blob: c495db7165aee33e7257fb831c6714cbc00d9451 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41#include "udfdecl.h"
42
43#include <linux/blkdev.h>
44#include <linux/slab.h>
45#include <linux/kernel.h>
46#include <linux/module.h>
47#include <linux/parser.h>
48#include <linux/stat.h>
49#include <linux/cdrom.h>
50#include <linux/nls.h>
51#include <linux/vfs.h>
52#include <linux/vmalloc.h>
53#include <linux/errno.h>
54#include <linux/mount.h>
55#include <linux/seq_file.h>
56#include <linux/bitmap.h>
57#include <linux/crc-itu-t.h>
58#include <linux/log2.h>
59#include <asm/byteorder.h>
60
61#include "udf_sb.h"
62#include "udf_i.h"
63
64#include <linux/init.h>
65#include <linux/uaccess.h>
66
67enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73};
74
75#define VSD_FIRST_SECTOR_OFFSET 32768
76#define VSD_MAX_SECTOR_OFFSET 0x800000
77
78/*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84#define UDF_MAX_TD_NESTING 64
85#define UDF_MAX_LVID_NESTING 1000
86
87enum { UDF_MAX_LINKS = 0xffff };
88
89/* These are the "meat" - everything else is stuffing */
90static int udf_fill_super(struct super_block *, void *, int);
91static void udf_put_super(struct super_block *);
92static int udf_sync_fs(struct super_block *, int);
93static int udf_remount_fs(struct super_block *, int *, char *);
94static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 struct kernel_lb_addr *);
97static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 struct kernel_lb_addr *);
99static void udf_open_lvid(struct super_block *);
100static void udf_close_lvid(struct super_block *);
101static unsigned int udf_count_free(struct super_block *);
102static int udf_statfs(struct dentry *, struct kstatfs *);
103static int udf_show_options(struct seq_file *, struct dentry *);
104
105struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106{
107 struct logicalVolIntegrityDesc *lvid;
108 unsigned int partnum;
109 unsigned int offset;
110
111 if (!UDF_SB(sb)->s_lvid_bh)
112 return NULL;
113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 partnum = le32_to_cpu(lvid->numOfPartitions);
115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 (2 * sizeof(uint32_t)) < partnum) {
118 udf_err(sb, "Logical volume integrity descriptor corrupted "
119 "(numOfPartitions = %u)!\n", partnum);
120 return NULL;
121 }
122 /* The offset is to skip freeSpaceTable and sizeTable arrays */
123 offset = partnum * 2 * sizeof(uint32_t);
124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125}
126
127/* UDF filesystem type */
128static struct dentry *udf_mount(struct file_system_type *fs_type,
129 int flags, const char *dev_name, void *data)
130{
131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132}
133
134static struct file_system_type udf_fstype = {
135 .owner = THIS_MODULE,
136 .name = "udf",
137 .mount = udf_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("udf");
142
143static struct kmem_cache *udf_inode_cachep;
144
145static struct inode *udf_alloc_inode(struct super_block *sb)
146{
147 struct udf_inode_info *ei;
148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 if (!ei)
150 return NULL;
151
152 ei->i_unique = 0;
153 ei->i_lenExtents = 0;
154 ei->i_next_alloc_block = 0;
155 ei->i_next_alloc_goal = 0;
156 ei->i_strat4096 = 0;
157 init_rwsem(&ei->i_data_sem);
158 ei->cached_extent.lstart = -1;
159 spin_lock_init(&ei->i_extent_cache_lock);
160
161 return &ei->vfs_inode;
162}
163
164static void udf_i_callback(struct rcu_head *head)
165{
166 struct inode *inode = container_of(head, struct inode, i_rcu);
167 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168}
169
170static void udf_destroy_inode(struct inode *inode)
171{
172 call_rcu(&inode->i_rcu, udf_i_callback);
173}
174
175static void init_once(void *foo)
176{
177 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178
179 ei->i_ext.i_data = NULL;
180 inode_init_once(&ei->vfs_inode);
181}
182
183static int __init init_inodecache(void)
184{
185 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 sizeof(struct udf_inode_info),
187 0, (SLAB_RECLAIM_ACCOUNT |
188 SLAB_MEM_SPREAD |
189 SLAB_ACCOUNT),
190 init_once);
191 if (!udf_inode_cachep)
192 return -ENOMEM;
193 return 0;
194}
195
196static void destroy_inodecache(void)
197{
198 /*
199 * Make sure all delayed rcu free inodes are flushed before we
200 * destroy cache.
201 */
202 rcu_barrier();
203 kmem_cache_destroy(udf_inode_cachep);
204}
205
206/* Superblock operations */
207static const struct super_operations udf_sb_ops = {
208 .alloc_inode = udf_alloc_inode,
209 .destroy_inode = udf_destroy_inode,
210 .write_inode = udf_write_inode,
211 .evict_inode = udf_evict_inode,
212 .put_super = udf_put_super,
213 .sync_fs = udf_sync_fs,
214 .statfs = udf_statfs,
215 .remount_fs = udf_remount_fs,
216 .show_options = udf_show_options,
217};
218
219struct udf_options {
220 unsigned char novrs;
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232};
233
234static int __init init_udf_fs(void)
235{
236 int err;
237
238 err = init_inodecache();
239 if (err)
240 goto out1;
241 err = register_filesystem(&udf_fstype);
242 if (err)
243 goto out;
244
245 return 0;
246
247out:
248 destroy_inodecache();
249
250out1:
251 return err;
252}
253
254static void __exit exit_udf_fs(void)
255{
256 unregister_filesystem(&udf_fstype);
257 destroy_inodecache();
258}
259
260static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261{
262 struct udf_sb_info *sbi = UDF_SB(sb);
263
264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 if (!sbi->s_partmaps) {
266 sbi->s_partitions = 0;
267 return -ENOMEM;
268 }
269
270 sbi->s_partitions = count;
271 return 0;
272}
273
274static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275{
276 int i;
277 int nr_groups = bitmap->s_nr_groups;
278
279 for (i = 0; i < nr_groups; i++)
280 if (bitmap->s_block_bitmap[i])
281 brelse(bitmap->s_block_bitmap[i]);
282
283 kvfree(bitmap);
284}
285
286static void udf_free_partition(struct udf_part_map *map)
287{
288 int i;
289 struct udf_meta_data *mdata;
290
291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 iput(map->s_uspace.s_table);
293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
294 iput(map->s_fspace.s_table);
295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
296 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
298 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
299 if (map->s_partition_type == UDF_SPARABLE_MAP15)
300 for (i = 0; i < 4; i++)
301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
302 else if (map->s_partition_type == UDF_METADATA_MAP25) {
303 mdata = &map->s_type_specific.s_metadata;
304 iput(mdata->s_metadata_fe);
305 mdata->s_metadata_fe = NULL;
306
307 iput(mdata->s_mirror_fe);
308 mdata->s_mirror_fe = NULL;
309
310 iput(mdata->s_bitmap_fe);
311 mdata->s_bitmap_fe = NULL;
312 }
313}
314
315static void udf_sb_free_partitions(struct super_block *sb)
316{
317 struct udf_sb_info *sbi = UDF_SB(sb);
318 int i;
319
320 if (!sbi->s_partmaps)
321 return;
322 for (i = 0; i < sbi->s_partitions; i++)
323 udf_free_partition(&sbi->s_partmaps[i]);
324 kfree(sbi->s_partmaps);
325 sbi->s_partmaps = NULL;
326}
327
328static int udf_show_options(struct seq_file *seq, struct dentry *root)
329{
330 struct super_block *sb = root->d_sb;
331 struct udf_sb_info *sbi = UDF_SB(sb);
332
333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
334 seq_puts(seq, ",nostrict");
335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
336 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
338 seq_puts(seq, ",unhide");
339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
340 seq_puts(seq, ",undelete");
341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
342 seq_puts(seq, ",noadinicb");
343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
344 seq_puts(seq, ",shortad");
345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
346 seq_puts(seq, ",uid=forget");
347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
348 seq_puts(seq, ",gid=forget");
349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
353 if (sbi->s_umask != 0)
354 seq_printf(seq, ",umask=%ho", sbi->s_umask);
355 if (sbi->s_fmode != UDF_INVALID_MODE)
356 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
357 if (sbi->s_dmode != UDF_INVALID_MODE)
358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
360 seq_printf(seq, ",session=%d", sbi->s_session);
361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
363 if (sbi->s_anchor != 0)
364 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
366 seq_puts(seq, ",utf8");
367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
369
370 return 0;
371}
372
373/*
374 * udf_parse_options
375 *
376 * PURPOSE
377 * Parse mount options.
378 *
379 * DESCRIPTION
380 * The following mount options are supported:
381 *
382 * gid= Set the default group.
383 * umask= Set the default umask.
384 * mode= Set the default file permissions.
385 * dmode= Set the default directory permissions.
386 * uid= Set the default user.
387 * bs= Set the block size.
388 * unhide Show otherwise hidden files.
389 * undelete Show deleted files in lists.
