Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * |
| 3 | * Procedures for interfacing to the RTAS on CHRP machines. |
| 4 | * |
| 5 | * Peter Bergner, IBM March 2001. |
| 6 | * Copyright (C) 2001 IBM. |
| 7 | * |
| 8 | * This program is free software; you can redistribute it and/or |
| 9 | * modify it under the terms of the GNU General Public License |
| 10 | * as published by the Free Software Foundation; either version |
| 11 | * 2 of the License, or (at your option) any later version. |
| 12 | */ |
| 13 | |
| 14 | #include <stdarg.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/types.h> |
| 17 | #include <linux/spinlock.h> |
| 18 | #include <linux/export.h> |
| 19 | #include <linux/init.h> |
| 20 | #include <linux/capability.h> |
| 21 | #include <linux/delay.h> |
| 22 | #include <linux/cpu.h> |
| 23 | #include <linux/smp.h> |
| 24 | #include <linux/completion.h> |
| 25 | #include <linux/cpumask.h> |
| 26 | #include <linux/memblock.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/reboot.h> |
| 29 | #include <linux/syscalls.h> |
| 30 | |
| 31 | #include <asm/prom.h> |
| 32 | #include <asm/rtas.h> |
| 33 | #include <asm/hvcall.h> |
| 34 | #include <asm/machdep.h> |
| 35 | #include <asm/firmware.h> |
| 36 | #include <asm/page.h> |
| 37 | #include <asm/param.h> |
| 38 | #include <asm/delay.h> |
| 39 | #include <linux/uaccess.h> |
| 40 | #include <asm/udbg.h> |
| 41 | #include <asm/syscalls.h> |
| 42 | #include <asm/smp.h> |
| 43 | #include <linux/atomic.h> |
| 44 | #include <asm/time.h> |
| 45 | #include <asm/mmu.h> |
| 46 | #include <asm/topology.h> |
| 47 | |
| 48 | /* This is here deliberately so it's only used in this file */ |
| 49 | void enter_rtas(unsigned long); |
| 50 | |
| 51 | struct rtas_t rtas = { |
| 52 | .lock = __ARCH_SPIN_LOCK_UNLOCKED |
| 53 | }; |
| 54 | EXPORT_SYMBOL(rtas); |
| 55 | |
| 56 | DEFINE_SPINLOCK(rtas_data_buf_lock); |
| 57 | EXPORT_SYMBOL(rtas_data_buf_lock); |
| 58 | |
| 59 | char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; |
| 60 | EXPORT_SYMBOL(rtas_data_buf); |
| 61 | |
| 62 | unsigned long rtas_rmo_buf; |
| 63 | |
| 64 | /* |
| 65 | * If non-NULL, this gets called when the kernel terminates. |
| 66 | * This is done like this so rtas_flash can be a module. |
| 67 | */ |
| 68 | void (*rtas_flash_term_hook)(int); |
| 69 | EXPORT_SYMBOL(rtas_flash_term_hook); |
| 70 | |
| 71 | /* RTAS use home made raw locking instead of spin_lock_irqsave |
| 72 | * because those can be called from within really nasty contexts |
| 73 | * such as having the timebase stopped which would lockup with |
| 74 | * normal locks and spinlock debugging enabled |
| 75 | */ |
| 76 | static unsigned long lock_rtas(void) |
| 77 | { |
| 78 | unsigned long flags; |
| 79 | |
| 80 | local_irq_save(flags); |
| 81 | preempt_disable(); |
| 82 | arch_spin_lock(&rtas.lock); |
| 83 | return flags; |
| 84 | } |
| 85 | |
| 86 | static void unlock_rtas(unsigned long flags) |
| 87 | { |
| 88 | arch_spin_unlock(&rtas.lock); |
| 89 | local_irq_restore(flags); |
| 90 | preempt_enable(); |
| 91 | } |
| 92 | |
| 93 | /* |
| 94 | * call_rtas_display_status and call_rtas_display_status_delay |
| 95 | * are designed only for very early low-level debugging, which |
| 96 | * is why the token is hard-coded to 10. |
| 97 | */ |
| 98 | static void call_rtas_display_status(unsigned char c) |
| 99 | { |
| 100 | unsigned long s; |
| 101 | |
| 102 | if (!rtas.base) |
| 103 | return; |
| 104 | |
| 105 | s = lock_rtas(); |
| 106 | rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c); |
| 107 | unlock_rtas(s); |
| 108 | } |
| 109 | |
| 110 | static void call_rtas_display_status_delay(char c) |
| 111 | { |
| 112 | static int pending_newline = 0; /* did last write end with unprinted newline? */ |
| 113 | static int width = 16; |
| 114 | |
| 115 | if (c == '\n') { |
| 116 | while (width-- > 0) |
| 117 | call_rtas_display_status(' '); |
| 118 | width = 16; |
| 119 | mdelay(500); |
| 120 | pending_newline = 1; |
| 121 | } else { |
| 122 | if (pending_newline) { |
| 123 | call_rtas_display_status('\r'); |
| 124 | call_rtas_display_status('\n'); |
| 125 | } |
| 126 | pending_newline = 0; |
| 127 | if (width--) { |
| 128 | call_rtas_display_status(c); |
| 129 | udelay(10000); |
| 130 | } |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | void __init udbg_init_rtas_panel(void) |
| 135 | { |
| 136 | udbg_putc = call_rtas_display_status_delay; |
| 137 | } |
| 138 | |
| 139 | #ifdef CONFIG_UDBG_RTAS_CONSOLE |
| 140 | |
| 141 | /* If you think you're dying before early_init_dt_scan_rtas() does its |
| 142 | * work, you can hard code the token values for your firmware here and |
| 143 | * hardcode rtas.base/entry etc. |
| 144 | */ |
| 145 | static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; |
| 146 | static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; |
