blob: 382a0619a04883deab26619e80012fe060c842f1 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0
2/*
Olivier Deprez157378f2022-04-04 15:47:50 +02003 * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345
David Brazdil0f672f62019-12-10 10:32:29 +00004 * Copyright (C) 2019 Topic Embedded Products
5 * Author: Mike Looijmans <mike.looijmans@topic.nl>
Olivier Deprez157378f2022-04-04 15:47:50 +02006 *
7 * The Si5341 has 10 outputs and 5 synthesizers.
8 * The Si5340 is a smaller version of the Si5341 with only 4 outputs.
9 * The Si5345 is similar to the Si5341, with the addition of fractional input
10 * dividers and automatic input selection.
11 * The Si5342 and Si5344 are smaller versions of the Si5345.
David Brazdil0f672f62019-12-10 10:32:29 +000012 */
13
14#include <linux/clk.h>
15#include <linux/clk-provider.h>
16#include <linux/delay.h>
17#include <linux/gcd.h>
18#include <linux/math64.h>
19#include <linux/i2c.h>
20#include <linux/module.h>
21#include <linux/regmap.h>
22#include <linux/slab.h>
23#include <asm/unaligned.h>
24
Olivier Deprez157378f2022-04-04 15:47:50 +020025#define SI5341_NUM_INPUTS 4
David Brazdil0f672f62019-12-10 10:32:29 +000026
Olivier Deprez157378f2022-04-04 15:47:50 +020027#define SI5340_MAX_NUM_OUTPUTS 4
28#define SI5341_MAX_NUM_OUTPUTS 10
29#define SI5342_MAX_NUM_OUTPUTS 2
30#define SI5344_MAX_NUM_OUTPUTS 4
31#define SI5345_MAX_NUM_OUTPUTS 10
32
David Brazdil0f672f62019-12-10 10:32:29 +000033#define SI5340_NUM_SYNTH 4
Olivier Deprez157378f2022-04-04 15:47:50 +020034#define SI5341_NUM_SYNTH 5
35#define SI5342_NUM_SYNTH 2
36#define SI5344_NUM_SYNTH 4
37#define SI5345_NUM_SYNTH 5
David Brazdil0f672f62019-12-10 10:32:29 +000038
39/* Range of the synthesizer fractional divider */
40#define SI5341_SYNTH_N_MIN 10
41#define SI5341_SYNTH_N_MAX 4095
42
43/* The chip can get its input clock from 3 input pins or an XTAL */
44
45/* There is one PLL running at 13500–14256 MHz */
46#define SI5341_PLL_VCO_MIN 13500000000ull
47#define SI5341_PLL_VCO_MAX 14256000000ull
48
49/* The 5 frequency synthesizers obtain their input from the PLL */
50struct clk_si5341_synth {
51 struct clk_hw hw;
52 struct clk_si5341 *data;
53 u8 index;
54};
55#define to_clk_si5341_synth(_hw) \
56 container_of(_hw, struct clk_si5341_synth, hw)
57
58/* The output stages can be connected to any synth (full mux) */
59struct clk_si5341_output {
60 struct clk_hw hw;
61 struct clk_si5341 *data;
62 u8 index;
63};
64#define to_clk_si5341_output(_hw) \
65 container_of(_hw, struct clk_si5341_output, hw)
66
67struct clk_si5341 {
68 struct clk_hw hw;
69 struct regmap *regmap;
70 struct i2c_client *i2c_client;
71 struct clk_si5341_synth synth[SI5341_NUM_SYNTH];
72 struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS];
Olivier Deprez157378f2022-04-04 15:47:50 +020073 struct clk *input_clk[SI5341_NUM_INPUTS];
74 const char *input_clk_name[SI5341_NUM_INPUTS];
David Brazdil0f672f62019-12-10 10:32:29 +000075 const u16 *reg_output_offset;
76 const u16 *reg_rdiv_offset;
77 u64 freq_vco; /* 13500–14256 MHz */
78 u8 num_outputs;
79 u8 num_synth;
Olivier Deprez157378f2022-04-04 15:47:50 +020080 u16 chip_id;
David Brazdil0f672f62019-12-10 10:32:29 +000081};
82#define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw)
83
84struct clk_si5341_output_config {
85 u8 out_format_drv_bits;
86 u8 out_cm_ampl_bits;
87 bool synth_master;
88 bool always_on;
89};
90
91#define SI5341_PAGE 0x0001
92#define SI5341_PN_BASE 0x0002
93#define SI5341_DEVICE_REV 0x0005
94#define SI5341_STATUS 0x000C
Olivier Deprez157378f2022-04-04 15:47:50 +020095#define SI5341_LOS 0x000D
96#define SI5341_STATUS_STICKY 0x0011
97#define SI5341_LOS_STICKY 0x0012
David Brazdil0f672f62019-12-10 10:32:29 +000098#define SI5341_SOFT_RST 0x001C
Olivier Deprez157378f2022-04-04 15:47:50 +020099#define SI5341_IN_SEL 0x0021
100#define SI5341_DEVICE_READY 0x00FE
101#define SI5341_XAXB_CFG 0x090E
102#define SI5341_IN_EN 0x0949
103#define SI5341_INX_TO_PFD_EN 0x094A
104
105/* Status bits */
106#define SI5341_STATUS_SYSINCAL BIT(0)
107#define SI5341_STATUS_LOSXAXB BIT(1)
108#define SI5341_STATUS_LOSREF BIT(2)
109#define SI5341_STATUS_LOL BIT(3)
110
111/* Input selection */
112#define SI5341_IN_SEL_MASK 0x06
113#define SI5341_IN_SEL_SHIFT 1
114#define SI5341_IN_SEL_REGCTRL 0x01
115#define SI5341_INX_TO_PFD_SHIFT 4
116
117/* XTAL config bits */
118#define SI5341_XAXB_CFG_EXTCLK_EN BIT(0)
119#define SI5341_XAXB_CFG_PDNB BIT(1)
David Brazdil0f672f62019-12-10 10:32:29 +0000120
121/* Input dividers (48-bit) */
122#define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10))
123#define SI5341_IN_PSET(x) (0x020E + ((x) * 10))
Olivier Deprez157378f2022-04-04 15:47:50 +0200124#define SI5341_PX_UPD 0x0230
David Brazdil0f672f62019-12-10 10:32:29 +0000125
126/* PLL configuration */
127#define SI5341_PLL_M_NUM 0x0235
128#define SI5341_PLL_M_DEN 0x023B
129
130/* Output configuration */
131#define SI5341_OUT_CONFIG(output) \
132 ((output)->data->reg_output_offset[(output)->index])
133#define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1)
134#define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2)
135#define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3)
136#define SI5341_OUT_R_REG(output) \
137 ((output)->data->reg_rdiv_offset[(output)->index])
138
139/* Synthesize N divider */
140#define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11))
141#define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11))
142#define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11))
143
144/* Synthesizer output enable, phase bypass, power mode */
145#define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03
146#define SI5341_SYNTH_N_PIBYP 0x0A04
147#define SI5341_SYNTH_N_PDNB 0x0A05
148#define SI5341_SYNTH_N_CLK_DIS 0x0B4A
149
150#define SI5341_REGISTER_MAX 0xBFF
151
152/* SI5341_OUT_CONFIG bits */
153#define SI5341_OUT_CFG_PDN BIT(0)
154#define SI5341_OUT_CFG_OE BIT(1)
155#define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2)
156
157/* Static configuration (to be moved to firmware) */
158struct si5341_reg_default {
159 u16 address;
160 u8 value;
161};
162
Olivier Deprez157378f2022-04-04 15:47:50 +0200163static const char * const si5341_input_clock_names[] = {
164 "in0", "in1", "in2", "xtal"
165};
166
David Brazdil0f672f62019-12-10 10:32:29 +0000167/* Output configuration registers 0..9 are not quite logically organized */
Olivier Deprez157378f2022-04-04 15:47:50 +0200168/* Also for si5345 */
David Brazdil0f672f62019-12-10 10:32:29 +0000169static const u16 si5341_reg_output_offset[] = {
170 0x0108,
171 0x010D,
172 0x0112,
173 0x0117,
174 0x011C,
175 0x0121,
176 0x0126,
177 0x012B,
178 0x0130,
179 0x013A,
180};
181
Olivier Deprez157378f2022-04-04 15:47:50 +0200182/* for si5340, si5342 and si5344 */
David Brazdil0f672f62019-12-10 10:32:29 +0000183static const u16 si5340_reg_output_offset[] = {
184 0x0112,
185 0x0117,
186 0x0126,
187 0x012B,
188};
189
190/* The location of the R divider registers */
191static const u16 si5341_reg_rdiv_offset[] = {
192 0x024A,
193 0x024D,
194 0x0250,
195 0x0253,
196 0x0256,
197 0x0259,
198 0x025C,
199 0x025F,
200 0x0262,
201 0x0268,
202};
203static const u16 si5340_reg_rdiv_offset[] = {
204 0x0250,
205 0x0253,
206 0x025C,
207 0x025F,
208};
209
210/*
211 * Programming sequence from ClockBuilder, settings to initialize the system
212 * using only the XTAL input, without pre-divider.
