v4.19.13 snapshot.
diff --git a/lib/bitmap.c b/lib/bitmap.c
new file mode 100644
index 0000000..2fd07f6
--- /dev/null
+++ b/lib/bitmap.c
@@ -0,0 +1,1195 @@
+/*
+ * lib/bitmap.c
+ * Helper functions for bitmap.h.
+ *
+ * This source code is licensed under the GNU General Public License,
+ * Version 2.  See the file COPYING for more details.
+ */
+#include <linux/export.h>
+#include <linux/thread_info.h>
+#include <linux/ctype.h>
+#include <linux/errno.h>
+#include <linux/bitmap.h>
+#include <linux/bitops.h>
+#include <linux/bug.h>
+#include <linux/kernel.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+
+#include <asm/page.h>
+
+/**
+ * DOC: bitmap introduction
+ *
+ * bitmaps provide an array of bits, implemented using an an
+ * array of unsigned longs.  The number of valid bits in a
+ * given bitmap does _not_ need to be an exact multiple of
+ * BITS_PER_LONG.
+ *
+ * The possible unused bits in the last, partially used word
+ * of a bitmap are 'don't care'.  The implementation makes
+ * no particular effort to keep them zero.  It ensures that
+ * their value will not affect the results of any operation.
+ * The bitmap operations that return Boolean (bitmap_empty,
+ * for example) or scalar (bitmap_weight, for example) results
+ * carefully filter out these unused bits from impacting their
+ * results.
+ *
+ * These operations actually hold to a slightly stronger rule:
+ * if you don't input any bitmaps to these ops that have some
+ * unused bits set, then they won't output any set unused bits
+ * in output bitmaps.
+ *
+ * The byte ordering of bitmaps is more natural on little
+ * endian architectures.  See the big-endian headers
+ * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
+ * for the best explanations of this ordering.
+ */
+
+int __bitmap_equal(const unsigned long *bitmap1,
+		const unsigned long *bitmap2, unsigned int bits)
+{
+	unsigned int k, lim = bits/BITS_PER_LONG;
+	for (k = 0; k < lim; ++k)
+		if (bitmap1[k] != bitmap2[k])
+			return 0;
+
+	if (bits % BITS_PER_LONG)
+		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
+			return 0;
+
+	return 1;
+}
+EXPORT_SYMBOL(__bitmap_equal);
+
+void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
+{
+	unsigned int k, lim = BITS_TO_LONGS(bits);
+	for (k = 0; k < lim; ++k)
+		dst[k] = ~src[k];
+}
+EXPORT_SYMBOL(__bitmap_complement);
+
+/**
+ * __bitmap_shift_right - logical right shift of the bits in a bitmap
+ *   @dst : destination bitmap
+ *   @src : source bitmap
+ *   @shift : shift by this many bits
+ *   @nbits : bitmap size, in bits
+ *
+ * Shifting right (dividing) means moving bits in the MS -> LS bit
+ * direction.  Zeros are fed into the vacated MS positions and the
+ * LS bits shifted off the bottom are lost.
+ */
+void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
+			unsigned shift, unsigned nbits)
+{
+	unsigned k, lim = BITS_TO_LONGS(nbits);
+	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
+	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
+	for (k = 0; off + k < lim; ++k) {
+		unsigned long upper, lower;
+
+		/*
+		 * If shift is not word aligned, take lower rem bits of
+		 * word above and make them the top rem bits of result.
+		 */
+		if (!rem || off + k + 1 >= lim)
+			upper = 0;
+		else {
+			upper = src[off + k + 1];
+			if (off + k + 1 == lim - 1)
+				upper &= mask;
+			upper <<= (BITS_PER_LONG - rem);
+		}
+		lower = src[off + k];
+		if (off + k == lim - 1)
+			lower &= mask;
+		lower >>= rem;
+		dst[k] = lower | upper;
+	}
+	if (off)
+		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
+}
+EXPORT_SYMBOL(__bitmap_shift_right);
+
+
+/**
+ * __bitmap_shift_left - logical left shift of the bits in a bitmap
+ *   @dst : destination bitmap
+ *   @src : source bitmap
+ *   @shift : shift by this many bits
+ *   @nbits : bitmap size, in bits
+ *
+ * Shifting left (multiplying) means moving bits in the LS -> MS
+ * direction.  Zeros are fed into the vacated LS bit positions
+ * and those MS bits shifted off the top are lost.
+ */
+
+void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
+			unsigned int shift, unsigned int nbits)
+{
+	int k;
+	unsigned int lim = BITS_TO_LONGS(nbits);
+	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
+	for (k = lim - off - 1; k >= 0; --k) {
+		unsigned long upper, lower;
+
+		/*
+		 * If shift is not word aligned, take upper rem bits of
+		 * word below and make them the bottom rem bits of result.
