset in bytes where the range starts
+ * @end_byte:		offset in bytes where the range ends (inclusive)
+ *
+ * Walk the list of under-writeback pages of the given address space
+ * in the given range and wait for all of them.  Check error status of
+ * the address space and return it.
+ *
+ * Since the error status of the address space is cleared by this function,
+ * callers are responsible for checking the return value and handling and/or
+ * reporting the error.
+ */
+int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
+			    loff_t end_byte)
+{
+	__filemap_fdatawait_range(mapping, start_byte, end_byte);
+	return filemap_check_errors(mapping);
+}
+EXPORT_SYMBOL(filemap_fdatawait_range);
+
+/**
+ * file_fdatawait_range - wait for writeback to complete
+ * @file:		file pointing to address space structure to wait for
+ * @start_byte:		offset in bytes where the range starts
+ * @end_byte:		offset in bytes where the range ends (inclusive)
+ *
+ * Walk the list of under-writeback pages of the address space that file
+ * refers to, in the given range and wait for all of them.  Check error
+ * status of the address space vs. the file->f_wb_err cursor and return it.
+ *
+ * Since the error status of the file is advanced by this function,
+ * callers are responsible for checking the return value and handling and/or
+ * reporting the error.
+ */
+int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
+{
+	struct address_space *mapping = file->f_mapping;
+
+	__filemap_fdatawait_range(mapping, start_byte, end_byte);
+	return file_check_and_advance_wb_err(file);
+}
+EXPORT_SYMBOL(file_fdatawait_range);
+
+/**
+ * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
+ * @mapping: address space structure to wait for
+ *
+ * Walk the list of under-writeback pages of the given address space
+ * and wait for all of them.  Unlike filemap_fdatawait(), this function
+ * does not clear error status of the address space.
+ *
+ * Use this function if callers don't handle errors themselves.  Expected
+ * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
+ * fsfreeze(8)
+ */
+int filemap_fdatawait_keep_errors(struct address_space *mapping)
+{
+	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
+	return filemap_check_and_keep_errors(mapping);
+}
+EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
+
+static bool mapping_needs_writeback(struct address_space *mapping)
+{
+	return (!dax_mapping(mapping) && mapping->nrpages) ||
+	    (dax_mapping(mapping) && mapping->nrexceptional);
+}
+
+int filemap_write_and_wait(struct address_space *mapping)
+{
+	int err = 0;
+
+	if (mapping_needs_writeback(mapping)) {
+		err = filemap_fdatawrite(mapping);
+		/*
+		 * Even if the above returned error, the pages may be
+		 * written partially (e.g. -ENOSPC), so we wait for it.
+		 * But the -EIO is special case, it may indicate the worst
+		 * thing (e.g. bug) happened, so we avoid waiting for it.
+		 */
+		if (err != -EIO) {
+			int err2 = filemap_fdatawait(mapping);
+			if (!err)
+				err = err2;
+		} else {
+			/* Clear any previously stored errors */
+			filemap_check_errors(mapping);
+		}
+	} else {
+		err = filemap_check_errors(mapping);
+	}
+	return err;
+}
+EXPORT_SYMBOL(filemap_write_and_wait);
+
+/**
+ * filemap_write_and_wait_range - write out & wait on a file range
+ * @mapping:	the address_space for the pages
+ * @lstart:	offset in bytes where the range starts
+ * @lend:	offset in bytes where the range ends (inclusive)
+ *
+ * Write out and wait upon file offsets lstart->lend, inclusive.
+ *
+ * Note that @lend is inclusive (describes the last byte to be written) so
+ * that this function can be used to write to the very end-of-file (end = -1).
+ */
+int filemap_write_and_wait_range(struct address_space *mapping,
+				 loff_t lstart, loff_t lend)
+{
+	int err = 0;
+
+	if (mapping_needs_writeback(mapping)) {
+		err = __filemap_fdatawrite_range(mapping, lstart, lend,
+						 WB_SYNC_ALL);
+		/* See comment of filemap_write_and_wait() */
+		if (err != -EIO) {
+			int err2 = filemap_fdatawait_range(mapping,
+						lstart, lend);
+			if (!err)
+				err = err2;
+		} else {
+			/* Clear any previously stored errors */
+			filemap_check_errors(mapping);
+		}
+	} else {
+		err = filemap_check_errors(mapping);
+	}
+	return err;
+}
+EXPORT_SYMBOL(filemap_write_and_wait_range);
+
+void __filemap_set_wb_err(struct address_space *mapping, int err)
+{
+	errseq_t eseq = errseq_set(&mapping->wb_err, err);
+
+	trace_filemap_set_wb_err(mapping, eseq);
+}
+EXPORT_SYMBOL(__filemap_set_wb_err);
+
+/**
+ * file_check_and_advance_wb_err - report wb error (if any) that was previously
+ * 				   and advance wb_err to current one
+ * @file: struct file on which the error is being reported
+ *
+ * When userland calls fsync (or something like nfsd does the equivalent), we
+ * want to report any writeback errors that occurred since the last fsync (or
+ * since the file was opened if there haven't been any).
+ *
+ * Grab the wb_err from the mapping. If it matches what we have in the file,
+ * then just quickly return 0. The file is all caught up.
+ *
+ * If it doesn't match, then take the mapping value, set the "seen" flag in
+ * it and try to swap it into place. If it works, or another task beat us
+ * to it with the new value, then update the f_wb_err and return the error
+ * portion. The error at this point must be reported via proper channels
+ * (a'la fsync, or NFS COMMIT operation, etc.).
+ *
+ * While we handle mapping->wb_err with atomic operations, the f_wb_err
+ * value is protected by the f_lock since we must ensure that it reflects
+ * the latest value swapped in for this file descriptor.
+ */
+int file_check_and_advance_wb_err(struct file *file)
+{
+	int err = 0;
+	errseq_t old = READ_ONCE(file->f_wb_err);
+	struct address_space *mapping = file->f_mapping;
+
+	/* Locklessly handle the common case where nothing has changed */
+	if (errseq_check(&mapping->wb_err, old)) {
+		/* Something changed, must use slow path */
+		spin_lock(&file->f_lock);
+		old = file->f_wb_err;
+		err = errseq_check_and_advance(&mapping->wb_err,
+						&file->f_wb_err);
+		trace_file_check_and_advance_wb_err(file, old);
+		spin_unlock(&file->f_lock);
+	}
+
+	/*
+	 * We're mostly using this function as a drop in replacement for
+	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
+	 * that the legacy code would have had on these flags.
+	 */
+	clear_bit(AS_EIO, &mapping->flags);
+	clear_bit(AS_ENOSPC, &mapping->flags);
+	return err;
+}
+EXPORT_SYMBOL(file_check_and_advance_wb_err);
+
+/**
+ * file_write_and_wait_range - write out & wait on a file range
+ * @file:	file pointing to address_space with pages
+ * @lstart:	offset in bytes where the range starts
+ * @lend:	offset in bytes where the range ends (inclusive)
+ *
+ * Write out and wait upon file offsets lstart->lend, inclusive.
+ *
+ * Note that @lend is inclusive (describes the last byte to be written) so
+ * that this function can be used to write to the very end-of-file (end = -1).
+ *
+ * After writing out and waiting on the data, we check and advance the
+ * f_wb_err cursor to the latest value, and return any errors detected there.
+ */
+int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
+{
+	int err = 0, err2;
+	struct address_space *mapping = file->f_mapping;
+
+	if (mapping_needs_writeback(mapping)) {
+		err = __filemap_fdatawrite_range(mapping, lstart, lend,
+						 WB_SYNC_ALL);
+		/* See comment of filemap_write_and_wait() */
+		if (err != -EIO)
+			__filemap_fdatawait_range(mapping, lstart, lend);
+	}
+	err2 = file_check_and_advance_wb_err(file);
+	if (!err)
+		err = err2;
+	return err;
+}
+EXPORT_SYMBOL(file_write_and_wait_range);
+
+/**
+ * replace_page_cache_page - replace a pagecache page with a new one
+ * @old:	page to be replaced
+ * @new:	page to replace with
+ * @gfp_mask:	allocation mode
+ *
+ * This function replaces a page in the pagecache with a new one.  On
+ * success it acquires the pagecache reference for the new page and
+ * drops it for the old page.  Both the old and new pages must be
+ * locked.  This function does not add the new page to the LRU, the
+ * caller must do that.
+ *
+ * The remove + add is atomic.  The only way this function can fail is
+ * memory allocation failure.
+ */
+int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
+{
+	int error;
+
+	VM_BUG_ON_PAGE(!PageLocked(old), old);
+	VM_BUG_ON_PAGE(!PageLocked(new), new);
+	VM_BUG_ON_PAGE(new->mapping, new);
+
+	error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
+	if (!error) {
+		struct address_space *mapping = old->mapping;
+		void (*freepage)(struct page *);
+		unsigned long flags;
+
+		pgoff_t offset = old->index;
+		freepage = mapping->a_ops->freepage;
+
+		get_page(new);
+		new->mapping = mapping;
+		new->index = offset;
+
+		xa_lock_irqsave(&mapping->i_pages, flags);
+		__delete_from_page_cache(old, NULL);
+		error = page_cache_tree_insert(mapping, new, NULL);
+		BUG_ON(error);
+
+		/*
+		 * hugetlb pages do not participate in page cache accounting.