213 * This also contains settings that aren't mentioned anywhere in the datasheet.
214 * The "known" settings like synth and output configuration are done later.
215 */
216static const struct si5341_reg_default si5341_reg_defaults[] = {
217 { 0x0017, 0x3A }, /* INT mask (disable interrupts) */
218 { 0x0018, 0xFF }, /* INT mask */
219 { 0x0021, 0x0F }, /* Select XTAL as input */
220 { 0x0022, 0x00 }, /* Not in datasheet */
221 { 0x002B, 0x02 }, /* SPI config */
222 { 0x002C, 0x20 }, /* LOS enable for XTAL */
223 { 0x002D, 0x00 }, /* LOS timing */
224 { 0x002E, 0x00 },
225 { 0x002F, 0x00 },
226 { 0x0030, 0x00 },
227 { 0x0031, 0x00 },
228 { 0x0032, 0x00 },
229 { 0x0033, 0x00 },
230 { 0x0034, 0x00 },
231 { 0x0035, 0x00 },
232 { 0x0036, 0x00 },
233 { 0x0037, 0x00 },
234 { 0x0038, 0x00 }, /* LOS setting (thresholds) */
235 { 0x0039, 0x00 },
236 { 0x003A, 0x00 },
237 { 0x003B, 0x00 },
238 { 0x003C, 0x00 },
239 { 0x003D, 0x00 }, /* LOS setting (thresholds) end */
240 { 0x0041, 0x00 }, /* LOS0_DIV_SEL */
241 { 0x0042, 0x00 }, /* LOS1_DIV_SEL */
242 { 0x0043, 0x00 }, /* LOS2_DIV_SEL */
243 { 0x0044, 0x00 }, /* LOS3_DIV_SEL */
244 { 0x009E, 0x00 }, /* Not in datasheet */
245 { 0x0102, 0x01 }, /* Enable outputs */
246 { 0x013F, 0x00 }, /* Not in datasheet */
247 { 0x0140, 0x00 }, /* Not in datasheet */
248 { 0x0141, 0x40 }, /* OUT LOS */
249 { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/
250 { 0x0203, 0x00 },
251 { 0x0204, 0x00 },
252 { 0x0205, 0x00 },
253 { 0x0206, 0x00 }, /* PXAXB (2^x) */
254 { 0x0208, 0x00 }, /* Px divider setting (usually 0) */
255 { 0x0209, 0x00 },
256 { 0x020A, 0x00 },
257 { 0x020B, 0x00 },
258 { 0x020C, 0x00 },
259 { 0x020D, 0x00 },
260 { 0x020E, 0x00 },
261 { 0x020F, 0x00 },
262 { 0x0210, 0x00 },
263 { 0x0211, 0x00 },
264 { 0x0212, 0x00 },
265 { 0x0213, 0x00 },
266 { 0x0214, 0x00 },
267 { 0x0215, 0x00 },
268 { 0x0216, 0x00 },
269 { 0x0217, 0x00 },
270 { 0x0218, 0x00 },
271 { 0x0219, 0x00 },
272 { 0x021A, 0x00 },
273 { 0x021B, 0x00 },
274 { 0x021C, 0x00 },
275 { 0x021D, 0x00 },
276 { 0x021E, 0x00 },
277 { 0x021F, 0x00 },
278 { 0x0220, 0x00 },
279 { 0x0221, 0x00 },
280 { 0x0222, 0x00 },
281 { 0x0223, 0x00 },
282 { 0x0224, 0x00 },
283 { 0x0225, 0x00 },
284 { 0x0226, 0x00 },
285 { 0x0227, 0x00 },
286 { 0x0228, 0x00 },
287 { 0x0229, 0x00 },
288 { 0x022A, 0x00 },
289 { 0x022B, 0x00 },
290 { 0x022C, 0x00 },
291 { 0x022D, 0x00 },
292 { 0x022E, 0x00 },
293 { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */
294 { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */
295 { 0x026C, 0x00 },
296 { 0x026D, 0x00 },
297 { 0x026E, 0x00 },
298 { 0x026F, 0x00 },
299 { 0x0270, 0x00 },
300 { 0x0271, 0x00 },
301 { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */
302 { 0x0339, 0x1F }, /* N_FSTEP_MSK */
303 { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */
304 { 0x033C, 0x00 },
305 { 0x033D, 0x00 },
306 { 0x033E, 0x00 },
307 { 0x033F, 0x00 },
308 { 0x0340, 0x00 },
309 { 0x0341, 0x00 },
310 { 0x0342, 0x00 },
311 { 0x0343, 0x00 },
312 { 0x0344, 0x00 },
313 { 0x0345, 0x00 },
314 { 0x0346, 0x00 },
315 { 0x0347, 0x00 },
316 { 0x0348, 0x00 },
317 { 0x0349, 0x00 },
318 { 0x034A, 0x00 },
319 { 0x034B, 0x00 },
320 { 0x034C, 0x00 },
321 { 0x034D, 0x00 },
322 { 0x034E, 0x00 },
323 { 0x034F, 0x00 },
324 { 0x0350, 0x00 },
325 { 0x0351, 0x00 },
326 { 0x0352, 0x00 },
327 { 0x0353, 0x00 },
328 { 0x0354, 0x00 },
329 { 0x0355, 0x00 },
330 { 0x0356, 0x00 },
331 { 0x0357, 0x00 },
332 { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */
333 { 0x0359, 0x00 }, /* Nx_DELAY */
334 { 0x035A, 0x00 },
335 { 0x035B, 0x00 },
336 { 0x035C, 0x00 },
337 { 0x035D, 0x00 },
338 { 0x035E, 0x00 },
339 { 0x035F, 0x00 },
340 { 0x0360, 0x00 },
341 { 0x0361, 0x00 },
342 { 0x0362, 0x00 }, /* Nx_DELAY end */
343 { 0x0802, 0x00 }, /* Not in datasheet */
344 { 0x0803, 0x00 }, /* Not in datasheet */
345 { 0x0804, 0x00 }, /* Not in datasheet */
346 { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */
347 { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */
348 { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */
349 { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */
350 { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */
351 { 0x0A02, 0x00 }, /* Not in datasheet */
352 { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */
Olivier Deprez0e641232021-09-23 10:07:05 +0200353 { 0x0B57, 0x10 }, /* VCO_RESET_CALCODE (not described in datasheet) */
354 { 0x0B58, 0x05 }, /* VCO_RESET_CALCODE (not described in datasheet) */
David Brazdil0f672f62019-12-10 10:32:29 +0000355};
356
357/* Read and interpret a 44-bit followed by a 32-bit value in the regmap */
358static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg,
359 u64 *val1, u32 *val2)
360{
361 int err;
362 u8 r[10];
363
364 err = regmap_bulk_read(regmap, reg, r, 10);
365 if (err < 0)
366 return err;
367
368 *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) |
369 (get_unaligned_le32(r));
370 *val2 = get_unaligned_le32(&r[6]);
371
372 return 0;
373}
374
375static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg,
376 u64 n_num, u32 n_den)
377{
378 u8 r[10];
379
380 /* Shift left as far as possible without overflowing */
381 while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) {
382 n_num <<= 1;
383 n_den <<= 1;
384 }
385
386 /* 44 bits (6 bytes) numerator */
387 put_unaligned_le32(n_num, r);
388 r[4] = (n_num >> 32) & 0xff;
389 r[5] = (n_num >> 40) & 0x0f;
390 /* 32 bits denominator */
391 put_unaligned_le32(n_den, &r[6]);
392
393 /* Program the fraction */
394 return regmap_bulk_write(regmap, reg, r, sizeof(r));
395}
396
397/* VCO, we assume it runs at a constant frequency */
398static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw,
399 unsigned long parent_rate)
400{
401 struct clk_si5341 *data = to_clk_si5341(hw);
402 int err;
403 u64 res;
404 u64 m_num;
405 u32 m_den;
406 unsigned int shift;
407
408 /* Assume that PDIV is not being used, just read the PLL setting */
409 err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM,
410 &m_num, &m_den);
411 if (err < 0)
412 return 0;
413
414 if (!m_num || !m_den)
