Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * lib80211 crypt: host-based WEP encryption implementation for lib80211 |
| 3 | * |
| 4 | * Copyright (c) 2002-2004, Jouni Malinen <j@w1.fi> |
| 5 | * Copyright (c) 2008, John W. Linville <linville@tuxdriver.com> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. See README and COPYING for |
| 10 | * more details. |
| 11 | */ |
| 12 | |
| 13 | #include <linux/err.h> |
| 14 | #include <linux/module.h> |
| 15 | #include <linux/init.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/random.h> |
| 18 | #include <linux/scatterlist.h> |
| 19 | #include <linux/skbuff.h> |
| 20 | #include <linux/mm.h> |
| 21 | #include <asm/string.h> |
| 22 | |
| 23 | #include <net/lib80211.h> |
| 24 | |
| 25 | #include <crypto/skcipher.h> |
| 26 | #include <linux/crc32.h> |
| 27 | |
| 28 | MODULE_AUTHOR("Jouni Malinen"); |
| 29 | MODULE_DESCRIPTION("lib80211 crypt: WEP"); |
| 30 | MODULE_LICENSE("GPL"); |
| 31 | |
| 32 | struct lib80211_wep_data { |
| 33 | u32 iv; |
| 34 | #define WEP_KEY_LEN 13 |
| 35 | u8 key[WEP_KEY_LEN + 1]; |
| 36 | u8 key_len; |
| 37 | u8 key_idx; |
| 38 | struct crypto_skcipher *tx_tfm; |
| 39 | struct crypto_skcipher *rx_tfm; |
| 40 | }; |
| 41 | |
| 42 | static void *lib80211_wep_init(int keyidx) |
| 43 | { |
| 44 | struct lib80211_wep_data *priv; |
| 45 | |
| 46 | priv = kzalloc(sizeof(*priv), GFP_ATOMIC); |
| 47 | if (priv == NULL) |
| 48 | goto fail; |
| 49 | priv->key_idx = keyidx; |
| 50 | |
| 51 | priv->tx_tfm = crypto_alloc_skcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC); |
| 52 | if (IS_ERR(priv->tx_tfm)) { |
| 53 | priv->tx_tfm = NULL; |
| 54 | goto fail; |
| 55 | } |
| 56 | |
| 57 | priv->rx_tfm = crypto_alloc_skcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC); |
| 58 | if (IS_ERR(priv->rx_tfm)) { |
| 59 | priv->rx_tfm = NULL; |
| 60 | goto fail; |
| 61 | } |
| 62 | /* start WEP IV from a random value */ |
| 63 | get_random_bytes(&priv->iv, 4); |
| 64 | |
| 65 | return priv; |
| 66 | |
| 67 | fail: |
| 68 | if (priv) { |
| 69 | crypto_free_skcipher(priv->tx_tfm); |
| 70 | crypto_free_skcipher(priv->rx_tfm); |
| 71 | kfree(priv); |
| 72 | } |
| 73 | return NULL; |
| 74 | } |
| 75 | |
| 76 | static void lib80211_wep_deinit(void *priv) |
| 77 | { |
| 78 | struct lib80211_wep_data *_priv = priv; |
| 79 | if (_priv) { |
| 80 | crypto_free_skcipher(_priv->tx_tfm); |
| 81 | crypto_free_skcipher(_priv->rx_tfm); |
| 82 | } |
| 83 | kfree(priv); |
| 84 | } |
| 85 | |
| 86 | /* Add WEP IV/key info to a frame that has at least 4 bytes of headroom */ |
| 87 | static int lib80211_wep_build_iv(struct sk_buff *skb, int hdr_len, |
| 88 | u8 *key, int keylen, void *priv) |
| 89 | { |
| 90 | struct lib80211_wep_data *wep = priv; |
| 91 | u32 klen; |
| 92 | u8 *pos; |
| 93 | |
| 94 | if (skb_headroom(skb) < 4 || skb->len < hdr_len) |
| 95 | return -1; |
| 96 | |
| 97 | pos = skb_push(skb, 4); |
| 98 | memmove(pos, pos + 4, hdr_len); |
| 99 | pos += hdr_len; |
| 100 | |
| 101 | klen = 3 + wep->key_len; |
| 102 | |
| 103 | wep->iv++; |
| 104 | |
| 105 | /* Fluhrer, Mantin, and Shamir have reported weaknesses in the key |
| 106 | * scheduling algorithm of RC4. At least IVs (KeyByte + 3, 0xff, N) |
| 107 | * can be used to speedup attacks, so avoid using them. */ |
| 108 | if ((wep->iv & 0xff00) == 0xff00) { |