| 147 | |
| 148 | static void udbg_rtascon_putc(char c) |
| 149 | { |
| 150 | int tries; |
| 151 | |
| 152 | if (!rtas.base) |
| 153 | return; |
| 154 | |
| 155 | /* Add CRs before LFs */ |
| 156 | if (c == '\n') |
| 157 | udbg_rtascon_putc('\r'); |
| 158 | |
| 159 | /* if there is more than one character to be displayed, wait a bit */ |
| 160 | for (tries = 0; tries < 16; tries++) { |
| 161 | if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) |
| 162 | break; |
| 163 | udelay(1000); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | static int udbg_rtascon_getc_poll(void) |
| 168 | { |
| 169 | int c; |
| 170 | |
| 171 | if (!rtas.base) |
| 172 | return -1; |
| 173 | |
| 174 | if (rtas_call(rtas_getchar_token, 0, 2, &c)) |
| 175 | return -1; |
| 176 | |
| 177 | return c; |
| 178 | } |
| 179 | |
| 180 | static int udbg_rtascon_getc(void) |
| 181 | { |
| 182 | int c; |
| 183 | |
| 184 | while ((c = udbg_rtascon_getc_poll()) == -1) |
| 185 | ; |
| 186 | |
| 187 | return c; |
| 188 | } |
| 189 | |
| 190 | |
| 191 | void __init udbg_init_rtas_console(void) |
| 192 | { |
| 193 | udbg_putc = udbg_rtascon_putc; |
| 194 | udbg_getc = udbg_rtascon_getc; |
| 195 | udbg_getc_poll = udbg_rtascon_getc_poll; |
| 196 | } |
| 197 | #endif /* CONFIG_UDBG_RTAS_CONSOLE */ |
| 198 | |
| 199 | void rtas_progress(char *s, unsigned short hex) |
| 200 | { |
| 201 | struct device_node *root; |
| 202 | int width; |
| 203 | const __be32 *p; |
| 204 | char *os; |
| 205 | static int display_character, set_indicator; |
| 206 | static int display_width, display_lines, form_feed; |
| 207 | static const int *row_width; |
| 208 | static DEFINE_SPINLOCK(progress_lock); |
| 209 | static int current_line; |
| 210 | static int pending_newline = 0; /* did last write end with unprinted newline? */ |
| 211 | |
| 212 | if (!rtas.base) |
| 213 | return; |
| 214 | |
| 215 | if (display_width == 0) { |
| 216 | display_width = 0x10; |
| 217 | if ((root = of_find_node_by_path("/rtas"))) { |
| 218 | if ((p = of_get_property(root, |
| 219 | "ibm,display-line-length", NULL))) |
| 220 | display_width = be32_to_cpu(*p); |
| 221 | if ((p = of_get_property(root, |
| 222 | "ibm,form-feed", NULL))) |
| 223 | form_feed = be32_to_cpu(*p); |
| 224 | if ((p = of_get_property(root, |
| 225 | "ibm,display-number-of-lines", NULL))) |
| 226 | display_lines = be32_to_cpu(*p); |
| 227 | row_width = of_get_property(root, |
| 228 | "ibm,display-truncation-length", NULL); |
| 229 | of_node_put(root); |
| 230 | } |
| 231 | display_character = rtas_token("display-character"); |
| 232 | set_indicator = rtas_token("set-indicator"); |
| 233 | } |
| 234 | |
| 235 | if (display_character == RTAS_UNKNOWN_SERVICE) { |
| 236 | /* use hex display if available */ |
| 237 | if (set_indicator != RTAS_UNKNOWN_SERVICE) |
| 238 | rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); |
| 239 | return; |
| 240 | } |
| 241 | |
| 242 | spin_lock(&progress_lock); |
| 243 | |
| 244 | /* |
| 245 | * Last write ended with newline, but we didn't print it since |
| 246 | * it would just clear the bottom line of output. Print it now |
| 247 | * instead. |
| 248 | * |
| 249 | * If no newline is pending and form feed is supported, clear the |
| 250 | * display with a form feed; otherwise, print a CR to start output |
| 251 | * at the beginning of the line. |
| 252 | */ |
| 253 | if (pending_newline) { |
| 254 | rtas_call(display_character, 1, 1, NULL, '\r'); |
| 255 | rtas_call(display_character, 1, 1, NULL, '\n'); |
| 256 | pending_newline = 0; |
| 257 | } else { |
| 258 | current_line = 0; |
| 259 | if (form_feed) |
| 260 | rtas_call(display_character, 1, 1, NULL, |
| 261 | (char)form_feed); |
| 262 | else |
| 263 | rtas_call(display_character, 1, 1, NULL, '\r'); |
| 264 | } |
| 265 | |
| 266 | if (row_width) |
| 267 | width = row_width[current_line]; |
| 268 | else |
| 269 | width = display_width; |
| 270 | os = s; |
| 271 | while (*os) { |
| 272 | if (*os == '\n' || *os == '\r') { |
| 273 | /* If newline is the last character, save it |
| 274 | * until next call to avoid bumping up the |
| 275 | * display output. |
| 276 | */ |
| 277 | if (*os == '\n' && !os[1]) { |
| 278 | pending_newline = 1; |
| 279 | current_line++; |
| 280 | if (current_line > display_lines-1) |
| 281 | current_line = display_lines-1; |
| 282 | spin_unlock(&progress_lock); |
| 283 | return; |
| 284 | } |
| 285 | |
| 286 | /* RTAS wants CR-LF, not just LF */ |
| 287 | |
| 288 | if (*os == '\n') { |
| 289 | rtas_call(display_character, 1, 1, NULL, '\r'); |
| 290 | rtas_call(display_character, 1, 1, NULL, '\n'); |
| 291 | } else { |
| 292 | /* CR might be used to re-draw a line, so we'll |
| 293 | * leave it alone and not add LF. |
| 294 | */ |
| 295 | rtas_call(display_character, 1, 1, NULL, *os); |
| 296 | } |
| 297 | |
| 298 | if (row_width) |