+		 */
+		if (rem && k > 0)
+			lower = src[k - 1] >> (BITS_PER_LONG - rem);
+		else
+			lower = 0;
+		upper = src[k] << rem;
+		dst[k + off] = lower | upper;
+	}
+	if (off)
+		memset(dst, 0, off*sizeof(unsigned long));
+}
+EXPORT_SYMBOL(__bitmap_shift_left);
+
+int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
+				const unsigned long *bitmap2, unsigned int bits)
+{
+	unsigned int k;
+	unsigned int lim = bits/BITS_PER_LONG;
+	unsigned long result = 0;
+
+	for (k = 0; k < lim; k++)
+		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
+	if (bits % BITS_PER_LONG)
+		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
+			   BITMAP_LAST_WORD_MASK(bits));
+	return result != 0;
+}
+EXPORT_SYMBOL(__bitmap_and);
+
+void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
+				const unsigned long *bitmap2, unsigned int bits)
+{
+	unsigned int k;
+	unsigned int nr = BITS_TO_LONGS(bits);
+
+	for (k = 0; k < nr; k++)
+		dst[k] = bitmap1[k] | bitmap2[k];
+}
+EXPORT_SYMBOL(__bitmap_or);
+
+void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
+				const unsigned long *bitmap2, unsigned int bits)
+{
+	unsigned int k;
+	unsigned int nr = BITS_TO_LONGS(bits);
+
+	for (k = 0; k < nr; k++)
+		dst[k] = bitmap1[k] ^ bitmap2[k];
+}
+EXPORT_SYMBOL(__bitmap_xor);
+
+int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
+				const unsigned long *bitmap2, unsigned int bits)
+{
+	unsigned int k;
+	unsigned int lim = bits/BITS_PER_LONG;
+	unsigned long result = 0;
+
+	for (k = 0; k < lim; k++)
+		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
+	if (bits % BITS_PER_LONG)
+		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
+			   BITMAP_LAST_WORD_MASK(bits));
+	return result != 0;
+}
+EXPORT_SYMBOL(__bitmap_andnot);
+
+int __bitmap_intersects(const unsigned long *bitmap1,
+			const unsigned long *bitmap2, unsigned int bits)
+{
+	unsigned int k, lim = bits/BITS_PER_LONG;
+	for (k = 0; k < lim; ++k)
+		if (bitmap1[k] & bitmap2[k])
+			return 1;
+
+	if (bits % BITS_PER_LONG)
+		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
+			return 1;
+	return 0;
+}
+EXPORT_SYMBOL(__bitmap_intersects);
+
+int __bitmap_subset(const unsigned long *bitmap1,
+		    const unsigned long *bitmap2, unsigned int bits)
+{
+	unsigned int k, lim = bits/BITS_PER_LONG;
+	for (k = 0; k < lim; ++k)
+		if (bitmap1[k] & ~bitmap2[k])
+			return 0;
+
+	if (bits % BITS_PER_LONG)
+		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
+			return 0;
+	return 1;
+}
+EXPORT_SYMBOL(__bitmap_subset);
+
+int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
+{
+	unsigned int k, lim = bits/BITS_PER_LONG;
+	int w = 0;
+
+	for (k = 0; k < lim; k++)
+		w += hweight_long(bitmap[k]);
+
+	if (bits % BITS_PER_LONG)
+		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
+
+	return w;
+}
+EXPORT_SYMBOL(__bitmap_weight);
+
+void __bitmap_set(unsigned long *map, unsigned int start, int len)
+{
+	unsigned long *p = map + BIT_WORD(start);
+	const unsigned int size = start + len;
+	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
+	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
+
+	while (len - bits_to_set >= 0) {
+		*p |= mask_to_set;
+		len -= bits_to_set;
+		bits_to_set = BITS_PER_LONG;
+		mask_to_set = ~0UL;
+		p++;
+	}
+	if (len) {
+		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
+		*p |= mask_to_set;
+	}
+}
+EXPORT_SYMBOL(__bitmap_set);
+
+void __bitmap_clear(unsigned long *map, unsigned int start, int len)
+{
+	unsigned long *p = map + BIT_WORD(start);
+	const unsigned int size = start + len;
+	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
+	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
+
+	while (len - bits_to_clear >= 0) {
+		*p &= ~mask_to_clear;
+		len -= bits_to_clear;
+		bits_to_clear = BITS_PER_LONG;
+		mask_to_clear = ~0UL;
+		p++;
+	}
+	if (len) {
+		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
+		*p &= ~mask_to_clear;
+	}
+}
+EXPORT_SYMBOL(__bitmap_clear);
+
+/**
+ * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
+ * @map: The address to base the search on
+ * @size: The bitmap size in bits
+ * @start: The bitnumber to start searching at
+ * @nr: The number of zeroed bits we're looking for
+ * @align_mask: Alignment mask for zero area
+ * @align_offset: Alignment offset for zero area.
+ *
+ * The @align_mask should be one less than a power of 2; the effect is that
+ * the bit offset of all zero areas this function finds plus @align_offset
+ * is multiple of that power of 2.