415 return 0;
416
417 /*
418 * Though m_num is 64-bit, only the upper bits are actually used. While
419 * calculating m_num and m_den, they are shifted as far as possible to
420 * the left. To avoid 96-bit division here, we just shift them back so
421 * we can do with just 64 bits.
422 */
423 shift = 0;
424 res = m_num;
425 while (res & 0xffff00000000ULL) {
426 ++shift;
427 res >>= 1;
428 }
429 res *= parent_rate;
430 do_div(res, (m_den >> shift));
431
432 /* We cannot return the actual frequency in 32 bit, store it locally */
433 data->freq_vco = res;
434
435 /* Report kHz since the value is out of range */
436 do_div(res, 1000);
437
438 return (unsigned long)res;
439}
440
Olivier Deprez157378f2022-04-04 15:47:50 +0200441static int si5341_clk_get_selected_input(struct clk_si5341 *data)
442{
443 int err;
444 u32 val;
445
446 err = regmap_read(data->regmap, SI5341_IN_SEL, &val);
447 if (err < 0)
448 return err;
449
450 return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT;
451}
452
453static u8 si5341_clk_get_parent(struct clk_hw *hw)
454{
455 struct clk_si5341 *data = to_clk_si5341(hw);
456 int res = si5341_clk_get_selected_input(data);
457
458 if (res < 0)
459 return 0; /* Apparently we cannot report errors */
460
461 return res;
462}
463
464static int si5341_clk_reparent(struct clk_si5341 *data, u8 index)
465{
466 int err;
467 u8 val;
468
469 val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK;
470 /* Enable register-based input selection */
471 val |= SI5341_IN_SEL_REGCTRL;
472
473 err = regmap_update_bits(data->regmap,
474 SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val);
475 if (err < 0)
476 return err;
477
478 if (index < 3) {
479 /* Enable input buffer for selected input */
480 err = regmap_update_bits(data->regmap,
481 SI5341_IN_EN, 0x07, BIT(index));
482 if (err < 0)
483 return err;
484
485 /* Enables the input to phase detector */
486 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
487 0x7 << SI5341_INX_TO_PFD_SHIFT,
488 BIT(index + SI5341_INX_TO_PFD_SHIFT));
489 if (err < 0)
490 return err;
491
492 /* Power down XTAL oscillator and buffer */
493 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
494 SI5341_XAXB_CFG_PDNB, 0);
495 if (err < 0)
496 return err;
497
498 /*
499 * Set the P divider to "1". There's no explanation in the
500 * datasheet of these registers, but the clockbuilder software
501 * programs a "1" when the input is being used.
502 */
503 err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1);
504 if (err < 0)
505 return err;
506
507 err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1);
508 if (err < 0)
509 return err;
510
511 /* Set update PDIV bit */
512 err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index));
513 if (err < 0)
514 return err;
515 } else {
516 /* Disable all input buffers */
517 err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0);
518 if (err < 0)
519 return err;
520
521 /* Disable input to phase detector */
522 err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN,
523 0x7 << SI5341_INX_TO_PFD_SHIFT, 0);
524 if (err < 0)
525 return err;
526
527 /* Power up XTAL oscillator and buffer */
528 err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG,
529 SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB);
530 if (err < 0)
531 return err;
532 }
533
534 return 0;
535}
536
537static int si5341_clk_set_parent(struct clk_hw *hw, u8 index)
538{
539 struct clk_si5341 *data = to_clk_si5341(hw);
540
541 return si5341_clk_reparent(data, index);
542}
543
David Brazdil0f672f62019-12-10 10:32:29 +0000544static const struct clk_ops si5341_clk_ops = {
Olivier Deprez157378f2022-04-04 15:47:50 +0200545 .set_parent = si5341_clk_set_parent,
546 .get_parent = si5341_clk_get_parent,
David Brazdil0f672f62019-12-10 10:32:29 +0000547 .recalc_rate = si5341_clk_recalc_rate,
548};
549
550/* Synthesizers, there are 5 synthesizers that connect to any of the outputs */
551
552/* The synthesizer is on if all power and enable bits are set */
553static int si5341_synth_clk_is_on(struct clk_hw *hw)
554{
555 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
556 int err;
557 u32 val;
558 u8 index = synth->index;
559
560 err = regmap_read(synth->data->regmap,
561 SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val);
562 if (err < 0)
563 return 0;
564
565 if (!(val & BIT(index)))
566 return 0;
567
568 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val);
569 if (err < 0)
570 return 0;
571
572 if (!(val & BIT(index)))
573 return 0;
574
575 /* This bit must be 0 for the synthesizer to receive clock input */
576 err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val);
577 if (err < 0)
578 return 0;
579
580 return !(val & BIT(index));
581}
582
583static void si5341_synth_clk_unprepare(struct clk_hw *hw)
584{
585 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
586 u8 index = synth->index; /* In range 0..5 */
587 u8 mask = BIT(index);
588
589 /* Disable output */
590 regmap_update_bits(synth->data->regmap,
591 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0);
592 /* Power down */
593 regmap_update_bits(synth->data->regmap,
594 SI5341_SYNTH_N_PDNB, mask, 0);
595 /* Disable clock input to synth (set to 1 to disable) */
596 regmap_update_bits(synth->data->regmap,
597 SI5341_SYNTH_N_CLK_DIS, mask, mask);
598}
599
600static int si5341_synth_clk_prepare(struct clk_hw *hw)
601{
602 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
603 int err;
604 u8 index = synth->index;
605 u8 mask = BIT(index);
606
607 /* Power up */
608 err = regmap_update_bits(synth->data->regmap,
609 SI5341_SYNTH_N_PDNB, mask, mask);
610 if (err < 0)
611 return err;
612
613 /* Enable clock input to synth (set bit to 0 to enable) */
614 err = regmap_update_bits(synth->data->regmap,
615 SI5341_SYNTH_N_CLK_DIS, mask, 0);
616 if (err < 0)
617 return err;
618
619 /* Enable output */
620 return regmap_update_bits(synth->data->regmap,
621 SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask);
622}
623
624/* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */
625static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw,