+		 */
+		if (!PageHuge(new))
+			__inc_node_page_state(new, NR_FILE_PAGES);
+		if (PageSwapBacked(new))
+			__inc_node_page_state(new, NR_SHMEM);
+		xa_unlock_irqrestore(&mapping->i_pages, flags);
+		mem_cgroup_migrate(old, new);
+		radix_tree_preload_end();
+		if (freepage)
+			freepage(old);
+		put_page(old);
+	}
+
+	return error;
+}
+EXPORT_SYMBOL_GPL(replace_page_cache_page);
+
+static int __add_to_page_cache_locked(struct page *page,
+				      struct address_space *mapping,
+				      pgoff_t offset, gfp_t gfp_mask,
+				      void **shadowp)
+{
+	int huge = PageHuge(page);
+	struct mem_cgroup *memcg;
+	int error;
+
+	VM_BUG_ON_PAGE(!PageLocked(page), page);
+	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
+
+	if (!huge) {
+		error = mem_cgroup_try_charge(page, current->mm,
+					      gfp_mask, &memcg, false);
+		if (error)
+			return error;
+	}
+
+	error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
+	if (error) {
+		if (!huge)
+			mem_cgroup_cancel_charge(page, memcg, false);
+		return error;
+	}
+
+	get_page(page);
+	page->mapping = mapping;
+	page->index = offset;
+
+	xa_lock_irq(&mapping->i_pages);
+	error = page_cache_tree_insert(mapping, page, shadowp);
+	radix_tree_preload_end();
+	if (unlikely(error))
+		goto err_insert;
+
+	/* hugetlb pages do not participate in page cache accounting. */
+	if (!huge)
+		__inc_node_page_state(page, NR_FILE_PAGES);
+	xa_unlock_irq(&mapping->i_pages);
+	if (!huge)
+		mem_cgroup_commit_charge(page, memcg, false, false);
+	trace_mm_filemap_add_to_page_cache(page);
+	return 0;
+err_insert:
+	page->mapping = NULL;
+	/* Leave page->index set: truncation relies upon it */
+	xa_unlock_irq(&mapping->i_pages);
+	if (!huge)
+		mem_cgroup_cancel_charge(page, memcg, false);
+	put_page(page);
+	return error;
+}
+
+/**
+ * add_to_page_cache_locked - add a locked page to the pagecache
+ * @page:	page to add
+ * @mapping:	the page's address_space
+ * @offset:	page index
+ * @gfp_mask:	page allocation mode
+ *
+ * This function is used to add a page to the pagecache. It must be locked.
+ * This function does not add the page to the LRU.  The caller must do that.
+ */
+int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
+		pgoff_t offset, gfp_t gfp_mask)
+{
+	return __add_to_page_cache_locked(page, mapping, offset,
+					  gfp_mask, NULL);
+}
+EXPORT_SYMBOL(add_to_page_cache_locked);
+
+int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
+				pgoff_t offset, gfp_t gfp_mask)
+{
+	void *shadow = NULL;
+	int ret;
+
+	__SetPageLocked(page);
+	ret = __add_to_page_cache_locked(page, mapping, offset,
+					 gfp_mask, &shadow);
+	if (unlikely(ret))
+		__ClearPageLocked(page);
+	else {
+		/*
+		 * The page might have been evicted from cache only
+		 * recently, in which case it should be activated like
+		 * any other repeatedly accessed page.
+		 * The exception is pages getting rewritten; evicting other
+		 * data from the working set, only to cache data that will
+		 * get overwritten with something else, is a waste of memory.
+		 */
+		if (!(gfp_mask & __GFP_WRITE) &&
+		    shadow && workingset_refault(shadow)) {
+			SetPageActive(page);
+			workingset_activation(page);
+		} else
+			ClearPageActive(page);
+		lru_cache_add(page);
+	}
+	return ret;
+}
+EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
+
+#ifdef CONFIG_NUMA
+struct page *__page_cache_alloc(gfp_t gfp)
+{
+	int n;
+	struct page *page;
+
+	if (cpuset_do_page_mem_spread()) {
+		unsigned int cpuset_mems_cookie;
+		do {
+			cpuset_mems_cookie = read_mems_allowed_begin();
+			n = cpuset_mem_spread_node();
+			page = __alloc_pages_node(n, gfp, 0);
+		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
+
+		return page;
+	}
+	return alloc_pages(gfp, 0);
+}
+EXPORT_SYMBOL(__page_cache_alloc);
+#endif
+
+/*
+ * In order to wait for pages to become available there must be
+ * waitqueues associated with pages. By using a hash table of
+ * waitqueues where the bucket discipline is to maintain all
+ * waiters on the same queue and wake all when any of the pages
+ * become available, and for the woken contexts to check to be
+ * sure the appropriate page became available, this saves space
+ * at a cost of "thundering herd" phenomena during rare hash
+ * collisions.
+ */
+#define PAGE_WAIT_TABLE_BITS 8
+#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
+static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
+
+static wait_queue_head_t *page_waitqueue(struct page *page)
+{
+	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
+}
+
+void __init pagecache_init(void)
+{
+	int i;
+
+	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
+		init_waitqueue_head(&page_wait_table[i]);
+
+	page_writeback_init();
+}
+
+/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
+struct wait_page_key {
+	struct page *page;
+	int bit_nr;
+	int page_match;
+};
+
+struct wait_page_queue {
+	struct page *page;
+	int bit_nr;
+	wait_queue_entry_t wait;
+};
+
+static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
+{
+	struct wait_page_key *key = arg;
+	struct wait_page_queue *wait_page
+		= container_of(wait, struct wait_page_queue, wait);
+
+	if (wait_page->page != key->page)
+	       return 0;
+	key->page_match = 1;
+
+	if (wait_page->bit_nr != key->bit_nr)
+		return 0;
+
+	/* Stop walking if it's locked */
+	if (test_bit(key->bit_nr, &key->page->flags))
+		return -1;
+
+	return autoremove_wake_function(wait, mode, sync, key);
+}
+
+static void wake_up_page_bit(struct page *page, int bit_nr)
+{
+	wait_queue_head_t *q = page_waitqueue(page);
+	struct wait_page_key key;
+	unsigned long flags;
+	wait_queue_entry_t bookmark;
+
+	key.page = page;
+	key.bit_nr = bit_nr;
+	key.page_match = 0;
+
+	bookmark.flags = 0;
+	bookmark.private = NULL;
+	bookmark.func = NULL;
+	INIT_LIST_HEAD(&bookmark.entry);
+
+	spin_lock_irqsave(&q->lock, flags);
+	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
+
+	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
+		/*
+		 * Take a breather from holding the lock,
+		 * allow pages that finish wake up asynchronously
+		 * to acquire the lock and remove themselves
+		 * from wait queue
+		 */
+		spin_unlock_irqrestore(&q->lock, flags);
+		cpu_relax();
+		spin_lock_irqsave(&q->lock, flags);
+		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
+	}
+
+	/*
+	 * It is possible for other pages to have collided on the waitqueue
+	 * hash, so in that case check for a page match. That prevents a long-
+	 * term waiter
+	 *
+	 * It is still possible to miss a case here, when we woke page waiters
+	 * and removed them from the waitqueue, but there are still other
+	 * page waiters.
+	 */
+	if (!waitqueue_active(q) || !key.page_match) {
+		ClearPageWaiters(page);
+		/*
+		 * It's possible to miss clearing Waiters here, when we woke
+		 * our page waiters, but the hashed waitqueue has waiters for
+		 * other pages on it.
+		 *
+		 * That's okay, it's a rare case. The next waker will clear it.
+		 */
+	}
+	spin_unlock_irqrestore(&q->lock, flags);
+}
+
+static void wake_up_page(struct page *page, int bit)
+{
+	if (!PageWaiters(page))
+		return;
+	wake_up_page_bit(page, bit);
+}
+
+static inline int wait_on_page_bit_common(wait_queue_head_t *q,
+		struct page *page, int bit_nr, int state, bool lock)
+{
+	struct wait_page_queue wait_page;
+	wait_queue_entry_t *wait = &wait_page.wait;
+	int ret = 0;
+
+	init_wait(wait);
+	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
+	wait->func = wake_page_function;
+	wait_page.page = page;
+	wait_page.bit_nr = bit_nr;
+
+	for (;;) {
+		spin_lock_irq(&q->lock);
+
+		if (likely(list_empty(&wait->entry))) {
+			__add_wait_queue_entry_tail(q, wait);
+			SetPageWaiters(page);
+		}
+
+		set_current_state(state);
+
+		spin_unlock_irq(&q->lock);
+
+		if (likely(test_bit(bit_nr, &page->flags))) {
+			io_schedule();
+		}
+
+		if (lock) {
+			if (!test_and_set_bit_lock(bit_nr, &page->flags))
+				break;
+		} else {
+			if (!test_bit(bit_nr, &page->flags))
+				break;
+		}
+
+		if (unlikely(signal_pending_state(state, current))) {
+			ret = -EINTR;
+			break;
+		}
+	}
+
+	finish_wait(q, wait);
+
+	/*
+	 * A signal could leave PageWaiters set. Clearing it here if
+	 * !waitqueue_active would be possible (by open-coding finish_wait),
+	 * but still fail to catch it in the case of wait hash collision. We
+	 * already can fail to clear wait hash collision cases, so don't
+	 * bother with signals either.
+	 */
+
+	return ret;
+}
+
+void wait_on_page_bit(struct page *page, int bit_nr)
+{
+	wait_queue_head_t *q = page_waitqueue(page);
+	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
+}
+EXPORT_SYMBOL(wait_on_page_bit);
+
+int wait_on_page_bit_killable(struct page *page, int bit_nr)
+{
+	wait_queue_head_t *q = page_waitqueue(page);
+	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
+}
+EXPORT_SYMBOL(wait_on_page_bit_killable);
+
+/**
+ * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
+ * @page: Page defining the wait queue of interest
+ * @waiter: Waiter to add to the queue
+ *
+ * Add an arbitrary @waiter to the wait queue for the nominated @page.
+ */
+void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
+{
+	wait_queue_head_t *q = page_waitqueue(page);
+	unsigned long flags;
+
+	spin_lock_irqsave(&q->lock, flags);
+	__add_wait_queue_entry_tail(q, waiter);
+	SetPageWaiters(page);
+	spin_unlock_irqrestore(&q->lock, flags);
+}
+EXPORT_SYMBOL_GPL(add_page_wait_queue);
+
+#ifndef clear_bit_unlock_is_negative_byte
+
+/*
+ * PG_waiters is the high bit in the same byte as PG_lock.
+ *
+ * On x86 (and on many other architectures), we can clear PG_lock and
+ * test the sign bit at the same time. But if the architecture does
+ * not support that special operation, we just do this all by hand
+ * instead.
+ *
+ * The read of PG_waiters has to be after (or concurrently with) PG_locked
+ * being cleared, but a memory barrier should be unneccssary since it is
+ * in the same byte as PG_locked.
+ */
+static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
+{
+	clear_bit_unlock(nr, mem);
+	/* smp_mb__after_atomic(); */
+	return test_bit(PG_waiters, mem);
+}
+
+#endif
+
+/**
+ * unlock_page - unlock a locked page
+ * @page: the page
+ *
+ * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
+ * Also wakes sleepers in wait_on_page_writeback() because the wakeup
+ * mechanism between PageLocked pages and PageWriteback pages is shared.
+ * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
+ *
+ * Note that this depends on PG_waiters being the sign bit in the byte
+ * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
+ * clear the PG_locked bit and test PG_waiters at the same time fairly
+ * portably (architectures that do LL/SC can test any bit, while x86 can
+ * test the sign bit).
+ */
+void unlock_page(struct page *page)
+{
+	BUILD_BUG_ON(PG_waiters != 7);
+	page = compound_head(page);
+	VM_BUG_ON_PAGE(!PageLocked(page), page);
+	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
+		wake_up_page_bit(page, PG_locked);
+}
+EXPORT_SYMBOL(unlock_page);
+
+/**
+ * end_page_writeback - end writeback against a page
+ * @page: the page
+ */
+void end_page_writeback(struct page *page)
+{
+	/*
+	 * TestClearPageReclaim could be used here but it is an atomic
+	 * operation and overkill in this particular case. Failing to
+	 * shuffle a page marked for immediate reclaim is too mild to
+	 * justify taking an atomic operation penalty at the end of
+	 * ever page writeback.
+	 */
+	if (PageReclaim(page)) {
+		ClearPageReclaim(page);
+		rotate_reclaimable_page(page);
+	}
+
+	if (!test_clear_page_writeback(page))
+		BUG();
+
+	smp_mb__after_atomic();
+	wake_up_page(page, PG_writeback);
+}
+EXPORT_SYMBOL(end_page_writeback);
+
+/*
+ * After completing I/O on a page, call this routine to update the page
+ * flags appropriately
+ */
+void page_endio(struct page *page, bool is_write, int err)
+{
+	if (!is_write) {
+		if (!err) {
+			SetPageUptodate(page);
+		} else {
+			ClearPageUptodate(page);
+			SetPageError(page);
+		}
+		unlock_page(page);
+	} else {
+		if (err) {
+			struct address_space *mapping;
+
+			SetPageError(page);
+			mapping = page_mapping(page);
+			if (mapping)
+				mapping_set_error(mapping, err);
+		}
+		end_page_writeback(page);
+	}
+}
+EXPORT_SYMBOL_GPL(page_endio);
+
+/**
+ * __lock_page - get a lock on the page, assuming we need to sleep to get it
+ * @__page: the page to lock
+ */
+void __lock_page(struct page *__page)
+{
+	struct page *page = compound_head(__page);
+	wait_queue_head_t *q = page_waitqueue(page);
+	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
+}
+EXPORT_SYMBOL(__lock_page);
+
+int __lock_page_killable(struct page *__page)
+{
+	struct page *page = compound_head(__page);
+	wait_queue_head_t *q = page_waitqueue(page);
+	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
+}
+EXPORT_SYMBOL_GPL(__lock_page_killable);
+
+/*
+ * Return values:
+ * 1 - page is locked; mmap_sem is still held.
+ * 0 - page is not locked.
+ *     mmap_sem has been released (up_read()), unless flags had both
+ *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
+ *     which case mmap_sem is still held.
+ *
+ * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
+ * with the page locked and the mmap_sem unperturbed.
+ */
+int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
+			 unsigned int flags)
+{
+	if (flags & FAULT_FLAG_ALLOW_RETRY) {
+		/*
+		 * CAUTION! In this case, mmap_sem is not released
+		 * even though return 0.
+		 */
+		if (flags & FAULT_FLAG_RETRY_NOWAIT)
+			return 0;
+
+		up_read(&mm->mmap_sem);
+		if (flags & FAULT_FLAG_KILLABLE)
+			wait_on_page_locked_killable(page);
+		else
+			wait_on_page_locked(page);
+		return 0;
+	} else {
+		if (flags & FAULT_FLAG_KILLABLE) {
+			int ret;
+
+			ret = __lock_page_killable(page);
+			if (ret) {
+				up_read(&mm->mmap_sem);
+				return 0;
+			}
+		} else
+			__lock_page(page);
+		return 1;
+	}
+}
+
+/**
+ * page_cache_next_hole - find the next hole (not-present entry)
+ * @mapping: mapping
+ * @index: index
+ * @max_scan: maximum range to search
+ *
+ * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
+ * lowest indexed hole.
+ *
+ * Returns: the index of the hole if found, otherwise returns an index
+ * outside of the set specified (in which case 'return - index >=
+ * max_scan' will be true). In rare cases of index wrap-around, 0 will
+ * be returned.
+ *
+ * page_cache_next_hole may be called under rcu_read_lock. However,
+ * like radix_tree_gang_lookup, this will not atomically search a
+ * snapshot of the tree at a single point in time. For example, if a
+ * hole is created at index 5, then subsequently a hole is created at
+ * index 10, page_cache_next_hole covering both indexes may return 10
+ * if called under rcu_read_lock.
+ */
+pgoff_t page_cache_next_hole(struct address_space *mapping,
+			     pgoff_t index, unsigned long max_scan)
+{
+	unsigned long i;
+
+	for (i = 0; i < max_scan; i++) {
+		struct page *page;
+
+		page = radix_tree_lookup(&mapping->i_pages, index);
+		if (!page || radix_tree_exceptional_entry(page))
+			break;
+		index++;
+		if (index == 0)
+			break;
+	}
+
+	return index;
+}
+EXPORT_SYMBOL(page_cache_next_hole);
+
+/**
+ * page_cache_prev_hole - find the prev hole (not-present entry)
+ * @mapping: mapping
+ * @index: index
+ * @max_scan: maximum range to search
+ *
+ * Search backwards in the range [max(index-max_scan+1, 0), index] for
+ * the first hole.
+ *
+ * Returns: the index of the hole if found, otherwise returns an index
+ * outside of the set specified (in which case 'index - return >=
+ * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
+ * will be returned.
+ *
+ * page_cache_prev_hole may be called under rcu_read_lock. However,
+ * like radix_tree_gang_lookup, this will not atomically search a
+ * snapshot of the tree at a single point in time. For example, if a
+ * hole is created at index 10, then subsequently a hole is created at
+ * index 5, page_cache_prev_hole covering both indexes may return 5 if
+ * called under rcu_read_lock.
+ */
+pgoff_t page_cache_prev_hole(struct address_space *mapping,
+			     pgoff_t index, unsigned long max_scan)
+{
+	unsigned long i;
+
+	for (i = 0; i < max_scan; i++) {
+		struct page *page;
+
+		page = radix_tree_lookup(&mapping->i_pages, index);
+		if (!page || radix_tree_exceptional_entry(page))
+			break;
+		index--;
+		if (index == ULONG_MAX)
+			break;
+	}
+
+	return index;
+}
+EXPORT_SYMBOL(page_cache_prev_hole);
+
+/**
+ * find_get_entry - find and get a page cache entry
+ * @mapping: the address_space to search
+ * @offset: the page cache index
+ *
+ * Looks up the page cache slot at @mapping & @offset.  If there is a
+ * page cache page, it is returned with an increased refcount.
+ *
+ * If the slot holds a shadow entry of a previously evicted page, or a
+ * swap entry from shmem/tmpfs, it is returned.
+ *
+ * Otherwise, %NULL is returned.
+ */
+struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
+{
+	void **pagep;
+	struct page *head, *page;
+
+	rcu_read_lock();
+repeat:
+	page = NULL;
+	pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
+	if (pagep) {
+		page = radix_tree_deref_slot(pagep);
+		if (unlikely(!page))
+			goto out;
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page))
+				goto repeat;
+			/*
+			 * A shadow entry of a recently evicted page,
+			 * or a swap entry from shmem/tmpfs.  Return
+			 * it without attempting to raise page count.
+			 */
+			goto out;
+		}
+
+		head = compound_head(page);
+		if (!page_cache_get_speculative(head))
+			goto repeat;
+
+		/* The page was split under us? */
+		if (compound_head(page) != head) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/*
+		 * Has the page moved?
+		 * This is part of the lockless pagecache protocol. See
+		 * include/linux/pagemap.h for details.
+		 */
+		if (unlikely(page != *pagep)) {
+			put_page(head);
+			goto repeat;
+		}
+	}
+out:
+	rcu_read_unlock();
+
+	return page;
+}
+EXPORT_SYMBOL(find_get_entry);
+
+/**
+ * find_lock_entry - locate, pin and lock a page cache entry
+ * @mapping: the address_space to search
+ * @offset: the page cache index
+ *
+ * Looks up the page cache slot at @mapping & @offset.  If there is a
+ * page cache page, it is returned locked and with an increased
+ * refcount.
+ *
+ * If the slot holds a shadow entry of a previously evicted page, or a
+ * swap entry from shmem/tmpfs, it is returned.
+ *
+ * Otherwise, %NULL is returned.
+ *
+ * find_lock_entry() may sleep.
+ */
+struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
+{
+	struct page *page;
+
+repeat:
+	page = find_get_entry(mapping, offset);
+	if (page && !radix_tree_exception(page)) {
+		lock_page(page);
+		/* Has the page been truncated? */
+		if (unlikely(page_mapping(page) != mapping)) {
+			unlock_page(page);
+			put_page(page);
+			goto repeat;
+		}
+		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
+	}
+	return page;
+}
+EXPORT_SYMBOL(find_lock_entry);
+
+/**
+ * pagecache_get_page - find and get a page reference
+ * @mapping: the address_space to search
+ * @offset: the page index
+ * @fgp_flags: PCG flags
+ * @gfp_mask: gfp mask to use for the page cache data page allocation
+ *
+ * Looks up the page cache slot at @mapping & @offset.
+ *
+ * PCG flags modify how the page is returned.
+ *
+ * @fgp_flags can be:
+ *
+ * - FGP_ACCESSED: the page will be marked accessed
+ * - FGP_LOCK: Page is return locked
+ * - FGP_CREAT: If page is not present then a new page is allocated using
+ *   @gfp_mask and added to the page cache and the VM's LRU
+ *   list. The page is returned locked and with an increased
+ *   refcount. Otherwise, NULL is returned.
+ *
+ * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
+ * if the GFP flags specified for FGP_CREAT are atomic.
+ *
+ * If there is a page cache page, it is returned with an increased refcount.