390 * adinicb Embed data in the inode (default)
391 * noadinicb Don't embed data in the inode
392 * shortad Use short ad's
393 * longad Use long ad's (default)
394 * nostrict Unset strict conformance
395 * iocharset= Set the NLS character set
396 *
397 * The remaining are for debugging and disaster recovery:
398 *
399 * novrs Skip volume sequence recognition
400 *
401 * The following expect a offset from 0.
402 *
403 * session= Set the CDROM session (default= last session)
404 * anchor= Override standard anchor location. (default= 256)
405 * volume= Override the VolumeDesc location. (unused)
406 * partition= Override the PartitionDesc location. (unused)
407 * lastblock= Set the last block of the filesystem/
408 *
409 * The following expect a offset from the partition root.
410 *
411 * fileset= Override the fileset block location. (unused)
412 * rootdir= Override the root directory location. (unused)
413 * WARNING: overriding the rootdir to a non-directory may
414 * yield highly unpredictable results.
415 *
416 * PRE-CONDITIONS
417 * options Pointer to mount options string.
418 * uopts Pointer to mount options variable.
419 *
420 * POST-CONDITIONS
421 * <return> 1 Mount options parsed okay.
422 * <return> 0 Error parsing mount options.
423 *
424 * HISTORY
425 * July 1, 1997 - Andrew E. Mileski
426 * Written, tested, and released.
427 */
428
429enum {
430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
434 Opt_rootdir, Opt_utf8, Opt_iocharset,
435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
436 Opt_fmode, Opt_dmode
437};
438
439static const match_table_t tokens = {
440 {Opt_novrs, "novrs"},
441 {Opt_nostrict, "nostrict"},
442 {Opt_bs, "bs=%u"},
443 {Opt_unhide, "unhide"},
444 {Opt_undelete, "undelete"},
445 {Opt_noadinicb, "noadinicb"},
446 {Opt_adinicb, "adinicb"},
447 {Opt_shortad, "shortad"},
448 {Opt_longad, "longad"},
449 {Opt_uforget, "uid=forget"},
450 {Opt_uignore, "uid=ignore"},
451 {Opt_gforget, "gid=forget"},
452 {Opt_gignore, "gid=ignore"},
453 {Opt_gid, "gid=%u"},
454 {Opt_uid, "uid=%u"},
455 {Opt_umask, "umask=%o"},
456 {Opt_session, "session=%u"},
457 {Opt_lastblock, "lastblock=%u"},
458 {Opt_anchor, "anchor=%u"},
459 {Opt_volume, "volume=%u"},
460 {Opt_partition, "partition=%u"},
461 {Opt_fileset, "fileset=%u"},
462 {Opt_rootdir, "rootdir=%u"},
463 {Opt_utf8, "utf8"},
464 {Opt_iocharset, "iocharset=%s"},
465 {Opt_fmode, "mode=%o"},
466 {Opt_dmode, "dmode=%o"},
467 {Opt_err, NULL}
468};
469
470static int udf_parse_options(char *options, struct udf_options *uopt,
471 bool remount)
472{
473 char *p;
474 int option;
475
476 uopt->novrs = 0;
477 uopt->session = 0xFFFFFFFF;
478 uopt->lastblock = 0;
479 uopt->anchor = 0;
480
481 if (!options)
482 return 1;
483
484 while ((p = strsep(&options, ",")) != NULL) {
485 substring_t args[MAX_OPT_ARGS];
486 int token;
487 unsigned n;
488 if (!*p)
489 continue;
490
491 token = match_token(p, tokens, args);
492 switch (token) {
493 case Opt_novrs:
494 uopt->novrs = 1;
495 break;
496 case Opt_bs:
497 if (match_int(&args[0], &option))
498 return 0;
499 n = option;
500 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
501 return 0;
502 uopt->blocksize = n;
503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
504 break;
505 case Opt_unhide:
506 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
507 break;
508 case Opt_undelete:
509 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
510 break;
511 case Opt_noadinicb:
512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
513 break;
514 case Opt_adinicb:
515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
516 break;
517 case Opt_shortad:
518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
519 break;
520 case Opt_longad:
521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
522 break;
523 case Opt_gid:
524 if (match_int(args, &option))
525 return 0;
526 uopt->gid = make_kgid(current_user_ns(), option);
527 if (!gid_valid(uopt->gid))
528 return 0;
529 uopt->flags |= (1 << UDF_FLAG_GID_SET);
530 break;
531 case Opt_uid:
532 if (match_int(args, &option))
533 return 0;
534 uopt->uid = make_kuid(current_user_ns(), option);
535 if (!uid_valid(uopt->uid))
536 return 0;
537 uopt->flags |= (1 << UDF_FLAG_UID_SET);
538 break;
539 case Opt_umask:
540 if (match_octal(args, &option))
541 return 0;
542 uopt->umask = option;
543 break;
544 case Opt_nostrict:
545 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
546 break;
547 case Opt_session:
548 if (match_int(args, &option))
549 return 0;
550 uopt->session = option;
551 if (!remount)
552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
553 break;
554 case Opt_lastblock:
555 if (match_int(args, &option))
556 return 0;
557 uopt->lastblock = option;
558 if (!remount)
559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
560 break;
561 case Opt_anchor:
562 if (match_int(args, &option))
563 return 0;
564 uopt->anchor = option;
565 break;
566 case Opt_volume:
567 case Opt_partition:
568 case Opt_fileset:
569 case Opt_rootdir:
570 /* Ignored (never implemented properly) */
571 break;
572 case Opt_utf8:
573 uopt->flags |= (1 << UDF_FLAG_UTF8);
574 break;
575 case Opt_iocharset:
576 if (!remount) {
577 if (uopt->nls_map)
578 unload_nls(uopt->nls_map);
579 uopt->nls_map = load_nls(args[0].from);
580 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
581 }
582 break;
583 case Opt_uforget:
584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 break;
586 case Opt_uignore:
587 case Opt_gignore:
588 /* These options are superseeded by uid=<number> */
589 break;
590 case Opt_gforget:
591 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
592 break;
593 case Opt_fmode:
594 if (match_octal(args, &option))
595 return 0;
596 uopt->fmode = option & 0777;
597 break;
598 case Opt_dmode:
599 if (match_octal(args, &option))
600 return 0;
601 uopt->dmode = option & 0777;
602 break;
603 default:
604 pr_err("bad mount option \"%s\" or missing value\n", p);
605 return 0;
606 }
607 }
608 return 1;
609}
610
611static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
612{
613 struct udf_options uopt;
614 struct udf_sb_info *sbi = UDF_SB(sb);
615 int error = 0;
616
617 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
618 return -EACCES;
619
620 sync_filesystem(sb);
621
622 uopt.flags = sbi->s_flags;
623 uopt.uid = sbi->s_uid;
624 uopt.gid = sbi->s_gid;
625 uopt.umask = sbi->s_umask;
626 uopt.fmode = sbi->s_fmode;
627 uopt.dmode = sbi->s_dmode;
628 uopt.nls_map = NULL;
629
630 if (!udf_parse_options(options, &uopt, true))
631 return -EINVAL;
632
633 write_lock(&sbi->s_cred_lock);
634 sbi->s_flags = uopt.flags;
635 sbi->s_uid = uopt.uid;
636 sbi->s_gid = uopt.gid;
637 sbi->s_umask = uopt.umask;
638 sbi->s_fmode = uopt.fmode;
639 sbi->s_dmode = uopt.dmode;
640 write_unlock(&sbi->s_cred_lock);
641
642 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
643 goto out_unlock;
644
645 if (*flags & SB_RDONLY)
646 udf_close_lvid(sb);
647 else
648 udf_open_lvid(sb);
649
650out_unlock:
651 return error;
652}
653
654/* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
655/* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
656static loff_t udf_check_vsd(struct super_block *sb)
657{
658 struct volStructDesc *vsd = NULL;
659 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
660 int sectorsize;
661 struct buffer_head *bh = NULL;
662 int nsr02 = 0;
663 int nsr03 = 0;
664 struct udf_sb_info *sbi;
665
666 sbi = UDF_SB(sb);
667 if (sb->s_blocksize < sizeof(struct volStructDesc))
668 sectorsize = sizeof(struct volStructDesc);
669 else
670 sectorsize = sb->s_blocksize;
671
672 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
673
674 udf_debug("Starting at sector %u (%lu byte sectors)\n",
675 (unsigned int)(sector >> sb->s_blocksize_bits),
676 sb->s_blocksize);
677 /* Process the sequence (if applicable). The hard limit on the sector
678 * offset is arbitrary, hopefully large enough so that all valid UDF
679 * filesystems will be recognised. There is no mention of an upper
680 * bound to the size of the volume recognition area in the standard.