626 unsigned long parent_rate)
627{
628 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
629 u64 f;
630 u64 n_num;
631 u32 n_den;
632 int err;
633
634 err = si5341_decode_44_32(synth->data->regmap,
635 SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den);
636 if (err < 0)
637 return err;
Olivier Deprez0e641232021-09-23 10:07:05 +0200638 /* Check for bogus/uninitialized settings */
639 if (!n_num || !n_den)
640 return 0;
David Brazdil0f672f62019-12-10 10:32:29 +0000641
642 /*
643 * n_num and n_den are shifted left as much as possible, so to prevent
644 * overflow in 64-bit math, we shift n_den 4 bits to the right
645 */
646 f = synth->data->freq_vco;
647 f *= n_den >> 4;
648
649 /* Now we need to to 64-bit division: f/n_num */
650 /* And compensate for the 4 bits we dropped */
651 f = div64_u64(f, (n_num >> 4));
652
653 return f;
654}
655
656static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate,
657 unsigned long *parent_rate)
658{
659 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
660 u64 f;
661
662 /* The synthesizer accuracy is such that anything in range will work */
663 f = synth->data->freq_vco;
664 do_div(f, SI5341_SYNTH_N_MAX);
665 if (rate < f)
666 return f;
667
668 f = synth->data->freq_vco;
669 do_div(f, SI5341_SYNTH_N_MIN);
670 if (rate > f)
671 return f;
672
673 return rate;
674}
675
676static int si5341_synth_program(struct clk_si5341_synth *synth,
677 u64 n_num, u32 n_den, bool is_integer)
678{
679 int err;
680 u8 index = synth->index;
681
682 err = si5341_encode_44_32(synth->data->regmap,
683 SI5341_SYNTH_N_NUM(index), n_num, n_den);
684
685 err = regmap_update_bits(synth->data->regmap,
686 SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0);
687 if (err < 0)
688 return err;
689
690 return regmap_write(synth->data->regmap,
691 SI5341_SYNTH_N_UPD(index), 0x01);
692}
693
694
695static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate,
696 unsigned long parent_rate)
697{
698 struct clk_si5341_synth *synth = to_clk_si5341_synth(hw);
699 u64 n_num;
700 u32 n_den;
701 u32 r;
702 u32 g;
703 bool is_integer;
704
705 n_num = synth->data->freq_vco;
706
707 /* see if there's an integer solution */
708 r = do_div(n_num, rate);
709 is_integer = (r == 0);
710 if (is_integer) {
711 /* Integer divider equal to n_num */
712 n_den = 1;
713 } else {
714 /* Calculate a fractional solution */
715 g = gcd(r, rate);
716 n_den = rate / g;
717 n_num *= n_den;
718 n_num += r / g;
719 }
720
721 dev_dbg(&synth->data->i2c_client->dev,
722 "%s(%u): n=0x%llx d=0x%x %s\n", __func__,
723 synth->index, n_num, n_den,
724 is_integer ? "int" : "frac");
725
726 return si5341_synth_program(synth, n_num, n_den, is_integer);
727}
728
729static const struct clk_ops si5341_synth_clk_ops = {
730 .is_prepared = si5341_synth_clk_is_on,
731 .prepare = si5341_synth_clk_prepare,
732 .unprepare = si5341_synth_clk_unprepare,
733 .recalc_rate = si5341_synth_clk_recalc_rate,
734 .round_rate = si5341_synth_clk_round_rate,
735 .set_rate = si5341_synth_clk_set_rate,
736};
737
738static int si5341_output_clk_is_on(struct clk_hw *hw)
739{
740 struct clk_si5341_output *output = to_clk_si5341_output(hw);
741 int err;
742 u32 val;
743
744 err = regmap_read(output->data->regmap,
745 SI5341_OUT_CONFIG(output), &val);
746 if (err < 0)
747 return err;
748
749 /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */
750 return (val & 0x03) == SI5341_OUT_CFG_OE;
751}
752
753/* Disables and then powers down the output */
754static void si5341_output_clk_unprepare(struct clk_hw *hw)
755{
756 struct clk_si5341_output *output = to_clk_si5341_output(hw);
757
758 regmap_update_bits(output->data->regmap,
759 SI5341_OUT_CONFIG(output),
760 SI5341_OUT_CFG_OE, 0);
761 regmap_update_bits(output->data->regmap,
762 SI5341_OUT_CONFIG(output),
763 SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN);
764}
765
766/* Powers up and then enables the output */
767static int si5341_output_clk_prepare(struct clk_hw *hw)
768{
769 struct clk_si5341_output *output = to_clk_si5341_output(hw);
770 int err;
771
772 err = regmap_update_bits(output->data->regmap,
773 SI5341_OUT_CONFIG(output),
774 SI5341_OUT_CFG_PDN, 0);
775 if (err < 0)
776 return err;
777
778 return regmap_update_bits(output->data->regmap,
779 SI5341_OUT_CONFIG(output),
780 SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE);
781}
782
783static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw,
784 unsigned long parent_rate)
785{
786 struct clk_si5341_output *output = to_clk_si5341_output(hw);
787 int err;
788 u32 val;
789 u32 r_divider;
790 u8 r[3];
791
Olivier Deprez92d4c212022-12-06 15:05:30 +0100792 err = regmap_read(output->data->regmap,
793 SI5341_OUT_CONFIG(output), &val);
794 if (err < 0)
795 return err;
796
797 /* If SI5341_OUT_CFG_RDIV_FORCE2 is set, r_divider is 2 */
798 if (val & SI5341_OUT_CFG_RDIV_FORCE2)
799 return parent_rate / 2;
800
David Brazdil0f672f62019-12-10 10:32:29 +0000801 err = regmap_bulk_read(output->data->regmap,
802 SI5341_OUT_R_REG(output), r, 3);
803 if (err < 0)
804 return err;
805
806 /* Calculate value as 24-bit integer*/
807 r_divider = r[2] << 16 | r[1] << 8 | r[0];
808
809 /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */
810 if (!r_divider)
811 return 0;
812
813 /* Divider is 2*(Rx_REG+1) */
814 r_divider += 1;
815 r_divider <<= 1;
816
David Brazdil0f672f62019-12-10 10:32:29 +0000817
818 return parent_rate / r_divider;
819}
820
821static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate,
822 unsigned long *parent_rate)
823{
824 unsigned long r;
825
Olivier Deprez0e641232021-09-23 10:07:05 +0200826 if (!rate)
827 return 0;
828
David Brazdil0f672f62019-12-10 10:32:29 +0000829 r = *parent_rate >> 1;
830
831 /* If rate is an even divisor, no changes to parent required */
832 if (r && !(r % rate))
833 return (long)rate;
834
835 if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
836 if (rate > 200000000) {
837 /* minimum r-divider is 2 */
838 r = 2;
839 } else {
840 /* Take a parent frequency near 400 MHz */
841 r = (400000000u / rate) & ~1;
842 }
843 *parent_rate = r * rate;
844 } else {