| 299 | width = row_width[current_line]; |
| 300 | else |
| 301 | width = display_width; |
| 302 | } else { |
| 303 | width--; |
| 304 | rtas_call(display_character, 1, 1, NULL, *os); |
| 305 | } |
| 306 | |
| 307 | os++; |
| 308 | |
| 309 | /* if we overwrite the screen length */ |
| 310 | if (width <= 0) |
| 311 | while ((*os != 0) && (*os != '\n') && (*os != '\r')) |
| 312 | os++; |
| 313 | } |
| 314 | |
| 315 | spin_unlock(&progress_lock); |
| 316 | } |
| 317 | EXPORT_SYMBOL(rtas_progress); /* needed by rtas_flash module */ |
| 318 | |
| 319 | int rtas_token(const char *service) |
| 320 | { |
| 321 | const __be32 *tokp; |
| 322 | if (rtas.dev == NULL) |
| 323 | return RTAS_UNKNOWN_SERVICE; |
| 324 | tokp = of_get_property(rtas.dev, service, NULL); |
| 325 | return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; |
| 326 | } |
| 327 | EXPORT_SYMBOL(rtas_token); |
| 328 | |
| 329 | int rtas_service_present(const char *service) |
| 330 | { |
| 331 | return rtas_token(service) != RTAS_UNKNOWN_SERVICE; |
| 332 | } |
| 333 | EXPORT_SYMBOL(rtas_service_present); |
| 334 | |
| 335 | #ifdef CONFIG_RTAS_ERROR_LOGGING |
| 336 | /* |
| 337 | * Return the firmware-specified size of the error log buffer |
| 338 | * for all rtas calls that require an error buffer argument. |
| 339 | * This includes 'check-exception' and 'rtas-last-error'. |
| 340 | */ |
| 341 | int rtas_get_error_log_max(void) |
| 342 | { |
| 343 | static int rtas_error_log_max; |
| 344 | if (rtas_error_log_max) |
| 345 | return rtas_error_log_max; |
| 346 | |
| 347 | rtas_error_log_max = rtas_token ("rtas-error-log-max"); |
| 348 | if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || |
| 349 | (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { |
| 350 | printk (KERN_WARNING "RTAS: bad log buffer size %d\n", |
| 351 | rtas_error_log_max); |
| 352 | rtas_error_log_max = RTAS_ERROR_LOG_MAX; |
| 353 | } |
| 354 | return rtas_error_log_max; |
| 355 | } |
| 356 | EXPORT_SYMBOL(rtas_get_error_log_max); |
| 357 | |
| 358 | |
| 359 | static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; |
| 360 | static int rtas_last_error_token; |
| 361 | |
| 362 | /** Return a copy of the detailed error text associated with the |
| 363 | * most recent failed call to rtas. Because the error text |
| 364 | * might go stale if there are any other intervening rtas calls, |
| 365 | * this routine must be called atomically with whatever produced |
| 366 | * the error (i.e. with rtas.lock still held from the previous call). |
| 367 | */ |
| 368 | static char *__fetch_rtas_last_error(char *altbuf) |
| 369 | { |
| 370 | struct rtas_args err_args, save_args; |
| 371 | u32 bufsz; |
| 372 | char *buf = NULL; |
| 373 | |
| 374 | if (rtas_last_error_token == -1) |
| 375 | return NULL; |
| 376 | |
| 377 | bufsz = rtas_get_error_log_max(); |
| 378 | |
| 379 | err_args.token = cpu_to_be32(rtas_last_error_token); |
| 380 | err_args.nargs = cpu_to_be32(2); |
| 381 | err_args.nret = cpu_to_be32(1); |
| 382 | err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); |
| 383 | err_args.args[1] = cpu_to_be32(bufsz); |
| 384 | err_args.args[2] = 0; |
| 385 | |
| 386 | save_args = rtas.args; |
| 387 | rtas.args = err_args; |
| 388 | |
| 389 | enter_rtas(__pa(&rtas.args)); |
| 390 | |
| 391 | err_args = rtas.args; |
| 392 | rtas.args = save_args; |
| 393 | |
| 394 | /* Log the error in the unlikely case that there was one. */ |
| 395 | if (unlikely(err_args.args[2] == 0)) { |
| 396 | if (altbuf) { |
| 397 | buf = altbuf; |
| 398 | } else { |
| 399 | buf = rtas_err_buf; |
| 400 | if (slab_is_available()) |
| 401 | buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); |
| 402 | } |
| 403 | if (buf) |
| 404 | memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); |
| 405 | } |
| 406 | |
| 407 | return buf; |
| 408 | } |
| 409 | |
| 410 | #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) |
| 411 | |
| 412 | #else /* CONFIG_RTAS_ERROR_LOGGING */ |
| 413 | #define __fetch_rtas_last_error(x) NULL |
| 414 | #define get_errorlog_buffer() NULL |
| 415 | #endif |
| 416 | |
| 417 | |
| 418 | static void |
| 419 | va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, |
| 420 | va_list list) |
| 421 | { |
| 422 | int i; |
| 423 | |
| 424 | args->token = cpu_to_be32(token); |
| 425 | args->nargs = cpu_to_be32(nargs); |
| 426 | args->nret = cpu_to_be32(nret); |
| 427 | args->rets = &(args->args[nargs]); |
| 428 | |
| 429 | for (i = 0; i < nargs; ++i) |
| 430 | args->args[i] = cpu_to_be32(va_arg(list, __u32)); |
| 431 | |
| 432 | for (i = 0; i < nret; ++i) |
| 433 | args->rets[i] = 0; |
| 434 | |
| 435 | enter_rtas(__pa(args)); |
| 436 | } |
| 437 | |
| 438 | void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) |
| 439 | { |
| 440 | va_list list; |
| 441 | |
| 442 | va_start(list, nret); |