| 109 | u8 B = (wep->iv >> 16) & 0xff; |
| 110 | if (B >= 3 && B < klen) |
| 111 | wep->iv += 0x0100; |
| 112 | } |
| 113 | |
| 114 | /* Prepend 24-bit IV to RC4 key and TX frame */ |
| 115 | *pos++ = (wep->iv >> 16) & 0xff; |
| 116 | *pos++ = (wep->iv >> 8) & 0xff; |
| 117 | *pos++ = wep->iv & 0xff; |
| 118 | *pos++ = wep->key_idx << 6; |
| 119 | |
| 120 | return 0; |
| 121 | } |
| 122 | |
| 123 | /* Perform WEP encryption on given skb that has at least 4 bytes of headroom |
| 124 | * for IV and 4 bytes of tailroom for ICV. Both IV and ICV will be transmitted, |
| 125 | * so the payload length increases with 8 bytes. |
| 126 | * |
| 127 | * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data)) |
| 128 | */ |
| 129 | static int lib80211_wep_encrypt(struct sk_buff *skb, int hdr_len, void *priv) |
| 130 | { |
| 131 | struct lib80211_wep_data *wep = priv; |
| 132 | SKCIPHER_REQUEST_ON_STACK(req, wep->tx_tfm); |
| 133 | u32 crc, klen, len; |
| 134 | u8 *pos, *icv; |
| 135 | struct scatterlist sg; |
| 136 | u8 key[WEP_KEY_LEN + 3]; |
| 137 | int err; |
| 138 | |
| 139 | /* other checks are in lib80211_wep_build_iv */ |
| 140 | if (skb_tailroom(skb) < 4) |
| 141 | return -1; |
| 142 | |
| 143 | /* add the IV to the frame */ |
| 144 | if (lib80211_wep_build_iv(skb, hdr_len, NULL, 0, priv)) |
| 145 | return -1; |
| 146 | |
| 147 | /* Copy the IV into the first 3 bytes of the key */ |
| 148 | skb_copy_from_linear_data_offset(skb, hdr_len, key, 3); |
| 149 | |
| 150 | /* Copy rest of the WEP key (the secret part) */ |
| 151 | memcpy(key + 3, wep->key, wep->key_len); |
| 152 | |
| 153 | len = skb->len - hdr_len - 4; |
| 154 | pos = skb->data + hdr_len + 4; |
| 155 | klen = 3 + wep->key_len; |
| 156 | |
| 157 | /* Append little-endian CRC32 over only the data and encrypt it to produce ICV */ |
| 158 | crc = ~crc32_le(~0, pos, len); |
| 159 | icv = skb_put(skb, 4); |
| 160 | icv[0] = crc; |
| 161 | icv[1] = crc >> 8; |
| 162 | icv[2] = crc >> 16; |
| 163 | icv[3] = crc >> 24; |
| 164 | |
| 165 | crypto_skcipher_setkey(wep->tx_tfm, key, klen); |
| 166 | sg_init_one(&sg, pos, len + 4); |
| 167 | skcipher_request_set_tfm(req, wep->tx_tfm); |
| 168 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 169 | skcipher_request_set_crypt(req, &sg, &sg, len + 4, NULL); |
| 170 | err = crypto_skcipher_encrypt(req); |
| 171 | skcipher_request_zero(req); |
| 172 | return err; |
| 173 | } |
| 174 | |
| 175 | /* Perform WEP decryption on given buffer. Buffer includes whole WEP part of |
| 176 | * the frame: IV (4 bytes), encrypted payload (including SNAP header), |
| 177 | * ICV (4 bytes). len includes both IV and ICV. |
| 178 | * |
| 179 | * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on |
| 180 | * failure. If frame is OK, IV and ICV will be removed. |
| 181 | */ |
| 182 | static int lib80211_wep_decrypt(struct sk_buff *skb, int hdr_len, void *priv) |
| 183 | { |
| 184 | struct lib80211_wep_data *wep = priv; |
| 185 | SKCIPHER_REQUEST_ON_STACK(req, wep->rx_tfm); |
| 186 | u32 crc, klen, plen; |
| 187 | u8 key[WEP_KEY_LEN + 3]; |
| 188 | u8 keyidx, *pos, icv[4]; |
| 189 | struct scatterlist sg; |
| 190 | int err; |
| 191 | |
| 192 | if (skb->len < hdr_len + 8) |
| 193 | return -1; |
| 194 | |
| 195 | pos = skb->data + hdr_len; |
| 196 | key[0] = *pos++; |
