v4.19.13 snapshot.
diff --git a/arch/sparc/include/asm/backoff.h b/arch/sparc/include/asm/backoff.h
new file mode 100644
index 0000000..8625946
--- /dev/null
+++ b/arch/sparc/include/asm/backoff.h
@@ -0,0 +1,86 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef _SPARC64_BACKOFF_H
+#define _SPARC64_BACKOFF_H
+
+/* The macros in this file implement an exponential backoff facility
+ * for atomic operations.
+ *
+ * When multiple threads compete on an atomic operation, it is
+ * possible for one thread to be continually denied a successful
+ * completion of the compare-and-swap instruction.  Heavily
+ * threaded cpu implementations like Niagara can compound this
+ * problem even further.
+ *
+ * When an atomic operation fails and needs to be retried, we spin a
+ * certain number of times.  At each subsequent failure of the same
+ * operation we double the spin count, realizing an exponential
+ * backoff.
+ *
+ * When we spin, we try to use an operation that will cause the
+ * current cpu strand to block, and therefore make the core fully
+ * available to any other other runnable strands.  There are two
+ * options, based upon cpu capabilities.
+ *
+ * On all cpus prior to SPARC-T4 we do three dummy reads of the
+ * condition code register.  Each read blocks the strand for something
+ * between 40 and 50 cpu cycles.
+ *
+ * For SPARC-T4 and later we have a special "pause" instruction
+ * available.  This is implemented using writes to register %asr27.
+ * The cpu will block the number of cycles written into the register,
+ * unless a disrupting trap happens first.  SPARC-T4 specifically
+ * implements pause with a granularity of 8 cycles.  Each strand has
+ * an internal pause counter which decrements every 8 cycles.  So the
+ * chip shifts the %asr27 value down by 3 bits, and writes the result
+ * into the pause counter.  If a value smaller than 8 is written, the
+ * chip blocks for 1 cycle.
+ *
+ * To achieve the same amount of backoff as the three %ccr reads give
+ * on earlier chips, we shift the backoff value up by 7 bits.  (Three
+ * %ccr reads block for about 128 cycles, 1 << 7 == 128) We write the
+ * whole amount we want to block into the pause register, rather than
+ * loop writing 128 each time.
+ */
+
+#define BACKOFF_LIMIT	(4 * 1024)
+
+#ifdef CONFIG_SMP
+
+#define BACKOFF_SETUP(reg)	\
+	mov	1, reg
+
+#define BACKOFF_LABEL(spin_label, continue_label) \
+	spin_label
+
+#define BACKOFF_SPIN(reg, tmp, label)		\
+	mov		reg, tmp;		\
+88:	rd		%ccr, %g0;		\
+	rd		%ccr, %g0;		\
+	rd		%ccr, %g0;		\
+	.section	.pause_3insn_patch,"ax";\
+	.word		88b;			\
+	sllx		tmp, 7, tmp;		\
+	wr		tmp, 0, %asr27;		\
+	clr		tmp;			\
+	.previous;				\
+	brnz,pt		tmp, 88b;		\
+	 sub		tmp, 1, tmp;		\
+	set		BACKOFF_LIMIT, tmp;	\
+	cmp		reg, tmp;		\
+	bg,pn		%xcc, label;		\
+	 nop;					\
+	ba,pt		%xcc, label;		\
+	 sllx		reg, 1, reg;
+
+#else
+
+#define BACKOFF_SETUP(reg)
+
+#define BACKOFF_LABEL(spin_label, continue_label) \
+	continue_label
+
+#define BACKOFF_SPIN(reg, tmp, label)
+
+#endif
+
+#endif /* _SPARC64_BACKOFF_H */