845 /* We cannot change our parent's rate, report what we can do */
846 r /= rate;
847 rate = *parent_rate / (r << 1);
848 }
849
850 return rate;
851}
852
853static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate,
854 unsigned long parent_rate)
855{
856 struct clk_si5341_output *output = to_clk_si5341_output(hw);
Olivier Deprez0e641232021-09-23 10:07:05 +0200857 u32 r_div;
David Brazdil0f672f62019-12-10 10:32:29 +0000858 int err;
859 u8 r[3];
860
Olivier Deprez0e641232021-09-23 10:07:05 +0200861 if (!rate)
862 return -EINVAL;
863
864 /* Frequency divider is (r_div + 1) * 2 */
865 r_div = (parent_rate / rate) >> 1;
866
David Brazdil0f672f62019-12-10 10:32:29 +0000867 if (r_div <= 1)
868 r_div = 0;
869 else if (r_div >= BIT(24))
870 r_div = BIT(24) - 1;
871 else
872 --r_div;
873
874 /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */
875 err = regmap_update_bits(output->data->regmap,
876 SI5341_OUT_CONFIG(output),
877 SI5341_OUT_CFG_RDIV_FORCE2,
878 (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0);
879 if (err < 0)
880 return err;
881
882 /* Always write Rx_REG, because a zero value disables the divider */
883 r[0] = r_div ? (r_div & 0xff) : 1;
884 r[1] = (r_div >> 8) & 0xff;
885 r[2] = (r_div >> 16) & 0xff;
886 err = regmap_bulk_write(output->data->regmap,
887 SI5341_OUT_R_REG(output), r, 3);
888
889 return 0;
890}
891
892static int si5341_output_reparent(struct clk_si5341_output *output, u8 index)
893{
894 return regmap_update_bits(output->data->regmap,
895 SI5341_OUT_MUX_SEL(output), 0x07, index);
896}
897
898static int si5341_output_set_parent(struct clk_hw *hw, u8 index)
899{
900 struct clk_si5341_output *output = to_clk_si5341_output(hw);
901
902 if (index >= output->data->num_synth)
903 return -EINVAL;
904
905 return si5341_output_reparent(output, index);
906}
907
908static u8 si5341_output_get_parent(struct clk_hw *hw)
909{
910 struct clk_si5341_output *output = to_clk_si5341_output(hw);
David Brazdil0f672f62019-12-10 10:32:29 +0000911 u32 val;
912
Olivier Deprez157378f2022-04-04 15:47:50 +0200913 regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val);
David Brazdil0f672f62019-12-10 10:32:29 +0000914
915 return val & 0x7;
916}
917
918static const struct clk_ops si5341_output_clk_ops = {
919 .is_prepared = si5341_output_clk_is_on,
920 .prepare = si5341_output_clk_prepare,
921 .unprepare = si5341_output_clk_unprepare,
922 .recalc_rate = si5341_output_clk_recalc_rate,
923 .round_rate = si5341_output_clk_round_rate,
924 .set_rate = si5341_output_clk_set_rate,
925 .set_parent = si5341_output_set_parent,
926 .get_parent = si5341_output_get_parent,
927};
928
929/*
930 * The chip can be bought in a pre-programmed version, or one can program the
931 * NVM in the chip to boot up in a preset mode. This routine tries to determine
932 * if that's the case, or if we need to reset and program everything from
933 * scratch. Returns negative error, or true/false.
934 */
935static int si5341_is_programmed_already(struct clk_si5341 *data)
936{
937 int err;
938 u8 r[4];
939
940 /* Read the PLL divider value, it must have a non-zero value */
941 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN,
942 r, ARRAY_SIZE(r));
943 if (err < 0)
944 return err;
945
946 return !!get_unaligned_le32(r);
947}
948
949static struct clk_hw *
950of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data)
951{
952 struct clk_si5341 *data = _data;
953 unsigned int idx = clkspec->args[1];
954 unsigned int group = clkspec->args[0];
955
956 switch (group) {
957 case 0:
958 if (idx >= data->num_outputs) {
959 dev_err(&data->i2c_client->dev,
960 "invalid output index %u\n", idx);
961 return ERR_PTR(-EINVAL);
962 }
963 return &data->clk[idx].hw;
964 case 1:
965 if (idx >= data->num_synth) {
966 dev_err(&data->i2c_client->dev,
967 "invalid synthesizer index %u\n", idx);
968 return ERR_PTR(-EINVAL);
969 }
970 return &data->synth[idx].hw;
971 case 2:
972 if (idx > 0) {
973 dev_err(&data->i2c_client->dev,
974 "invalid PLL index %u\n", idx);
975 return ERR_PTR(-EINVAL);
976 }
977 return &data->hw;
978 default:
979 dev_err(&data->i2c_client->dev, "invalid group %u\n", group);
980 return ERR_PTR(-EINVAL);
981 }
982}
983
984static int si5341_probe_chip_id(struct clk_si5341 *data)
985{
986 int err;
987 u8 reg[4];
988 u16 model;
989
990 err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg,
991 ARRAY_SIZE(reg));
992 if (err < 0) {
993 dev_err(&data->i2c_client->dev, "Failed to read chip ID\n");
994 return err;
995 }
996
997 model = get_unaligned_le16(reg);
998
999 dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n",
1000 model, reg[2], reg[3]);
1001
1002 switch (model) {
1003 case 0x5340:
1004 data->num_outputs = SI5340_MAX_NUM_OUTPUTS;
1005 data->num_synth = SI5340_NUM_SYNTH;
1006 data->reg_output_offset = si5340_reg_output_offset;
1007 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1008 break;
1009 case 0x5341:
1010 data->num_outputs = SI5341_MAX_NUM_OUTPUTS;
1011 data->num_synth = SI5341_NUM_SYNTH;
1012 data->reg_output_offset = si5341_reg_output_offset;
1013 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1014 break;
Olivier Deprez157378f2022-04-04 15:47:50 +02001015 case 0x5342:
1016 data->num_outputs = SI5342_MAX_NUM_OUTPUTS;
1017 data->num_synth = SI5342_NUM_SYNTH;
1018 data->reg_output_offset = si5340_reg_output_offset;
1019 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1020 break;
1021 case 0x5344:
1022 data->num_outputs = SI5344_MAX_NUM_OUTPUTS;
1023 data->num_synth = SI5344_NUM_SYNTH;
1024 data->reg_output_offset = si5340_reg_output_offset;
1025 data->reg_rdiv_offset = si5340_reg_rdiv_offset;
1026 break;
1027 case 0x5345:
1028 data->num_outputs = SI5345_MAX_NUM_OUTPUTS;
1029 data->num_synth = SI5345_NUM_SYNTH;
1030 data->reg_output_offset = si5341_reg_output_offset;
1031 data->reg_rdiv_offset = si5341_reg_rdiv_offset;
1032 break;
David Brazdil0f672f62019-12-10 10:32:29 +00001033 default:
1034 dev_err(&data->i2c_client->dev, "Model '%x' not supported\n",
1035 model);
1036 return -EINVAL;
1037 }
1038
Olivier Deprez157378f2022-04-04 15:47:50 +02001039 data->chip_id = model;
1040