+ */
+unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
+					     unsigned long size,
+					     unsigned long start,
+					     unsigned int nr,
+					     unsigned long align_mask,
+					     unsigned long align_offset)
+{
+	unsigned long index, end, i;
+again:
+	index = find_next_zero_bit(map, size, start);
+
+	/* Align allocation */
+	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
+
+	end = index + nr;
+	if (end > size)
+		return end;
+	i = find_next_bit(map, end, index);
+	if (i < end) {
+		start = i + 1;
+		goto again;
+	}
+	return index;
+}
+EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
+
+/*
+ * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
+ * second version by Paul Jackson, third by Joe Korty.
+ */
+
+#define CHUNKSZ				32
+#define nbits_to_hold_value(val)	fls(val)
+#define BASEDEC 10		/* fancier cpuset lists input in decimal */
+
+/**
+ * __bitmap_parse - convert an ASCII hex string into a bitmap.
+ * @buf: pointer to buffer containing string.
+ * @buflen: buffer size in bytes.  If string is smaller than this
+ *    then it must be terminated with a \0.
+ * @is_user: location of buffer, 0 indicates kernel space
+ * @maskp: pointer to bitmap array that will contain result.
+ * @nmaskbits: size of bitmap, in bits.
+ *
+ * Commas group hex digits into chunks.  Each chunk defines exactly 32
+ * bits of the resultant bitmask.  No chunk may specify a value larger
+ * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
+ * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
+ * characters and for grouping errors such as "1,,5", ",44", "," and "".
+ * Leading and trailing whitespace accepted, but not embedded whitespace.
+ */
+int __bitmap_parse(const char *buf, unsigned int buflen,
+		int is_user, unsigned long *maskp,
+		int nmaskbits)
+{
+	int c, old_c, totaldigits, ndigits, nchunks, nbits;
+	u32 chunk;
+	const char __user __force *ubuf = (const char __user __force *)buf;
+
+	bitmap_zero(maskp, nmaskbits);
+
+	nchunks = nbits = totaldigits = c = 0;
+	do {
+		chunk = 0;
+		ndigits = totaldigits;
+
+		/* Get the next chunk of the bitmap */
+		while (buflen) {
+			old_c = c;
+			if (is_user) {
+				if (__get_user(c, ubuf++))
+					return -EFAULT;
+			}
+			else
+				c = *buf++;
+			buflen--;
+			if (isspace(c))
+				continue;
+
+			/*
+			 * If the last character was a space and the current
+			 * character isn't '\0', we've got embedded whitespace.
+			 * This is a no-no, so throw an error.
+			 */
+			if (totaldigits && c && isspace(old_c))
+				return -EINVAL;
+
+			/* A '\0' or a ',' signal the end of the chunk */
+			if (c == '\0' || c == ',')
+				break;
+
+			if (!isxdigit(c))
+				return -EINVAL;
+
+			/*
+			 * Make sure there are at least 4 free bits in 'chunk'.
+			 * If not, this hexdigit will overflow 'chunk', so
+			 * throw an error.
+			 */
+			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
+				return -EOVERFLOW;
+
+			chunk = (chunk << 4) | hex_to_bin(c);
+			totaldigits++;
+		}
+		if (ndigits == totaldigits)
+			return -EINVAL;
+		if (nchunks == 0 && chunk == 0)
+			continue;
+
+		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
+		*maskp |= chunk;
+		nchunks++;
+		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
+		if (nbits > nmaskbits)
+			return -EOVERFLOW;
+	} while (buflen && c == ',');
+
+	return 0;
+}
+EXPORT_SYMBOL(__bitmap_parse);
+
+/**
+ * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
+ *
+ * @ubuf: pointer to user buffer containing string.
+ * @ulen: buffer size in bytes.  If string is smaller than this
+ *    then it must be terminated with a \0.
+ * @maskp: pointer to bitmap array that will contain result.
+ * @nmaskbits: size of bitmap, in bits.
+ *
+ * Wrapper for __bitmap_parse(), providing it with user buffer.
+ *
+ * We cannot have this as an inline function in bitmap.h because it needs
+ * linux/uaccess.h to get the access_ok() declaration and this causes
+ * cyclic dependencies.
+ */
+int bitmap_parse_user(const char __user *ubuf,
+			unsigned int ulen, unsigned long *maskp,
+			int nmaskbits)
+{
+	if (!access_ok(VERIFY_READ, ubuf, ulen))
+		return -EFAULT;
+	return __bitmap_parse((const char __force *)ubuf,
+				ulen, 1, maskp, nmaskbits);
+
+}
+EXPORT_SYMBOL(bitmap_parse_user);
+
+/**
+ * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
+ * @list: indicates whether the bitmap must be list
+ * @buf: page aligned buffer into which string is placed
+ * @maskp: pointer to bitmap to convert
+ * @nmaskbits: size of bitmap, in bits
+ *
+ * Output format is a comma-separated list of decimal numbers and
+ * ranges if list is specified or hex digits grouped into comma-separated
+ * sets of 8 digits/set. Returns the number of characters written to buf.