| 443 | va_rtas_call_unlocked(args, token, nargs, nret, list); |
| 444 | va_end(list); |
| 445 | } |
| 446 | |
| 447 | int rtas_call(int token, int nargs, int nret, int *outputs, ...) |
| 448 | { |
| 449 | va_list list; |
| 450 | int i; |
| 451 | unsigned long s; |
| 452 | struct rtas_args *rtas_args; |
| 453 | char *buff_copy = NULL; |
| 454 | int ret; |
| 455 | |
| 456 | if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) |
| 457 | return -1; |
| 458 | |
| 459 | s = lock_rtas(); |
| 460 | |
| 461 | /* We use the global rtas args buffer */ |
| 462 | rtas_args = &rtas.args; |
| 463 | |
| 464 | va_start(list, outputs); |
| 465 | va_rtas_call_unlocked(rtas_args, token, nargs, nret, list); |
| 466 | va_end(list); |
| 467 | |
| 468 | /* A -1 return code indicates that the last command couldn't |
| 469 | be completed due to a hardware error. */ |
| 470 | if (be32_to_cpu(rtas_args->rets[0]) == -1) |
| 471 | buff_copy = __fetch_rtas_last_error(NULL); |
| 472 | |
| 473 | if (nret > 1 && outputs != NULL) |
| 474 | for (i = 0; i < nret-1; ++i) |
| 475 | outputs[i] = be32_to_cpu(rtas_args->rets[i+1]); |
| 476 | ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0; |
| 477 | |
| 478 | unlock_rtas(s); |
| 479 | |
| 480 | if (buff_copy) { |
| 481 | log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); |
| 482 | if (slab_is_available()) |
| 483 | kfree(buff_copy); |
| 484 | } |
| 485 | return ret; |
| 486 | } |
| 487 | EXPORT_SYMBOL(rtas_call); |
| 488 | |
| 489 | /* For RTAS_BUSY (-2), delay for 1 millisecond. For an extended busy status |
| 490 | * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. |
| 491 | */ |
| 492 | unsigned int rtas_busy_delay_time(int status) |
| 493 | { |
| 494 | int order; |
| 495 | unsigned int ms = 0; |
| 496 | |
| 497 | if (status == RTAS_BUSY) { |
| 498 | ms = 1; |
| 499 | } else if (status >= RTAS_EXTENDED_DELAY_MIN && |
| 500 | status <= RTAS_EXTENDED_DELAY_MAX) { |
| 501 | order = status - RTAS_EXTENDED_DELAY_MIN; |
| 502 | for (ms = 1; order > 0; order--) |
| 503 | ms *= 10; |
| 504 | } |
| 505 | |
| 506 | return ms; |
| 507 | } |
| 508 | EXPORT_SYMBOL(rtas_busy_delay_time); |
| 509 | |
| 510 | /* For an RTAS busy status code, perform the hinted delay. */ |
| 511 | unsigned int rtas_busy_delay(int status) |
| 512 | { |
| 513 | unsigned int ms; |
| 514 | |
| 515 | might_sleep(); |
| 516 | ms = rtas_busy_delay_time(status); |
| 517 | if (ms && need_resched()) |
| 518 | msleep(ms); |
| 519 | |
| 520 | return ms; |
| 521 | } |
| 522 | EXPORT_SYMBOL(rtas_busy_delay); |
| 523 | |
| 524 | static int rtas_error_rc(int rtas_rc) |
| 525 | { |
| 526 | int rc; |
| 527 | |
| 528 | switch (rtas_rc) { |
| 529 | case -1: /* Hardware Error */ |
| 530 | rc = -EIO; |
| 531 | break; |
| 532 | case -3: /* Bad indicator/domain/etc */ |
| 533 | rc = -EINVAL; |
| 534 | break; |
| 535 | case -9000: /* Isolation error */ |
| 536 | rc = -EFAULT; |
| 537 | break; |
| 538 | case -9001: /* Outstanding TCE/PTE */ |
| 539 | rc = -EEXIST; |
| 540 | break; |
| 541 | case -9002: /* No usable slot */ |
| 542 | rc = -ENODEV; |
| 543 | break; |
| 544 | default: |
| 545 | printk(KERN_ERR "%s: unexpected RTAS error %d\n", |
| 546 | __func__, rtas_rc); |
| 547 | rc = -ERANGE; |
| 548 | break; |
| 549 | } |
| 550 | return rc; |
| 551 | } |
| 552 | |
| 553 | int rtas_get_power_level(int powerdomain, int *level) |
| 554 | { |
| 555 | int token = rtas_token("get-power-level"); |
| 556 | int rc; |
| 557 | |
| 558 | if (token == RTAS_UNKNOWN_SERVICE) |
| 559 | return -ENOENT; |
| 560 | |
| 561 | while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) |
| 562 | udelay(1); |
| 563 | |
| 564 | if (rc < 0) |
| 565 | return rtas_error_rc(rc); |
| 566 | return rc; |
| 567 | } |
| 568 | EXPORT_SYMBOL(rtas_get_power_level); |
| 569 | |
| 570 | int rtas_set_power_level(int powerdomain, int level, int *setlevel) |
| 571 | { |
| 572 | int token = rtas_token("set-power-level"); |
| 573 | int rc; |
| 574 | |
| 575 | if (token == RTAS_UNKNOWN_SERVICE) |
| 576 | return -ENOENT; |
| 577 | |
| 578 | do { |
| 579 | rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); |
| 580 | } while (rtas_busy_delay(rc)); |
| 581 | |
| 582 | if (rc < 0) |
| 583 | return rtas_error_rc(rc); |
| 584 | return rc; |
| 585 | } |
| 586 | EXPORT_SYMBOL(rtas_set_power_level); |
| 587 | |
| 588 | int rtas_get_sensor(int sensor, int index, int *state) |
| 589 | { |
| 590 | int token = rtas_token("get-sensor-state"); |
| 591 | int rc; |
| 592 | |
| 593 | if (token == RTAS_UNKNOWN_SERVICE) |
| 594 | return -ENOENT; |
| 595 | |
| 596 | do { |
| 597 | rc = rtas_call(token, 2, 2, state, sensor, index); |
| 598 | } while (rtas_busy_delay(rc)); |
| 599 | |
| 600 | if (rc < 0) |
| 601 | return rtas_error_rc(rc); |
| 602 | return rc; |
| 603 | } |
| 604 | EXPORT_SYMBOL(rtas_get_sensor); |
| 605 | |