David Brazdil0f672f62019-12-10 10:32:29 +00001041 return 0;
1042}
1043
1044/* Read active settings into the regmap cache for later reference */
1045static int si5341_read_settings(struct clk_si5341 *data)
1046{
1047 int err;
1048 u8 i;
1049 u8 r[10];
1050
1051 err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10);
1052 if (err < 0)
1053 return err;
1054
1055 err = regmap_bulk_read(data->regmap,
1056 SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3);
1057 if (err < 0)
1058 return err;
1059
1060 err = regmap_bulk_read(data->regmap,
1061 SI5341_SYNTH_N_CLK_DIS, r, 1);
1062 if (err < 0)
1063 return err;
1064
1065 for (i = 0; i < data->num_synth; ++i) {
1066 err = regmap_bulk_read(data->regmap,
1067 SI5341_SYNTH_N_NUM(i), r, 10);
1068 if (err < 0)
1069 return err;
1070 }
1071
1072 for (i = 0; i < data->num_outputs; ++i) {
1073 err = regmap_bulk_read(data->regmap,
1074 data->reg_output_offset[i], r, 4);
1075 if (err < 0)
1076 return err;
1077
1078 err = regmap_bulk_read(data->regmap,
1079 data->reg_rdiv_offset[i], r, 3);
1080 if (err < 0)
1081 return err;
1082 }
1083
1084 return 0;
1085}
1086
1087static int si5341_write_multiple(struct clk_si5341 *data,
1088 const struct si5341_reg_default *values, unsigned int num_values)
1089{
1090 unsigned int i;
1091 int res;
1092
1093 for (i = 0; i < num_values; ++i) {
1094 res = regmap_write(data->regmap,
1095 values[i].address, values[i].value);
1096 if (res < 0) {
1097 dev_err(&data->i2c_client->dev,
1098 "Failed to write %#x:%#x\n",
1099 values[i].address, values[i].value);
1100 return res;
1101 }
1102 }
1103
1104 return 0;
1105}
1106
1107static const struct si5341_reg_default si5341_preamble[] = {
1108 { 0x0B25, 0x00 },
1109 { 0x0502, 0x01 },
1110 { 0x0505, 0x03 },
Olivier Deprez0e641232021-09-23 10:07:05 +02001111 { 0x0957, 0x17 },
David Brazdil0f672f62019-12-10 10:32:29 +00001112 { 0x0B4E, 0x1A },
1113};
1114
Olivier Deprez157378f2022-04-04 15:47:50 +02001115static const struct si5341_reg_default si5345_preamble[] = {
1116 { 0x0B25, 0x00 },
1117 { 0x0540, 0x01 },
1118};
1119
David Brazdil0f672f62019-12-10 10:32:29 +00001120static int si5341_send_preamble(struct clk_si5341 *data)
1121{
1122 int res;
1123 u32 revision;
1124
1125 /* For revision 2 and up, the values are slightly different */
1126 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1127 if (res < 0)
1128 return res;
1129
1130 /* Write "preamble" as specified by datasheet */
1131 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0);
1132 if (res < 0)
1133 return res;
Olivier Deprez157378f2022-04-04 15:47:50 +02001134
1135 /* The si5342..si5345 require a different preamble */
1136 if (data->chip_id > 0x5341)
1137 res = si5341_write_multiple(data,
1138 si5345_preamble, ARRAY_SIZE(si5345_preamble));
1139 else
1140 res = si5341_write_multiple(data,
1141 si5341_preamble, ARRAY_SIZE(si5341_preamble));
David Brazdil0f672f62019-12-10 10:32:29 +00001142 if (res < 0)
1143 return res;
1144
1145 /* Datasheet specifies a 300ms wait after sending the preamble */
1146 msleep(300);
1147
1148 return 0;
1149}
1150
1151/* Perform a soft reset and write post-amble */
1152static int si5341_finalize_defaults(struct clk_si5341 *data)
1153{
1154 int res;
1155 u32 revision;
1156
1157 res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision);
1158 if (res < 0)
1159 return res;
1160
1161 dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision);
1162
1163 res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01);
1164 if (res < 0)
1165 return res;
1166
Olivier Deprez157378f2022-04-04 15:47:50 +02001167 /* The si5342..si5345 have an additional post-amble */
1168 if (data->chip_id > 0x5341) {
1169 res = regmap_write(data->regmap, 0x540, 0x0);
1170 if (res < 0)
1171 return res;
1172 }
1173
David Brazdil0f672f62019-12-10 10:32:29 +00001174 /* Datasheet does not explain these nameless registers */
1175 res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3);
1176 if (res < 0)
1177 return res;
1178 res = regmap_write(data->regmap, 0x0B25, 0x02);
1179 if (res < 0)
1180 return res;
1181
1182 return 0;
1183}
1184
1185
1186static const struct regmap_range si5341_regmap_volatile_range[] = {
1187 regmap_reg_range(0x000C, 0x0012), /* Status */
1188 regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */
1189 regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */
Olivier Deprez157378f2022-04-04 15:47:50 +02001190 /* Update bits for P divider and synth config */
1191 regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD),
David Brazdil0f672f62019-12-10 10:32:29 +00001192 regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)),
1193 regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)),
1194 regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)),
1195 regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)),
1196 regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)),
1197};
1198
1199static const struct regmap_access_table si5341_regmap_volatile = {
1200 .yes_ranges = si5341_regmap_volatile_range,
1201 .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range),
1202};
1203
1204/* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */
1205static const struct regmap_range_cfg si5341_regmap_ranges[] = {
1206 {
1207 .range_min = 0,
1208 .range_max = SI5341_REGISTER_MAX,
1209 .selector_reg = SI5341_PAGE,
1210 .selector_mask = 0xff,
1211 .selector_shift = 0,
1212 .window_start = 0,
1213 .window_len = 256,
1214 },
1215};
1216
Olivier Deprez157378f2022-04-04 15:47:50 +02001217static int si5341_wait_device_ready(struct i2c_client *client)
1218{
1219 int count;
1220
1221 /* Datasheet warns: Any attempt to read or write any register other
1222 * than DEVICE_READY before DEVICE_READY reads as 0x0F may corrupt the
1223 * NVM programming and may corrupt the register contents, as they are
1224 * read from NVM. Note that this includes accesses to the PAGE register.
1225 * Also: DEVICE_READY is available on every register page, so no page
1226 * change is needed to read it.
1227 * Do this outside regmap to avoid automatic PAGE register access.
1228 * May take up to 300ms to complete.