+ *
+ * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
+ * sufficient storage remains at @buf to accommodate the
+ * bitmap_print_to_pagebuf() output.
+ */
+int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
+			    int nmaskbits)
+{
+	ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
+	int n = 0;
+
+	if (len > 1)
+		n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
+			   scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
+	return n;
+}
+EXPORT_SYMBOL(bitmap_print_to_pagebuf);
+
+/**
+ * __bitmap_parselist - convert list format ASCII string to bitmap
+ * @buf: read nul-terminated user string from this buffer
+ * @buflen: buffer size in bytes.  If string is smaller than this
+ *    then it must be terminated with a \0.
+ * @is_user: location of buffer, 0 indicates kernel space
+ * @maskp: write resulting mask here
+ * @nmaskbits: number of bits in mask to be written
+ *
+ * Input format is a comma-separated list of decimal numbers and
+ * ranges.  Consecutively set bits are shown as two hyphen-separated
+ * decimal numbers, the smallest and largest bit numbers set in
+ * the range.
+ * Optionally each range can be postfixed to denote that only parts of it
+ * should be set. The range will divided to groups of specific size.
+ * From each group will be used only defined amount of bits.
+ * Syntax: range:used_size/group_size
+ * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
+ *
+ * Returns: 0 on success, -errno on invalid input strings. Error values:
+ *
+ *   - ``-EINVAL``: second number in range smaller than first
+ *   - ``-EINVAL``: invalid character in string
+ *   - ``-ERANGE``: bit number specified too large for mask
+ */
+static int __bitmap_parselist(const char *buf, unsigned int buflen,
+		int is_user, unsigned long *maskp,
+		int nmaskbits)
+{
+	unsigned int a, b, old_a, old_b;
+	unsigned int group_size, used_size, off;
+	int c, old_c, totaldigits, ndigits;
+	const char __user __force *ubuf = (const char __user __force *)buf;
+	int at_start, in_range, in_partial_range;
+
+	totaldigits = c = 0;
+	old_a = old_b = 0;
+	group_size = used_size = 0;
+	bitmap_zero(maskp, nmaskbits);
+	do {
+		at_start = 1;
+		in_range = 0;
+		in_partial_range = 0;
+		a = b = 0;
+		ndigits = totaldigits;
+
+		/* Get the next cpu# or a range of cpu#'s */
+		while (buflen) {
+			old_c = c;
+			if (is_user) {
+				if (__get_user(c, ubuf++))
+					return -EFAULT;
+			} else
+				c = *buf++;
+			buflen--;
+			if (isspace(c))
+				continue;
+
+			/* A '\0' or a ',' signal the end of a cpu# or range */
+			if (c == '\0' || c == ',')
+				break;
+			/*
+			* whitespaces between digits are not allowed,
+			* but it's ok if whitespaces are on head or tail.
+			* when old_c is whilespace,
+			* if totaldigits == ndigits, whitespace is on head.
+			* if whitespace is on tail, it should not run here.
+			* as c was ',' or '\0',
+			* the last code line has broken the current loop.
+			*/
+			if ((totaldigits != ndigits) && isspace(old_c))
+				return -EINVAL;
+
+			if (c == '/') {
+				used_size = a;
+				at_start = 1;
+				in_range = 0;
+				a = b = 0;
+				continue;
+			}
+
+			if (c == ':') {
+				old_a = a;
+				old_b = b;
+				at_start = 1;
+				in_range = 0;
+				in_partial_range = 1;
+				a = b = 0;
+				continue;
+			}
+
+			if (c == '-') {
+				if (at_start || in_range)
+					return -EINVAL;
+				b = 0;
+				in_range = 1;
+				at_start = 1;
+				continue;
+			}
+
+			if (!isdigit(c))
+				return -EINVAL;
+
+			b = b * 10 + (c - '0');
+			if (!in_range)
+				a = b;
+			at_start = 0;
+			totaldigits++;
+		}
+		if (ndigits == totaldigits)
+			continue;
+		if (in_partial_range) {
+			group_size = a;
+			a = old_a;
+			b = old_b;
+			old_a = old_b = 0;
+		} else {
+			used_size = group_size = b - a + 1;
+		}
+		/* if no digit is after '-', it's wrong*/
+		if (at_start && in_range)
+			return -EINVAL;
+		if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
+			return -EINVAL;
+		if (b >= nmaskbits)
+			return -ERANGE;
+		while (a <= b) {
+			off = min(b - a + 1, used_size);
+			bitmap_set(maskp, a, off);
+			a += group_size;
+		}
+	} while (buflen && c == ',');
+	return 0;
+}
+
+int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
+{
+	char *nl  = strchrnul(bp, '\n');
+	int len = nl - bp;
+
+	return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
+}
+EXPORT_SYMBOL(bitmap_parselist);
+
+
+/**
+ * bitmap_parselist_user()
+ *
+ * @ubuf: pointer to user buffer containing string.
+ * @ulen: buffer size in bytes.  If string is smaller than this
+ *    then it must be terminated with a \0.