| 606 | int rtas_get_sensor_fast(int sensor, int index, int *state) |
| 607 | { |
| 608 | int token = rtas_token("get-sensor-state"); |
| 609 | int rc; |
| 610 | |
| 611 | if (token == RTAS_UNKNOWN_SERVICE) |
| 612 | return -ENOENT; |
| 613 | |
| 614 | rc = rtas_call(token, 2, 2, state, sensor, index); |
| 615 | WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && |
| 616 | rc <= RTAS_EXTENDED_DELAY_MAX)); |
| 617 | |
| 618 | if (rc < 0) |
| 619 | return rtas_error_rc(rc); |
| 620 | return rc; |
| 621 | } |
| 622 | |
| 623 | bool rtas_indicator_present(int token, int *maxindex) |
| 624 | { |
| 625 | int proplen, count, i; |
| 626 | const struct indicator_elem { |
| 627 | __be32 token; |
| 628 | __be32 maxindex; |
| 629 | } *indicators; |
| 630 | |
| 631 | indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); |
| 632 | if (!indicators) |
| 633 | return false; |
| 634 | |
| 635 | count = proplen / sizeof(struct indicator_elem); |
| 636 | |
| 637 | for (i = 0; i < count; i++) { |
| 638 | if (__be32_to_cpu(indicators[i].token) != token) |
| 639 | continue; |
| 640 | if (maxindex) |
| 641 | *maxindex = __be32_to_cpu(indicators[i].maxindex); |
| 642 | return true; |
| 643 | } |
| 644 | |
| 645 | return false; |
| 646 | } |
| 647 | EXPORT_SYMBOL(rtas_indicator_present); |
| 648 | |
| 649 | int rtas_set_indicator(int indicator, int index, int new_value) |
| 650 | { |
| 651 | int token = rtas_token("set-indicator"); |
| 652 | int rc; |
| 653 | |
| 654 | if (token == RTAS_UNKNOWN_SERVICE) |
| 655 | return -ENOENT; |
| 656 | |
| 657 | do { |
| 658 | rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); |
| 659 | } while (rtas_busy_delay(rc)); |
| 660 | |
| 661 | if (rc < 0) |
| 662 | return rtas_error_rc(rc); |
| 663 | return rc; |
| 664 | } |
| 665 | EXPORT_SYMBOL(rtas_set_indicator); |
| 666 | |
| 667 | /* |
| 668 | * Ignoring RTAS extended delay |
| 669 | */ |
| 670 | int rtas_set_indicator_fast(int indicator, int index, int new_value) |
| 671 | { |
| 672 | int rc; |
| 673 | int token = rtas_token("set-indicator"); |
| 674 | |
| 675 | if (token == RTAS_UNKNOWN_SERVICE) |
| 676 | return -ENOENT; |
| 677 | |
| 678 | rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); |
| 679 | |
| 680 | WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && |
| 681 | rc <= RTAS_EXTENDED_DELAY_MAX)); |
| 682 | |
| 683 | if (rc < 0) |
| 684 | return rtas_error_rc(rc); |
| 685 | |
| 686 | return rc; |
| 687 | } |
| 688 | |
| 689 | void __noreturn rtas_restart(char *cmd) |
| 690 | { |
| 691 | if (rtas_flash_term_hook) |
| 692 | rtas_flash_term_hook(SYS_RESTART); |
| 693 | printk("RTAS system-reboot returned %d\n", |
| 694 | rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); |
| 695 | for (;;); |
| 696 | } |
| 697 | |
| 698 | void rtas_power_off(void) |
| 699 | { |
| 700 | if (rtas_flash_term_hook) |
| 701 | rtas_flash_term_hook(SYS_POWER_OFF); |
| 702 | /* allow power on only with power button press */ |
| 703 | printk("RTAS power-off returned %d\n", |
| 704 | rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); |
| 705 | for (;;); |
| 706 | } |
| 707 | |
| 708 | void __noreturn rtas_halt(void) |
| 709 | { |
| 710 | if (rtas_flash_term_hook) |
| 711 | rtas_flash_term_hook(SYS_HALT); |
| 712 | /* allow power on only with power button press */ |
| 713 | printk("RTAS power-off returned %d\n", |
| 714 | rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); |
| 715 | for (;;); |
| 716 | } |
| 717 | |
| 718 | /* Must be in the RMO region, so we place it here */ |
| 719 | static char rtas_os_term_buf[2048]; |
| 720 | |
| 721 | void rtas_os_term(char *str) |
| 722 | { |
| 723 | int status; |
| 724 | |
| 725 | /* |
| 726 | * Firmware with the ibm,extended-os-term property is guaranteed |
| 727 | * to always return from an ibm,os-term call. Earlier versions without |
| 728 | * this property may terminate the partition which we want to avoid |
| 729 | * since it interferes with panic_timeout. |
| 730 | */ |
| 731 | if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || |
| 732 | RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) |
| 733 | return; |
| 734 | |
| 735 | snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); |
| 736 | |
| 737 | do { |
| 738 | status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, |
| 739 | __pa(rtas_os_term_buf)); |
| 740 | } while (rtas_busy_delay(status)); |
| 741 | |
| 742 | if (status != 0) |
| 743 | printk(KERN_EMERG "ibm,os-term call failed %d\n", status); |
| 744 | } |
| 745 | |
| 746 | static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; |
| 747 | #ifdef CONFIG_PPC_PSERIES |
| 748 | static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) |
| 749 | { |
| 750 | u16 slb_size = mmu_slb_size; |
| 751 | int rc = H_MULTI_THREADS_ACTIVE; |
| 752 | int cpu; |
| 753 | |
| 754 | slb_set_size(SLB_MIN_SIZE); |
