v4.19.13 snapshot.
diff --git a/arch/sh/mm/cache-sh5.c b/arch/sh/mm/cache-sh5.c
new file mode 100644
index 0000000..445b5e6
--- /dev/null
+++ b/arch/sh/mm/cache-sh5.c
@@ -0,0 +1,621 @@
+/*
+ * arch/sh/mm/cache-sh5.c
+ *
+ * Copyright (C) 2000, 2001  Paolo Alberelli
+ * Copyright (C) 2002  Benedict Gaster
+ * Copyright (C) 2003  Richard Curnow
+ * Copyright (C) 2003 - 2008  Paul Mundt
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License.  See the file "COPYING" in the main directory of this archive
+ * for more details.
+ */
+#include <linux/init.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <asm/tlb.h>
+#include <asm/processor.h>
+#include <asm/cache.h>
+#include <asm/pgalloc.h>
+#include <linux/uaccess.h>
+#include <asm/mmu_context.h>
+
+extern void __weak sh4__flush_region_init(void);
+
+/* Wired TLB entry for the D-cache */
+static unsigned long long dtlb_cache_slot;
+
+/*
+ * The following group of functions deal with mapping and unmapping a
+ * temporary page into a DTLB slot that has been set aside for exclusive
+ * use.
+ */
+static inline void
+sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid,
+			   unsigned long paddr)
+{
+	local_irq_disable();
+	sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
+}
+
+static inline void sh64_teardown_dtlb_cache_slot(void)
+{
+	sh64_teardown_tlb_slot(dtlb_cache_slot);
+	local_irq_enable();
+}
+
+static inline void sh64_icache_inv_all(void)
+{
+	unsigned long long addr, flag, data;
+	unsigned long flags;
+
+	addr = ICCR0;
+	flag = ICCR0_ICI;
+	data = 0;
+
+	/* Make this a critical section for safety (probably not strictly necessary.) */
+	local_irq_save(flags);
+
+	/* Without %1 it gets unexplicably wrong */
+	__asm__ __volatile__ (
+		"getcfg	%3, 0, %0\n\t"
+		"or	%0, %2, %0\n\t"
+		"putcfg	%3, 0, %0\n\t"
+		"synci"
+		: "=&r" (data)
+		: "0" (data), "r" (flag), "r" (addr));
+
+	local_irq_restore(flags);
+}
+
+static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
+{
+	/* Invalidate range of addresses [start,end] from the I-cache, where
+	 * the addresses lie in the kernel superpage. */
+
+	unsigned long long ullend, addr, aligned_start;
+	aligned_start = (unsigned long long)(signed long long)(signed long) start;
+	addr = L1_CACHE_ALIGN(aligned_start);
+	ullend = (unsigned long long) (signed long long) (signed long) end;
+
+	while (addr <= ullend) {
+		__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
+		addr += L1_CACHE_BYTES;
+	}
+}
+
+static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
+{
+	/* If we get called, we know that vma->vm_flags contains VM_EXEC.
+	   Also, eaddr is page-aligned. */
+	unsigned int cpu = smp_processor_id();
+	unsigned long long addr, end_addr;
+	unsigned long flags = 0;
+	unsigned long running_asid, vma_asid;
+	addr = eaddr;
+	end_addr = addr + PAGE_SIZE;
+
+	/* Check whether we can use the current ASID for the I-cache
+	   invalidation.  For example, if we're called via
+	   access_process_vm->flush_cache_page->here, (e.g. when reading from
+	   /proc), 'running_asid' will be that of the reader, not of the
+	   victim.
+
+	   Also, note the risk that we might get pre-empted between the ASID
+	   compare and blocking IRQs, and before we regain control, the
+	   pid->ASID mapping changes.  However, the whole cache will get
+	   invalidated when the mapping is renewed, so the worst that can
+	   happen is that the loop below ends up invalidating somebody else's
+	   cache entries.
+	*/
+
+	running_asid = get_asid();
+	vma_asid = cpu_asid(cpu, vma->vm_mm);
+	if (running_asid != vma_asid) {
+		local_irq_save(flags);
+		switch_and_save_asid(vma_asid);
+	}
+	while (addr < end_addr) {
+		/* Worth unrolling a little */
+		__asm__ __volatile__("icbi %0,  0" : : "r" (addr));
+		__asm__ __volatile__("icbi %0, 32" : : "r" (addr));
+		__asm__ __volatile__("icbi %0, 64" : : "r" (addr));
+		__asm__ __volatile__("icbi %0, 96" : : "r" (addr));
+		addr += 128;
+	}
+	if (running_asid != vma_asid) {
+		switch_and_save_asid(running_asid);
+		local_irq_restore(flags);
+	}
+}
+
+static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
+			  unsigned long start, unsigned long end)
+{
+	/* Used for invalidating big chunks of I-cache, i.e. assume the range
+	   is whole pages.  If 'start' or 'end' is not page aligned, the code
+	   is conservative and invalidates to the ends of the enclosing pages.