681 * The limit will prevent the code to read all the sectors of a
682 * specially crafted image (like a bluray disc full of CD001 sectors),
683 * potentially causing minutes or even hours of uninterruptible I/O
684 * activity. This actually happened with uninitialised SSD partitions
685 * (all 0xFF) before the check for the limit and all valid IDs were
686 * added */
687 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
688 sector += sectorsize) {
689 /* Read a block */
690 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
691 if (!bh)
692 break;
693
694 /* Look for ISO descriptors */
695 vsd = (struct volStructDesc *)(bh->b_data +
696 (sector & (sb->s_blocksize - 1)));
697
698 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
699 VSD_STD_ID_LEN)) {
700 switch (vsd->structType) {
701 case 0:
702 udf_debug("ISO9660 Boot Record found\n");
703 break;
704 case 1:
705 udf_debug("ISO9660 Primary Volume Descriptor found\n");
706 break;
707 case 2:
708 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
709 break;
710 case 3:
711 udf_debug("ISO9660 Volume Partition Descriptor found\n");
712 break;
713 case 255:
714 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
715 break;
716 default:
717 udf_debug("ISO9660 VRS (%u) found\n",
718 vsd->structType);
719 break;
720 }
721 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
722 VSD_STD_ID_LEN))
723 ; /* nothing */
724 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
725 VSD_STD_ID_LEN)) {
726 brelse(bh);
727 break;
728 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
729 VSD_STD_ID_LEN))
730 nsr02 = sector;
731 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
732 VSD_STD_ID_LEN))
733 nsr03 = sector;
734 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
735 VSD_STD_ID_LEN))
736 ; /* nothing */
737 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
738 VSD_STD_ID_LEN))
739 ; /* nothing */
740 else {
741 /* invalid id : end of volume recognition area */
742 brelse(bh);
743 break;
744 }
745 brelse(bh);
746 }
747
748 if (nsr03)
749 return nsr03;
750 else if (nsr02)
751 return nsr02;
752 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
753 VSD_FIRST_SECTOR_OFFSET)
754 return -1;
755 else
756 return 0;
757}
758
759static int udf_find_fileset(struct super_block *sb,
760 struct kernel_lb_addr *fileset,
761 struct kernel_lb_addr *root)
762{
763 struct buffer_head *bh = NULL;
764 uint16_t ident;
765
766 if (fileset->logicalBlockNum != 0xFFFFFFFF ||
767 fileset->partitionReferenceNum != 0xFFFF) {
768 bh = udf_read_ptagged(sb, fileset, 0, &ident);
769
770 if (!bh) {
771 return 1;
772 } else if (ident != TAG_IDENT_FSD) {
773 brelse(bh);
774 return 1;
775 }
776
777 udf_debug("Fileset at block=%u, partition=%u\n",
778 fileset->logicalBlockNum,
779 fileset->partitionReferenceNum);
780
781 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
782 udf_load_fileset(sb, bh, root);
783 brelse(bh);
784 return 0;
785 }
786 return 1;
787}
788
789/*
790 * Load primary Volume Descriptor Sequence
791 *
792 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
793 * should be tried.
794 */
795static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
796{
797 struct primaryVolDesc *pvoldesc;
798 uint8_t *outstr;
799 struct buffer_head *bh;
800 uint16_t ident;
801 int ret = -ENOMEM;
802#ifdef UDFFS_DEBUG
803 struct timestamp *ts;
804#endif
805
806 outstr = kmalloc(128, GFP_NOFS);
807 if (!outstr)
808 return -ENOMEM;
809
810 bh = udf_read_tagged(sb, block, block, &ident);
811 if (!bh) {
812 ret = -EAGAIN;
813 goto out2;
814 }
815
816 if (ident != TAG_IDENT_PVD) {
817 ret = -EIO;
818 goto out_bh;
819 }
820
821 pvoldesc = (struct primaryVolDesc *)bh->b_data;
822
823 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
824 pvoldesc->recordingDateAndTime);
825#ifdef UDFFS_DEBUG
826 ts = &pvoldesc->recordingDateAndTime;
827 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
828 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
829 ts->minute, le16_to_cpu(ts->typeAndTimezone));
830#endif
831
832
833 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
834 if (ret < 0) {
835 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
836 pr_warn("incorrect volume identification, setting to "
837 "'InvalidName'\n");
838 } else {
839 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
840 }
841 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
842
843 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
844 if (ret < 0) {
845 ret = 0;
846 goto out_bh;
847 }
848 outstr[ret] = 0;
849 udf_debug("volSetIdent[] = '%s'\n", outstr);
850
851 ret = 0;
852out_bh:
853 brelse(bh);
854out2:
855 kfree(outstr);
856 return ret;
857}
858
859struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
860 u32 meta_file_loc, u32 partition_ref)
861{
862 struct kernel_lb_addr addr;
863 struct inode *metadata_fe;
864
865 addr.logicalBlockNum = meta_file_loc;
866 addr.partitionReferenceNum = partition_ref;
867
868 metadata_fe = udf_iget_special(sb, &addr);
869
870 if (IS_ERR(metadata_fe)) {
871 udf_warn(sb, "metadata inode efe not found\n");
872 return metadata_fe;
873 }
874 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
875 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
876 iput(metadata_fe);
877 return ERR_PTR(-EIO);
878 }
879
880 return metadata_fe;
881}
882
883static int udf_load_metadata_files(struct super_block *sb, int partition,
884 int type1_index)
885{
886 struct udf_sb_info *sbi = UDF_SB(sb);
887 struct udf_part_map *map;
888 struct udf_meta_data *mdata;
889 struct kernel_lb_addr addr;
890 struct inode *fe;
891
892 map = &sbi->s_partmaps[partition];
893 mdata = &map->s_type_specific.s_metadata;
894 mdata->s_phys_partition_ref = type1_index;
895
896 /* metadata address */
897 udf_debug("Metadata file location: block = %u part = %u\n",
898 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
899
900 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
901 mdata->s_phys_partition_ref);
902 if (IS_ERR(fe)) {
903 /* mirror file entry */
904 udf_debug("Mirror metadata file location: block = %u part = %u\n",
905 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
906
907 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
908 mdata->s_phys_partition_ref);
909
910 if (IS_ERR(fe)) {
911 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
912 return PTR_ERR(fe);
913 }
914 mdata->s_mirror_fe = fe;
915 } else
916 mdata->s_metadata_fe = fe;
917
918
919 /*
920 * bitmap file entry
921 * Note:
922 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
923 */
924 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
925 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
926 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
927
928 udf_debug("Bitmap file location: block = %u part = %u\n",
929 addr.logicalBlockNum, addr.partitionReferenceNum);
930
931 fe = udf_iget_special(sb, &addr);
932 if (IS_ERR(fe)) {
933 if (sb_rdonly(sb))
934 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
935 else {
936 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
937 return PTR_ERR(fe);
938 }
939 } else
940 mdata->s_bitmap_fe = fe;
941 }
942
943 udf_debug("udf_load_metadata_files Ok\n");
944 return 0;
945}
946
947static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
948 struct kernel_lb_addr *root)
949{
950 struct fileSetDesc *fset;
951
952 fset = (struct fileSetDesc *)bh->b_data;
953
954 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
955
956 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
957
958 udf_debug("Rootdir at block=%u, partition=%u\n",
959 root->logicalBlockNum, root->partitionReferenceNum);
960}
961
962int udf_compute_nr_groups(struct super_block *sb, u32 partition)
963{
964 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
965 return DIV_ROUND_UP(map->s_partition_len +
966 (sizeof(struct spaceBitmapDesc) << 3),
967 sb->s_blocksize * 8);
968}
969
970static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
971{
972 struct udf_bitmap *bitmap;
973 int nr_groups;
974 int size;
975
976 nr_groups = udf_compute_nr_groups(sb, index);
977 size = sizeof(struct udf_bitmap) +
978 (sizeof(struct buffer_head *) * nr_groups);
979
980 if (size <= PAGE_SIZE)
981 bitmap = kzalloc(size, GFP_KERNEL);
982 else
983 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
984
985 if (!bitmap)
986 return NULL;
987
988 bitmap->s_nr_groups = nr_groups;
989 return bitmap;
990}
991
992static int udf_fill_partdesc_info(struct super_block *sb,
993 struct partitionDesc *p, int p_index)
994{
995 struct udf_part_map *map;
996 struct udf_sb_info *sbi = UDF_SB(sb);
997 struct partitionHeaderDesc *phd;
998
999 map = &sbi->s_partmaps[p_index];
1000
1001 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1002 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1003
1004 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1005 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1006 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1007 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1008 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1009 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1010 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1011 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1012
1013 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1014 p_index, map->s_partition_type,
1015 map->s_partition_root, map->s_partition_len);
1016
1017 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1018 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1019 return 0;
1020
1021 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1022 if (phd->unallocSpaceTable.extLength) {
1023 struct kernel_lb_addr loc = {
1024 .logicalBlockNum = le32_to_cpu(
1025 phd->unallocSpaceTable.extPosition),
1026 .partitionReferenceNum = p_index,
1027 };
1028 struct inode *inode;
1029
1030 inode = udf_iget_special(sb, &loc);
1031 if (IS_ERR(inode)) {
1032 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1033 p_index);
1034 return PTR_ERR(inode);
1035 }
1036 map->s_uspace.s_table = inode;
1037 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1038 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1039 p_index, map->s_uspace.s_table->i_ino);
1040 }
1041
1042 if (phd->unallocSpaceBitmap.extLength) {
1043 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1044 if (!bitmap)
1045 return -ENOMEM;
1046 map->s_uspace.s_bitmap = bitmap;
1047 bitmap->s_extPosition = le32_to_cpu(
1048 phd->unallocSpaceBitmap.extPosition);
1049 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1050 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1051 p_index, bitmap->s_extPosition);
1052 }
1053
1054 if (phd->partitionIntegrityTable.extLength)
1055 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1056
1057 if (phd->freedSpaceTable.extLength) {
1058 struct kernel_lb_addr loc = {
1059 .logicalBlockNum = le32_to_cpu(
1060 phd->freedSpaceTable.extPosition),
1061 .partitionReferenceNum = p_index,
1062 };
1063 struct inode *inode;
1064
1065 inode = udf_iget_special(sb, &loc);
1066 if (IS_ERR(inode)) {
1067 udf_debug("cannot load freedSpaceTable (part %d)\n",
1068 p_index);
1069 return PTR_ERR(inode);
1070 }
1071 map->s_fspace.s_table = inode;
1072 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1073 udf_debug("freedSpaceTable (part %d) @ %lu\n",
1074 p_index, map->s_fspace.s_table->i_ino);
1075 }
1076
1077 if (phd->freedSpaceBitmap.extLength) {
1078 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1079 if (!bitmap)
1080 return -ENOMEM;
1081 map->s_fspace.s_bitmap = bitmap;
1082 bitmap->s_extPosition = le32_to_cpu(
1083 phd->freedSpaceBitmap.extPosition);
1084 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1085 udf_debug("freedSpaceBitmap (part %d) @ %u\n",
1086 p_index, bitmap->s_extPosition);
1087 }
1088 return 0;
1089}
1090
1091static void udf_find_vat_block(struct super_block *sb, int p_index,
1092 int type1_index, sector_t start_block)
1093{
1094 struct udf_sb_info *sbi = UDF_SB(sb);
1095 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1096 sector_t vat_block;
1097 struct kernel_lb_addr ino;
1098 struct inode *inode;
1099
1100 /*
1101 * VAT file entry is in the last recorded block. Some broken disks have
1102 * it a few blocks before so try a bit harder...