1229 */
1230 for (count = 0; count < 15; ++count) {
1231 s32 result = i2c_smbus_read_byte_data(client,
1232 SI5341_DEVICE_READY);
1233 if (result < 0)
1234 return result;
1235 if (result == 0x0F)
1236 return 0;
1237 msleep(20);
1238 }
1239 dev_err(&client->dev, "timeout waiting for DEVICE_READY\n");
1240 return -EIO;
1241}
1242
David Brazdil0f672f62019-12-10 10:32:29 +00001243static const struct regmap_config si5341_regmap_config = {
1244 .reg_bits = 8,
1245 .val_bits = 8,
1246 .cache_type = REGCACHE_RBTREE,
1247 .ranges = si5341_regmap_ranges,
1248 .num_ranges = ARRAY_SIZE(si5341_regmap_ranges),
1249 .max_register = SI5341_REGISTER_MAX,
1250 .volatile_table = &si5341_regmap_volatile,
1251};
1252
1253static int si5341_dt_parse_dt(struct i2c_client *client,
1254 struct clk_si5341_output_config *config)
1255{
1256 struct device_node *child;
1257 struct device_node *np = client->dev.of_node;
1258 u32 num;
1259 u32 val;
1260
1261 memset(config, 0, sizeof(struct clk_si5341_output_config) *
1262 SI5341_MAX_NUM_OUTPUTS);
1263
1264 for_each_child_of_node(np, child) {
1265 if (of_property_read_u32(child, "reg", &num)) {
1266 dev_err(&client->dev, "missing reg property of %s\n",
1267 child->name);
1268 goto put_child;
1269 }
1270
1271 if (num >= SI5341_MAX_NUM_OUTPUTS) {
1272 dev_err(&client->dev, "invalid clkout %d\n", num);
1273 goto put_child;
1274 }
1275
1276 if (!of_property_read_u32(child, "silabs,format", &val)) {
1277 /* Set cm and ampl conservatively to 3v3 settings */
1278 switch (val) {
1279 case 1: /* normal differential */
1280 config[num].out_cm_ampl_bits = 0x33;
1281 break;
1282 case 2: /* low-power differential */
1283 config[num].out_cm_ampl_bits = 0x13;
1284 break;
1285 case 4: /* LVCMOS */
1286 config[num].out_cm_ampl_bits = 0x33;
1287 /* Set SI recommended impedance for LVCMOS */
1288 config[num].out_format_drv_bits |= 0xc0;
1289 break;
1290 default:
1291 dev_err(&client->dev,
1292 "invalid silabs,format %u for %u\n",
1293 val, num);
1294 goto put_child;
1295 }
1296 config[num].out_format_drv_bits &= ~0x07;
1297 config[num].out_format_drv_bits |= val & 0x07;
1298 /* Always enable the SYNC feature */
1299 config[num].out_format_drv_bits |= 0x08;
1300 }
1301
1302 if (!of_property_read_u32(child, "silabs,common-mode", &val)) {
1303 if (val > 0xf) {
1304 dev_err(&client->dev,
1305 "invalid silabs,common-mode %u\n",
1306 val);
1307 goto put_child;
1308 }
1309 config[num].out_cm_ampl_bits &= 0xf0;
1310 config[num].out_cm_ampl_bits |= val & 0x0f;
1311 }
1312
1313 if (!of_property_read_u32(child, "silabs,amplitude", &val)) {
1314 if (val > 0xf) {
1315 dev_err(&client->dev,
1316 "invalid silabs,amplitude %u\n",
1317 val);
1318 goto put_child;
1319 }
1320 config[num].out_cm_ampl_bits &= 0x0f;
1321 config[num].out_cm_ampl_bits |= (val << 4) & 0xf0;
1322 }
1323
1324 if (of_property_read_bool(child, "silabs,disable-high"))
1325 config[num].out_format_drv_bits |= 0x10;
1326
1327 config[num].synth_master =
1328 of_property_read_bool(child, "silabs,synth-master");
1329
1330 config[num].always_on =
1331 of_property_read_bool(child, "always-on");
1332 }
1333
1334 return 0;
1335
1336put_child:
1337 of_node_put(child);
1338 return -EINVAL;
1339}
1340
1341/*
1342 * If not pre-configured, calculate and set the PLL configuration manually.
1343 * For low-jitter performance, the PLL should be set such that the synthesizers
1344 * only need integer division.
1345 * Without any user guidance, we'll set the PLL to 14GHz, which still allows
1346 * the chip to generate any frequency on its outputs, but jitter performance
1347 * may be sub-optimal.
1348 */
1349static int si5341_initialize_pll(struct clk_si5341 *data)
1350{
1351 struct device_node *np = data->i2c_client->dev.of_node;
1352 u32 m_num = 0;
1353 u32 m_den = 0;
Olivier Deprez157378f2022-04-04 15:47:50 +02001354 int sel;
David Brazdil0f672f62019-12-10 10:32:29 +00001355
1356 if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) {
1357 dev_err(&data->i2c_client->dev,
1358 "PLL configuration requires silabs,pll-m-num\n");
1359 }
1360 if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) {
1361 dev_err(&data->i2c_client->dev,
1362 "PLL configuration requires silabs,pll-m-den\n");
1363 }
1364
1365 if (!m_num || !m_den) {
1366 dev_err(&data->i2c_client->dev,
1367 "PLL configuration invalid, assume 14GHz\n");
Olivier Deprez157378f2022-04-04 15:47:50 +02001368 sel = si5341_clk_get_selected_input(data);
1369 if (sel < 0)
1370 return sel;
1371
1372 m_den = clk_get_rate(data->input_clk[sel]) / 10;
David Brazdil0f672f62019-12-10 10:32:29 +00001373 m_num = 1400000000;
1374 }
1375
1376 return si5341_encode_44_32(data->regmap,
1377 SI5341_PLL_M_NUM, m_num, m_den);
1378}
1379
Olivier Deprez157378f2022-04-04 15:47:50 +02001380static int si5341_clk_select_active_input(struct clk_si5341 *data)
1381{
1382 int res;
1383 int err;
1384 int i;
1385
1386 res = si5341_clk_get_selected_input(data);
1387 if (res < 0)
1388 return res;
1389
1390 /* If the current register setting is invalid, pick the first input */
1391 if (!data->input_clk[res]) {
1392 dev_dbg(&data->i2c_client->dev,
1393 "Input %d not connected, rerouting\n", res);
1394 res = -ENODEV;
1395 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1396 if (data->input_clk[i]) {
1397 res = i;
1398 break;
1399 }
1400 }
1401 if (res < 0) {
1402 dev_err(&data->i2c_client->dev,
1403 "No clock input available\n");
1404 return res;
1405 }
1406 }
1407
1408 /* Make sure the selected clock is also enabled and routed */
1409 err = si5341_clk_reparent(data, res);
1410 if (err < 0)
1411 return err;
1412
1413 err = clk_prepare_enable(data->input_clk[res]);
1414 if (err < 0)
1415 return err;
1416
1417 return res;
1418}
1419
David Brazdil0f672f62019-12-10 10:32:29 +00001420static int si5341_probe(struct i2c_client *client,
1421 const struct i2c_device_id *id)
1422{
1423 struct clk_si5341 *data;
1424 struct clk_init_data init;
Olivier Deprez157378f2022-04-04 15:47:50 +02001425 struct clk *input;
David Brazdil0f672f62019-12-10 10:32:29 +00001426 const char *root_clock_name;
1427 const char *synth_clock_names[SI5341_NUM_SYNTH];
1428 int err;
1429 unsigned int i;
1430 struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS];
1431 bool initialization_required;
Olivier Deprez157378f2022-04-04 15:47:50 +02001432 u32 status;
David Brazdil0f672f62019-12-10 10:32:29 +00001433
1434 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1435 if (!data)
1436 return -ENOMEM;
1437
1438 data->i2c_client = client;
1439
Olivier Deprez157378f2022-04-04 15:47:50 +02001440 /* Must be done before otherwise touching hardware */
1441 err = si5341_wait_device_ready(client);
1442 if (err)
1443 return err;
David Brazdil0f672f62019-12-10 10:32:29 +00001444
Olivier Deprez157378f2022-04-04 15:47:50 +02001445 for (i = 0; i < SI5341_NUM_INPUTS; ++i) {
1446 input = devm_clk_get(&client->dev, si5341_input_clock_names[i]);
1447 if (IS_ERR(input)) {
1448 if (PTR_ERR(input) == -EPROBE_DEFER)
1449 return -EPROBE_DEFER;
1450 data->input_clk_name[i] = si5341_input_clock_names[i];
1451 } else {
1452 data->input_clk[i] = input;
1453 data->input_clk_name[i] = __clk_get_name(input);
1454 }
David Brazdil0f672f62019-12-10 10:32:29 +00001455 }
1456
1457 err = si5341_dt_parse_dt(client, config);
1458 if (err)
1459 return err;
1460
1461 if (of_property_read_string(client->dev.of_node, "clock-output-names",
1462 &init.name))
1463 init.name = client->dev.of_node->name;
1464 root_clock_name = init.name;
1465
1466 data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config);
1467 if (IS_ERR(data->regmap))
1468 return PTR_ERR(data->regmap);
1469
1470 i2c_set_clientdata(client, data);
1471
1472 err = si5341_probe_chip_id(data);
1473 if (err < 0)
1474 return err;
1475
David Brazdil0f672f62019-12-10 10:32:29 +00001476 if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) {
1477 initialization_required = true;
1478 } else {
1479 err = si5341_is_programmed_already(data);
1480 if (err < 0)
1481 return err;
1482
1483 initialization_required = !err;
1484 }
1485
1486 if (initialization_required) {
1487 /* Populate the regmap cache in preparation for "cache only" */
1488 err = si5341_read_settings(data);
1489 if (err < 0)
1490 return err;
1491
1492 err = si5341_send_preamble(data);
1493 if (err < 0)
1494 return err;
1495
1496 /*
1497 * We intend to send all 'final' register values in a single
1498 * transaction. So cache all register writes until we're done
1499 * configuring.