+	   This is functionally OK, just a performance loss. */
+
+	/* See the comments below in sh64_dcache_purge_user_range() regarding
+	   the choice of algorithm.  However, for the I-cache option (2) isn't
+	   available because there are no physical tags so aliases can't be
+	   resolved.  The icbi instruction has to be used through the user
+	   mapping.   Because icbi is cheaper than ocbp on a cache hit, it
+	   would be cheaper to use the selective code for a large range than is
+	   possible with the D-cache.  Just assume 64 for now as a working
+	   figure.
+	   */
+	int n_pages;
+
+	if (!mm)
+		return;
+
+	n_pages = ((end - start) >> PAGE_SHIFT);
+	if (n_pages >= 64) {
+		sh64_icache_inv_all();
+	} else {
+		unsigned long aligned_start;
+		unsigned long eaddr;
+		unsigned long after_last_page_start;
+		unsigned long mm_asid, current_asid;
+		unsigned long flags = 0;
+
+		mm_asid = cpu_asid(smp_processor_id(), mm);
+		current_asid = get_asid();
+
+		if (mm_asid != current_asid) {
+			/* Switch ASID and run the invalidate loop under cli */
+			local_irq_save(flags);
+			switch_and_save_asid(mm_asid);
+		}
+
+		aligned_start = start & PAGE_MASK;
+		after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
+
+		while (aligned_start < after_last_page_start) {
+			struct vm_area_struct *vma;
+			unsigned long vma_end;
+			vma = find_vma(mm, aligned_start);
+			if (!vma || (aligned_start <= vma->vm_end)) {
+				/* Avoid getting stuck in an error condition */
+				aligned_start += PAGE_SIZE;
+				continue;
+			}
+			vma_end = vma->vm_end;
+			if (vma->vm_flags & VM_EXEC) {
+				/* Executable */
+				eaddr = aligned_start;
+				while (eaddr < vma_end) {
+					sh64_icache_inv_user_page(vma, eaddr);
+					eaddr += PAGE_SIZE;
+				}
+			}
+			aligned_start = vma->vm_end; /* Skip to start of next region */
+		}
+
+		if (mm_asid != current_asid) {
+			switch_and_save_asid(current_asid);
+			local_irq_restore(flags);
+		}
+	}
+}
+
+static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
+{
+	/* The icbi instruction never raises ITLBMISS.  i.e. if there's not a
+	   cache hit on the virtual tag the instruction ends there, without a
+	   TLB lookup. */
+
+	unsigned long long aligned_start;
+	unsigned long long ull_end;
+	unsigned long long addr;
+
+	ull_end = end;
+
+	/* Just invalidate over the range using the natural addresses.  TLB
+	   miss handling will be OK (TBC).  Since it's for the current process,
+	   either we're already in the right ASID context, or the ASIDs have
+	   been recycled since we were last active in which case we might just
+	   invalidate another processes I-cache entries : no worries, just a
+	   performance drop for him. */
+	aligned_start = L1_CACHE_ALIGN(start);
+	addr = aligned_start;
+	while (addr < ull_end) {
+		__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
+		__asm__ __volatile__ ("nop");
+		__asm__ __volatile__ ("nop");
+		addr += L1_CACHE_BYTES;
+	}
+}
+
+/* Buffer used as the target of alloco instructions to purge data from cache
+   sets by natural eviction. -- RPC */
+#define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4))
+static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
+
+static inline void sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
+{
+	/* Purge all ways in a particular block of sets, specified by the base
+	   set number and number of sets.  Can handle wrap-around, if that's
+	   needed.  */
+
+	int dummy_buffer_base_set;
+	unsigned long long eaddr, eaddr0, eaddr1;
+	int j;
+	int set_offset;
+
+	dummy_buffer_base_set = ((int)&dummy_alloco_area &
+				 cpu_data->dcache.entry_mask) >>
+				 cpu_data->dcache.entry_shift;
+	set_offset = sets_to_purge_base - dummy_buffer_base_set;
+
+	for (j = 0; j < n_sets; j++, set_offset++) {
+		set_offset &= (cpu_data->dcache.sets - 1);
+		eaddr0 = (unsigned long long)dummy_alloco_area +
+			(set_offset << cpu_data->dcache.entry_shift);
+
+		/*
+		 * Do one alloco which hits the required set per cache
+		 * way.  For write-back mode, this will purge the #ways
+		 * resident lines.  There's little point unrolling this
+		 * loop because the allocos stall more if they're too
+		 * close together.
