Update Linux to v5.10.109

Sourced from [1]

[1] https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.109.tar.xz

Change-Id: I19bca9fc6762d4e63bcf3e4cba88bbe560d9c76c
Signed-off-by: Olivier Deprez <olivier.deprez@arm.com>
diff --git a/drivers/clocksource/timer-microchip-pit64b.c b/drivers/clocksource/timer-microchip-pit64b.c
new file mode 100644
index 0000000..59e11ca
--- /dev/null
+++ b/drivers/clocksource/timer-microchip-pit64b.c
@@ -0,0 +1,452 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * 64-bit Periodic Interval Timer driver
+ *
+ * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries
+ *
+ * Author: Claudiu Beznea <claudiu.beznea@microchip.com>
+ */
+
+#include <linux/clk.h>
+#include <linux/clockchips.h>
+#include <linux/interrupt.h>
+#include <linux/of_address.h>
+#include <linux/of_irq.h>
+#include <linux/sched_clock.h>
+#include <linux/slab.h>
+
+#define MCHP_PIT64B_CR			0x00	/* Control Register */
+#define MCHP_PIT64B_CR_START		BIT(0)
+#define MCHP_PIT64B_CR_SWRST		BIT(8)
+
+#define MCHP_PIT64B_MR			0x04	/* Mode Register */
+#define MCHP_PIT64B_MR_CONT		BIT(0)
+#define MCHP_PIT64B_MR_ONE_SHOT		(0)
+#define MCHP_PIT64B_MR_SGCLK		BIT(3)
+#define MCHP_PIT64B_MR_PRES		GENMASK(11, 8)
+
+#define MCHP_PIT64B_LSB_PR		0x08	/* LSB Period Register */
+
+#define MCHP_PIT64B_MSB_PR		0x0C	/* MSB Period Register */
+
+#define MCHP_PIT64B_IER			0x10	/* Interrupt Enable Register */
+#define MCHP_PIT64B_IER_PERIOD		BIT(0)
+
+#define MCHP_PIT64B_ISR			0x1C	/* Interrupt Status Register */
+
+#define MCHP_PIT64B_TLSBR		0x20	/* Timer LSB Register */
+
+#define MCHP_PIT64B_TMSBR		0x24	/* Timer MSB Register */
+
+#define MCHP_PIT64B_PRES_MAX		0x10
+#define MCHP_PIT64B_LSBMASK		GENMASK_ULL(31, 0)
+#define MCHP_PIT64B_PRES_TO_MODE(p)	(MCHP_PIT64B_MR_PRES & ((p) << 8))
+#define MCHP_PIT64B_MODE_TO_PRES(m)	((MCHP_PIT64B_MR_PRES & (m)) >> 8)
+#define MCHP_PIT64B_DEF_CS_FREQ		5000000UL	/* 5 MHz */
+#define MCHP_PIT64B_DEF_CE_FREQ		32768		/* 32 KHz */
+
+#define MCHP_PIT64B_NAME		"pit64b"
+
+/**
+ * struct mchp_pit64b_timer - PIT64B timer data structure
+ * @base: base address of PIT64B hardware block
+ * @pclk: PIT64B's peripheral clock
+ * @gclk: PIT64B's generic clock
+ * @mode: precomputed value for mode register
+ */
+struct mchp_pit64b_timer {
+	void __iomem	*base;
+	struct clk	*pclk;
+	struct clk	*gclk;
+	u32		mode;
+};
+
+/**
+ * mchp_pit64b_clkevt - PIT64B clockevent data structure
+ * @timer: PIT64B timer
+ * @clkevt: clockevent
+ */
+struct mchp_pit64b_clkevt {
+	struct mchp_pit64b_timer	timer;
+	struct clock_event_device	clkevt;
+};
+
+#define to_mchp_pit64b_timer(x) \
+	((struct mchp_pit64b_timer *)container_of(x,\
+		struct mchp_pit64b_clkevt, clkevt))
+
+/* Base address for clocksource timer. */
+static void __iomem *mchp_pit64b_cs_base;
+/* Default cycles for clockevent timer. */
+static u64 mchp_pit64b_ce_cycles;
+
+static inline u64 mchp_pit64b_cnt_read(void __iomem *base)
+{
+	unsigned long	flags;
+	u32		low, high;
+
+	raw_local_irq_save(flags);
+
+	/*
+	 * When using a 64 bit period TLSB must be read first, followed by the
+	 * read of TMSB. This sequence generates an atomic read of the 64 bit
+	 * timer value whatever the lapse of time between the accesses.