1500 */
1501 regcache_cache_only(data->regmap, true);
1502
1503 /* Write the configuration pairs from the firmware blob */
1504 err = si5341_write_multiple(data, si5341_reg_defaults,
1505 ARRAY_SIZE(si5341_reg_defaults));
1506 if (err < 0)
1507 return err;
Olivier Deprez157378f2022-04-04 15:47:50 +02001508 }
David Brazdil0f672f62019-12-10 10:32:29 +00001509
Olivier Deprez157378f2022-04-04 15:47:50 +02001510 /* Input must be up and running at this point */
1511 err = si5341_clk_select_active_input(data);
1512 if (err < 0)
1513 return err;
1514
1515 if (initialization_required) {
David Brazdil0f672f62019-12-10 10:32:29 +00001516 /* PLL configuration is required */
1517 err = si5341_initialize_pll(data);
1518 if (err < 0)
1519 return err;
1520 }
1521
1522 /* Register the PLL */
Olivier Deprez157378f2022-04-04 15:47:50 +02001523 init.parent_names = data->input_clk_name;
1524 init.num_parents = SI5341_NUM_INPUTS;
David Brazdil0f672f62019-12-10 10:32:29 +00001525 init.ops = &si5341_clk_ops;
1526 init.flags = 0;
1527 data->hw.init = &init;
1528
1529 err = devm_clk_hw_register(&client->dev, &data->hw);
1530 if (err) {
1531 dev_err(&client->dev, "clock registration failed\n");
1532 return err;
1533 }
1534
1535 init.num_parents = 1;
1536 init.parent_names = &root_clock_name;
1537 init.ops = &si5341_synth_clk_ops;
1538 for (i = 0; i < data->num_synth; ++i) {
1539 synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL,
1540 "%s.N%u", client->dev.of_node->name, i);
1541 init.name = synth_clock_names[i];
1542 data->synth[i].index = i;
1543 data->synth[i].data = data;
1544 data->synth[i].hw.init = &init;
1545 err = devm_clk_hw_register(&client->dev, &data->synth[i].hw);
1546 if (err) {
1547 dev_err(&client->dev,
1548 "synth N%u registration failed\n", i);
1549 }
1550 }
1551
1552 init.num_parents = data->num_synth;
1553 init.parent_names = synth_clock_names;
1554 init.ops = &si5341_output_clk_ops;
1555 for (i = 0; i < data->num_outputs; ++i) {
1556 init.name = kasprintf(GFP_KERNEL, "%s.%d",
1557 client->dev.of_node->name, i);
1558 init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0;
1559 data->clk[i].index = i;
1560 data->clk[i].data = data;
1561 data->clk[i].hw.init = &init;
1562 if (config[i].out_format_drv_bits & 0x07) {
1563 regmap_write(data->regmap,
1564 SI5341_OUT_FORMAT(&data->clk[i]),
1565 config[i].out_format_drv_bits);
1566 regmap_write(data->regmap,
1567 SI5341_OUT_CM(&data->clk[i]),
1568 config[i].out_cm_ampl_bits);
1569 }
1570 err = devm_clk_hw_register(&client->dev, &data->clk[i].hw);
1571 kfree(init.name); /* clock framework made a copy of the name */
1572 if (err) {
1573 dev_err(&client->dev,
1574 "output %u registration failed\n", i);
1575 return err;
1576 }
1577 if (config[i].always_on)
1578 clk_prepare(data->clk[i].hw.clk);
1579 }
1580
Olivier Deprez157378f2022-04-04 15:47:50 +02001581 err = devm_of_clk_add_hw_provider(&client->dev, of_clk_si5341_get,
David Brazdil0f672f62019-12-10 10:32:29 +00001582 data);
1583 if (err) {
1584 dev_err(&client->dev, "unable to add clk provider\n");
1585 return err;
1586 }
1587
1588 if (initialization_required) {
1589 /* Synchronize */
1590 regcache_cache_only(data->regmap, false);
1591 err = regcache_sync(data->regmap);
1592 if (err < 0)
1593 return err;
1594
1595 err = si5341_finalize_defaults(data);
1596 if (err < 0)
1597 return err;
1598 }
1599
Olivier Deprez157378f2022-04-04 15:47:50 +02001600 /* wait for device to report input clock present and PLL lock */
1601 err = regmap_read_poll_timeout(data->regmap, SI5341_STATUS, status,
1602 !(status & (SI5341_STATUS_LOSREF | SI5341_STATUS_LOL)),
1603 10000, 250000);
1604 if (err) {
1605 dev_err(&client->dev, "Error waiting for input clock or PLL lock\n");
1606 return err;
1607 }
1608
1609 /* clear sticky alarm bits from initialization */
1610 err = regmap_write(data->regmap, SI5341_STATUS_STICKY, 0);
1611 if (err) {
1612 dev_err(&client->dev, "unable to clear sticky status\n");
1613 return err;
1614 }
1615
David Brazdil0f672f62019-12-10 10:32:29 +00001616 /* Free the names, clk framework makes copies */
1617 for (i = 0; i < data->num_synth; ++i)
1618 devm_kfree(&client->dev, (void *)synth_clock_names[i]);
1619
1620 return 0;
1621}
1622
1623static const struct i2c_device_id si5341_id[] = {
1624 { "si5340", 0 },
1625 { "si5341", 1 },
Olivier Deprez157378f2022-04-04 15:47:50 +02001626 { "si5342", 2 },
1627 { "si5344", 4 },
1628 { "si5345", 5 },
David Brazdil0f672f62019-12-10 10:32:29 +00001629 { }
1630};
1631MODULE_DEVICE_TABLE(i2c, si5341_id);
1632
1633static const struct of_device_id clk_si5341_of_match[] = {
1634 { .compatible = "silabs,si5340" },
1635 { .compatible = "silabs,si5341" },
Olivier Deprez157378f2022-04-04 15:47:50 +02001636 { .compatible = "silabs,si5342" },
1637 { .compatible = "silabs,si5344" },
1638 { .compatible = "silabs,si5345" },
David Brazdil0f672f62019-12-10 10:32:29 +00001639 { }
1640};
1641MODULE_DEVICE_TABLE(of, clk_si5341_of_match);
1642
1643static struct i2c_driver si5341_driver = {
1644 .driver = {
1645 .name = "si5341",
1646 .of_match_table = clk_si5341_of_match,
1647 },
1648 .probe = si5341_probe,
1649 .id_table = si5341_id,
1650};
1651module_i2c_driver(si5341_driver);
1652
1653MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
1654MODULE_DESCRIPTION("Si5341 driver");
1655MODULE_LICENSE("GPL");