Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | /* |
| 3 | * Generic RTC interface. |
| 4 | * This version contains the part of the user interface to the Real Time Clock |
| 5 | * service. It is used with both the legacy mc146818 and also EFI |
| 6 | * Struct rtc_time and first 12 ioctl by Paul Gortmaker, 1996 - separated out |
| 7 | * from <linux/mc146818rtc.h> to this file for 2.4 kernels. |
| 8 | * |
| 9 | * Copyright (C) 1999 Hewlett-Packard Co. |
| 10 | * Copyright (C) 1999 Stephane Eranian <eranian@hpl.hp.com> |
| 11 | */ |
| 12 | #ifndef _LINUX_RTC_H_ |
| 13 | #define _LINUX_RTC_H_ |
| 14 | |
| 15 | |
| 16 | #include <linux/types.h> |
| 17 | #include <linux/interrupt.h> |
| 18 | #include <linux/nvmem-provider.h> |
| 19 | #include <uapi/linux/rtc.h> |
| 20 | |
| 21 | extern int rtc_month_days(unsigned int month, unsigned int year); |
| 22 | extern int rtc_year_days(unsigned int day, unsigned int month, unsigned int year); |
| 23 | extern int rtc_valid_tm(struct rtc_time *tm); |
| 24 | extern time64_t rtc_tm_to_time64(struct rtc_time *tm); |
| 25 | extern void rtc_time64_to_tm(time64_t time, struct rtc_time *tm); |
| 26 | ktime_t rtc_tm_to_ktime(struct rtc_time tm); |
| 27 | struct rtc_time rtc_ktime_to_tm(ktime_t kt); |
| 28 | |
| 29 | /* |
| 30 | * rtc_tm_sub - Return the difference in seconds. |
| 31 | */ |
| 32 | static inline time64_t rtc_tm_sub(struct rtc_time *lhs, struct rtc_time *rhs) |
| 33 | { |
| 34 | return rtc_tm_to_time64(lhs) - rtc_tm_to_time64(rhs); |
| 35 | } |
| 36 | |
| 37 | static inline void rtc_time_to_tm(unsigned long time, struct rtc_time *tm) |
| 38 | { |
| 39 | rtc_time64_to_tm(time, tm); |
| 40 | } |
| 41 | |
| 42 | static inline int rtc_tm_to_time(struct rtc_time *tm, unsigned long *time) |
| 43 | { |
| 44 | *time = rtc_tm_to_time64(tm); |
| 45 | |
| 46 | return 0; |
| 47 | } |
| 48 | |
| 49 | #include <linux/device.h> |
| 50 | #include <linux/seq_file.h> |
| 51 | #include <linux/cdev.h> |
| 52 | #include <linux/poll.h> |
| 53 | #include <linux/mutex.h> |
| 54 | #include <linux/timerqueue.h> |
| 55 | #include <linux/workqueue.h> |
| 56 | |
| 57 | extern struct class *rtc_class; |
| 58 | |
| 59 | /* |
| 60 | * For these RTC methods the device parameter is the physical device |
| 61 | * on whatever bus holds the hardware (I2C, Platform, SPI, etc), which |
| 62 | * was passed to rtc_device_register(). Its driver_data normally holds |
| 63 | * device state, including the rtc_device pointer for the RTC. |
| 64 | * |
| 65 | * Most of these methods are called with rtc_device.ops_lock held, |
| 66 | * through the rtc_*(struct rtc_device *, ...) calls. |
| 67 | * |
| 68 | * The (current) exceptions are mostly filesystem hooks: |
| 69 | * - the proc() hook for procfs |
| 70 | * - non-ioctl() chardev hooks: open(), release(), read_callback() |
| 71 | * |
| 72 | * REVISIT those periodic irq calls *do* have ops_lock when they're |
| 73 | * issued through ioctl() ... |
| 74 | */ |
| 75 | struct rtc_class_ops { |
| 76 | int (*ioctl)(struct device *, unsigned int, unsigned long); |
| 77 | int (*read_time)(struct device *, struct rtc_time *); |
| 78 | int (*set_time)(struct device *, struct rtc_time *); |
| 79 | int (*read_alarm)(struct device *, struct rtc_wkalrm *); |
| 80 | int (*set_alarm)(struct device *, struct rtc_wkalrm *); |
| 81 | int (*proc)(struct device *, struct seq_file *); |
| 82 | int (*set_mmss64)(struct device *, time64_t secs); |
| 83 | int (*set_mmss)(struct device *, unsigned long secs); |
| 84 | int (*read_callback)(struct device *, int data); |
| 85 | int (*alarm_irq_enable)(struct device *, unsigned int enabled); |
| 86 | int (*read_offset)(struct device *, long *offset); |
| 87 | int (*set_offset)(struct device *, long offset); |
| 88 | }; |
| 89 | |
| 90 | struct rtc_timer { |
| 91 | struct timerqueue_node node; |
