Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* linux/arch/sparc/kernel/time.c |
| 3 | * |
| 4 | * Copyright (C) 1995 David S. Miller (davem@davemloft.net) |
| 5 | * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) |
| 6 | * |
| 7 | * Chris Davis (cdavis@cois.on.ca) 03/27/1998 |
| 8 | * Added support for the intersil on the sun4/4200 |
| 9 | * |
| 10 | * Gleb Raiko (rajko@mech.math.msu.su) 08/18/1998 |
| 11 | * Support for MicroSPARC-IIep, PCI CPU. |
| 12 | * |
| 13 | * This file handles the Sparc specific time handling details. |
| 14 | * |
| 15 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| 16 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 17 | */ |
| 18 | #include <linux/errno.h> |
| 19 | #include <linux/module.h> |
| 20 | #include <linux/sched.h> |
| 21 | #include <linux/kernel.h> |
| 22 | #include <linux/param.h> |
| 23 | #include <linux/string.h> |
| 24 | #include <linux/mm.h> |
| 25 | #include <linux/interrupt.h> |
| 26 | #include <linux/time.h> |
| 27 | #include <linux/rtc/m48t59.h> |
| 28 | #include <linux/timex.h> |
| 29 | #include <linux/clocksource.h> |
| 30 | #include <linux/clockchips.h> |
| 31 | #include <linux/init.h> |
| 32 | #include <linux/pci.h> |
| 33 | #include <linux/ioport.h> |
| 34 | #include <linux/profile.h> |
| 35 | #include <linux/of.h> |
| 36 | #include <linux/of_device.h> |
| 37 | #include <linux/platform_device.h> |
| 38 | |
| 39 | #include <asm/mc146818rtc.h> |
| 40 | #include <asm/oplib.h> |
| 41 | #include <asm/timex.h> |
| 42 | #include <asm/timer.h> |
| 43 | #include <asm/irq.h> |
| 44 | #include <asm/io.h> |
| 45 | #include <asm/idprom.h> |
| 46 | #include <asm/page.h> |
| 47 | #include <asm/pcic.h> |
| 48 | #include <asm/irq_regs.h> |
| 49 | #include <asm/setup.h> |
| 50 | |
| 51 | #include "kernel.h" |
| 52 | #include "irq.h" |
| 53 | |
| 54 | static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock); |
| 55 | static __volatile__ u64 timer_cs_internal_counter = 0; |
| 56 | static char timer_cs_enabled = 0; |
| 57 | |
| 58 | static struct clock_event_device timer_ce; |
| 59 | static char timer_ce_enabled = 0; |
| 60 | |
| 61 | #ifdef CONFIG_SMP |
| 62 | DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent); |
| 63 | #endif |
| 64 | |
| 65 | DEFINE_SPINLOCK(rtc_lock); |
| 66 | EXPORT_SYMBOL(rtc_lock); |
| 67 | |
| 68 | unsigned long profile_pc(struct pt_regs *regs) |
| 69 | { |
| 70 | extern char __copy_user_begin[], __copy_user_end[]; |
| 71 | extern char __bzero_begin[], __bzero_end[]; |
| 72 | |
| 73 | unsigned long pc = regs->pc; |
| 74 | |
| 75 | if (in_lock_functions(pc) || |
| 76 | (pc >= (unsigned long) __copy_user_begin && |
| 77 | pc < (unsigned long) __copy_user_end) || |
| 78 | (pc >= (unsigned long) __bzero_begin && |
| 79 | pc < (unsigned long) __bzero_end)) |
| 80 | pc = regs->u_regs[UREG_RETPC]; |
| 81 | return pc; |
| 82 | } |
| 83 | |
| 84 | EXPORT_SYMBOL(profile_pc); |
| 85 | |
| 86 | volatile u32 __iomem *master_l10_counter; |
| 87 | |
| 88 | irqreturn_t notrace timer_interrupt(int dummy, void *dev_id) |
| 89 | { |
| 90 | if (timer_cs_enabled) { |
| 91 | write_seqlock(&timer_cs_lock); |
| 92 | timer_cs_internal_counter++; |
| 93 | sparc_config.clear_clock_irq(); |
| 94 | write_sequnlock(&timer_cs_lock); |
| 95 | } else { |
| 96 | sparc_config.clear_clock_irq(); |
| 97 | } |
| 98 | |
| 99 | if (timer_ce_enabled) |
| 100 | timer_ce.event_handler(&timer_ce); |
| 101 | |
| 102 | return IRQ_HANDLED; |
| 103 | } |
| 104 | |
| 105 | static int timer_ce_shutdown(struct clock_event_device *evt) |
| 106 | { |
| 107 | timer_ce_enabled = 0; |
| 108 | smp_mb(); |
| 109 | return 0; |
| 110 | } |
| 111 | |
| 112 | static int timer_ce_set_periodic(struct clock_event_device *evt) |
| 113 | { |
| 114 | timer_ce_enabled = 1; |
| 115 | smp_mb(); |
| 116 | return 0; |
| 117 | } |
| 118 | |
| 119 | static __init void setup_timer_ce(void) |
| 120 | { |