+	 */
+	low = readl_relaxed(base + MCHP_PIT64B_TLSBR);
+	high = readl_relaxed(base + MCHP_PIT64B_TMSBR);
+
+	raw_local_irq_restore(flags);
+
+	return (((u64)high << 32) | low);
+}
+
+static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer,
+				     u64 cycles, u32 mode, u32 irqs)
+{
+	u32 low, high;
+
+	low = cycles & MCHP_PIT64B_LSBMASK;
+	high = cycles >> 32;
+
+	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
+	writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR);
+	writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR);
+	writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR);
+	writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER);
+	writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR);
+}
+
+static u64 mchp_pit64b_clksrc_read(struct clocksource *cs)
+{
+	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
+}
+
+static u64 mchp_pit64b_sched_read_clk(void)
+{
+	return mchp_pit64b_cnt_read(mchp_pit64b_cs_base);
+}
+
+static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev)
+{
+	struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
+
+	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
+
+	return 0;
+}
+
+static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev)
+{
+	struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
+
+	mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT,
+			  MCHP_PIT64B_IER_PERIOD);
+
+	return 0;
+}
+
+static int mchp_pit64b_clkevt_set_next_event(unsigned long evt,
+					     struct clock_event_device *cedev)
+{
+	struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
+
+	mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT,
+			  MCHP_PIT64B_IER_PERIOD);
+
+	return 0;
+}
+
+static void mchp_pit64b_clkevt_suspend(struct clock_event_device *cedev)
+{
+	struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
+
+	writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR);
+	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
+		clk_disable_unprepare(timer->gclk);
+	clk_disable_unprepare(timer->pclk);
+}
+
+static void mchp_pit64b_clkevt_resume(struct clock_event_device *cedev)
+{
+	struct mchp_pit64b_timer *timer = to_mchp_pit64b_timer(cedev);
+
+	clk_prepare_enable(timer->pclk);
+	if (timer->mode & MCHP_PIT64B_MR_SGCLK)
+		clk_prepare_enable(timer->gclk);
+}
+
+static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id)
+{
+	struct mchp_pit64b_clkevt *irq_data = dev_id;
+
+	/* Need to clear the interrupt. */
+	readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR);
+
+	irq_data->clkevt.event_handler(&irq_data->clkevt);
+
+	return IRQ_HANDLED;
+}
+
+static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate,
+					    u32 max_rate)
+{
+	u32 tmp;
+
+	for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) {
+		tmp = clk_rate / (*pres + 1);
+		if (tmp <= max_rate)
+			break;
+	}
+
+	/* Use the bigest prescaler if we didn't match one. */
+	if (*pres == MCHP_PIT64B_PRES_MAX)
+		*pres = MCHP_PIT64B_PRES_MAX - 1;
+}
+
+/**
+ * mchp_pit64b_init_mode - prepare PIT64B mode register value to be used at
+ *			   runtime; this includes prescaler and SGCLK bit
+ *
+ * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to
+ * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate
+ * could be changed via clock APIs. The chosen clock (pclk or gclk) could be
+ * divided by the internal PIT64B's divider.
+ *
+ * This function, first tries to use GCLK by requesting the desired rate from
+ * PMC and then using the internal PIT64B prescaler, if any, to reach the
+ * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware)
+ * then the function falls back on using PCLK as clock source for PIT64B timer
+ * choosing the highest prescaler in case it doesn't locate one to match the
+ * requested frequency.
+ *
+ * Below is presented the PIT64B block in relation with PMC:
+ *
+ *                                PIT64B
+ *  PMC             +------------------------------------+
+ * +----+           |   +-----+                          |
+ * |    |-->gclk -->|-->|     |    +---------+  +-----+  |
+ * |    |           |   | MUX |--->| Divider |->|timer|  |
+ * |    |-->pclk -->|-->|     |    +---------+  +-----+  |
+ * +----+           |   +-----+                          |
+ *                  |      ^                             |
+ *                  |     sel                            |
+ *                  +------------------------------------+
+ *
+ * Where:
+ *	- gclk rate <= pclk rate/3
+ *	- gclk rate could be requested from PMC
+ *	- pclk rate is fixed (cannot be requested from PMC)
+ */
+static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer,
+					unsigned long max_rate)
+{
+	unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX;
+	long gclk_round = 0;
+	u32 pres, best_pres = 0;
+
+	pclk_rate = clk_get_rate(timer->pclk);
+	if (!pclk_rate)
+		return -EINVAL;
+
+	timer->mode = 0;
+
+	/* Try using GCLK. */
+	gclk_round = clk_round_rate(timer->gclk, max_rate);
+	if (gclk_round < 0)
+		goto pclk;
+
+	if (pclk_rate / gclk_round < 3)
+		goto pclk;
+
+	mchp_pit64b_pres_compute(&pres, gclk_round, max_rate);
+	best_diff = abs(gclk_round / (pres + 1) - max_rate);
+	best_pres = pres;
+
+	if (!best_diff) {
+		timer->mode |= MCHP_PIT64B_MR_SGCLK;
+		clk_set_rate(timer->gclk, gclk_round);
+		goto done;
+	}
+
+pclk:
+	/* Check if requested rate could be obtained using PCLK. */
+	mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate);
+	diff = abs(pclk_rate / (pres + 1) - max_rate);
+
+	if (best_diff > diff) {
+		/* Use PCLK. */
+		best_pres = pres;
+	} else {
+		/* Use GCLK. */
+		timer->mode |= MCHP_PIT64B_MR_SGCLK;
+		clk_set_rate(timer->gclk, gclk_round);
+	}
+
+done:
+	timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres);
+
+	pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n",
+		timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres,
+		timer->mode & MCHP_PIT64B_MR_SGCLK ?