| 92 | ktime_t period; |
| 93 | void (*func)(void *private_data); |
| 94 | void *private_data; |
| 95 | int enabled; |
| 96 | }; |
| 97 | |
| 98 | |
| 99 | /* flags */ |
| 100 | #define RTC_DEV_BUSY 0 |
| 101 | |
| 102 | struct rtc_device { |
| 103 | struct device dev; |
| 104 | struct module *owner; |
| 105 | |
| 106 | int id; |
| 107 | |
| 108 | const struct rtc_class_ops *ops; |
| 109 | struct mutex ops_lock; |
| 110 | |
| 111 | struct cdev char_dev; |
| 112 | unsigned long flags; |
| 113 | |
| 114 | unsigned long irq_data; |
| 115 | spinlock_t irq_lock; |
| 116 | wait_queue_head_t irq_queue; |
| 117 | struct fasync_struct *async_queue; |
| 118 | |
| 119 | int irq_freq; |
| 120 | int max_user_freq; |
| 121 | |
| 122 | struct timerqueue_head timerqueue; |
| 123 | struct rtc_timer aie_timer; |
| 124 | struct rtc_timer uie_rtctimer; |
| 125 | struct hrtimer pie_timer; /* sub second exp, so needs hrtimer */ |
| 126 | int pie_enabled; |
| 127 | struct work_struct irqwork; |
| 128 | /* Some hardware can't support UIE mode */ |
| 129 | int uie_unsupported; |
| 130 | |
| 131 | /* Number of nsec it takes to set the RTC clock. This influences when |
| 132 | * the set ops are called. An offset: |
| 133 | * - of 0.5 s will call RTC set for wall clock time 10.0 s at 9.5 s |
| 134 | * - of 1.5 s will call RTC set for wall clock time 10.0 s at 8.5 s |
| 135 | * - of -0.5 s will call RTC set for wall clock time 10.0 s at 10.5 s |
| 136 | */ |
| 137 | long set_offset_nsec; |
| 138 | |
| 139 | bool registered; |
| 140 | |
| 141 | struct nvmem_device *nvmem; |
| 142 | /* Old ABI support */ |
| 143 | bool nvram_old_abi; |
| 144 | struct bin_attribute *nvram; |
| 145 | |
| 146 | time64_t range_min; |
| 147 | timeu64_t range_max; |
| 148 | time64_t start_secs; |
| 149 | time64_t offset_secs; |
| 150 | bool set_start_time; |
| 151 | |
| 152 | #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL |
| 153 | struct work_struct uie_task; |
| 154 | struct timer_list uie_timer; |
| 155 | /* Those fields are protected by rtc->irq_lock */ |
| 156 | unsigned int oldsecs; |
| 157 | unsigned int uie_irq_active:1; |
| 158 | unsigned int stop_uie_polling:1; |
| 159 | unsigned int uie_task_active:1; |
| 160 | unsigned int uie_timer_active:1; |
| 161 | #endif |
| 162 | }; |
| 163 | #define to_rtc_device(d) container_of(d, struct rtc_device, dev) |
| 164 | |
| 165 | /* useful timestamps */ |
| 166 | #define RTC_TIMESTAMP_BEGIN_1900 -2208989361LL /* 1900-01-01 00:00:00 */ |
| 167 | #define RTC_TIMESTAMP_BEGIN_2000 946684800LL /* 2000-01-01 00:00:00 */ |
| 168 | #define RTC_TIMESTAMP_END_2099 4102444799LL /* 2099-12-31 23:59:59 */ |
| 169 | |
| 170 | extern struct rtc_device *rtc_device_register(const char *name, |
| 171 | struct device *dev, |
| 172 | const struct rtc_class_ops *ops, |
| 173 | struct module *owner); |
| 174 | extern struct rtc_device *devm_rtc_device_register(struct device *dev, |
| 175 | const char *name, |
| 176 | const struct rtc_class_ops *ops, |
| 177 | struct module *owner); |
| 178 | struct rtc_device *devm_rtc_allocate_device(struct device *dev); |
| 179 | int __rtc_register_device(struct module *owner, struct rtc_device *rtc); |
| 180 | extern void rtc_device_unregister(struct rtc_device *rtc); |
| 181 | extern void devm_rtc_device_unregister(struct device *dev, |
| 182 | struct rtc_device *rtc); |
| 183 | |
| 184 | extern int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm); |
| 185 | extern int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm); |
| 186 | extern int rtc_set_ntp_time(struct timespec64 now, unsigned long *target_nsec); |
| 187 | int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm); |
| 188 | extern int rtc_read_alarm(struct rtc_device *rtc, |
| 189 | struct rtc_wkalrm *alrm); |