| 121 | struct clock_event_device *ce = &timer_ce; |
| 122 | |
| 123 | BUG_ON(smp_processor_id() != boot_cpu_id); |
| 124 | |
| 125 | ce->name = "timer_ce"; |
| 126 | ce->rating = 100; |
| 127 | ce->features = CLOCK_EVT_FEAT_PERIODIC; |
| 128 | ce->set_state_shutdown = timer_ce_shutdown; |
| 129 | ce->set_state_periodic = timer_ce_set_periodic; |
| 130 | ce->tick_resume = timer_ce_set_periodic; |
| 131 | ce->cpumask = cpu_possible_mask; |
| 132 | ce->shift = 32; |
| 133 | ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, |
| 134 | ce->shift); |
| 135 | clockevents_register_device(ce); |
| 136 | } |
| 137 | |
| 138 | static unsigned int sbus_cycles_offset(void) |
| 139 | { |
| 140 | u32 val, offset; |
| 141 | |
| 142 | val = sbus_readl(master_l10_counter); |
| 143 | offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK; |
| 144 | |
| 145 | /* Limit hit? */ |
| 146 | if (val & TIMER_LIMIT_BIT) |
| 147 | offset += sparc_config.cs_period; |
| 148 | |
| 149 | return offset; |
| 150 | } |
| 151 | |
| 152 | static u64 timer_cs_read(struct clocksource *cs) |
| 153 | { |
| 154 | unsigned int seq, offset; |
| 155 | u64 cycles; |
| 156 | |
| 157 | do { |
| 158 | seq = read_seqbegin(&timer_cs_lock); |
| 159 | |
| 160 | cycles = timer_cs_internal_counter; |
| 161 | offset = sparc_config.get_cycles_offset(); |
| 162 | } while (read_seqretry(&timer_cs_lock, seq)); |
| 163 | |
| 164 | /* Count absolute cycles */ |
| 165 | cycles *= sparc_config.cs_period; |
| 166 | cycles += offset; |
| 167 | |
| 168 | return cycles; |
| 169 | } |
| 170 | |
| 171 | static struct clocksource timer_cs = { |
| 172 | .name = "timer_cs", |
| 173 | .rating = 100, |
| 174 | .read = timer_cs_read, |
| 175 | .mask = CLOCKSOURCE_MASK(64), |
| 176 | .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| 177 | }; |
| 178 | |
| 179 | static __init int setup_timer_cs(void) |
| 180 | { |
| 181 | timer_cs_enabled = 1; |
| 182 | return clocksource_register_hz(&timer_cs, sparc_config.clock_rate); |
| 183 | } |
| 184 | |
| 185 | #ifdef CONFIG_SMP |
| 186 | static int percpu_ce_shutdown(struct clock_event_device *evt) |
| 187 | { |
| 188 | int cpu = cpumask_first(evt->cpumask); |
| 189 | |
| 190 | sparc_config.load_profile_irq(cpu, 0); |
| 191 | return 0; |
| 192 | } |
| 193 | |
| 194 | static int percpu_ce_set_periodic(struct clock_event_device *evt) |
| 195 | { |
| 196 | int cpu = cpumask_first(evt->cpumask); |
| 197 | |
| 198 | sparc_config.load_profile_irq(cpu, SBUS_CLOCK_RATE / HZ); |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | static int percpu_ce_set_next_event(unsigned long delta, |
| 203 | struct clock_event_device *evt) |
| 204 | { |
| 205 | int cpu = cpumask_first(evt->cpumask); |
| 206 | unsigned int next = (unsigned int)delta; |
| 207 | |
| 208 | sparc_config.load_profile_irq(cpu, next); |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | void register_percpu_ce(int cpu) |
| 213 | { |
| 214 | struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu); |
| 215 | unsigned int features = CLOCK_EVT_FEAT_PERIODIC; |
| 216 | |
| 217 | if (sparc_config.features & FEAT_L14_ONESHOT) |
| 218 | features |= CLOCK_EVT_FEAT_ONESHOT; |
| 219 | |
| 220 | ce->name = "percpu_ce"; |
| 221 | ce->rating = 200; |
| 222 | ce->features = features; |
| 223 | ce->set_state_shutdown = percpu_ce_shutdown; |
| 224 | ce->set_state_periodic = percpu_ce_set_periodic; |
| 225 | ce->set_state_oneshot = percpu_ce_shutdown; |
| 226 | ce->set_next_event = percpu_ce_set_next_event; |
| 227 | ce->cpumask = cpumask_of(cpu); |
| 228 | ce->shift = 32; |
| 229 | ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC, |
| 230 | ce->shift); |
| 231 | ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce); |
| 232 | ce->max_delta_ticks = (unsigned long)sparc_config.clock_rate; |
| 233 | ce->min_delta_ns = clockevent_delta2ns(100, ce); |
| 234 | ce->min_delta_ticks = 100; |