1103 */
1104 ino.partitionReferenceNum = type1_index;
1105 for (vat_block = start_block;
1106 vat_block >= map->s_partition_root &&
1107 vat_block >= start_block - 3; vat_block--) {
1108 ino.logicalBlockNum = vat_block - map->s_partition_root;
1109 inode = udf_iget_special(sb, &ino);
1110 if (!IS_ERR(inode)) {
1111 sbi->s_vat_inode = inode;
1112 break;
1113 }
1114 }
1115}
1116
1117static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1118{
1119 struct udf_sb_info *sbi = UDF_SB(sb);
1120 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1121 struct buffer_head *bh = NULL;
1122 struct udf_inode_info *vati;
1123 uint32_t pos;
1124 struct virtualAllocationTable20 *vat20;
1125 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1126 sb->s_blocksize_bits;
1127
1128 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1129 if (!sbi->s_vat_inode &&
1130 sbi->s_last_block != blocks - 1) {
1131 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1132 (unsigned long)sbi->s_last_block,
1133 (unsigned long)blocks - 1);
1134 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1135 }
1136 if (!sbi->s_vat_inode)
1137 return -EIO;
1138
1139 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1140 map->s_type_specific.s_virtual.s_start_offset = 0;
1141 map->s_type_specific.s_virtual.s_num_entries =
1142 (sbi->s_vat_inode->i_size - 36) >> 2;
1143 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1144 vati = UDF_I(sbi->s_vat_inode);
1145 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1146 pos = udf_block_map(sbi->s_vat_inode, 0);
1147 bh = sb_bread(sb, pos);
1148 if (!bh)
1149 return -EIO;
1150 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1151 } else {
1152 vat20 = (struct virtualAllocationTable20 *)
1153 vati->i_ext.i_data;
1154 }
1155
1156 map->s_type_specific.s_virtual.s_start_offset =
1157 le16_to_cpu(vat20->lengthHeader);
1158 map->s_type_specific.s_virtual.s_num_entries =
1159 (sbi->s_vat_inode->i_size -
1160 map->s_type_specific.s_virtual.
1161 s_start_offset) >> 2;
1162 brelse(bh);
1163 }
1164 return 0;
1165}
1166
1167/*
1168 * Load partition descriptor block
1169 *
1170 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1171 * sequence.
1172 */
1173static int udf_load_partdesc(struct super_block *sb, sector_t block)
1174{
1175 struct buffer_head *bh;
1176 struct partitionDesc *p;
1177 struct udf_part_map *map;
1178 struct udf_sb_info *sbi = UDF_SB(sb);
1179 int i, type1_idx;
1180 uint16_t partitionNumber;
1181 uint16_t ident;
1182 int ret;
1183
1184 bh = udf_read_tagged(sb, block, block, &ident);
1185 if (!bh)
1186 return -EAGAIN;
1187 if (ident != TAG_IDENT_PD) {
1188 ret = 0;
1189 goto out_bh;
1190 }
1191
1192 p = (struct partitionDesc *)bh->b_data;
1193 partitionNumber = le16_to_cpu(p->partitionNumber);
1194
1195 /* First scan for TYPE1 and SPARABLE partitions */
1196 for (i = 0; i < sbi->s_partitions; i++) {
1197 map = &sbi->s_partmaps[i];
1198 udf_debug("Searching map: (%u == %u)\n",
1199 map->s_partition_num, partitionNumber);
1200 if (map->s_partition_num == partitionNumber &&
1201 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1202 map->s_partition_type == UDF_SPARABLE_MAP15))
1203 break;
1204 }
1205
1206 if (i >= sbi->s_partitions) {
1207 udf_debug("Partition (%u) not found in partition map\n",
1208 partitionNumber);
1209 ret = 0;
1210 goto out_bh;
1211 }
1212
1213 ret = udf_fill_partdesc_info(sb, p, i);
1214 if (ret < 0)
1215 goto out_bh;
1216
1217 /*
1218 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1219 * PHYSICAL partitions are already set up
1220 */
1221 type1_idx = i;
1222#ifdef UDFFS_DEBUG
1223 map = NULL; /* supress 'maybe used uninitialized' warning */
1224#endif
1225 for (i = 0; i < sbi->s_partitions; i++) {
1226 map = &sbi->s_partmaps[i];
1227
1228 if (map->s_partition_num == partitionNumber &&
1229 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1230 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1231 map->s_partition_type == UDF_METADATA_MAP25))
1232 break;
1233 }
1234
1235 if (i >= sbi->s_partitions) {
1236 ret = 0;
1237 goto out_bh;
1238 }
1239
1240 ret = udf_fill_partdesc_info(sb, p, i);
1241 if (ret < 0)
1242 goto out_bh;
1243
1244 if (map->s_partition_type == UDF_METADATA_MAP25) {
1245 ret = udf_load_metadata_files(sb, i, type1_idx);
1246 if (ret < 0) {
1247 udf_err(sb, "error loading MetaData partition map %d\n",
1248 i);
1249 goto out_bh;
1250 }
1251 } else {
1252 /*
1253 * If we have a partition with virtual map, we don't handle
1254 * writing to it (we overwrite blocks instead of relocating
1255 * them).