+ */
+struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
+	int fgp_flags, gfp_t gfp_mask)
+{
+	struct page *page;
+
+repeat:
+	page = find_get_entry(mapping, offset);
+	if (radix_tree_exceptional_entry(page))
+		page = NULL;
+	if (!page)
+		goto no_page;
+
+	if (fgp_flags & FGP_LOCK) {
+		if (fgp_flags & FGP_NOWAIT) {
+			if (!trylock_page(page)) {
+				put_page(page);
+				return NULL;
+			}
+		} else {
+			lock_page(page);
+		}
+
+		/* Has the page been truncated? */
+		if (unlikely(page->mapping != mapping)) {
+			unlock_page(page);
+			put_page(page);
+			goto repeat;
+		}
+		VM_BUG_ON_PAGE(page->index != offset, page);
+	}
+
+	if (page && (fgp_flags & FGP_ACCESSED))
+		mark_page_accessed(page);
+
+no_page:
+	if (!page && (fgp_flags & FGP_CREAT)) {
+		int err;
+		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
+			gfp_mask |= __GFP_WRITE;
+		if (fgp_flags & FGP_NOFS)
+			gfp_mask &= ~__GFP_FS;
+
+		page = __page_cache_alloc(gfp_mask);
+		if (!page)
+			return NULL;
+
+		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
+			fgp_flags |= FGP_LOCK;
+
+		/* Init accessed so avoid atomic mark_page_accessed later */
+		if (fgp_flags & FGP_ACCESSED)
+			__SetPageReferenced(page);
+
+		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
+		if (unlikely(err)) {
+			put_page(page);
+			page = NULL;
+			if (err == -EEXIST)
+				goto repeat;
+		}
+	}
+
+	return page;
+}
+EXPORT_SYMBOL(pagecache_get_page);
+
+/**
+ * find_get_entries - gang pagecache lookup
+ * @mapping:	The address_space to search
+ * @start:	The starting page cache index
+ * @nr_entries:	The maximum number of entries
+ * @entries:	Where the resulting entries are placed
+ * @indices:	The cache indices corresponding to the entries in @entries
+ *
+ * find_get_entries() will search for and return a group of up to
+ * @nr_entries entries in the mapping.  The entries are placed at
+ * @entries.  find_get_entries() takes a reference against any actual
+ * pages it returns.
+ *
+ * The search returns a group of mapping-contiguous page cache entries
+ * with ascending indexes.  There may be holes in the indices due to
+ * not-present pages.
+ *
+ * Any shadow entries of evicted pages, or swap entries from
+ * shmem/tmpfs, are included in the returned array.
+ *
+ * find_get_entries() returns the number of pages and shadow entries
+ * which were found.
+ */
+unsigned find_get_entries(struct address_space *mapping,
+			  pgoff_t start, unsigned int nr_entries,
+			  struct page **entries, pgoff_t *indices)
+{
+	void **slot;
+	unsigned int ret = 0;
+	struct radix_tree_iter iter;
+
+	if (!nr_entries)
+		return 0;
+
+	rcu_read_lock();
+	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
+		struct page *head, *page;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		if (unlikely(!page))
+			continue;
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				slot = radix_tree_iter_retry(&iter);
+				continue;
+			}
+			/*
+			 * A shadow entry of a recently evicted page, a swap
+			 * entry from shmem/tmpfs or a DAX entry.  Return it
+			 * without attempting to raise page count.
+			 */
+			goto export;
+		}
+
+		head = compound_head(page);
+		if (!page_cache_get_speculative(head))
+			goto repeat;
+
+		/* The page was split under us? */
+		if (compound_head(page) != head) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			put_page(head);
+			goto repeat;
+		}
+export:
+		indices[ret] = iter.index;
+		entries[ret] = page;
+		if (++ret == nr_entries)
+			break;
+	}
+	rcu_read_unlock();
+	return ret;
+}
+
+/**
+ * find_get_pages_range - gang pagecache lookup
+ * @mapping:	The address_space to search
+ * @start:	The starting page index
+ * @end:	The final page index (inclusive)
+ * @nr_pages:	The maximum number of pages
+ * @pages:	Where the resulting pages are placed
+ *
+ * find_get_pages_range() will search for and return a group of up to @nr_pages
+ * pages in the mapping starting at index @start and up to index @end
+ * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
+ * a reference against the returned pages.
+ *
+ * The search returns a group of mapping-contiguous pages with ascending
+ * indexes.  There may be holes in the indices due to not-present pages.
+ * We also update @start to index the next page for the traversal.
+ *
+ * find_get_pages_range() returns the number of pages which were found. If this
+ * number is smaller than @nr_pages, the end of specified range has been
+ * reached.
+ */
+unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
+			      pgoff_t end, unsigned int nr_pages,
+			      struct page **pages)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	unsigned ret = 0;
+
+	if (unlikely(!nr_pages))
+		return 0;
+
+	rcu_read_lock();
+	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
+		struct page *head, *page;
+
+		if (iter.index > end)
+			break;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		if (unlikely(!page))
+			continue;
+
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				slot = radix_tree_iter_retry(&iter);
+				continue;
+			}
+			/*
+			 * A shadow entry of a recently evicted page,
+			 * or a swap entry from shmem/tmpfs.  Skip
+			 * over it.
+			 */
+			continue;
+		}
+
+		head = compound_head(page);
+		if (!page_cache_get_speculative(head))
+			goto repeat;
+
+		/* The page was split under us? */
+		if (compound_head(page) != head) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			put_page(head);
+			goto repeat;
+		}
+
+		pages[ret] = page;
+		if (++ret == nr_pages) {
+			*start = pages[ret - 1]->index + 1;
+			goto out;
+		}
+	}
+
+	/*
+	 * We come here when there is no page beyond @end. We take care to not
+	 * overflow the index @start as it confuses some of the callers. This
+	 * breaks the iteration when there is page at index -1 but that is
+	 * already broken anyway.
+	 */
+	if (end == (pgoff_t)-1)
+		*start = (pgoff_t)-1;
+	else
+		*start = end + 1;
+out:
+	rcu_read_unlock();
+
+	return ret;
+}
+
+/**
+ * find_get_pages_contig - gang contiguous pagecache lookup
+ * @mapping:	The address_space to search
+ * @index:	The starting page index
+ * @nr_pages:	The maximum number of pages
+ * @pages:	Where the resulting pages are placed
+ *
+ * find_get_pages_contig() works exactly like find_get_pages(), except
+ * that the returned number of pages are guaranteed to be contiguous.
+ *
+ * find_get_pages_contig() returns the number of pages which were found.
+ */
+unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
+			       unsigned int nr_pages, struct page **pages)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	unsigned int ret = 0;
+
+	if (unlikely(!nr_pages))
+		return 0;
+
+	rcu_read_lock();
+	radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
+		struct page *head, *page;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		/* The hole, there no reason to continue */
+		if (unlikely(!page))
+			break;
+
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				slot = radix_tree_iter_retry(&iter);
+				continue;
+			}
+			/*
+			 * A shadow entry of a recently evicted page,
+			 * or a swap entry from shmem/tmpfs.  Stop
+			 * looking for contiguous pages.
+			 */
+			break;
+		}
+
+		head = compound_head(page);
+		if (!page_cache_get_speculative(head))
+			goto repeat;
+
+		/* The page was split under us? */
+		if (compound_head(page) != head) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/*
+		 * must check mapping and index after taking the ref.
+		 * otherwise we can get both false positives and false
+		 * negatives, which is just confusing to the caller.
+		 */
+		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
+			put_page(page);
+			break;
+		}
+
+		pages[ret] = page;
+		if (++ret == nr_pages)
+			break;
+	}
+	rcu_read_unlock();
+	return ret;
+}
+EXPORT_SYMBOL(find_get_pages_contig);
+
+/**
+ * find_get_pages_range_tag - find and return pages in given range matching @tag
+ * @mapping:	the address_space to search
+ * @index:	the starting page index
+ * @end:	The final page index (inclusive)
+ * @tag:	the tag index
+ * @nr_pages:	the maximum number of pages
+ * @pages:	where the resulting pages are placed
+ *
+ * Like find_get_pages, except we only return pages which are tagged with
+ * @tag.   We update @index to index the next page for the traversal.
+ */
+unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
+			pgoff_t end, int tag, unsigned int nr_pages,
+			struct page **pages)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	unsigned ret = 0;
+
+	if (unlikely(!nr_pages))
+		return 0;
+
+	rcu_read_lock();
+	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
+		struct page *head, *page;
+
+		if (iter.index > end)
+			break;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		if (unlikely(!page))
+			continue;
+
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				slot = radix_tree_iter_retry(&iter);
+				continue;
+			}
+			/*
+			 * A shadow entry of a recently evicted page.
+			 *
+			 * Those entries should never be tagged, but
+			 * this tree walk is lockless and the tags are
+			 * looked up in bulk, one radix tree node at a
+			 * time, so there is a sizable window for page
+			 * reclaim to evict a page we saw tagged.
+			 *
+			 * Skip over it.
+			 */
+			continue;
+		}
+
+		head = compound_head(page);
+		if (!page_cache_get_speculative(head))
+			goto repeat;
+
+		/* The page was split under us? */
+		if (compound_head(page) != head) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			put_page(head);
+			goto repeat;
+		}
+
+		pages[ret] = page;
+		if (++ret == nr_pages) {
+			*index = pages[ret - 1]->index + 1;
+			goto out;
+		}
+	}
+
+	/*
+	 * We come here when we got at @end. We take care to not overflow the
+	 * index @index as it confuses some of the callers. This breaks the
+	 * iteration when there is page at index -1 but that is already broken
+	 * anyway.
+	 */
+	if (end == (pgoff_t)-1)
+		*index = (pgoff_t)-1;
+	else
+		*index = end + 1;
+out:
+	rcu_read_unlock();
+
+	return ret;
+}
+EXPORT_SYMBOL(find_get_pages_range_tag);
+
+/**
+ * find_get_entries_tag - find and return entries that match @tag
+ * @mapping:	the address_space to search
+ * @start:	the starting page cache index
+ * @tag:	the tag index
+ * @nr_entries:	the maximum number of entries
+ * @entries:	where the resulting entries are placed
+ * @indices:	the cache indices corresponding to the entries in @entries
+ *
+ * Like find_get_entries, except we only return entries which are tagged with
+ * @tag.