+		 */
+		eaddr1 = eaddr0 + cpu_data->dcache.way_size *
+				  cpu_data->dcache.ways;
+
+		for (eaddr = eaddr0; eaddr < eaddr1;
+		     eaddr += cpu_data->dcache.way_size) {
+			__asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr));
+			__asm__ __volatile__ ("synco"); /* TAKum03020 */
+		}
+
+		eaddr1 = eaddr0 + cpu_data->dcache.way_size *
+				  cpu_data->dcache.ways;
+
+		for (eaddr = eaddr0; eaddr < eaddr1;
+		     eaddr += cpu_data->dcache.way_size) {
+			/*
+			 * Load from each address.  Required because
+			 * alloco is a NOP if the cache is write-through.
+			 */
+			if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
+				__raw_readb((unsigned long)eaddr);
+		}
+	}
+
+	/*
+	 * Don't use OCBI to invalidate the lines.  That costs cycles
+	 * directly.  If the dummy block is just left resident, it will
+	 * naturally get evicted as required.
+	 */
+}
+
+/*
+ * Purge the entire contents of the dcache.  The most efficient way to
+ * achieve this is to use alloco instructions on a region of unused
+ * memory equal in size to the cache, thereby causing the current
+ * contents to be discarded by natural eviction.  The alternative, namely
+ * reading every tag, setting up a mapping for the corresponding page and
+ * doing an OCBP for the line, would be much more expensive.
+ */
+static void sh64_dcache_purge_all(void)
+{
+
+	sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
+}
+
+
+/* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
+   anything else in the kernel */
+#define MAGIC_PAGE0_START 0xffffffffec000000ULL
+
+/* Purge the physical page 'paddr' from the cache.  It's known that any
+ * cache lines requiring attention have the same page colour as the the
+ * address 'eaddr'.
+ *
+ * This relies on the fact that the D-cache matches on physical tags when
+ * no virtual tag matches.  So we create an alias for the original page
+ * and purge through that.  (Alternatively, we could have done this by
+ * switching ASID to match the original mapping and purged through that,
+ * but that involves ASID switching cost + probably a TLBMISS + refill
+ * anyway.)
+ */
+static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr,
+					        unsigned long eaddr)
+{
+	unsigned long long magic_page_start;
+	unsigned long long magic_eaddr, magic_eaddr_end;
+
+	magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
+
+	/* As long as the kernel is not pre-emptible, this doesn't need to be
+	   under cli/sti. */
+	sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
+
+	magic_eaddr = magic_page_start;
+	magic_eaddr_end = magic_eaddr + PAGE_SIZE;
+
+	while (magic_eaddr < magic_eaddr_end) {
+		/* Little point in unrolling this loop - the OCBPs are blocking
+		   and won't go any quicker (i.e. the loop overhead is parallel
+		   to part of the OCBP execution.) */
+		__asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
+		magic_eaddr += L1_CACHE_BYTES;
+	}
+
+	sh64_teardown_dtlb_cache_slot();
+}
+
+/*
+ * Purge a page given its physical start address, by creating a temporary
+ * 1 page mapping and purging across that.  Even if we know the virtual
+ * address (& vma or mm) of the page, the method here is more elegant
+ * because it avoids issues of coping with page faults on the purge
+ * instructions (i.e. no special-case code required in the critical path
+ * in the TLB miss handling).