1256 */
1257 if (!sb_rdonly(sb)) {
1258 ret = -EACCES;
1259 goto out_bh;
1260 }
1261 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1262 ret = udf_load_vat(sb, i, type1_idx);
1263 if (ret < 0)
1264 goto out_bh;
1265 }
1266 ret = 0;
1267out_bh:
1268 /* In case loading failed, we handle cleanup in udf_fill_super */
1269 brelse(bh);
1270 return ret;
1271}
1272
1273static int udf_load_sparable_map(struct super_block *sb,
1274 struct udf_part_map *map,
1275 struct sparablePartitionMap *spm)
1276{
1277 uint32_t loc;
1278 uint16_t ident;
1279 struct sparingTable *st;
1280 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1281 int i;
1282 struct buffer_head *bh;
1283
1284 map->s_partition_type = UDF_SPARABLE_MAP15;
1285 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1286 if (!is_power_of_2(sdata->s_packet_len)) {
1287 udf_err(sb, "error loading logical volume descriptor: "
1288 "Invalid packet length %u\n",
1289 (unsigned)sdata->s_packet_len);
1290 return -EIO;
1291 }
1292 if (spm->numSparingTables > 4) {
1293 udf_err(sb, "error loading logical volume descriptor: "
1294 "Too many sparing tables (%d)\n",
1295 (int)spm->numSparingTables);
1296 return -EIO;
1297 }
1298
1299 for (i = 0; i < spm->numSparingTables; i++) {
1300 loc = le32_to_cpu(spm->locSparingTable[i]);
1301 bh = udf_read_tagged(sb, loc, loc, &ident);
1302 if (!bh)
1303 continue;
1304
1305 st = (struct sparingTable *)bh->b_data;
1306 if (ident != 0 ||
1307 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1308 strlen(UDF_ID_SPARING)) ||
1309 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1310 sb->s_blocksize) {
1311 brelse(bh);
1312 continue;
1313 }
1314
1315 sdata->s_spar_map[i] = bh;
1316 }
1317 map->s_partition_func = udf_get_pblock_spar15;
1318 return 0;
1319}
1320
1321static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1322 struct kernel_lb_addr *fileset)
1323{
1324 struct logicalVolDesc *lvd;
1325 int i, offset;
1326 uint8_t type;
1327 struct udf_sb_info *sbi = UDF_SB(sb);
1328 struct genericPartitionMap *gpm;
1329 uint16_t ident;
1330 struct buffer_head *bh;
1331 unsigned int table_len;
1332 int ret;
1333
1334 bh = udf_read_tagged(sb, block, block, &ident);
1335 if (!bh)
1336 return -EAGAIN;
1337 BUG_ON(ident != TAG_IDENT_LVD);
1338 lvd = (struct logicalVolDesc *)bh->b_data;
1339 table_len = le32_to_cpu(lvd->mapTableLength);
1340 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1341 udf_err(sb, "error loading logical volume descriptor: "
1342 "Partition table too long (%u > %lu)\n", table_len,
1343 sb->s_blocksize - sizeof(*lvd));
1344 ret = -EIO;
1345 goto out_bh;
1346 }
1347
1348 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1349 if (ret)
1350 goto out_bh;
1351
1352 for (i = 0, offset = 0;
1353 i < sbi->s_partitions && offset < table_len;
1354 i++, offset += gpm->partitionMapLength) {
1355 struct udf_part_map *map = &sbi->s_partmaps[i];
1356 gpm = (struct genericPartitionMap *)
1357 &(lvd->partitionMaps[offset]);
1358 type = gpm->partitionMapType;
1359 if (type == 1) {
1360 struct genericPartitionMap1 *gpm1 =
1361 (struct genericPartitionMap1 *)gpm;
1362 map->s_partition_type = UDF_TYPE1_MAP15;
1363 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1364 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1365 map->s_partition_func = NULL;
1366 } else if (type == 2) {
1367 struct udfPartitionMap2 *upm2 =
1368 (struct udfPartitionMap2 *)gpm;
1369 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1370 strlen(UDF_ID_VIRTUAL))) {
1371 u16 suf =
1372 le16_to_cpu(((__le16 *)upm2->partIdent.
1373 identSuffix)[0]);
1374 if (suf < 0x0200) {
1375 map->s_partition_type =
1376 UDF_VIRTUAL_MAP15;
1377 map->s_partition_func =
1378 udf_get_pblock_virt15;
1379 } else {
1380 map->s_partition_type =
1381 UDF_VIRTUAL_MAP20;
1382 map->s_partition_func =
1383 udf_get_pblock_virt20;
1384 }
1385 } else if (!strncmp(upm2->partIdent.ident,
1386 UDF_ID_SPARABLE,
1387 strlen(UDF_ID_SPARABLE))) {
1388 ret = udf_load_sparable_map(sb, map,
1389 (struct sparablePartitionMap *)gpm);
1390 if (ret < 0)
1391 goto out_bh;
1392 } else if (!strncmp(upm2->partIdent.ident,
1393 UDF_ID_METADATA,
1394 strlen(UDF_ID_METADATA))) {
1395 struct udf_meta_data *mdata =
1396 &map->s_type_specific.s_metadata;
1397 struct metadataPartitionMap *mdm =
1398 (struct metadataPartitionMap *)
1399 &(lvd->partitionMaps[offset]);
1400 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1401 i, type, UDF_ID_METADATA);
1402
1403 map->s_partition_type = UDF_METADATA_MAP25;
1404 map->s_partition_func = udf_get_pblock_meta25;
1405
1406 mdata->s_meta_file_loc =
1407 le32_to_cpu(mdm->metadataFileLoc);
1408 mdata->s_mirror_file_loc =
1409 le32_to_cpu(mdm->metadataMirrorFileLoc);
1410 mdata->s_bitmap_file_loc =
1411 le32_to_cpu(mdm->metadataBitmapFileLoc);
1412 mdata->s_alloc_unit_size =
1413 le32_to_cpu(mdm->allocUnitSize);
1414 mdata->s_align_unit_size =
1415 le16_to_cpu(mdm->alignUnitSize);
1416 if (mdm->flags & 0x01)
1417 mdata->s_flags |= MF_DUPLICATE_MD;
1418
1419 udf_debug("Metadata Ident suffix=0x%x\n",
1420 le16_to_cpu(*(__le16 *)
1421 mdm->partIdent.identSuffix));
1422 udf_debug("Metadata part num=%u\n",
1423 le16_to_cpu(mdm->partitionNum));
1424 udf_debug("Metadata part alloc unit size=%u\n",
1425 le32_to_cpu(mdm->allocUnitSize));
1426 udf_debug("Metadata file loc=%u\n",
1427 le32_to_cpu(mdm->metadataFileLoc));
1428 udf_debug("Mirror file loc=%u\n",
1429 le32_to_cpu(mdm->metadataMirrorFileLoc));
1430 udf_debug("Bitmap file loc=%u\n",
1431 le32_to_cpu(mdm->metadataBitmapFileLoc));
1432 udf_debug("Flags: %d %u\n",
1433 mdata->s_flags, mdm->flags);
1434 } else {
1435 udf_debug("Unknown ident: %s\n",
1436 upm2->partIdent.ident);
1437 continue;
1438 }
1439 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1440 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1441 }
1442 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1443 i, map->s_partition_num, type, map->s_volumeseqnum);
1444 }
1445
1446 if (fileset) {
1447 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1448
1449 *fileset = lelb_to_cpu(la->extLocation);
1450 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1451 fileset->logicalBlockNum,
1452 fileset->partitionReferenceNum);
1453 }
1454 if (lvd->integritySeqExt.extLength)
1455 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1456 ret = 0;
1457out_bh:
1458 brelse(bh);
1459 return ret;
1460}
1461
1462/*
1463 * Find the prevailing Logical Volume Integrity Descriptor.
1464 */
1465static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1466{
1467 struct buffer_head *bh, *final_bh;
1468 uint16_t ident;
1469 struct udf_sb_info *sbi = UDF_SB(sb);
1470 struct logicalVolIntegrityDesc *lvid;
1471 int indirections = 0;
1472
1473 while (++indirections <= UDF_MAX_LVID_NESTING) {
1474 final_bh = NULL;
1475 while (loc.extLength > 0 &&
1476 (bh = udf_read_tagged(sb, loc.extLocation,
1477 loc.extLocation, &ident))) {
1478 if (ident != TAG_IDENT_LVID) {
1479 brelse(bh);
1480 break;
1481 }
1482
1483 brelse(final_bh);
1484 final_bh = bh;
1485
1486 loc.extLength -= sb->s_blocksize;
1487 loc.extLocation++;
1488 }
1489
1490 if (!final_bh)
1491 return;
1492
1493 brelse(sbi->s_lvid_bh);
1494 sbi->s_lvid_bh = final_bh;
1495
1496 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1497 if (lvid->nextIntegrityExt.extLength == 0)
1498 return;
1499
1500 loc = leea_to_cpu(lvid->nextIntegrityExt);
1501 }
1502
1503 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1504 UDF_MAX_LVID_NESTING);
1505 brelse(sbi->s_lvid_bh);
1506 sbi->s_lvid_bh = NULL;
1507}
1508
1509/*
1510 * Step for reallocation of table of partition descriptor sequence numbers.
1511 * Must be power of 2.
1512 */
1513#define PART_DESC_ALLOC_STEP 32
1514
1515struct part_desc_seq_scan_data {
1516 struct udf_vds_record rec;
1517 u32 partnum;
1518};
1519
1520struct desc_seq_scan_data {
1521 struct udf_vds_record vds[VDS_POS_LENGTH];
1522 unsigned int size_part_descs;
1523 unsigned int num_part_descs;
1524 struct part_desc_seq_scan_data *part_descs_loc;
1525};
1526
1527static struct udf_vds_record *handle_partition_descriptor(
1528 struct buffer_head *bh,
1529 struct desc_seq_scan_data *data)
1530{
1531 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1532 int partnum;
1533 int i;
1534
1535 partnum = le16_to_cpu(desc->partitionNumber);
1536 for (i = 0; i < data->num_part_descs; i++)
1537 if (partnum == data->part_descs_loc[i].partnum)
1538 return &(data->part_descs_loc[i].rec);
1539 if (data->num_part_descs >= data->size_part_descs) {
1540 struct part_desc_seq_scan_data *new_loc;
1541 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1542
1543 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1544 if (!new_loc)
1545 return ERR_PTR(-ENOMEM);
1546 memcpy(new_loc, data->part_descs_loc,
1547 data->size_part_descs * sizeof(*new_loc));
1548 kfree(data->part_descs_loc);
1549 data->part_descs_loc = new_loc;
1550 data->size_part_descs = new_size;
1551 }
1552 return &(data->part_descs_loc[data->num_part_descs++].rec);
1553}
1554
1555
1556static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1557 struct buffer_head *bh, struct desc_seq_scan_data *data)
1558{
1559 switch (ident) {
1560 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1561 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1562 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1563 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1564 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1565 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1566 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1567 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1568 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1569 return handle_partition_descriptor(bh, data);
1570 }
1571 return NULL;
1572}
1573
1574/*
1575 * Process a main/reserve volume descriptor sequence.