+ */
+unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
+			int tag, unsigned int nr_entries,
+			struct page **entries, pgoff_t *indices)
+{
+	void **slot;
+	unsigned int ret = 0;
+	struct radix_tree_iter iter;
+
+	if (!nr_entries)
+		return 0;
+
+	rcu_read_lock();
+	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
+		struct page *head, *page;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		if (unlikely(!page))
+			continue;
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				slot = radix_tree_iter_retry(&iter);
+				continue;
+			}
+
+			/*
+			 * A shadow entry of a recently evicted page, a swap
+			 * entry from shmem/tmpfs or a DAX entry.  Return it
+			 * without attempting to raise page count.
+			 */
+			goto export;
+		}
+
+		head = compound_head(page);
+		if (!page_cache_get_speculative(head))
+			goto repeat;
+
+		/* The page was split under us? */
+		if (compound_head(page) != head) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			put_page(head);
+			goto repeat;
+		}
+export:
+		indices[ret] = iter.index;
+		entries[ret] = page;
+		if (++ret == nr_entries)
+			break;
+	}
+	rcu_read_unlock();
+	return ret;
+}
+EXPORT_SYMBOL(find_get_entries_tag);
+
+/*
+ * CD/DVDs are error prone. When a medium error occurs, the driver may fail
+ * a _large_ part of the i/o request. Imagine the worst scenario:
+ *
+ *      ---R__________________________________________B__________
+ *         ^ reading here                             ^ bad block(assume 4k)
+ *
+ * read(R) => miss => readahead(R...B) => media error => frustrating retries
+ * => failing the whole request => read(R) => read(R+1) =>
+ * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
+ * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
+ * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
+ *
+ * It is going insane. Fix it by quickly scaling down the readahead size.
+ */
+static void shrink_readahead_size_eio(struct file *filp,
+					struct file_ra_state *ra)
+{
+	ra->ra_pages /= 4;
+}
+
+/**
+ * generic_file_buffered_read - generic file read routine
+ * @iocb:	the iocb to read
+ * @iter:	data destination
+ * @written:	already copied
+ *
+ * This is a generic file read routine, and uses the
+ * mapping->a_ops->readpage() function for the actual low-level stuff.
+ *
+ * This is really ugly. But the goto's actually try to clarify some
+ * of the logic when it comes to error handling etc.
+ */
+static ssize_t generic_file_buffered_read(struct kiocb *iocb,
+		struct iov_iter *iter, ssize_t written)
+{
+	struct file *filp = iocb->ki_filp;
+	struct address_space *mapping = filp->f_mapping;
+	struct inode *inode = mapping->host;
+	struct file_ra_state *ra = &filp->f_ra;
+	loff_t *ppos = &iocb->ki_pos;
+	pgoff_t index;
+	pgoff_t last_index;
+	pgoff_t prev_index;
+	unsigned long offset;      /* offset into pagecache page */
+	unsigned int prev_offset;
+	int error = 0;
+
+	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
+		return 0;
+	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
+
+	index = *ppos >> PAGE_SHIFT;
+	prev_index = ra->prev_pos >> PAGE_SHIFT;
+	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
+	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
+	offset = *ppos & ~PAGE_MASK;
+
+	for (;;) {
+		struct page *page;
+		pgoff_t end_index;
+		loff_t isize;
+		unsigned long nr, ret;
+
+		cond_resched();
+find_page:
+		if (fatal_signal_pending(current)) {
+			error = -EINTR;
+			goto out;
+		}
+
+		page = find_get_page(mapping, index);
+		if (!page) {
+			if (iocb->ki_flags & IOCB_NOWAIT)
+				goto would_block;
+			page_cache_sync_readahead(mapping,
+					ra, filp,
+					index, last_index - index);
+			page = find_get_page(mapping, index);
+			if (unlikely(page == NULL))
+				goto no_cached_page;
+		}
+		if (PageReadahead(page)) {
+			page_cache_async_readahead(mapping,
+					ra, filp, page,
+					index, last_index - index);
+		}
+		if (!PageUptodate(page)) {
+			if (iocb->ki_flags & IOCB_NOWAIT) {
+				put_page(page);
+				goto would_block;
+			}
+
+			/*
+			 * See comment in do_read_cache_page on why
+			 * wait_on_page_locked is used to avoid unnecessarily
+			 * serialisations and why it's safe.
+			 */
+			error = wait_on_page_locked_killable(page);
+			if (unlikely(error))
+				goto readpage_error;
+			if (PageUptodate(page))
+				goto page_ok;
+
+			if (inode->i_blkbits == PAGE_SHIFT ||
+					!mapping->a_ops->is_partially_uptodate)
+				goto page_not_up_to_date;
+			/* pipes can't handle partially uptodate pages */
+			if (unlikely(iter->type & ITER_PIPE))
+				goto page_not_up_to_date;
+			if (!trylock_page(page))
+				goto page_not_up_to_date;
+			/* Did it get truncated before we got the lock? */
+			if (!page->mapping)
+				goto page_not_up_to_date_locked;
+			if (!mapping->a_ops->is_partially_uptodate(page,
+							offset, iter->count))
+				goto page_not_up_to_date_locked;
+			unlock_page(page);
+		}
+page_ok:
+		/*
+		 * i_size must be checked after we know the page is Uptodate.
+		 *
+		 * Checking i_size after the check allows us to calculate
+		 * the correct value for "nr", which means the zero-filled
+		 * part of the page is not copied back to userspace (unless
+		 * another truncate extends the file - this is desired though).
+		 */
+
+		isize = i_size_read(inode);
+		end_index = (isize - 1) >> PAGE_SHIFT;
+		if (unlikely(!isize || index > end_index)) {
+			put_page(page);
+			goto out;
+		}
+
+		/* nr is the maximum number of bytes to copy from this page */
+		nr = PAGE_SIZE;
+		if (index == end_index) {
+			nr = ((isize - 1) & ~PAGE_MASK) + 1;
+			if (nr <= offset) {
+				put_page(page);
+				goto out;
+			}
+		}
+		nr = nr - offset;
+
+		/* If users can be writing to this page using arbitrary
+		 * virtual addresses, take care about potential aliasing
+		 * before reading the page on the kernel side.
+		 */
+		if (mapping_writably_mapped(mapping))
+			flush_dcache_page(page);
+
+		/*
+		 * When a sequential read accesses a page several times,
+		 * only mark it as accessed the first time.
+		 */
+		if (prev_index != index || offset != prev_offset)
+			mark_page_accessed(page);
+		prev_index = index;
+
+		/*
+		 * Ok, we have the page, and it's up-to-date, so
+		 * now we can copy it to user space...
+		 */
+
+		ret = copy_page_to_iter(page, offset, nr, iter);
+		offset += ret;
+		index += offset >> PAGE_SHIFT;
+		offset &= ~PAGE_MASK;
+		prev_offset = offset;
+
+		put_page(page);
+		written += ret;
+		if (!iov_iter_count(iter))
+			goto out;
+		if (ret < nr) {
+			error = -EFAULT;
+			goto out;
+		}
+		continue;
+
+page_not_up_to_date:
+		/* Get exclusive access to the page ... */
+		error = lock_page_killable(page);
+		if (unlikely(error))
+			goto readpage_error;
+
+page_not_up_to_date_locked:
+		/* Did it get truncated before we got the lock? */
+		if (!page->mapping) {
+			unlock_page(page);
+			put_page(page);
+			continue;
+		}
+
+		/* Did somebody else fill it already? */
+		if (PageUptodate(page)) {
+			unlock_page(page);
+			goto page_ok;
+		}
+
+readpage:
+		/*
+		 * A previous I/O error may have been due to temporary
+		 * failures, eg. multipath errors.
+		 * PG_error will be set again if readpage fails.
+		 */
+		ClearPageError(page);
+		/* Start the actual read. The read will unlock the page. */
+		error = mapping->a_ops->readpage(filp, page);
+
+		if (unlikely(error)) {
+			if (error == AOP_TRUNCATED_PAGE) {
+				put_page(page);
+				error = 0;
+				goto find_page;
+			}
+			goto readpage_error;
+		}
+
+		if (!PageUptodate(page)) {
+			error = lock_page_killable(page);
+			if (unlikely(error))
+				goto readpage_error;
+			if (!PageUptodate(page)) {
+				if (page->mapping == NULL) {
+					/*
+					 * invalidate_mapping_pages got it
+					 */
+					unlock_page(page);
+					put_page(page);
+					goto find_page;
+				}
+				unlock_page(page);
+				shrink_readahead_size_eio(filp, ra);
+				error = -EIO;
+				goto readpage_error;
+			}
+			unlock_page(page);
+		}
+
+		goto page_ok;
+
+readpage_error:
+		/* UHHUH! A synchronous read error occurred. Report it */
+		put_page(page);
+		goto out;
+
+no_cached_page:
+		/*
+		 * Ok, it wasn't cached, so we need to create a new
+		 * page..
+		 */
+		page = page_cache_alloc(mapping);
+		if (!page) {
+			error = -ENOMEM;
+			goto out;
+		}
+		error = add_to_page_cache_lru(page, mapping, index,
+				mapping_gfp_constraint(mapping, GFP_KERNEL));
+		if (error) {
+			put_page(page);
+			if (error == -EEXIST) {
+				error = 0;
+				goto find_page;
+			}
+			goto out;
+		}
+		goto readpage;
+	}
+
+would_block:
+	error = -EAGAIN;
+out:
+	ra->prev_pos = prev_index;
+	ra->prev_pos <<= PAGE_SHIFT;
+	ra->prev_pos |= prev_offset;
+
+	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
+	file_accessed(filp);
+	return written ? written : error;
+}
+
+/**
+ * generic_file_read_iter - generic filesystem read routine
+ * @iocb:	kernel I/O control block
+ * @iter:	destination for the data read
+ *
+ * This is the "read_iter()" routine for all filesystems
+ * that can use the page cache directly.