| 755 | printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); |
| 756 | |
| 757 | while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && |
| 758 | !atomic_read(&data->error)) |
| 759 | rc = rtas_call(data->token, 0, 1, NULL); |
| 760 | |
| 761 | if (rc || atomic_read(&data->error)) { |
| 762 | printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); |
| 763 | slb_set_size(slb_size); |
| 764 | } |
| 765 | |
| 766 | if (atomic_read(&data->error)) |
| 767 | rc = atomic_read(&data->error); |
| 768 | |
| 769 | atomic_set(&data->error, rc); |
| 770 | pSeries_coalesce_init(); |
| 771 | |
| 772 | if (wake_when_done) { |
| 773 | atomic_set(&data->done, 1); |
| 774 | |
| 775 | for_each_online_cpu(cpu) |
| 776 | plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); |
| 777 | } |
| 778 | |
| 779 | if (atomic_dec_return(&data->working) == 0) |
| 780 | complete(data->complete); |
| 781 | |
| 782 | return rc; |
| 783 | } |
| 784 | |
| 785 | int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) |
| 786 | { |
| 787 | atomic_inc(&data->working); |
| 788 | return __rtas_suspend_last_cpu(data, 0); |
| 789 | } |
| 790 | |
| 791 | static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) |
| 792 | { |
| 793 | long rc = H_SUCCESS; |
| 794 | unsigned long msr_save; |
| 795 | int cpu; |
| 796 | |
| 797 | atomic_inc(&data->working); |
| 798 | |
| 799 | /* really need to ensure MSR.EE is off for H_JOIN */ |
| 800 | msr_save = mfmsr(); |
| 801 | mtmsr(msr_save & ~(MSR_EE)); |
| 802 | |
| 803 | while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) |
| 804 | rc = plpar_hcall_norets(H_JOIN); |
| 805 | |
| 806 | mtmsr(msr_save); |
| 807 | |
| 808 | if (rc == H_SUCCESS) { |
| 809 | /* This cpu was prodded and the suspend is complete. */ |
| 810 | goto out; |
| 811 | } else if (rc == H_CONTINUE) { |
| 812 | /* All other cpus are in H_JOIN, this cpu does |
| 813 | * the suspend. |
| 814 | */ |
| 815 | return __rtas_suspend_last_cpu(data, wake_when_done); |
| 816 | } else { |
| 817 | printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", |
| 818 | smp_processor_id(), rc); |
| 819 | atomic_set(&data->error, rc); |
| 820 | } |
| 821 | |
| 822 | if (wake_when_done) { |
| 823 | atomic_set(&data->done, 1); |
| 824 | |
| 825 | /* This cpu did the suspend or got an error; in either case, |
| 826 | * we need to prod all other other cpus out of join state. |
| 827 | * Extra prods are harmless. |
| 828 | */ |
| 829 | for_each_online_cpu(cpu) |
| 830 | plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); |
| 831 | } |
| 832 | out: |
| 833 | if (atomic_dec_return(&data->working) == 0) |
| 834 | complete(data->complete); |
| 835 | return rc; |
| 836 | } |
| 837 | |
| 838 | int rtas_suspend_cpu(struct rtas_suspend_me_data *data) |
| 839 | { |
| 840 | return __rtas_suspend_cpu(data, 0); |
| 841 | } |
| 842 | |
| 843 | static void rtas_percpu_suspend_me(void *info) |
| 844 | { |
| 845 | __rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); |
| 846 | } |
| 847 | |
| 848 | enum rtas_cpu_state { |
| 849 | DOWN, |
| 850 | UP, |
| 851 | }; |
| 852 | |
| 853 | #ifndef CONFIG_SMP |
| 854 | static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, |
| 855 | cpumask_var_t cpus) |
| 856 | { |
| 857 | if (!cpumask_empty(cpus)) { |
| 858 | cpumask_clear(cpus); |
| 859 | return -EINVAL; |
| 860 | } else |
| 861 | return 0; |
| 862 | } |
| 863 | #else |
| 864 | /* On return cpumask will be altered to indicate CPUs changed. |
| 865 | * CPUs with states changed will be set in the mask, |
| 866 | * CPUs with status unchanged will be unset in the mask. */ |
| 867 | static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, |
| 868 | cpumask_var_t cpus) |
| 869 | { |
| 870 | int cpu; |
| 871 | int cpuret = 0; |
| 872 | int ret = 0; |
| 873 | |
| 874 | if (cpumask_empty(cpus)) |
| 875 | return 0; |
| 876 | |
| 877 | for_each_cpu(cpu, cpus) { |
| 878 | switch (state) { |
| 879 | case DOWN: |
| 880 | cpuret = cpu_down(cpu); |
| 881 | break; |
| 882 | case UP: |
| 883 | cpuret = cpu_up(cpu); |
| 884 | break; |
| 885 | } |
| 886 | if (cpuret) { |
| 887 | pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", |
| 888 | __func__, |
| 889 | ((state == UP) ? "up" : "down"), |
| 890 | cpu, cpuret); |
| 891 | if (!ret) |
| 892 | ret = cpuret; |
| 893 | if (state == UP) { |
| 894 | /* clear bits for unchanged cpus, return */ |
| 895 | cpumask_shift_right(cpus, cpus, cpu); |
| 896 | cpumask_shift_left(cpus, cpus, cpu); |
| 897 | break; |
| 898 | } else { |
| 899 | /* clear bit for unchanged cpu, continue */ |
| 900 | cpumask_clear_cpu(cpu, cpus); |
| 901 | } |
| 902 | } |
| 903 | } |
| 904 | |
| 905 | return ret; |
| 906 | } |
| 907 | #endif |
| 908 | |
| 909 | int rtas_online_cpus_mask(cpumask_var_t cpus) |
| 910 | { |
| 911 | int ret; |
| 912 | |