1576 * @block First block of first extent of the sequence.
1577 * @lastblock Lastblock of first extent of the sequence.
1578 * @fileset There we store extent containing root fileset
1579 *
1580 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1581 * sequence
1582 */
1583static noinline int udf_process_sequence(
1584 struct super_block *sb,
1585 sector_t block, sector_t lastblock,
1586 struct kernel_lb_addr *fileset)
1587{
1588 struct buffer_head *bh = NULL;
1589 struct udf_vds_record *curr;
1590 struct generic_desc *gd;
1591 struct volDescPtr *vdp;
1592 bool done = false;
1593 uint32_t vdsn;
1594 uint16_t ident;
1595 int ret;
1596 unsigned int indirections = 0;
1597 struct desc_seq_scan_data data;
1598 unsigned int i;
1599
1600 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1601 data.size_part_descs = PART_DESC_ALLOC_STEP;
1602 data.num_part_descs = 0;
1603 data.part_descs_loc = kcalloc(data.size_part_descs,
1604 sizeof(*data.part_descs_loc),
1605 GFP_KERNEL);
1606 if (!data.part_descs_loc)
1607 return -ENOMEM;
1608
1609 /*
1610 * Read the main descriptor sequence and find which descriptors
1611 * are in it.
1612 */
1613 for (; (!done && block <= lastblock); block++) {
1614 bh = udf_read_tagged(sb, block, block, &ident);
1615 if (!bh)
1616 break;
1617
1618 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1619 gd = (struct generic_desc *)bh->b_data;
1620 vdsn = le32_to_cpu(gd->volDescSeqNum);
1621 switch (ident) {
1622 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1623 if (++indirections > UDF_MAX_TD_NESTING) {
1624 udf_err(sb, "too many Volume Descriptor "
1625 "Pointers (max %u supported)\n",
1626 UDF_MAX_TD_NESTING);
1627 brelse(bh);
1628 return -EIO;
1629 }
1630
1631 vdp = (struct volDescPtr *)bh->b_data;
1632 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1633 lastblock = le32_to_cpu(
1634 vdp->nextVolDescSeqExt.extLength) >>
1635 sb->s_blocksize_bits;
1636 lastblock += block - 1;
1637 /* For loop is going to increment 'block' again */
1638 block--;
1639 break;
1640 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1641 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1642 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1643 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1644 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1645 curr = get_volume_descriptor_record(ident, bh, &data);
1646 if (IS_ERR(curr)) {
1647 brelse(bh);
1648 return PTR_ERR(curr);
1649 }
1650 /* Descriptor we don't care about? */
1651 if (!curr)
1652 break;
1653 if (vdsn >= curr->volDescSeqNum) {
1654 curr->volDescSeqNum = vdsn;
1655 curr->block = block;
1656 }
1657 break;
1658 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1659 done = true;
1660 break;
1661 }
1662 brelse(bh);
1663 }
1664 /*
1665 * Now read interesting descriptors again and process them
1666 * in a suitable order
1667 */
1668 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1669 udf_err(sb, "Primary Volume Descriptor not found!\n");
1670 return -EAGAIN;
1671 }
1672 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1673 if (ret < 0)
1674 return ret;
1675
1676 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1677 ret = udf_load_logicalvol(sb,
1678 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1679 fileset);
1680 if (ret < 0)
1681 return ret;
1682 }
1683
1684 /* Now handle prevailing Partition Descriptors */
1685 for (i = 0; i < data.num_part_descs; i++) {
1686 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1687 if (ret < 0)
1688 return ret;
1689 }
1690
1691 return 0;
1692}
1693
1694/*
1695 * Load Volume Descriptor Sequence described by anchor in bh
1696 *
1697 * Returns <0 on error, 0 on success
1698 */
1699static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1700 struct kernel_lb_addr *fileset)
1701{
1702 struct anchorVolDescPtr *anchor;
1703 sector_t main_s, main_e, reserve_s, reserve_e;
1704 int ret;
1705
1706 anchor = (struct anchorVolDescPtr *)bh->b_data;
1707
1708 /* Locate the main sequence */
1709 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1710 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1711 main_e = main_e >> sb->s_blocksize_bits;
1712 main_e += main_s - 1;
1713
1714 /* Locate the reserve sequence */
1715 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1716 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1717 reserve_e = reserve_e >> sb->s_blocksize_bits;
1718 reserve_e += reserve_s - 1;
1719
1720 /* Process the main & reserve sequences */
1721 /* responsible for finding the PartitionDesc(s) */
1722 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1723 if (ret != -EAGAIN)
1724 return ret;
1725 udf_sb_free_partitions(sb);
1726 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1727 if (ret < 0) {
1728 udf_sb_free_partitions(sb);
1729 /* No sequence was OK, return -EIO */
1730 if (ret == -EAGAIN)
1731 ret = -EIO;
1732 }
1733 return ret;
1734}
1735
1736/*
1737 * Check whether there is an anchor block in the given block and
1738 * load Volume Descriptor Sequence if so.
1739 *
1740 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1741 * block
1742 */
1743static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1744 struct kernel_lb_addr *fileset)
1745{
1746 struct buffer_head *bh;
1747 uint16_t ident;
1748 int ret;
1749
1750 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1751 udf_fixed_to_variable(block) >=
1752 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1753 return -EAGAIN;
1754
1755 bh = udf_read_tagged(sb, block, block, &ident);
1756 if (!bh)
1757 return -EAGAIN;
1758 if (ident != TAG_IDENT_AVDP) {
1759 brelse(bh);
1760 return -EAGAIN;
1761 }
1762 ret = udf_load_sequence(sb, bh, fileset);
1763 brelse(bh);
1764 return ret;
1765}
1766
1767/*
1768 * Search for an anchor volume descriptor pointer.
1769 *
1770 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1771 * of anchors.
1772 */
1773static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1774 struct kernel_lb_addr *fileset)
1775{
1776 sector_t last[6];
1777 int i;
1778 struct udf_sb_info *sbi = UDF_SB(sb);
1779 int last_count = 0;
1780 int ret;
1781
1782 /* First try user provided anchor */
1783 if (sbi->s_anchor) {
1784 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1785 if (ret != -EAGAIN)
1786 return ret;
1787 }
1788 /*
1789 * according to spec, anchor is in either:
1790 * block 256
1791 * lastblock-256
1792 * lastblock
1793 * however, if the disc isn't closed, it could be 512.
1794 */
1795 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1796 if (ret != -EAGAIN)
1797 return ret;
1798 /*
1799 * The trouble is which block is the last one. Drives often misreport
1800 * this so we try various possibilities.
1801 */
1802 last[last_count++] = *lastblock;
1803 if (*lastblock >= 1)
1804 last[last_count++] = *lastblock - 1;
1805 last[last_count++] = *lastblock + 1;
1806 if (*lastblock >= 2)
1807 last[last_count++] = *lastblock - 2;
1808 if (*lastblock >= 150)
1809 last[last_count++] = *lastblock - 150;
1810 if (*lastblock >= 152)
1811 last[last_count++] = *lastblock - 152;
1812
1813 for (i = 0; i < last_count; i++) {
1814 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1815 sb->s_blocksize_bits)
1816 continue;
1817 ret = udf_check_anchor_block(sb, last[i], fileset);
1818 if (ret != -EAGAIN) {
1819 if (!ret)
1820 *lastblock = last[i];
1821 return ret;
1822 }
1823 if (last[i] < 256)
1824 continue;
1825 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1826 if (ret != -EAGAIN) {
1827 if (!ret)
1828 *lastblock = last[i];
1829 return ret;
1830 }
1831 }
1832
1833 /* Finally try block 512 in case media is open */
1834 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1835}
1836
1837/*
1838 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1839 * area specified by it. The function expects sbi->s_lastblock to be the last
1840 * block on the media.
1841 *
1842 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1843 * was not found.
1844 */
1845static int udf_find_anchor(struct super_block *sb,
1846 struct kernel_lb_addr *fileset)
1847{
1848 struct udf_sb_info *sbi = UDF_SB(sb);
1849 sector_t lastblock = sbi->s_last_block;
1850 int ret;
1851
1852 ret = udf_scan_anchors(sb, &lastblock, fileset);
1853 if (ret != -EAGAIN)
1854 goto out;
1855
1856 /* No anchor found? Try VARCONV conversion of block numbers */
1857 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1858 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1859 /* Firstly, we try to not convert number of the last block */
1860 ret = udf_scan_anchors(sb, &lastblock, fileset);
1861 if (ret != -EAGAIN)
1862 goto out;
1863
1864 lastblock = sbi->s_last_block;
1865 /* Secondly, we try with converted number of the last block */
1866 ret = udf_scan_anchors(sb, &lastblock, fileset);
1867 if (ret < 0) {
1868 /* VARCONV didn't help. Clear it. */
1869 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1870 }
1871out:
1872 if (ret == 0)
1873 sbi->s_last_block = lastblock;
1874 return ret;
1875}
1876
1877/*
1878 * Check Volume Structure Descriptor, find Anchor block and load Volume
1879 * Descriptor Sequence.