+ */
+ssize_t
+generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
+{
+	size_t count = iov_iter_count(iter);
+	ssize_t retval = 0;
+
+	if (!count)
+		goto out; /* skip atime */
+
+	if (iocb->ki_flags & IOCB_DIRECT) {
+		struct file *file = iocb->ki_filp;
+		struct address_space *mapping = file->f_mapping;
+		struct inode *inode = mapping->host;
+		loff_t size;
+
+		size = i_size_read(inode);
+		if (iocb->ki_flags & IOCB_NOWAIT) {
+			if (filemap_range_has_page(mapping, iocb->ki_pos,
+						   iocb->ki_pos + count - 1))
+				return -EAGAIN;
+		} else {
+			retval = filemap_write_and_wait_range(mapping,
+						iocb->ki_pos,
+					        iocb->ki_pos + count - 1);
+			if (retval < 0)
+				goto out;
+		}
+
+		file_accessed(file);
+
+		retval = mapping->a_ops->direct_IO(iocb, iter);
+		if (retval >= 0) {
+			iocb->ki_pos += retval;
+			count -= retval;
+		}
+		iov_iter_revert(iter, count - iov_iter_count(iter));
+
+		/*
+		 * Btrfs can have a short DIO read if we encounter
+		 * compressed extents, so if there was an error, or if
+		 * we've already read everything we wanted to, or if
+		 * there was a short read because we hit EOF, go ahead
+		 * and return.  Otherwise fallthrough to buffered io for
+		 * the rest of the read.  Buffered reads will not work for
+		 * DAX files, so don't bother trying.
+		 */
+		if (retval < 0 || !count || iocb->ki_pos >= size ||
+		    IS_DAX(inode))
+			goto out;
+	}
+
+	retval = generic_file_buffered_read(iocb, iter, retval);
+out:
+	return retval;
+}
+EXPORT_SYMBOL(generic_file_read_iter);
+
+#ifdef CONFIG_MMU
+/**
+ * page_cache_read - adds requested page to the page cache if not already there
+ * @file:	file to read
+ * @offset:	page index
+ * @gfp_mask:	memory allocation flags
+ *
+ * This adds the requested page to the page cache if it isn't already there,
+ * and schedules an I/O to read in its contents from disk.
+ */
+static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
+{
+	struct address_space *mapping = file->f_mapping;
+	struct page *page;
+	int ret;
+
+	do {
+		page = __page_cache_alloc(gfp_mask);
+		if (!page)
+			return -ENOMEM;
+
+		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
+		if (ret == 0)
+			ret = mapping->a_ops->readpage(file, page);
+		else if (ret == -EEXIST)
+			ret = 0; /* losing race to add is OK */
+
+		put_page(page);
+
+	} while (ret == AOP_TRUNCATED_PAGE);
+
+	return ret;
+}
+
+#define MMAP_LOTSAMISS  (100)
+
+/*
+ * Synchronous readahead happens when we don't even find
+ * a page in the page cache at all.
+ */
+static void do_sync_mmap_readahead(struct vm_area_struct *vma,
+				   struct file_ra_state *ra,
+				   struct file *file,
+				   pgoff_t offset)
+{
+	struct address_space *mapping = file->f_mapping;
+
+	/* If we don't want any read-ahead, don't bother */
+	if (vma->vm_flags & VM_RAND_READ)
+		return;
+	if (!ra->ra_pages)
+		return;
+
+	if (vma->vm_flags & VM_SEQ_READ) {
+		page_cache_sync_readahead(mapping, ra, file, offset,
+					  ra->ra_pages);
+		return;
+	}
+
+	/* Avoid banging the cache line if not needed */
+	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
+		ra->mmap_miss++;
+
+	/*
+	 * Do we miss much more than hit in this file? If so,
+	 * stop bothering with read-ahead. It will only hurt.
+	 */
+	if (ra->mmap_miss > MMAP_LOTSAMISS)
+		return;
+
+	/*
+	 * mmap read-around
+	 */
+	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
+	ra->size = ra->ra_pages;
+	ra->async_size = ra->ra_pages / 4;
+	ra_submit(ra, mapping, file);
+}
+
+/*
+ * Asynchronous readahead happens when we find the page and PG_readahead,
+ * so we want to possibly extend the readahead further..
+ */
+static void do_async_mmap_readahead(struct vm_area_struct *vma,
+				    struct file_ra_state *ra,
+				    struct file *file,
+				    struct page *page,
+				    pgoff_t offset)
+{
+	struct address_space *mapping = file->f_mapping;
+
+	/* If we don't want any read-ahead, don't bother */
+	if (vma->vm_flags & VM_RAND_READ)
+		return;
+	if (ra->mmap_miss > 0)
+		ra->mmap_miss--;
+	if (PageReadahead(page))
+		page_cache_async_readahead(mapping, ra, file,
+					   page, offset, ra->ra_pages);
+}
+
+/**
+ * filemap_fault - read in file data for page fault handling
+ * @vmf:	struct vm_fault containing details of the fault
+ *
+ * filemap_fault() is invoked via the vma operations vector for a
+ * mapped memory region to read in file data during a page fault.
+ *
+ * The goto's are kind of ugly, but this streamlines the normal case of having
+ * it in the page cache, and handles the special cases reasonably without
+ * having a lot of duplicated code.
+ *
+ * vma->vm_mm->mmap_sem must be held on entry.
+ *
+ * If our return value has VM_FAULT_RETRY set, it's because
+ * lock_page_or_retry() returned 0.
+ * The mmap_sem has usually been released in this case.
+ * See __lock_page_or_retry() for the exception.
+ *
+ * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
+ * has not been released.
+ *
+ * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
+ */
+vm_fault_t filemap_fault(struct vm_fault *vmf)
+{
+	int error;
+	struct file *file = vmf->vma->vm_file;
+	struct address_space *mapping = file->f_mapping;
+	struct file_ra_state *ra = &file->f_ra;
+	struct inode *inode = mapping->host;
+	pgoff_t offset = vmf->pgoff;
+	pgoff_t max_off;
+	struct page *page;
+	vm_fault_t ret = 0;
+
+	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
+	if (unlikely(offset >= max_off))
+		return VM_FAULT_SIGBUS;
+
+	/*
+	 * Do we have something in the page cache already?
+	 */
+	page = find_get_page(mapping, offset);
+	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
+		/*
+		 * We found the page, so try async readahead before
+		 * waiting for the lock.
+		 */
+		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
+	} else if (!page) {
+		/* No page in the page cache at all */
+		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
+		count_vm_event(PGMAJFAULT);
+		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
+		ret = VM_FAULT_MAJOR;
+retry_find:
+		page = find_get_page(mapping, offset);
+		if (!page)
+			goto no_cached_page;
+	}
+
+	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
+		put_page(page);
+		return ret | VM_FAULT_RETRY;
+	}
+
+	/* Did it get truncated? */
+	if (unlikely(page->mapping != mapping)) {
+		unlock_page(page);
+		put_page(page);
+		goto retry_find;
+	}
+	VM_BUG_ON_PAGE(page->index != offset, page);
+
+	/*
+	 * We have a locked page in the page cache, now we need to check
+	 * that it's up-to-date. If not, it is going to be due to an error.
+	 */
+	if (unlikely(!PageUptodate(page)))
+		goto page_not_uptodate;
+
+	/*
+	 * Found the page and have a reference on it.
+	 * We must recheck i_size under page lock.
+	 */
+	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
+	if (unlikely(offset >= max_off)) {
+		unlock_page(page);
+		put_page(page);
+		return VM_FAULT_SIGBUS;
+	}
+
+	vmf->page = page;
+	return ret | VM_FAULT_LOCKED;
+
+no_cached_page:
+	/*
+	 * We're only likely to ever get here if MADV_RANDOM is in
+	 * effect.
+	 */
+	error = page_cache_read(file, offset, vmf->gfp_mask);
+
+	/*
+	 * The page we want has now been added to the page cache.
+	 * In the unlikely event that someone removed it in the
+	 * meantime, we'll just come back here and read it again.
+	 */
+	if (error >= 0)
+		goto retry_find;
+
+	/*
+	 * An error return from page_cache_read can result if the
+	 * system is low on memory, or a problem occurs while trying
+	 * to schedule I/O.
+	 */
+	if (error == -ENOMEM)
+		return VM_FAULT_OOM;
+	return VM_FAULT_SIGBUS;
+
+page_not_uptodate:
+	/*
+	 * Umm, take care of errors if the page isn't up-to-date.
+	 * Try to re-read it _once_. We do this synchronously,
+	 * because there really aren't any performance issues here
+	 * and we need to check for errors.
+	 */
+	ClearPageError(page);
+	error = mapping->a_ops->readpage(file, page);
+	if (!error) {
+		wait_on_page_locked(page);
+		if (!PageUptodate(page))
+			error = -EIO;
+	}
+	put_page(page);
+
+	if (!error || error == AOP_TRUNCATED_PAGE)
+		goto retry_find;
+
+	/* Things didn't work out. Return zero to tell the mm layer so. */
+	shrink_readahead_size_eio(file, ra);
+	return VM_FAULT_SIGBUS;
+}
+EXPORT_SYMBOL(filemap_fault);
+
+void filemap_map_pages(struct vm_fault *vmf,
+		pgoff_t start_pgoff, pgoff_t end_pgoff)
+{
+	struct radix_tree_iter iter;
+	void **slot;
+	struct file *file = vmf->vma->vm_file;
+	struct address_space *mapping = file->f_mapping;
+	pgoff_t last_pgoff = start_pgoff;
+	unsigned long max_idx;
+	struct page *head, *page;
+
+	rcu_read_lock();
+	radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
+		if (iter.index > end_pgoff)
+			break;
+repeat:
+		page = radix_tree_deref_slot(slot);
+		if (unlikely(!page))
+			goto next;
+		if (radix_tree_exception(page)) {
+			if (radix_tree_deref_retry(page)) {
+				slot = radix_tree_iter_retry(&iter);
+				continue;
+			}
+			goto next;
+		}
+
+		head = compound_head(page);
+		if (!page_cache_get_speculative(head))
+			goto repeat;
+
+		/* The page was split under us? */
+		if (compound_head(page) != head) {
+			put_page(head);
+			goto repeat;
+		}
+
+		/* Has the page moved? */
+		if (unlikely(page != *slot)) {
+			put_page(head);
+			goto repeat;
+		}
+
+		if (!PageUptodate(page) ||
+				PageReadahead(page) ||
+				PageHWPoison(page))
+			goto skip;
+		if (!trylock_page(page))
+			goto skip;
+
+		if (page->mapping != mapping || !PageUptodate(page))
+			goto unlock;
+
+		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
+		if (page->index >= max_idx)
+			goto unlock;
+
+		if (file->f_ra.mmap_miss > 0)
+			file->f_ra.mmap_miss--;
+
+		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
+		if (vmf->pte)
+			vmf->pte += iter.index - last_pgoff;
+		last_pgoff = iter.index;
+		if (alloc_set_pte(vmf, NULL, page))
+			goto unlock;
+		unlock_page(page);
+		goto next;
+unlock:
+		unlock_page(page);
+skip:
+		put_page(page);
+next:
+		/* Huge page is mapped? No need to proceed. */
+		if (pmd_trans_huge(*vmf->pmd))
+			break;
+		if (iter.index == end_pgoff)
+			break;
+	}
+	rcu_read_unlock();
+}
+EXPORT_SYMBOL(filemap_map_pages);
+
+vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
+{
+	struct page *page = vmf->page;
+	struct inode *inode = file_inode(vmf->vma->vm_file);
+	vm_fault_t ret = VM_FAULT_LOCKED;
+
+	sb_start_pagefault(inode->i_sb);
+	file_update_time(vmf->vma->vm_file);
+	lock_page(page);
+	if (page->mapping != inode->i_mapping) {
+		unlock_page(page);
+		ret = VM_FAULT_NOPAGE;
+		goto out;
+	}
+	/*
+	 * We mark the page dirty already here so that when freeze is in
+	 * progress, we are guaranteed that writeback during freezing will
+	 * see the dirty page and writeprotect it again.