+ * @maskp: pointer to bitmap array that will contain result.
+ * @nmaskbits: size of bitmap, in bits.
+ *
+ * Wrapper for bitmap_parselist(), providing it with user buffer.
+ *
+ * We cannot have this as an inline function in bitmap.h because it needs
+ * linux/uaccess.h to get the access_ok() declaration and this causes
+ * cyclic dependencies.
+ */
+int bitmap_parselist_user(const char __user *ubuf,
+			unsigned int ulen, unsigned long *maskp,
+			int nmaskbits)
+{
+	if (!access_ok(VERIFY_READ, ubuf, ulen))
+		return -EFAULT;
+	return __bitmap_parselist((const char __force *)ubuf,
+					ulen, 1, maskp, nmaskbits);
+}
+EXPORT_SYMBOL(bitmap_parselist_user);
+
+
+/**
+ * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
+ *	@buf: pointer to a bitmap
+ *	@pos: a bit position in @buf (0 <= @pos < @nbits)
+ *	@nbits: number of valid bit positions in @buf
+ *
+ * Map the bit at position @pos in @buf (of length @nbits) to the
+ * ordinal of which set bit it is.  If it is not set or if @pos
+ * is not a valid bit position, map to -1.
+ *
+ * If for example, just bits 4 through 7 are set in @buf, then @pos
+ * values 4 through 7 will get mapped to 0 through 3, respectively,
+ * and other @pos values will get mapped to -1.  When @pos value 7
+ * gets mapped to (returns) @ord value 3 in this example, that means
+ * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
+ *
+ * The bit positions 0 through @bits are valid positions in @buf.
+ */
+static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
+{
+	if (pos >= nbits || !test_bit(pos, buf))
+		return -1;
+
+	return __bitmap_weight(buf, pos);
+}
+
+/**
+ * bitmap_ord_to_pos - find position of n-th set bit in bitmap
+ *	@buf: pointer to bitmap
+ *	@ord: ordinal bit position (n-th set bit, n >= 0)
+ *	@nbits: number of valid bit positions in @buf
+ *
+ * Map the ordinal offset of bit @ord in @buf to its position in @buf.
+ * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
+ * >= weight(buf), returns @nbits.
+ *
+ * If for example, just bits 4 through 7 are set in @buf, then @ord
+ * values 0 through 3 will get mapped to 4 through 7, respectively,
+ * and all other @ord values returns @nbits.  When @ord value 3
+ * gets mapped to (returns) @pos value 7 in this example, that means
+ * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
+ *
+ * The bit positions 0 through @nbits-1 are valid positions in @buf.
+ */
+unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
+{
+	unsigned int pos;
+
+	for (pos = find_first_bit(buf, nbits);
+	     pos < nbits && ord;
+	     pos = find_next_bit(buf, nbits, pos + 1))
+		ord--;
+
+	return pos;
+}
+
+/**
+ * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
+ *	@dst: remapped result
+ *	@src: subset to be remapped
+ *	@old: defines domain of map
+ *	@new: defines range of map
+ *	@nbits: number of bits in each of these bitmaps
+ *
+ * Let @old and @new define a mapping of bit positions, such that
+ * whatever position is held by the n-th set bit in @old is mapped
+ * to the n-th set bit in @new.  In the more general case, allowing
+ * for the possibility that the weight 'w' of @new is less than the
+ * weight of @old, map the position of the n-th set bit in @old to
+ * the position of the m-th set bit in @new, where m == n % w.
+ *
+ * If either of the @old and @new bitmaps are empty, or if @src and
+ * @dst point to the same location, then this routine copies @src
+ * to @dst.
+ *
+ * The positions of unset bits in @old are mapped to themselves
+ * (the identify map).
+ *
+ * Apply the above specified mapping to @src, placing the result in
+ * @dst, clearing any bits previously set in @dst.
+ *
+ * For example, lets say that @old has bits 4 through 7 set, and
+ * @new has bits 12 through 15 set.  This defines the mapping of bit
+ * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
+ * bit positions unchanged.  So if say @src comes into this routine
+ * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
+ * 13 and 15 set.
+ */
+void bitmap_remap(unsigned long *dst, const unsigned long *src,
+		const unsigned long *old, const unsigned long *new,
+		unsigned int nbits)
+{
+	unsigned int oldbit, w;
+
+	if (dst == src)		/* following doesn't handle inplace remaps */
+		return;
+	bitmap_zero(dst, nbits);
+
+	w = bitmap_weight(new, nbits);
+	for_each_set_bit(oldbit, src, nbits) {
+		int n = bitmap_pos_to_ord(old, oldbit, nbits);
+
+		if (n < 0 || w == 0)
+			set_bit(oldbit, dst);	/* identity map */
+		else
+			set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
+	}
+}
+EXPORT_SYMBOL(bitmap_remap);
+
+/**
+ * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
+ *	@oldbit: bit position to be mapped
+ *	@old: defines domain of map
+ *	@new: defines range of map
+ *	@bits: number of bits in each of these bitmaps
+ *
+ * Let @old and @new define a mapping of bit positions, such that
+ * whatever position is held by the n-th set bit in @old is mapped
+ * to the n-th set bit in @new.  In the more general case, allowing
+ * for the possibility that the weight 'w' of @new is less than the
+ * weight of @old, map the position of the n-th set bit in @old to
+ * the position of the m-th set bit in @new, where m == n % w.