1880 *
1881 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1882 * block was not found.
1883 */
1884static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1885 int silent, struct kernel_lb_addr *fileset)
1886{
1887 struct udf_sb_info *sbi = UDF_SB(sb);
1888 loff_t nsr_off;
1889 int ret;
1890
1891 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1892 if (!silent)
1893 udf_warn(sb, "Bad block size\n");
1894 return -EINVAL;
1895 }
1896 sbi->s_last_block = uopt->lastblock;
1897 if (!uopt->novrs) {
1898 /* Check that it is NSR02 compliant */
1899 nsr_off = udf_check_vsd(sb);
1900 if (!nsr_off) {
1901 if (!silent)
1902 udf_warn(sb, "No VRS found\n");
1903 return -EINVAL;
1904 }
1905 if (nsr_off == -1)
1906 udf_debug("Failed to read sector at offset %d. "
1907 "Assuming open disc. Skipping validity "
1908 "check\n", VSD_FIRST_SECTOR_OFFSET);
1909 if (!sbi->s_last_block)
1910 sbi->s_last_block = udf_get_last_block(sb);
1911 } else {
1912 udf_debug("Validity check skipped because of novrs option\n");
1913 }
1914
1915 /* Look for anchor block and load Volume Descriptor Sequence */
1916 sbi->s_anchor = uopt->anchor;
1917 ret = udf_find_anchor(sb, fileset);
1918 if (ret < 0) {
1919 if (!silent && ret == -EAGAIN)
1920 udf_warn(sb, "No anchor found\n");
1921 return ret;
1922 }
1923 return 0;
1924}
1925
1926static void udf_open_lvid(struct super_block *sb)
1927{
1928 struct udf_sb_info *sbi = UDF_SB(sb);
1929 struct buffer_head *bh = sbi->s_lvid_bh;
1930 struct logicalVolIntegrityDesc *lvid;
1931 struct logicalVolIntegrityDescImpUse *lvidiu;
1932 struct timespec64 ts;
1933
1934 if (!bh)
1935 return;
1936 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1937 lvidiu = udf_sb_lvidiu(sb);
1938 if (!lvidiu)
1939 return;
1940
1941 mutex_lock(&sbi->s_alloc_mutex);
1942 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1943 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1944 ktime_get_real_ts64(&ts);
1945 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1946 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1947 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1948 else
1949 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1950
1951 lvid->descTag.descCRC = cpu_to_le16(
1952 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1953 le16_to_cpu(lvid->descTag.descCRCLength)));
1954
1955 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1956 mark_buffer_dirty(bh);
1957 sbi->s_lvid_dirty = 0;
1958 mutex_unlock(&sbi->s_alloc_mutex);
1959 /* Make opening of filesystem visible on the media immediately */
1960 sync_dirty_buffer(bh);
1961}
1962
1963static void udf_close_lvid(struct super_block *sb)
1964{
1965 struct udf_sb_info *sbi = UDF_SB(sb);
1966 struct buffer_head *bh = sbi->s_lvid_bh;
1967 struct logicalVolIntegrityDesc *lvid;
1968 struct logicalVolIntegrityDescImpUse *lvidiu;
1969 struct timespec64 ts;
1970
1971 if (!bh)
1972 return;
1973 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1974 lvidiu = udf_sb_lvidiu(sb);
1975 if (!lvidiu)
1976 return;
1977
1978 mutex_lock(&sbi->s_alloc_mutex);
1979 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1980 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1981 ktime_get_real_ts64(&ts);
1982 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1983 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1984 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1985 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1986 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1987 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1988 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1989 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
1990 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1991
1992 lvid->descTag.descCRC = cpu_to_le16(
1993 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1994 le16_to_cpu(lvid->descTag.descCRCLength)));
1995
1996 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1997 /*
1998 * We set buffer uptodate unconditionally here to avoid spurious
1999 * warnings from mark_buffer_dirty() when previous EIO has marked
2000 * the buffer as !uptodate
2001 */
2002 set_buffer_uptodate(bh);
2003 mark_buffer_dirty(bh);
2004 sbi->s_lvid_dirty = 0;
2005 mutex_unlock(&sbi->s_alloc_mutex);
2006 /* Make closing of filesystem visible on the media immediately */
2007 sync_dirty_buffer(bh);
2008}
2009
2010u64 lvid_get_unique_id(struct super_block *sb)
2011{
2012 struct buffer_head *bh;
2013 struct udf_sb_info *sbi = UDF_SB(sb);
2014 struct logicalVolIntegrityDesc *lvid;
2015 struct logicalVolHeaderDesc *lvhd;
2016 u64 uniqueID;
2017 u64 ret;
2018
2019 bh = sbi->s_lvid_bh;
2020 if (!bh)
2021 return 0;
2022
2023 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2025
2026 mutex_lock(&sbi->s_alloc_mutex);
2027 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2028 if (!(++uniqueID & 0xFFFFFFFF))
2029 uniqueID += 16;
2030 lvhd->uniqueID = cpu_to_le64(uniqueID);
2031 mutex_unlock(&sbi->s_alloc_mutex);
2032 mark_buffer_dirty(bh);
2033
2034 return ret;
2035}
2036
2037static int udf_fill_super(struct super_block *sb, void *options, int silent)
2038{
2039 int ret = -EINVAL;
2040 struct inode *inode = NULL;
2041 struct udf_options uopt;
2042 struct kernel_lb_addr rootdir, fileset;
2043 struct udf_sb_info *sbi;
2044 bool lvid_open = false;
2045
2046 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2047 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2048 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2049 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2050 uopt.umask = 0;
2051 uopt.fmode = UDF_INVALID_MODE;
2052 uopt.dmode = UDF_INVALID_MODE;
2053 uopt.nls_map = NULL;
2054
2055 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2056 if (!sbi)
2057 return -ENOMEM;
2058
2059 sb->s_fs_info = sbi;
2060
2061 mutex_init(&sbi->s_alloc_mutex);
2062
2063 if (!udf_parse_options((char *)options, &uopt, false))
2064 goto parse_options_failure;
2065
2066 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2067 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2068 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2069 goto parse_options_failure;
2070 }
2071 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2072 uopt.nls_map = load_nls_default();
2073 if (!uopt.nls_map)
2074 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2075 else
2076 udf_debug("Using default NLS map\n");
2077 }
2078 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2079 uopt.flags |= (1 << UDF_FLAG_UTF8);
2080
2081 fileset.logicalBlockNum = 0xFFFFFFFF;
2082 fileset.partitionReferenceNum = 0xFFFF;
2083
2084 sbi->s_flags = uopt.flags;
2085 sbi->s_uid = uopt.uid;
2086 sbi->s_gid = uopt.gid;
2087 sbi->s_umask = uopt.umask;
2088 sbi->s_fmode = uopt.fmode;
2089 sbi->s_dmode = uopt.dmode;
2090 sbi->s_nls_map = uopt.nls_map;
2091 rwlock_init(&sbi->s_cred_lock);
2092
2093 if (uopt.session == 0xFFFFFFFF)
2094 sbi->s_session = udf_get_last_session(sb);
2095 else
2096 sbi->s_session = uopt.session;
2097
2098 udf_debug("Multi-session=%d\n", sbi->s_session);
2099
2100 /* Fill in the rest of the superblock */
2101 sb->s_op = &udf_sb_ops;
2102 sb->s_export_op = &udf_export_ops;
2103
2104 sb->s_magic = UDF_SUPER_MAGIC;
2105 sb->s_time_gran = 1000;
2106
2107 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2108 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2109 } else {
2110 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2111 while (uopt.blocksize <= 4096) {
2112 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2113 if (ret < 0) {
2114 if (!silent && ret != -EACCES) {
2115 pr_notice("Scanning with blocksize %u failed\n",
2116 uopt.blocksize);
2117 }
2118 brelse(sbi->s_lvid_bh);
2119 sbi->s_lvid_bh = NULL;
2120 /*
2121 * EACCES is special - we want to propagate to
2122 * upper layers that we cannot handle RW mount.