+		gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1));
+
+	return 0;
+}
+
+static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer,
+					  u32 clk_rate)
+{
+	int ret;
+
+	mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0);
+
+	mchp_pit64b_cs_base = timer->base;
+
+	ret = clocksource_mmio_init(timer->base, MCHP_PIT64B_NAME, clk_rate,
+				    210, 64, mchp_pit64b_clksrc_read);
+	if (ret) {
+		pr_debug("clksrc: Failed to register PIT64B clocksource!\n");
+
+		/* Stop timer. */
+		writel_relaxed(MCHP_PIT64B_CR_SWRST,
+			       timer->base + MCHP_PIT64B_CR);
+
+		return ret;
+	}
+
+	sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate);
+
+	return 0;
+}
+
+static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer,
+					  u32 clk_rate, u32 irq)
+{
+	struct mchp_pit64b_clkevt *ce;
+	int ret;
+
+	ce = kzalloc(sizeof(*ce), GFP_KERNEL);
+	if (!ce)
+		return -ENOMEM;
+
+	mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ);
+
+	ce->timer.base = timer->base;
+	ce->timer.pclk = timer->pclk;
+	ce->timer.gclk = timer->gclk;
+	ce->timer.mode = timer->mode;
+	ce->clkevt.name = MCHP_PIT64B_NAME;
+	ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
+	ce->clkevt.rating = 150;
+	ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown;
+	ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic;
+	ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event;
+	ce->clkevt.suspend = mchp_pit64b_clkevt_suspend;
+	ce->clkevt.resume = mchp_pit64b_clkevt_resume;
+	ce->clkevt.cpumask = cpumask_of(0);
+	ce->clkevt.irq = irq;
+
+	ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER,
+			  "pit64b_tick", ce);
+	if (ret) {
+		pr_debug("clkevt: Failed to setup PIT64B IRQ\n");
+		kfree(ce);
+		return ret;
+	}
+
+	clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX);
+
+	return 0;
+}
+
+static int __init mchp_pit64b_dt_init_timer(struct device_node *node,
+					    bool clkevt)
+{
+	u32 freq = clkevt ? MCHP_PIT64B_DEF_CE_FREQ : MCHP_PIT64B_DEF_CS_FREQ;
+	struct mchp_pit64b_timer timer;
+	unsigned long clk_rate;
+	u32 irq = 0;
+	int ret;
+
+	/* Parse DT node. */
+	timer.pclk = of_clk_get_by_name(node, "pclk");
+	if (IS_ERR(timer.pclk))
+		return PTR_ERR(timer.pclk);
+
+	timer.gclk = of_clk_get_by_name(node, "gclk");
+	if (IS_ERR(timer.gclk))
+		return PTR_ERR(timer.gclk);
+
+	timer.base = of_iomap(node, 0);
+	if (!timer.base)
+		return -ENXIO;
+
+	if (clkevt) {
+		irq = irq_of_parse_and_map(node, 0);
+		if (!irq) {
+			ret = -ENODEV;
+			goto io_unmap;
+		}
+	}
+
+	/* Initialize mode (prescaler + SGCK bit). To be used at runtime. */
+	ret = mchp_pit64b_init_mode(&timer, freq);
+	if (ret)
+		goto irq_unmap;
+
+	ret = clk_prepare_enable(timer.pclk);
+	if (ret)
+		goto irq_unmap;
+
+	if (timer.mode & MCHP_PIT64B_MR_SGCLK) {
+		ret = clk_prepare_enable(timer.gclk);
+		if (ret)
+			goto pclk_unprepare;
+
+		clk_rate = clk_get_rate(timer.gclk);
+	} else {
+		clk_rate = clk_get_rate(timer.pclk);
+	}
+	clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1);
+
+	if (clkevt)
+		ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq);
+	else
+		ret = mchp_pit64b_init_clksrc(&timer, clk_rate);
+
+	if (ret)
+		goto gclk_unprepare;
+
+	return 0;
+
+gclk_unprepare:
+	if (timer.mode & MCHP_PIT64B_MR_SGCLK)
+		clk_disable_unprepare(timer.gclk);
+pclk_unprepare:
+	clk_disable_unprepare(timer.pclk);
+irq_unmap:
+	irq_dispose_mapping(irq);
+io_unmap:
+	iounmap(timer.base);
+
+	return ret;
+}
+
+static int __init mchp_pit64b_dt_init(struct device_node *node)
+{
+	static int inits;
+
+	switch (inits++) {
+	case 0:
+		/* 1st request, register clockevent. */
+		return mchp_pit64b_dt_init_timer(node, true);
+	case 1:
+		/* 2nd request, register clocksource. */
+		return mchp_pit64b_dt_init_timer(node, false);
+	}
+
+	/* The rest, don't care. */
+	return -EINVAL;
+}
+
+TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);