+ *
+ * The positions of unset bits in @old are mapped to themselves
+ * (the identify map).
+ *
+ * Apply the above specified mapping to bit position @oldbit, returning
+ * the new bit position.
+ *
+ * For example, lets say that @old has bits 4 through 7 set, and
+ * @new has bits 12 through 15 set.  This defines the mapping of bit
+ * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
+ * bit positions unchanged.  So if say @oldbit is 5, then this routine
+ * returns 13.
+ */
+int bitmap_bitremap(int oldbit, const unsigned long *old,
+				const unsigned long *new, int bits)
+{
+	int w = bitmap_weight(new, bits);
+	int n = bitmap_pos_to_ord(old, oldbit, bits);
+	if (n < 0 || w == 0)
+		return oldbit;
+	else
+		return bitmap_ord_to_pos(new, n % w, bits);
+}
+EXPORT_SYMBOL(bitmap_bitremap);
+
+/**
+ * bitmap_onto - translate one bitmap relative to another
+ *	@dst: resulting translated bitmap
+ * 	@orig: original untranslated bitmap
+ * 	@relmap: bitmap relative to which translated
+ *	@bits: number of bits in each of these bitmaps
+ *
+ * Set the n-th bit of @dst iff there exists some m such that the
+ * n-th bit of @relmap is set, the m-th bit of @orig is set, and
+ * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
+ * (If you understood the previous sentence the first time your
+ * read it, you're overqualified for your current job.)
+ *
+ * In other words, @orig is mapped onto (surjectively) @dst,
+ * using the map { <n, m> | the n-th bit of @relmap is the
+ * m-th set bit of @relmap }.
+ *
+ * Any set bits in @orig above bit number W, where W is the
+ * weight of (number of set bits in) @relmap are mapped nowhere.
+ * In particular, if for all bits m set in @orig, m >= W, then
+ * @dst will end up empty.  In situations where the possibility
+ * of such an empty result is not desired, one way to avoid it is
+ * to use the bitmap_fold() operator, below, to first fold the
+ * @orig bitmap over itself so that all its set bits x are in the
+ * range 0 <= x < W.  The bitmap_fold() operator does this by
+ * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
+ *
+ * Example [1] for bitmap_onto():
+ *  Let's say @relmap has bits 30-39 set, and @orig has bits
+ *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
+ *  @dst will have bits 31, 33, 35, 37 and 39 set.
+ *
+ *  When bit 0 is set in @orig, it means turn on the bit in
+ *  @dst corresponding to whatever is the first bit (if any)
+ *  that is turned on in @relmap.  Since bit 0 was off in the
+ *  above example, we leave off that bit (bit 30) in @dst.
+ *
+ *  When bit 1 is set in @orig (as in the above example), it
+ *  means turn on the bit in @dst corresponding to whatever
+ *  is the second bit that is turned on in @relmap.  The second
+ *  bit in @relmap that was turned on in the above example was
+ *  bit 31, so we turned on bit 31 in @dst.
+ *
+ *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
+ *  because they were the 4th, 6th, 8th and 10th set bits
+ *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
+ *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
+ *
+ *  When bit 11 is set in @orig, it means turn on the bit in
+ *  @dst corresponding to whatever is the twelfth bit that is
+ *  turned on in @relmap.  In the above example, there were
+ *  only ten bits turned on in @relmap (30..39), so that bit
+ *  11 was set in @orig had no affect on @dst.
+ *
+ * Example [2] for bitmap_fold() + bitmap_onto():
+ *  Let's say @relmap has these ten bits set::
+ *
+ *		40 41 42 43 45 48 53 61 74 95
+ *
+ *  (for the curious, that's 40 plus the first ten terms of the
+ *  Fibonacci sequence.)
+ *
+ *  Further lets say we use the following code, invoking
+ *  bitmap_fold() then bitmap_onto, as suggested above to
+ *  avoid the possibility of an empty @dst result::
+ *
+ *	unsigned long *tmp;	// a temporary bitmap's bits
+ *
+ *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
+ *	bitmap_onto(dst, tmp, relmap, bits);
+ *
+ *  Then this table shows what various values of @dst would be, for
+ *  various @orig's.  I list the zero-based positions of each set bit.