+ */
+static void sh64_dcache_purge_phy_page(unsigned long paddr)
+{
+	unsigned long long eaddr_start, eaddr, eaddr_end;
+	int i;
+
+	/* As long as the kernel is not pre-emptible, this doesn't need to be
+	   under cli/sti. */
+	eaddr_start = MAGIC_PAGE0_START;
+	for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
+		sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
+
+		eaddr = eaddr_start;
+		eaddr_end = eaddr + PAGE_SIZE;
+		while (eaddr < eaddr_end) {
+			__asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
+			eaddr += L1_CACHE_BYTES;
+		}
+
+		sh64_teardown_dtlb_cache_slot();
+		eaddr_start += PAGE_SIZE;
+	}
+}
+
+static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
+				unsigned long addr, unsigned long end)
+{
+	pgd_t *pgd;
+	pud_t *pud;
+	pmd_t *pmd;
+	pte_t *pte;
+	pte_t entry;
+	spinlock_t *ptl;
+	unsigned long paddr;
+
+	if (!mm)
+		return; /* No way to find physical address of page */
+
+	pgd = pgd_offset(mm, addr);
+	if (pgd_bad(*pgd))
+		return;
+
+	pud = pud_offset(pgd, addr);
+	if (pud_none(*pud) || pud_bad(*pud))
+		return;
+
+	pmd = pmd_offset(pud, addr);
+	if (pmd_none(*pmd) || pmd_bad(*pmd))
+		return;
+
+	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
+	do {
+		entry = *pte;
+		if (pte_none(entry) || !pte_present(entry))
+			continue;
+		paddr = pte_val(entry) & PAGE_MASK;
+		sh64_dcache_purge_coloured_phy_page(paddr, addr);
+	} while (pte++, addr += PAGE_SIZE, addr != end);
+	pte_unmap_unlock(pte - 1, ptl);
+}
+
+/*
+ * There are at least 5 choices for the implementation of this, with
+ * pros (+), cons(-), comments(*):
+ *
+ * 1. ocbp each line in the range through the original user's ASID
+ *    + no lines spuriously evicted
+ *    - tlbmiss handling (must either handle faults on demand => extra
+ *	special-case code in tlbmiss critical path), or map the page in
+ *	advance (=> flush_tlb_range in advance to avoid multiple hits)
+ *    - ASID switching
+ *    - expensive for large ranges
+ *
+ * 2. temporarily map each page in the range to a special effective
+ *    address and ocbp through the temporary mapping; relies on the
+ *    fact that SH-5 OCB* always do TLB lookup and match on ptags (they
+ *    never look at the etags)
+ *    + no spurious evictions
+ *    - expensive for large ranges
+ *    * surely cheaper than (1)
+ *
+ * 3. walk all the lines in the cache, check the tags, if a match
+ *    occurs create a page mapping to ocbp the line through
+ *    + no spurious evictions
+ *    - tag inspection overhead
+ *    - (especially for small ranges)
+ *    - potential cost of setting up/tearing down page mapping for
+ *	every line that matches the range
+ *    * cost partly independent of range size
+ *
+ * 4. walk all the lines in the cache, check the tags, if a match
+ *    occurs use 4 * alloco to purge the line (+3 other probably
+ *    innocent victims) by natural eviction
+ *    + no tlb mapping overheads
+ *    - spurious evictions
+ *    - tag inspection overhead
+ *
+ * 5. implement like flush_cache_all
+ *    + no tag inspection overhead
+ *    - spurious evictions
+ *    - bad for small ranges
+ *
+ * (1) can be ruled out as more expensive than (2).  (2) appears best
+ * for small ranges.  The choice between (3), (4) and (5) for large
+ * ranges and the range size for the large/small boundary need
+ * benchmarking to determine.
+ *
+ * For now use approach (2) for small ranges and (5) for large ones.
+ */
+static void sh64_dcache_purge_user_range(struct mm_struct *mm,
+			  unsigned long start, unsigned long end)
+{
+	int n_pages = ((end - start) >> PAGE_SHIFT);
+
+	if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
+		sh64_dcache_purge_all();
+	} else {
+		/* Small range, covered by a single page table page */
+		start &= PAGE_MASK;	/* should already be so */
+		end = PAGE_ALIGN(end);	/* should already be so */
+		sh64_dcache_purge_user_pages(mm, start, end);
+	}
+}
+
+/*
+ * Invalidate the entire contents of both caches, after writing back to
+ * memory any dirty data from the D-cache.
+ */
+static void sh5_flush_cache_all(void *unused)
+{
+	sh64_dcache_purge_all();
+	sh64_icache_inv_all();
+}
+
+/*
+ * Invalidate an entire user-address space from both caches, after
+ * writing back dirty data (e.g. for shared mmap etc).
+ *
+ * This could be coded selectively by inspecting all the tags then
+ * doing 4*alloco on any set containing a match (as for
+ * flush_cache_range), but fork/exit/execve (where this is called from)
+ * are expensive anyway.