| 197 | key[1] = *pos++; |
| 198 | key[2] = *pos++; |
| 199 | keyidx = *pos++ >> 6; |
| 200 | if (keyidx != wep->key_idx) |
| 201 | return -1; |
| 202 | |
| 203 | klen = 3 + wep->key_len; |
| 204 | |
| 205 | /* Copy rest of the WEP key (the secret part) */ |
| 206 | memcpy(key + 3, wep->key, wep->key_len); |
| 207 | |
| 208 | /* Apply RC4 to data and compute CRC32 over decrypted data */ |
| 209 | plen = skb->len - hdr_len - 8; |
| 210 | |
| 211 | crypto_skcipher_setkey(wep->rx_tfm, key, klen); |
| 212 | sg_init_one(&sg, pos, plen + 4); |
| 213 | skcipher_request_set_tfm(req, wep->rx_tfm); |
| 214 | skcipher_request_set_callback(req, 0, NULL, NULL); |
| 215 | skcipher_request_set_crypt(req, &sg, &sg, plen + 4, NULL); |
| 216 | err = crypto_skcipher_decrypt(req); |
| 217 | skcipher_request_zero(req); |
| 218 | if (err) |
| 219 | return -7; |
| 220 | |
| 221 | crc = ~crc32_le(~0, pos, plen); |
| 222 | icv[0] = crc; |
| 223 | icv[1] = crc >> 8; |
| 224 | icv[2] = crc >> 16; |
| 225 | icv[3] = crc >> 24; |
| 226 | if (memcmp(icv, pos + plen, 4) != 0) { |
| 227 | /* ICV mismatch - drop frame */ |
| 228 | return -2; |
| 229 | } |
| 230 | |
| 231 | /* Remove IV and ICV */ |
| 232 | memmove(skb->data + 4, skb->data, hdr_len); |
| 233 | skb_pull(skb, 4); |
| 234 | skb_trim(skb, skb->len - 4); |
| 235 | |
| 236 | return 0; |
| 237 | } |
| 238 | |
| 239 | static int lib80211_wep_set_key(void *key, int len, u8 * seq, void *priv) |
| 240 | { |
| 241 | struct lib80211_wep_data *wep = priv; |
| 242 | |
| 243 | if (len < 0 || len > WEP_KEY_LEN) |
| 244 | return -1; |
| 245 | |
| 246 | memcpy(wep->key, key, len); |
| 247 | wep->key_len = len; |
| 248 | |
| 249 | return 0; |
| 250 | } |
| 251 | |
| 252 | static int lib80211_wep_get_key(void *key, int len, u8 * seq, void *priv) |
| 253 | { |
| 254 | struct lib80211_wep_data *wep = priv; |
| 255 | |
| 256 | if (len < wep->key_len) |
| 257 | return -1; |
| 258 | |
| 259 | memcpy(key, wep->key, wep->key_len); |
| 260 | |
| 261 | return wep->key_len; |
| 262 | } |
| 263 | |
| 264 | static void lib80211_wep_print_stats(struct seq_file *m, void *priv) |
| 265 | { |
| 266 | struct lib80211_wep_data *wep = priv; |
| 267 | seq_printf(m, "key[%d] alg=WEP len=%d\n", wep->key_idx, wep->key_len); |
| 268 | } |
| 269 | |
| 270 | static struct lib80211_crypto_ops lib80211_crypt_wep = { |
| 271 | .name = "WEP", |
| 272 | .init = lib80211_wep_init, |
| 273 | .deinit = lib80211_wep_deinit, |
| 274 | .encrypt_mpdu = lib80211_wep_encrypt, |
| 275 | .decrypt_mpdu = lib80211_wep_decrypt, |
| 276 | .encrypt_msdu = NULL, |
| 277 | .decrypt_msdu = NULL, |
| 278 | .set_key = lib80211_wep_set_key, |
| 279 | .get_key = lib80211_wep_get_key, |
| 280 | .print_stats = lib80211_wep_print_stats, |
| 281 | .extra_mpdu_prefix_len = 4, /* IV */ |
| 282 | .extra_mpdu_postfix_len = 4, /* ICV */ |
| 283 | .owner = THIS_MODULE, |
| 284 | }; |
| 285 | |
| 286 | static int __init lib80211_crypto_wep_init(void) |
| 287 | { |
| 288 | return lib80211_register_crypto_ops(&lib80211_crypt_wep); |
| 289 | } |
| 290 | |
| 291 | static void __exit lib80211_crypto_wep_exit(void) |
| 292 | { |
| 293 | lib80211_unregister_crypto_ops(&lib80211_crypt_wep); |
| 294 | } |
| 295 | |
| 296 | module_init(lib80211_crypto_wep_init); |
| 297 | module_exit(lib80211_crypto_wep_exit); |