+ *  The tmp column shows the intermediate result, as computed by
+ *  using bitmap_fold() to fold the @orig bitmap modulo ten
+ *  (the weight of @relmap):
+ *
+ *      =============== ============== =================
+ *      @orig           tmp            @dst
+ *      0                0             40
+ *      1                1             41
+ *      9                9             95
+ *      10               0             40 [#f1]_
+ *      1 3 5 7          1 3 5 7       41 43 48 61
+ *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
+ *      0 9 18 27        0 9 8 7       40 61 74 95
+ *      0 10 20 30       0             40
+ *      0 11 22 33       0 1 2 3       40 41 42 43
+ *      0 12 24 36       0 2 4 6       40 42 45 53
+ *      78 102 211       1 2 8         41 42 74 [#f1]_
+ *      =============== ============== =================
+ *
+ * .. [#f1]
+ *
+ *     For these marked lines, if we hadn't first done bitmap_fold()
+ *     into tmp, then the @dst result would have been empty.
+ *
+ * If either of @orig or @relmap is empty (no set bits), then @dst
+ * will be returned empty.
+ *
+ * If (as explained above) the only set bits in @orig are in positions
+ * m where m >= W, (where W is the weight of @relmap) then @dst will
+ * once again be returned empty.
+ *
+ * All bits in @dst not set by the above rule are cleared.
+ */
+void bitmap_onto(unsigned long *dst, const unsigned long *orig,
+			const unsigned long *relmap, unsigned int bits)
+{
+	unsigned int n, m;	/* same meaning as in above comment */
+
+	if (dst == orig)	/* following doesn't handle inplace mappings */
+		return;
+	bitmap_zero(dst, bits);
+
+	/*
+	 * The following code is a more efficient, but less
+	 * obvious, equivalent to the loop:
+	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
+	 *		n = bitmap_ord_to_pos(orig, m, bits);
+	 *		if (test_bit(m, orig))
+	 *			set_bit(n, dst);
+	 *	}
+	 */
+
+	m = 0;
+	for_each_set_bit(n, relmap, bits) {
+		/* m == bitmap_pos_to_ord(relmap, n, bits) */
+		if (test_bit(m, orig))
+			set_bit(n, dst);
+		m++;
+	}
+}
+EXPORT_SYMBOL(bitmap_onto);
+
+/**
+ * bitmap_fold - fold larger bitmap into smaller, modulo specified size
+ *	@dst: resulting smaller bitmap
+ *	@orig: original larger bitmap
+ *	@sz: specified size
+ *	@nbits: number of bits in each of these bitmaps
+ *
+ * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
+ * Clear all other bits in @dst.  See further the comment and
+ * Example [2] for bitmap_onto() for why and how to use this.
+ */
+void bitmap_fold(unsigned long *dst, const unsigned long *orig,
+			unsigned int sz, unsigned int nbits)
+{
+	unsigned int oldbit;
+
+	if (dst == orig)	/* following doesn't handle inplace mappings */
+		return;
+	bitmap_zero(dst, nbits);
+
+	for_each_set_bit(oldbit, orig, nbits)
+		set_bit(oldbit % sz, dst);
+}
+EXPORT_SYMBOL(bitmap_fold);
+
+/*
+ * Common code for bitmap_*_region() routines.
+ *	bitmap: array of unsigned longs corresponding to the bitmap
+ *	pos: the beginning of the region
+ *	order: region size (log base 2 of number of bits)
+ *	reg_op: operation(s) to perform on that region of bitmap
+ *
+ * Can set, verify and/or release a region of bits in a bitmap,
+ * depending on which combination of REG_OP_* flag bits is set.
+ *
+ * A region of a bitmap is a sequence of bits in the bitmap, of
+ * some size '1 << order' (a power of two), aligned to that same
+ * '1 << order' power of two.
+ *
+ * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
+ * Returns 0 in all other cases and reg_ops.
+ */
+
+enum {
+	REG_OP_ISFREE,		/* true if region is all zero bits */
+	REG_OP_ALLOC,		/* set all bits in region */
+	REG_OP_RELEASE,		/* clear all bits in region */
+};
+
+static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
+{
+	int nbits_reg;		/* number of bits in region */
+	int index;		/* index first long of region in bitmap */
+	int offset;		/* bit offset region in bitmap[index] */
+	int nlongs_reg;		/* num longs spanned by region in bitmap */
+	int nbitsinlong;	/* num bits of region in each spanned long */
+	unsigned long mask;	/* bitmask for one long of region */
+	int i;			/* scans bitmap by longs */
+	int ret = 0;		/* return value */
+
+	/*
+	 * Either nlongs_reg == 1 (for small orders that fit in one long)
+	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
+	 */
+	nbits_reg = 1 << order;
+	index = pos / BITS_PER_LONG;
+	offset = pos - (index * BITS_PER_LONG);
+	nlongs_reg = BITS_TO_LONGS(nbits_reg);
+	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
+
+	/*
+	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
+	 * overflows if nbitsinlong == BITS_PER_LONG.