| 913 | ret = rtas_cpu_state_change_mask(UP, cpus); |
| 914 | |
| 915 | if (ret) { |
| 916 | cpumask_var_t tmp_mask; |
| 917 | |
| 918 | if (!alloc_cpumask_var(&tmp_mask, GFP_KERNEL)) |
| 919 | return ret; |
| 920 | |
| 921 | /* Use tmp_mask to preserve cpus mask from first failure */ |
| 922 | cpumask_copy(tmp_mask, cpus); |
| 923 | rtas_offline_cpus_mask(tmp_mask); |
| 924 | free_cpumask_var(tmp_mask); |
| 925 | } |
| 926 | |
| 927 | return ret; |
| 928 | } |
| 929 | EXPORT_SYMBOL(rtas_online_cpus_mask); |
| 930 | |
| 931 | int rtas_offline_cpus_mask(cpumask_var_t cpus) |
| 932 | { |
| 933 | return rtas_cpu_state_change_mask(DOWN, cpus); |
| 934 | } |
| 935 | EXPORT_SYMBOL(rtas_offline_cpus_mask); |
| 936 | |
| 937 | int rtas_ibm_suspend_me(u64 handle) |
| 938 | { |
| 939 | long state; |
| 940 | long rc; |
| 941 | unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; |
| 942 | struct rtas_suspend_me_data data; |
| 943 | DECLARE_COMPLETION_ONSTACK(done); |
| 944 | cpumask_var_t offline_mask; |
| 945 | int cpuret; |
| 946 | |
| 947 | if (!rtas_service_present("ibm,suspend-me")) |
| 948 | return -ENOSYS; |
| 949 | |
| 950 | /* Make sure the state is valid */ |
| 951 | rc = plpar_hcall(H_VASI_STATE, retbuf, handle); |
| 952 | |
| 953 | state = retbuf[0]; |
| 954 | |
| 955 | if (rc) { |
| 956 | printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); |
| 957 | return rc; |
| 958 | } else if (state == H_VASI_ENABLED) { |
| 959 | return -EAGAIN; |
| 960 | } else if (state != H_VASI_SUSPENDING) { |
| 961 | printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", |
| 962 | state); |
| 963 | return -EIO; |
| 964 | } |
| 965 | |
| 966 | if (!alloc_cpumask_var(&offline_mask, GFP_KERNEL)) |
| 967 | return -ENOMEM; |
| 968 | |
| 969 | atomic_set(&data.working, 0); |
| 970 | atomic_set(&data.done, 0); |
| 971 | atomic_set(&data.error, 0); |
| 972 | data.token = rtas_token("ibm,suspend-me"); |
| 973 | data.complete = &done; |
| 974 | |
| 975 | /* All present CPUs must be online */ |
| 976 | cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); |
| 977 | cpuret = rtas_online_cpus_mask(offline_mask); |
| 978 | if (cpuret) { |
| 979 | pr_err("%s: Could not bring present CPUs online.\n", __func__); |
| 980 | atomic_set(&data.error, cpuret); |
| 981 | goto out; |
| 982 | } |
| 983 | |
| 984 | stop_topology_update(); |
| 985 | |
| 986 | /* Call function on all CPUs. One of us will make the |
| 987 | * rtas call |
| 988 | */ |
| 989 | if (on_each_cpu(rtas_percpu_suspend_me, &data, 0)) |
| 990 | atomic_set(&data.error, -EINVAL); |
| 991 | |
| 992 | wait_for_completion(&done); |
| 993 | |
| 994 | if (atomic_read(&data.error) != 0) |
| 995 | printk(KERN_ERR "Error doing global join\n"); |
| 996 | |
| 997 | start_topology_update(); |
| 998 | |
| 999 | /* Take down CPUs not online prior to suspend */ |
| 1000 | cpuret = rtas_offline_cpus_mask(offline_mask); |
| 1001 | if (cpuret) |
| 1002 | pr_warn("%s: Could not restore CPUs to offline state.\n", |
| 1003 | __func__); |
| 1004 | |
| 1005 | out: |
| 1006 | free_cpumask_var(offline_mask); |
| 1007 | return atomic_read(&data.error); |
| 1008 | } |
| 1009 | #else /* CONFIG_PPC_PSERIES */ |
| 1010 | int rtas_ibm_suspend_me(u64 handle) |
| 1011 | { |
| 1012 | return -ENOSYS; |
| 1013 | } |
| 1014 | #endif |
| 1015 | |
| 1016 | /** |
| 1017 | * Find a specific pseries error log in an RTAS extended event log. |
| 1018 | * @log: RTAS error/event log |
| 1019 | * @section_id: two character section identifier |
| 1020 | * |
| 1021 | * Returns a pointer to the specified errorlog or NULL if not found. |
| 1022 | */ |
| 1023 | struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, |
| 1024 | uint16_t section_id) |
| 1025 | { |
| 1026 | struct rtas_ext_event_log_v6 *ext_log = |
| 1027 | (struct rtas_ext_event_log_v6 *)log->buffer; |
| 1028 | struct pseries_errorlog *sect; |
| 1029 | unsigned char *p, *log_end; |
| 1030 | uint32_t ext_log_length = rtas_error_extended_log_length(log); |
| 1031 | uint8_t log_format = rtas_ext_event_log_format(ext_log); |
| 1032 | uint32_t company_id = rtas_ext_event_company_id(ext_log); |
| 1033 | |
| 1034 | /* Check that we understand the format */ |
| 1035 | if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || |
| 1036 | log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || |
| 1037 | company_id != RTAS_V6EXT_COMPANY_ID_IBM) |
| 1038 | return NULL; |
| 1039 | |
| 1040 | log_end = log->buffer + ext_log_length; |
| 1041 | p = ext_log->vendor_log; |
| 1042 | |
| 1043 | while (p < log_end) { |
| 1044 | sect = (struct pseries_errorlog *)p; |
| 1045 | if (pseries_errorlog_id(sect) == section_id) |
| 1046 | return sect; |
| 1047 | p += pseries_errorlog_length(sect); |
| 1048 | } |
| 1049 | |
| 1050 | return NULL; |
| 1051 | } |
| 1052 | |
| 1053 | /* We assume to be passed big endian arguments */ |