| 235 | |
| 236 | clockevents_register_device(ce); |
| 237 | } |
| 238 | #endif |
| 239 | |
| 240 | static unsigned char mostek_read_byte(struct device *dev, u32 ofs) |
| 241 | { |
| 242 | struct platform_device *pdev = to_platform_device(dev); |
| 243 | struct m48t59_plat_data *pdata = pdev->dev.platform_data; |
| 244 | |
| 245 | return readb(pdata->ioaddr + ofs); |
| 246 | } |
| 247 | |
| 248 | static void mostek_write_byte(struct device *dev, u32 ofs, u8 val) |
| 249 | { |
| 250 | struct platform_device *pdev = to_platform_device(dev); |
| 251 | struct m48t59_plat_data *pdata = pdev->dev.platform_data; |
| 252 | |
| 253 | writeb(val, pdata->ioaddr + ofs); |
| 254 | } |
| 255 | |
| 256 | static struct m48t59_plat_data m48t59_data = { |
| 257 | .read_byte = mostek_read_byte, |
| 258 | .write_byte = mostek_write_byte, |
| 259 | }; |
| 260 | |
| 261 | /* resource is set at runtime */ |
| 262 | static struct platform_device m48t59_rtc = { |
| 263 | .name = "rtc-m48t59", |
| 264 | .id = 0, |
| 265 | .num_resources = 1, |
| 266 | .dev = { |
| 267 | .platform_data = &m48t59_data, |
| 268 | }, |
| 269 | }; |
| 270 | |
| 271 | static int clock_probe(struct platform_device *op) |
| 272 | { |
| 273 | struct device_node *dp = op->dev.of_node; |
| 274 | const char *model = of_get_property(dp, "model", NULL); |
| 275 | |
| 276 | if (!model) |
| 277 | return -ENODEV; |
| 278 | |
| 279 | /* Only the primary RTC has an address property */ |
| 280 | if (!of_find_property(dp, "address", NULL)) |
| 281 | return -ENODEV; |
| 282 | |
| 283 | m48t59_rtc.resource = &op->resource[0]; |
| 284 | if (!strcmp(model, "mk48t02")) { |
| 285 | /* Map the clock register io area read-only */ |
| 286 | m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, |
| 287 | 2048, "rtc-m48t59"); |
| 288 | m48t59_data.type = M48T59RTC_TYPE_M48T02; |
| 289 | } else if (!strcmp(model, "mk48t08")) { |
| 290 | m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0, |
| 291 | 8192, "rtc-m48t59"); |
| 292 | m48t59_data.type = M48T59RTC_TYPE_M48T08; |
| 293 | } else |
| 294 | return -ENODEV; |
| 295 | |
| 296 | if (platform_device_register(&m48t59_rtc) < 0) |
| 297 | printk(KERN_ERR "Registering RTC device failed\n"); |
| 298 | |
| 299 | return 0; |
| 300 | } |
| 301 | |
| 302 | static const struct of_device_id clock_match[] = { |
| 303 | { |
| 304 | .name = "eeprom", |
| 305 | }, |
| 306 | {}, |
| 307 | }; |
| 308 | |
| 309 | static struct platform_driver clock_driver = { |
| 310 | .probe = clock_probe, |
| 311 | .driver = { |
| 312 | .name = "rtc", |
| 313 | .of_match_table = clock_match, |
| 314 | }, |
| 315 | }; |
| 316 | |
| 317 | |
| 318 | /* Probe for the mostek real time clock chip. */ |
| 319 | static int __init clock_init(void) |
| 320 | { |
| 321 | return platform_driver_register(&clock_driver); |
| 322 | } |
| 323 | /* Must be after subsys_initcall() so that busses are probed. Must |
| 324 | * be before device_initcall() because things like the RTC driver |
| 325 | * need to see the clock registers. |
| 326 | */ |
| 327 | fs_initcall(clock_init); |
| 328 | |
| 329 | static void __init sparc32_late_time_init(void) |
| 330 | { |
| 331 | if (sparc_config.features & FEAT_L10_CLOCKEVENT) |
| 332 | setup_timer_ce(); |
| 333 | if (sparc_config.features & FEAT_L10_CLOCKSOURCE) |
| 334 | setup_timer_cs(); |
| 335 | #ifdef CONFIG_SMP |
| 336 | register_percpu_ce(smp_processor_id()); |
| 337 | #endif |
| 338 | } |
| 339 | |
| 340 | static void __init sbus_time_init(void) |
| 341 | { |
| 342 | sparc_config.get_cycles_offset = sbus_cycles_offset; |
| 343 | sparc_config.init_timers(); |
| 344 | } |
| 345 | |
| 346 | void __init time_init(void) |
| 347 | { |
| 348 | sparc_config.features = 0; |
| 349 | late_time_init = sparc32_late_time_init; |
| 350 | |
| 351 | if (pcic_present()) |
| 352 | pci_time_init(); |
| 353 | else |
| 354 | sbus_time_init(); |
| 355 | } |
| 356 | |