+	 */
+	set_page_dirty(page);
+	wait_for_stable_page(page);
+out:
+	sb_end_pagefault(inode->i_sb);
+	return ret;
+}
+
+const struct vm_operations_struct generic_file_vm_ops = {
+	.fault		= filemap_fault,
+	.map_pages	= filemap_map_pages,
+	.page_mkwrite	= filemap_page_mkwrite,
+};
+
+/* This is used for a general mmap of a disk file */
+
+int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
+{
+	struct address_space *mapping = file->f_mapping;
+
+	if (!mapping->a_ops->readpage)
+		return -ENOEXEC;
+	file_accessed(file);
+	vma->vm_ops = &generic_file_vm_ops;
+	return 0;
+}
+
+/*
+ * This is for filesystems which do not implement ->writepage.
+ */
+int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
+{
+	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
+		return -EINVAL;
+	return generic_file_mmap(file, vma);
+}
+#else
+int filemap_page_mkwrite(struct vm_fault *vmf)
+{
+	return -ENOSYS;
+}
+int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
+{
+	return -ENOSYS;
+}
+int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
+{
+	return -ENOSYS;
+}
+#endif /* CONFIG_MMU */
+
+EXPORT_SYMBOL(filemap_page_mkwrite);
+EXPORT_SYMBOL(generic_file_mmap);
+EXPORT_SYMBOL(generic_file_readonly_mmap);
+
+static struct page *wait_on_page_read(struct page *page)
+{
+	if (!IS_ERR(page)) {
+		wait_on_page_locked(page);
+		if (!PageUptodate(page)) {
+			put_page(page);
+			page = ERR_PTR(-EIO);
+		}
+	}
+	return page;
+}
+
+static struct page *do_read_cache_page(struct address_space *mapping,
+				pgoff_t index,
+				int (*filler)(void *, struct page *),
+				void *data,
+				gfp_t gfp)
+{
+	struct page *page;
+	int err;
+repeat:
+	page = find_get_page(mapping, index);
+	if (!page) {
+		page = __page_cache_alloc(gfp);
+		if (!page)
+			return ERR_PTR(-ENOMEM);
+		err = add_to_page_cache_lru(page, mapping, index, gfp);
+		if (unlikely(err)) {
+			put_page(page);
+			if (err == -EEXIST)
+				goto repeat;
+			/* Presumably ENOMEM for radix tree node */
+			return ERR_PTR(err);
+		}
+
+filler:
+		err = filler(data, page);
+		if (err < 0) {
+			put_page(page);
+			return ERR_PTR(err);
+		}
+
+		page = wait_on_page_read(page);
+		if (IS_ERR(page))
+			return page;
+		goto out;
+	}
+	if (PageUptodate(page))
+		goto out;
+
+	/*
+	 * Page is not up to date and may be locked due one of the following
+	 * case a: Page is being filled and the page lock is held
+	 * case b: Read/write error clearing the page uptodate status
+	 * case c: Truncation in progress (page locked)
+	 * case d: Reclaim in progress
+	 *
+	 * Case a, the page will be up to date when the page is unlocked.
+	 *    There is no need to serialise on the page lock here as the page
+	 *    is pinned so the lock gives no additional protection. Even if the
+	 *    the page is truncated, the data is still valid if PageUptodate as
+	 *    it's a race vs truncate race.
+	 * Case b, the page will not be up to date
+	 * Case c, the page may be truncated but in itself, the data may still
+	 *    be valid after IO completes as it's a read vs truncate race. The
+	 *    operation must restart if the page is not uptodate on unlock but
+	 *    otherwise serialising on page lock to stabilise the mapping gives
+	 *    no additional guarantees to the caller as the page lock is
+	 *    released before return.
+	 * Case d, similar to truncation. If reclaim holds the page lock, it
+	 *    will be a race with remove_mapping that determines if the mapping
+	 *    is valid on unlock but otherwise the data is valid and there is
+	 *    no need to serialise with page lock.
+	 *
+	 * As the page lock gives no additional guarantee, we optimistically
+	 * wait on the page to be unlocked and check if it's up to date and
+	 * use the page if it is. Otherwise, the page lock is required to
+	 * distinguish between the different cases. The motivation is that we
+	 * avoid spurious serialisations and wakeups when multiple processes
+	 * wait on the same page for IO to complete.
+	 */
+	wait_on_page_locked(page);
+	if (PageUptodate(page))
+		goto out;
+
+	/* Distinguish between all the cases under the safety of the lock */
+	lock_page(page);
+
+	/* Case c or d, restart the operation */
+	if (!page->mapping) {
+		unlock_page(page);
+		put_page(page);
+		goto repeat;
+	}
+
+	/* Someone else locked and filled the page in a very small window */
+	if (PageUptodate(page)) {
+		unlock_page(page);
+		goto out;
+	}
+	goto filler;
+
+out:
+	mark_page_accessed(page);
+	return page;
+}
+
+/**
+ * read_cache_page - read into page cache, fill it if needed
+ * @mapping:	the page's address_space
+ * @index:	the page index
+ * @filler:	function to perform the read
+ * @data:	first arg to filler(data, page) function, often left as NULL
+ *
+ * Read into the page cache. If a page already exists, and PageUptodate() is
+ * not set, try to fill the page and wait for it to become unlocked.
+ *
+ * If the page does not get brought uptodate, return -EIO.
+ */
+struct page *read_cache_page(struct address_space *mapping,
+				pgoff_t index,
+				int (*filler)(void *, struct page *),
+				void *data)
+{
+	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
+}
+EXPORT_SYMBOL(read_cache_page);
+
+/**
+ * read_cache_page_gfp - read into page cache, using specified page allocation flags.
+ * @mapping:	the page's address_space
+ * @index:	the page index
+ * @gfp:	the page allocator flags to use if allocating
+ *
+ * This is the same as "read_mapping_page(mapping, index, NULL)", but with
+ * any new page allocations done using the specified allocation flags.
+ *
+ * If the page does not get brought uptodate, return -EIO.
+ */
+struct page *read_cache_page_gfp(struct address_space *mapping,
+				pgoff_t index,
+				gfp_t gfp)
+{
+	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
+
+	return do_read_cache_page(mapping, index, filler, NULL, gfp);
+}
+EXPORT_SYMBOL(read_cache_page_gfp);
+
+/*
+ * Performs necessary checks before doing a write
+ *
+ * Can adjust writing position or amount of bytes to write.
+ * Returns appropriate error code that caller should return or
+ * zero in case that write should be allowed.
+ */
+inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file->f_mapping->host;
+	unsigned long limit = rlimit(RLIMIT_FSIZE);
+	loff_t pos;
+
+	if (!iov_iter_count(from))
+		return 0;
+
+	/* FIXME: this is for backwards compatibility with 2.4 */
+	if (iocb->ki_flags & IOCB_APPEND)
+		iocb->ki_pos = i_size_read(inode);
+
+	pos = iocb->ki_pos;
+
+	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
+		return -EINVAL;
+
+	if (limit != RLIM_INFINITY) {
+		if (iocb->ki_pos >= limit) {
+			send_sig(SIGXFSZ, current, 0);
+			return -EFBIG;
+		}
+		iov_iter_truncate(from, limit - (unsigned long)pos);
+	}
+
+	/*
+	 * LFS rule
+	 */
+	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
+				!(file->f_flags & O_LARGEFILE))) {
+		if (pos >= MAX_NON_LFS)
+			return -EFBIG;
+		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
+	}
+
+	/*
+	 * Are we about to exceed the fs block limit ?
+	 *
+	 * If we have written data it becomes a short write.  If we have
+	 * exceeded without writing data we send a signal and return EFBIG.
+	 * Linus frestrict idea will clean these up nicely..
+	 */
+	if (unlikely(pos >= inode->i_sb->s_maxbytes))
+		return -EFBIG;
+
+	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
+	return iov_iter_count(from);
+}
+EXPORT_SYMBOL(generic_write_checks);
+
+int pagecache_write_begin(struct file *file, struct address_space *mapping,
+				loff_t pos, unsigned len, unsigned flags,
+				struct page **pagep, void **fsdata)
+{
+	const struct address_space_operations *aops = mapping->a_ops;
+
+	return aops->write_begin(file, mapping, pos, len, flags,
+							pagep, fsdata);
+}
+EXPORT_SYMBOL(pagecache_write_begin);
+
+int pagecache_write_end(struct file *file, struct address_space *mapping,
+				loff_t pos, unsigned len, unsigned copied,
+				struct page *page, void *fsdata)
+{
+	const struct address_space_operations *aops = mapping->a_ops;
+
+	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
+}
+EXPORT_SYMBOL(pagecache_write_end);
+
+ssize_t
+generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
+{
+	struct file	*file = iocb->ki_filp;
+	struct address_space *mapping = file->f_mapping;
+	struct inode	*inode = mapping->host;
+	loff_t		pos = iocb->ki_pos;
+	ssize_t		written;
+	size_t		write_len;
+	pgoff_t		end;
+
+	write_len = iov_iter_count(from);
+	end = (pos + write_len - 1) >> PAGE_SHIFT;
+
+	if (iocb->ki_flags & IOCB_NOWAIT) {
+		/* If there are pages to writeback, return */
+		if (filemap_range_has_page(inode->i_mapping, pos,
+					   pos + iov_iter_count(from)))
+			return -EAGAIN;
+	} else {
+		written = filemap_write_and_wait_range(mapping, pos,
+							pos + write_len - 1);
+		if (written)
+			goto out;
+	}
+
+	/*
+	 * After a write we want buffered reads to be sure to go to disk to get
+	 * the new data.  We invalidate clean cached page from the region we're
+	 * about to write.  We do this *before* the write so that we can return
+	 * without clobbering -EIOCBQUEUED from ->direct_IO().