+	 */
+	mask = (1UL << (nbitsinlong - 1));
+	mask += mask - 1;
+	mask <<= offset;
+
+	switch (reg_op) {
+	case REG_OP_ISFREE:
+		for (i = 0; i < nlongs_reg; i++) {
+			if (bitmap[index + i] & mask)
+				goto done;
+		}
+		ret = 1;	/* all bits in region free (zero) */
+		break;
+
+	case REG_OP_ALLOC:
+		for (i = 0; i < nlongs_reg; i++)
+			bitmap[index + i] |= mask;
+		break;
+
+	case REG_OP_RELEASE:
+		for (i = 0; i < nlongs_reg; i++)
+			bitmap[index + i] &= ~mask;
+		break;
+	}
+done:
+	return ret;
+}
+
+/**
+ * bitmap_find_free_region - find a contiguous aligned mem region
+ *	@bitmap: array of unsigned longs corresponding to the bitmap
+ *	@bits: number of bits in the bitmap
+ *	@order: region size (log base 2 of number of bits) to find
+ *
+ * Find a region of free (zero) bits in a @bitmap of @bits bits and
+ * allocate them (set them to one).  Only consider regions of length
+ * a power (@order) of two, aligned to that power of two, which
+ * makes the search algorithm much faster.
+ *
+ * Return the bit offset in bitmap of the allocated region,
+ * or -errno on failure.
+ */
+int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
+{
+	unsigned int pos, end;		/* scans bitmap by regions of size order */
+
+	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
+		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
+			continue;
+		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
+		return pos;
+	}
+	return -ENOMEM;
+}
+EXPORT_SYMBOL(bitmap_find_free_region);
+
+/**
+ * bitmap_release_region - release allocated bitmap region
+ *	@bitmap: array of unsigned longs corresponding to the bitmap
+ *	@pos: beginning of bit region to release
+ *	@order: region size (log base 2 of number of bits) to release
+ *
+ * This is the complement to __bitmap_find_free_region() and releases
+ * the found region (by clearing it in the bitmap).
+ *
+ * No return value.
+ */
+void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
+{
+	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
+}
+EXPORT_SYMBOL(bitmap_release_region);
+
+/**
+ * bitmap_allocate_region - allocate bitmap region
+ *	@bitmap: array of unsigned longs corresponding to the bitmap
+ *	@pos: beginning of bit region to allocate
+ *	@order: region size (log base 2 of number of bits) to allocate
+ *
+ * Allocate (set bits in) a specified region of a bitmap.
+ *
+ * Return 0 on success, or %-EBUSY if specified region wasn't
+ * free (not all bits were zero).
+ */
+int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
+{
+	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
+		return -EBUSY;
+	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
+}
+EXPORT_SYMBOL(bitmap_allocate_region);
+
+/**
+ * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
+ * @dst:   destination buffer
+ * @src:   bitmap to copy
+ * @nbits: number of bits in the bitmap
+ *
+ * Require nbits % BITS_PER_LONG == 0.
+ */
+#ifdef __BIG_ENDIAN
+void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
+{
+	unsigned int i;
+
+	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
+		if (BITS_PER_LONG == 64)
+			dst[i] = cpu_to_le64(src[i]);
+		else
+			dst[i] = cpu_to_le32(src[i]);
+	}
+}
+EXPORT_SYMBOL(bitmap_copy_le);
+#endif
+
+unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
+{
+	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
+			     flags);
+}
+EXPORT_SYMBOL(bitmap_alloc);
+
+unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
+{
+	return bitmap_alloc(nbits, flags | __GFP_ZERO);
+}
+EXPORT_SYMBOL(bitmap_zalloc);
+
+void bitmap_free(const unsigned long *bitmap)
+{
+	kfree(bitmap);
+}
+EXPORT_SYMBOL(bitmap_free);
+
+#if BITS_PER_LONG == 64
+/**
+ * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
+ *	@bitmap: array of unsigned longs, the destination bitmap
+ *	@buf: array of u32 (in host byte order), the source bitmap
+ *	@nbits: number of bits in @bitmap
+ */
+void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
+{
+	unsigned int i, halfwords;
+
+	halfwords = DIV_ROUND_UP(nbits, 32);
+	for (i = 0; i < halfwords; i++) {
+		bitmap[i/2] = (unsigned long) buf[i];
+		if (++i < halfwords)
+			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
+	}
+
+	/* Clear tail bits in last word beyond nbits. */
+	if (nbits % BITS_PER_LONG)
+		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
+}
+EXPORT_SYMBOL(bitmap_from_arr32);
+
+/**
+ * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
+ *	@buf: array of u32 (in host byte order), the dest bitmap
+ *	@bitmap: array of unsigned longs, the source bitmap
+ *	@nbits: number of bits in @bitmap
+ */
+void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
+{
+	unsigned int i, halfwords;
+
+	halfwords = DIV_ROUND_UP(nbits, 32);
+	for (i = 0; i < halfwords; i++) {
+		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
+		if (++i < halfwords)
+			buf[i] = (u32) (bitmap[i/2] >> 32);
+	}
+
+	/* Clear tail bits in last element of array beyond nbits. */
+	if (nbits % BITS_PER_LONG)
+		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
+}
+EXPORT_SYMBOL(bitmap_to_arr32);
+
+#endif