2123 */
2124 if (ret == -EACCES)
2125 break;
2126 } else
2127 break;
2128
2129 uopt.blocksize <<= 1;
2130 }
2131 }
2132 if (ret < 0) {
2133 if (ret == -EAGAIN) {
2134 udf_warn(sb, "No partition found (1)\n");
2135 ret = -EINVAL;
2136 }
2137 goto error_out;
2138 }
2139
2140 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2141
2142 if (sbi->s_lvid_bh) {
2143 struct logicalVolIntegrityDescImpUse *lvidiu =
2144 udf_sb_lvidiu(sb);
2145 uint16_t minUDFReadRev;
2146 uint16_t minUDFWriteRev;
2147
2148 if (!lvidiu) {
2149 ret = -EINVAL;
2150 goto error_out;
2151 }
2152 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2153 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2154 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2155 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2156 minUDFReadRev,
2157 UDF_MAX_READ_VERSION);
2158 ret = -EINVAL;
2159 goto error_out;
2160 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2161 if (!sb_rdonly(sb)) {
2162 ret = -EACCES;
2163 goto error_out;
2164 }
2165 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2166 }
2167
2168 sbi->s_udfrev = minUDFWriteRev;
2169
2170 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2171 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2172 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2173 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2174 }
2175
2176 if (!sbi->s_partitions) {
2177 udf_warn(sb, "No partition found (2)\n");
2178 ret = -EINVAL;
2179 goto error_out;
2180 }
2181
2182 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2183 UDF_PART_FLAG_READ_ONLY) {
2184 if (!sb_rdonly(sb)) {
2185 ret = -EACCES;
2186 goto error_out;
2187 }
2188 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2189 }
2190
2191 if (udf_find_fileset(sb, &fileset, &rootdir)) {
2192 udf_warn(sb, "No fileset found\n");
2193 ret = -EINVAL;
2194 goto error_out;
2195 }
2196
2197 if (!silent) {
2198 struct timestamp ts;
2199 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2200 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2201 sbi->s_volume_ident,
2202 le16_to_cpu(ts.year), ts.month, ts.day,
2203 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2204 }
2205 if (!sb_rdonly(sb)) {
2206 udf_open_lvid(sb);
2207 lvid_open = true;
2208 }
2209
2210 /* Assign the root inode */
2211 /* assign inodes by physical block number */
2212 /* perhaps it's not extensible enough, but for now ... */
2213 inode = udf_iget(sb, &rootdir);
2214 if (IS_ERR(inode)) {
2215 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2216 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2217 ret = PTR_ERR(inode);
2218 goto error_out;
2219 }
2220
2221 /* Allocate a dentry for the root inode */
2222 sb->s_root = d_make_root(inode);
2223 if (!sb->s_root) {
2224 udf_err(sb, "Couldn't allocate root dentry\n");
2225 ret = -ENOMEM;
2226 goto error_out;
2227 }
2228 sb->s_maxbytes = MAX_LFS_FILESIZE;
2229 sb->s_max_links = UDF_MAX_LINKS;
2230 return 0;
2231
2232error_out:
2233 iput(sbi->s_vat_inode);
2234parse_options_failure:
2235 if (uopt.nls_map)
2236 unload_nls(uopt.nls_map);
2237 if (lvid_open)
2238 udf_close_lvid(sb);
2239 brelse(sbi->s_lvid_bh);
2240 udf_sb_free_partitions(sb);
2241 kfree(sbi);
2242 sb->s_fs_info = NULL;
2243
2244 return ret;
2245}
2246
2247void _udf_err(struct super_block *sb, const char *function,
2248 const char *fmt, ...)
2249{
2250 struct va_format vaf;
2251 va_list args;
2252
2253 va_start(args, fmt);
2254
2255 vaf.fmt = fmt;
2256 vaf.va = &args;
2257
2258 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2259
2260 va_end(args);
2261}
2262
2263void _udf_warn(struct super_block *sb, const char *function,
2264 const char *fmt, ...)
2265{
2266 struct va_format vaf;
2267 va_list args;
2268
2269 va_start(args, fmt);
2270
2271 vaf.fmt = fmt;
2272 vaf.va = &args;
2273
2274 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2275
2276 va_end(args);
2277}
2278
2279static void udf_put_super(struct super_block *sb)
2280{
2281 struct udf_sb_info *sbi;
2282
2283 sbi = UDF_SB(sb);
2284
2285 iput(sbi->s_vat_inode);
2286 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2287 unload_nls(sbi->s_nls_map);
2288 if (!sb_rdonly(sb))
2289 udf_close_lvid(sb);
2290 brelse(sbi->s_lvid_bh);
2291 udf_sb_free_partitions(sb);
2292 mutex_destroy(&sbi->s_alloc_mutex);
2293 kfree(sb->s_fs_info);
2294 sb->s_fs_info = NULL;
2295}
2296
2297static int udf_sync_fs(struct super_block *sb, int wait)
2298{
2299 struct udf_sb_info *sbi = UDF_SB(sb);
2300
2301 mutex_lock(&sbi->s_alloc_mutex);
2302 if (sbi->s_lvid_dirty) {
2303 /*
2304 * Blockdevice will be synced later so we don't have to submit
2305 * the buffer for IO
2306 */
2307 mark_buffer_dirty(sbi->s_lvid_bh);
2308 sbi->s_lvid_dirty = 0;
2309 }
2310 mutex_unlock(&sbi->s_alloc_mutex);
2311
2312 return 0;
2313}
2314
2315static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2316{
2317 struct super_block *sb = dentry->d_sb;
2318 struct udf_sb_info *sbi = UDF_SB(sb);
2319 struct logicalVolIntegrityDescImpUse *lvidiu;
2320 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2321
2322 lvidiu = udf_sb_lvidiu(sb);
2323 buf->f_type = UDF_SUPER_MAGIC;
2324 buf->f_bsize = sb->s_blocksize;
2325 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2326 buf->f_bfree = udf_count_free(sb);
2327 buf->f_bavail = buf->f_bfree;
2328 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2329 le32_to_cpu(lvidiu->numDirs)) : 0)
2330 + buf->f_bfree;
2331 buf->f_ffree = buf->f_bfree;
2332 buf->f_namelen = UDF_NAME_LEN;
2333 buf->f_fsid.val[0] = (u32)id;
2334 buf->f_fsid.val[1] = (u32)(id >> 32);
2335
2336 return 0;
2337}
2338
2339static unsigned int udf_count_free_bitmap(struct super_block *sb,
2340 struct udf_bitmap *bitmap)
2341{
2342 struct buffer_head *bh = NULL;
2343 unsigned int accum = 0;
2344 int index;
2345 udf_pblk_t block = 0, newblock;
2346 struct kernel_lb_addr loc;
2347 uint32_t bytes;
2348 uint8_t *ptr;
2349 uint16_t ident;
2350 struct spaceBitmapDesc *bm;
2351
2352 loc.logicalBlockNum = bitmap->s_extPosition;
2353 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2354 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2355
2356 if (!bh) {
2357 udf_err(sb, "udf_count_free failed\n");
2358 goto out;
2359 } else if (ident != TAG_IDENT_SBD) {
2360 brelse(bh);
2361 udf_err(sb, "udf_count_free failed\n");
2362 goto out;
2363 }
2364
2365 bm = (struct spaceBitmapDesc *)bh->b_data;
2366 bytes = le32_to_cpu(bm->numOfBytes);
2367 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2368 ptr = (uint8_t *)bh->b_data;
2369
2370 while (bytes > 0) {
2371 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2372 accum += bitmap_weight((const unsigned long *)(ptr + index),
2373 cur_bytes * 8);
2374 bytes -= cur_bytes;
2375 if (bytes) {
2376 brelse(bh);
2377 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2378 bh = udf_tread(sb, newblock);
2379 if (!bh) {
2380 udf_debug("read failed\n");
2381 goto out;
2382 }
2383 index = 0;
2384 ptr = (uint8_t *)bh->b_data;
2385 }
2386 }
2387 brelse(bh);
2388out:
2389 return accum;
2390}
2391
2392static unsigned int udf_count_free_table(struct super_block *sb,
2393 struct inode *table)
2394{
2395 unsigned int accum = 0;
2396 uint32_t elen;
2397 struct kernel_lb_addr eloc;
2398 int8_t etype;
2399 struct extent_position epos;
2400
2401 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2402 epos.block = UDF_I(table)->i_location;
2403 epos.offset = sizeof(struct unallocSpaceEntry);
2404 epos.bh = NULL;
2405
2406 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2407 accum += (elen >> table->i_sb->s_blocksize_bits);
2408
2409 brelse(epos.bh);
2410 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2411
2412 return accum;
2413}
2414
2415static unsigned int udf_count_free(struct super_block *sb)
2416{
2417 unsigned int accum = 0;
2418 struct udf_sb_info *sbi;
2419 struct udf_part_map *map;
2420
2421 sbi = UDF_SB(sb);
2422 if (sbi->s_lvid_bh) {
2423 struct logicalVolIntegrityDesc *lvid =
2424 (struct logicalVolIntegrityDesc *)
2425 sbi->s_lvid_bh->b_data;
2426 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2427 accum = le32_to_cpu(
2428 lvid->freeSpaceTable[sbi->s_partition]);
2429 if (accum == 0xFFFFFFFF)
2430 accum = 0;
2431 }
2432 }
2433
2434 if (accum)
2435 return accum;
2436
2437 map = &sbi->s_partmaps[sbi->s_partition];
2438 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2439 accum += udf_count_free_bitmap(sb,
2440 map->s_uspace.s_bitmap);
2441 }
2442 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2443 accum += udf_count_free_bitmap(sb,
2444 map->s_fspace.s_bitmap);
2445 }
2446 if (accum)
2447 return accum;
2448
2449 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2450 accum += udf_count_free_table(sb,
2451 map->s_uspace.s_table);
2452 }
2453 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2454 accum += udf_count_free_table(sb,
2455 map->s_fspace.s_table);
2456 }
2457
2458 return accum;
2459}
2460
2461MODULE_AUTHOR("Ben Fennema");
2462MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2463MODULE_LICENSE("GPL");
2464module_init(init_udf_fs)
2465module_exit(exit_udf_fs)