+ *
+ * Have to do a purge here, despite the comments re I-cache below.
+ * There could be odd-coloured dirty data associated with the mm still
+ * in the cache - if this gets written out through natural eviction
+ * after the kernel has reused the page there will be chaos.
+ *
+ * The mm being torn down won't ever be active again, so any Icache
+ * lines tagged with its ASID won't be visible for the rest of the
+ * lifetime of this ASID cycle.  Before the ASID gets reused, there
+ * will be a flush_cache_all.  Hence we don't need to touch the
+ * I-cache.  This is similar to the lack of action needed in
+ * flush_tlb_mm - see fault.c.
+ */
+static void sh5_flush_cache_mm(void *unused)
+{
+	sh64_dcache_purge_all();
+}
+
+/*
+ * Invalidate (from both caches) the range [start,end) of virtual
+ * addresses from the user address space specified by mm, after writing
+ * back any dirty data.
+ *
+ * Note, 'end' is 1 byte beyond the end of the range to flush.
+ */
+static void sh5_flush_cache_range(void *args)
+{
+	struct flusher_data *data = args;
+	struct vm_area_struct *vma;
+	unsigned long start, end;
+
+	vma = data->vma;
+	start = data->addr1;
+	end = data->addr2;
+
+	sh64_dcache_purge_user_range(vma->vm_mm, start, end);
+	sh64_icache_inv_user_page_range(vma->vm_mm, start, end);
+}
+
+/*
+ * Invalidate any entries in either cache for the vma within the user
+ * address space vma->vm_mm for the page starting at virtual address
+ * 'eaddr'.   This seems to be used primarily in breaking COW.  Note,
+ * the I-cache must be searched too in case the page in question is
+ * both writable and being executed from (e.g. stack trampolines.)
+ *
+ * Note, this is called with pte lock held.
+ */
+static void sh5_flush_cache_page(void *args)
+{
+	struct flusher_data *data = args;
+	struct vm_area_struct *vma;
+	unsigned long eaddr, pfn;
+
+	vma = data->vma;
+	eaddr = data->addr1;
+	pfn = data->addr2;
+
+	sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
+
+	if (vma->vm_flags & VM_EXEC)
+		sh64_icache_inv_user_page(vma, eaddr);
+}
+
+static void sh5_flush_dcache_page(void *page)
+{
+	sh64_dcache_purge_phy_page(page_to_phys((struct page *)page));
+	wmb();
+}
+
+/*
+ * Flush the range [start,end] of kernel virtual address space from
+ * the I-cache.  The corresponding range must be purged from the
+ * D-cache also because the SH-5 doesn't have cache snooping between
+ * the caches.  The addresses will be visible through the superpage
+ * mapping, therefore it's guaranteed that there no cache entries for
+ * the range in cache sets of the wrong colour.
+ */
+static void sh5_flush_icache_range(void *args)
+{
+	struct flusher_data *data = args;
+	unsigned long start, end;
+
+	start = data->addr1;
+	end = data->addr2;
+
+	__flush_purge_region((void *)start, end);
+	wmb();
+	sh64_icache_inv_kernel_range(start, end);
+}
+
+/*
+ * For the address range [start,end), write back the data from the
+ * D-cache and invalidate the corresponding region of the I-cache for the
+ * current process.  Used to flush signal trampolines on the stack to
+ * make them executable.
+ */
+static void sh5_flush_cache_sigtramp(void *vaddr)
+{
+	unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES;
+
+	__flush_wback_region(vaddr, L1_CACHE_BYTES);
+	wmb();
+	sh64_icache_inv_current_user_range((unsigned long)vaddr, end);
+}
+
+void __init sh5_cache_init(void)
+{
+	local_flush_cache_all		= sh5_flush_cache_all;
+	local_flush_cache_mm		= sh5_flush_cache_mm;
+	local_flush_cache_dup_mm	= sh5_flush_cache_mm;
+	local_flush_cache_page		= sh5_flush_cache_page;
+	local_flush_cache_range		= sh5_flush_cache_range;
+	local_flush_dcache_page		= sh5_flush_dcache_page;
+	local_flush_icache_range	= sh5_flush_icache_range;
+	local_flush_cache_sigtramp	= sh5_flush_cache_sigtramp;
+
+	/* Reserve a slot for dcache colouring in the DTLB */
+	dtlb_cache_slot	= sh64_get_wired_dtlb_entry();
+
+	sh4__flush_region_init();
+}