| 190 | extern int rtc_set_alarm(struct rtc_device *rtc, |
| 191 | struct rtc_wkalrm *alrm); |
| 192 | extern int rtc_initialize_alarm(struct rtc_device *rtc, |
| 193 | struct rtc_wkalrm *alrm); |
| 194 | extern void rtc_update_irq(struct rtc_device *rtc, |
| 195 | unsigned long num, unsigned long events); |
| 196 | |
| 197 | extern struct rtc_device *rtc_class_open(const char *name); |
| 198 | extern void rtc_class_close(struct rtc_device *rtc); |
| 199 | |
| 200 | extern int rtc_irq_set_state(struct rtc_device *rtc, int enabled); |
| 201 | extern int rtc_irq_set_freq(struct rtc_device *rtc, int freq); |
| 202 | extern int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled); |
| 203 | extern int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled); |
| 204 | extern int rtc_dev_update_irq_enable_emul(struct rtc_device *rtc, |
| 205 | unsigned int enabled); |
| 206 | |
| 207 | void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode); |
| 208 | void rtc_aie_update_irq(void *private); |
| 209 | void rtc_uie_update_irq(void *private); |
| 210 | enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer); |
| 211 | |
| 212 | void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data); |
| 213 | int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer, |
| 214 | ktime_t expires, ktime_t period); |
| 215 | void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer); |
| 216 | int rtc_read_offset(struct rtc_device *rtc, long *offset); |
| 217 | int rtc_set_offset(struct rtc_device *rtc, long offset); |
| 218 | void rtc_timer_do_work(struct work_struct *work); |
| 219 | |
| 220 | static inline bool is_leap_year(unsigned int year) |
| 221 | { |
| 222 | return (!(year % 4) && (year % 100)) || !(year % 400); |
| 223 | } |
| 224 | |
| 225 | /* Determine if we can call to driver to set the time. Drivers can only be |
| 226 | * called to set a second aligned time value, and the field set_offset_nsec |
| 227 | * specifies how far away from the second aligned time to call the driver. |
| 228 | * |
| 229 | * This also computes 'to_set' which is the time we are trying to set, and has |
| 230 | * a zero in tv_nsecs, such that: |
| 231 | * to_set - set_delay_nsec == now +/- FUZZ |
| 232 | * |
| 233 | */ |
| 234 | static inline bool rtc_tv_nsec_ok(s64 set_offset_nsec, |
| 235 | struct timespec64 *to_set, |
| 236 | const struct timespec64 *now) |
| 237 | { |
| 238 | /* Allowed error in tv_nsec, arbitarily set to 5 jiffies in ns. */ |
| 239 | const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; |
| 240 | struct timespec64 delay = {.tv_sec = 0, |
| 241 | .tv_nsec = set_offset_nsec}; |
| 242 | |
| 243 | *to_set = timespec64_add(*now, delay); |
| 244 | |
| 245 | if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { |
| 246 | to_set->tv_nsec = 0; |
| 247 | return true; |
| 248 | } |
| 249 | |
| 250 | if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { |
| 251 | to_set->tv_sec++; |
| 252 | to_set->tv_nsec = 0; |
| 253 | return true; |
| 254 | } |
| 255 | return false; |
| 256 | } |
| 257 | |
| 258 | #define rtc_register_device(device) \ |
| 259 | __rtc_register_device(THIS_MODULE, device) |
| 260 | |
| 261 | #ifdef CONFIG_RTC_HCTOSYS_DEVICE |
| 262 | extern int rtc_hctosys_ret; |
| 263 | #else |
| 264 | #define rtc_hctosys_ret -ENODEV |
| 265 | #endif |
| 266 | |
| 267 | #ifdef CONFIG_RTC_NVMEM |
| 268 | int rtc_nvmem_register(struct rtc_device *rtc, |
| 269 | struct nvmem_config *nvmem_config); |
| 270 | void rtc_nvmem_unregister(struct rtc_device *rtc); |
| 271 | #else |
| 272 | static inline int rtc_nvmem_register(struct rtc_device *rtc, |
| 273 | struct nvmem_config *nvmem_config) |
| 274 | { |
| 275 | return 0; |
| 276 | } |
| 277 | static inline void rtc_nvmem_unregister(struct rtc_device *rtc) {} |
| 278 | #endif |
| 279 | |
| 280 | #endif /* _LINUX_RTC_H_ */ |