+	 */
+	written = invalidate_inode_pages2_range(mapping,
+					pos >> PAGE_SHIFT, end);
+	/*
+	 * If a page can not be invalidated, return 0 to fall back
+	 * to buffered write.
+	 */
+	if (written) {
+		if (written == -EBUSY)
+			return 0;
+		goto out;
+	}
+
+	written = mapping->a_ops->direct_IO(iocb, from);
+
+	/*
+	 * Finally, try again to invalidate clean pages which might have been
+	 * cached by non-direct readahead, or faulted in by get_user_pages()
+	 * if the source of the write was an mmap'ed region of the file
+	 * we're writing.  Either one is a pretty crazy thing to do,
+	 * so we don't support it 100%.  If this invalidation
+	 * fails, tough, the write still worked...
+	 *
+	 * Most of the time we do not need this since dio_complete() will do
+	 * the invalidation for us. However there are some file systems that
+	 * do not end up with dio_complete() being called, so let's not break
+	 * them by removing it completely
+	 */
+	if (mapping->nrpages)
+		invalidate_inode_pages2_range(mapping,
+					pos >> PAGE_SHIFT, end);
+
+	if (written > 0) {
+		pos += written;
+		write_len -= written;
+		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
+			i_size_write(inode, pos);
+			mark_inode_dirty(inode);
+		}
+		iocb->ki_pos = pos;
+	}
+	iov_iter_revert(from, write_len - iov_iter_count(from));
+out:
+	return written;
+}
+EXPORT_SYMBOL(generic_file_direct_write);
+
+/*
+ * Find or create a page at the given pagecache position. Return the locked
+ * page. This function is specifically for buffered writes.
+ */
+struct page *grab_cache_page_write_begin(struct address_space *mapping,
+					pgoff_t index, unsigned flags)
+{
+	struct page *page;
+	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
+
+	if (flags & AOP_FLAG_NOFS)
+		fgp_flags |= FGP_NOFS;
+
+	page = pagecache_get_page(mapping, index, fgp_flags,
+			mapping_gfp_mask(mapping));
+	if (page)
+		wait_for_stable_page(page);
+
+	return page;
+}
+EXPORT_SYMBOL(grab_cache_page_write_begin);
+
+ssize_t generic_perform_write(struct file *file,
+				struct iov_iter *i, loff_t pos)
+{
+	struct address_space *mapping = file->f_mapping;
+	const struct address_space_operations *a_ops = mapping->a_ops;
+	long status = 0;
+	ssize_t written = 0;
+	unsigned int flags = 0;
+
+	do {
+		struct page *page;
+		unsigned long offset;	/* Offset into pagecache page */
+		unsigned long bytes;	/* Bytes to write to page */
+		size_t copied;		/* Bytes copied from user */
+		void *fsdata;
+
+		offset = (pos & (PAGE_SIZE - 1));
+		bytes = min_t(unsigned long, PAGE_SIZE - offset,
+						iov_iter_count(i));
+
+again:
+		/*
+		 * Bring in the user page that we will copy from _first_.
+		 * Otherwise there's a nasty deadlock on copying from the
+		 * same page as we're writing to, without it being marked
+		 * up-to-date.
+		 *
+		 * Not only is this an optimisation, but it is also required
+		 * to check that the address is actually valid, when atomic
+		 * usercopies are used, below.
+		 */
+		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
+			status = -EFAULT;
+			break;
+		}
+
+		if (fatal_signal_pending(current)) {
+			status = -EINTR;
+			break;
+		}
+
+		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
+						&page, &fsdata);
+		if (unlikely(status < 0))
+			break;
+
+		if (mapping_writably_mapped(mapping))
+			flush_dcache_page(page);
+
+		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
+		flush_dcache_page(page);
+
+		status = a_ops->write_end(file, mapping, pos, bytes, copied,
+						page, fsdata);
+		if (unlikely(status < 0))
+			break;
+		copied = status;
+
+		cond_resched();
+
+		iov_iter_advance(i, copied);
+		if (unlikely(copied == 0)) {
+			/*
+			 * If we were unable to copy any data at all, we must
+			 * fall back to a single segment length write.
+			 *
+			 * If we didn't fallback here, we could livelock
+			 * because not all segments in the iov can be copied at
+			 * once without a pagefault.
+			 */
+			bytes = min_t(unsigned long, PAGE_SIZE - offset,
+						iov_iter_single_seg_count(i));
+			goto again;
+		}
+		pos += copied;
+		written += copied;
+
+		balance_dirty_pages_ratelimited(mapping);
+	} while (iov_iter_count(i));
+
+	return written ? written : status;
+}
+EXPORT_SYMBOL(generic_perform_write);
+
+/**
+ * __generic_file_write_iter - write data to a file
+ * @iocb:	IO state structure (file, offset, etc.)
+ * @from:	iov_iter with data to write
+ *
+ * This function does all the work needed for actually writing data to a
+ * file. It does all basic checks, removes SUID from the file, updates
+ * modification times and calls proper subroutines depending on whether we
+ * do direct IO or a standard buffered write.
+ *
+ * It expects i_mutex to be grabbed unless we work on a block device or similar
+ * object which does not need locking at all.
+ *
+ * This function does *not* take care of syncing data in case of O_SYNC write.
+ * A caller has to handle it. This is mainly due to the fact that we want to
+ * avoid syncing under i_mutex.
+ */
+ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
+{
+	struct file *file = iocb->ki_filp;
+	struct address_space * mapping = file->f_mapping;
+	struct inode 	*inode = mapping->host;
+	ssize_t		written = 0;
+	ssize_t		err;
+	ssize_t		status;
+
+	/* We can write back this queue in page reclaim */
+	current->backing_dev_info = inode_to_bdi(inode);
+	err = file_remove_privs(file);
+	if (err)
+		goto out;
+
+	err = file_update_time(file);
+	if (err)
+		goto out;
+
+	if (iocb->ki_flags & IOCB_DIRECT) {
+		loff_t pos, endbyte;
+
+		written = generic_file_direct_write(iocb, from);
+		/*
+		 * If the write stopped short of completing, fall back to
+		 * buffered writes.  Some filesystems do this for writes to
+		 * holes, for example.  For DAX files, a buffered write will
+		 * not succeed (even if it did, DAX does not handle dirty
+		 * page-cache pages correctly).
+		 */
+		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
+			goto out;
+
+		status = generic_perform_write(file, from, pos = iocb->ki_pos);
+		/*
+		 * If generic_perform_write() returned a synchronous error
+		 * then we want to return the number of bytes which were
+		 * direct-written, or the error code if that was zero.  Note
+		 * that this differs from normal direct-io semantics, which
+		 * will return -EFOO even if some bytes were written.
+		 */
+		if (unlikely(status < 0)) {
+			err = status;
+			goto out;
+		}
+		/*
+		 * We need to ensure that the page cache pages are written to
+		 * disk and invalidated to preserve the expected O_DIRECT
+		 * semantics.
+		 */
+		endbyte = pos + status - 1;
+		err = filemap_write_and_wait_range(mapping, pos, endbyte);
+		if (err == 0) {
+			iocb->ki_pos = endbyte + 1;
+			written += status;
+			invalidate_mapping_pages(mapping,
+						 pos >> PAGE_SHIFT,
+						 endbyte >> PAGE_SHIFT);
+		} else {
+			/*
+			 * We don't know how much we wrote, so just return
+			 * the number of bytes which were direct-written
+			 */
+		}
+	} else {
+		written = generic_perform_write(file, from, iocb->ki_pos);
+		if (likely(written > 0))
+			iocb->ki_pos += written;
+	}
+out:
+	current->backing_dev_info = NULL;
+	return written ? written : err;
+}
+EXPORT_SYMBOL(__generic_file_write_iter);
+
+/**
+ * generic_file_write_iter - write data to a file
+ * @iocb:	IO state structure
+ * @from:	iov_iter with data to write
+ *
+ * This is a wrapper around __generic_file_write_iter() to be used by most
+ * filesystems. It takes care of syncing the file in case of O_SYNC file
+ * and acquires i_mutex as needed.
+ */
+ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file->f_mapping->host;
+	ssize_t ret;
+
+	inode_lock(inode);
+	ret = generic_write_checks(iocb, from);
+	if (ret > 0)
+		ret = __generic_file_write_iter(iocb, from);
+	inode_unlock(inode);
+
+	if (ret > 0)
+		ret = generic_write_sync(iocb, ret);
+	return ret;
+}
+EXPORT_SYMBOL(generic_file_write_iter);
+
+/**
+ * try_to_release_page() - release old fs-specific metadata on a page
+ *
+ * @page: the page which the kernel is trying to free
+ * @gfp_mask: memory allocation flags (and I/O mode)
+ *
+ * The address_space is to try to release any data against the page
+ * (presumably at page->private).  If the release was successful, return '1'.
+ * Otherwise return zero.
+ *
+ * This may also be called if PG_fscache is set on a page, indicating that the
+ * page is known to the local caching routines.
+ *
+ * The @gfp_mask argument specifies whether I/O may be performed to release
+ * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
+ *
+ */
+int try_to_release_page(struct page *page, gfp_t gfp_mask)
+{
+	struct address_space * const mapping = page->mapping;
+
+	BUG_ON(!PageLocked(page));
+	if (PageWriteback(page))
+		return 0;
+
+	if (mapping && mapping->a_ops->releasepage)
+		return mapping->a_ops->releasepage(page, gfp_mask);
+	return try_to_free_buffers(page);
+}
+
+EXPORT_SYMBOL(try_to_release_page);