| 1054 | SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) |
| 1055 | { |
| 1056 | struct rtas_args args; |
| 1057 | unsigned long flags; |
| 1058 | char *buff_copy, *errbuf = NULL; |
| 1059 | int nargs, nret, token; |
| 1060 | |
| 1061 | if (!capable(CAP_SYS_ADMIN)) |
| 1062 | return -EPERM; |
| 1063 | |
| 1064 | if (!rtas.entry) |
| 1065 | return -EINVAL; |
| 1066 | |
| 1067 | if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) |
| 1068 | return -EFAULT; |
| 1069 | |
| 1070 | nargs = be32_to_cpu(args.nargs); |
| 1071 | nret = be32_to_cpu(args.nret); |
| 1072 | token = be32_to_cpu(args.token); |
| 1073 | |
| 1074 | if (nargs >= ARRAY_SIZE(args.args) |
| 1075 | || nret > ARRAY_SIZE(args.args) |
| 1076 | || nargs + nret > ARRAY_SIZE(args.args)) |
| 1077 | return -EINVAL; |
| 1078 | |
| 1079 | /* Copy in args. */ |
| 1080 | if (copy_from_user(args.args, uargs->args, |
| 1081 | nargs * sizeof(rtas_arg_t)) != 0) |
| 1082 | return -EFAULT; |
| 1083 | |
| 1084 | if (token == RTAS_UNKNOWN_SERVICE) |
| 1085 | return -EINVAL; |
| 1086 | |
| 1087 | args.rets = &args.args[nargs]; |
| 1088 | memset(args.rets, 0, nret * sizeof(rtas_arg_t)); |
| 1089 | |
| 1090 | /* Need to handle ibm,suspend_me call specially */ |
| 1091 | if (token == ibm_suspend_me_token) { |
| 1092 | |
| 1093 | /* |
| 1094 | * rtas_ibm_suspend_me assumes the streamid handle is in cpu |
| 1095 | * endian, or at least the hcall within it requires it. |
| 1096 | */ |
| 1097 | int rc = 0; |
| 1098 | u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) |
| 1099 | | be32_to_cpu(args.args[1]); |
| 1100 | rc = rtas_ibm_suspend_me(handle); |
| 1101 | if (rc == -EAGAIN) |
| 1102 | args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); |
| 1103 | else if (rc == -EIO) |
| 1104 | args.rets[0] = cpu_to_be32(-1); |
| 1105 | else if (rc) |
| 1106 | return rc; |
| 1107 | goto copy_return; |
| 1108 | } |
| 1109 | |
| 1110 | buff_copy = get_errorlog_buffer(); |
| 1111 | |
| 1112 | flags = lock_rtas(); |
| 1113 | |
| 1114 | rtas.args = args; |
| 1115 | enter_rtas(__pa(&rtas.args)); |
| 1116 | args = rtas.args; |
| 1117 | |
| 1118 | /* A -1 return code indicates that the last command couldn't |
| 1119 | be completed due to a hardware error. */ |
| 1120 | if (be32_to_cpu(args.rets[0]) == -1) |
| 1121 | errbuf = __fetch_rtas_last_error(buff_copy); |
| 1122 | |
| 1123 | unlock_rtas(flags); |
| 1124 | |
| 1125 | if (buff_copy) { |
| 1126 | if (errbuf) |
| 1127 | log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); |
| 1128 | kfree(buff_copy); |
| 1129 | } |
| 1130 | |
| 1131 | copy_return: |
| 1132 | /* Copy out args. */ |
| 1133 | if (copy_to_user(uargs->args + nargs, |
| 1134 | args.args + nargs, |
| 1135 | nret * sizeof(rtas_arg_t)) != 0) |
| 1136 | return -EFAULT; |
| 1137 | |
| 1138 | return 0; |
| 1139 | } |
| 1140 | |
| 1141 | /* |
| 1142 | * Call early during boot, before mem init, to retrieve the RTAS |
| 1143 | * information from the device-tree and allocate the RMO buffer for userland |
| 1144 | * accesses. |
| 1145 | */ |
| 1146 | void __init rtas_initialize(void) |
| 1147 | { |
| 1148 | unsigned long rtas_region = RTAS_INSTANTIATE_MAX; |
| 1149 | u32 base, size, entry; |
| 1150 | int no_base, no_size, no_entry; |
| 1151 | |
| 1152 | /* Get RTAS dev node and fill up our "rtas" structure with infos |
| 1153 | * about it. |
| 1154 | */ |
| 1155 | rtas.dev = of_find_node_by_name(NULL, "rtas"); |
| 1156 | if (!rtas.dev) |
| 1157 | return; |
| 1158 | |
| 1159 | no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); |
| 1160 | no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); |
| 1161 | if (no_base || no_size) { |
| 1162 | of_node_put(rtas.dev); |
| 1163 | rtas.dev = NULL; |
| 1164 | return; |
| 1165 | } |
| 1166 | |
| 1167 | rtas.base = base; |
| 1168 | rtas.size = size; |
| 1169 | no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); |
| 1170 | rtas.entry = no_entry ? rtas.base : entry; |
| 1171 | |
| 1172 | /* If RTAS was found, allocate the RMO buffer for it and look for |
| 1173 | * the stop-self token if any |
| 1174 | */ |
| 1175 | #ifdef CONFIG_PPC64 |
| 1176 | if (firmware_has_feature(FW_FEATURE_LPAR)) { |
| 1177 | rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); |
| 1178 | ibm_suspend_me_token = rtas_token("ibm,suspend-me"); |
| 1179 | } |
| 1180 | #endif |
| 1181 | rtas_rmo_buf = memblock_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region); |
| 1182 | |
| 1183 | #ifdef CONFIG_RTAS_ERROR_LOGGING |
| 1184 | rtas_last_error_token = rtas_token("rtas-last-error"); |
| 1185 | #endif |
| 1186 | } |
| 1187 | |
| 1188 | int __init early_init_dt_scan_rtas(unsigned long node, |
| 1189 | const char *uname, int depth, void *data) |
| 1190 | { |
| 1191 | const u32 *basep, *entryp, *sizep; |
| 1192 | |
| 1193 | if (depth != 1 || strcmp(uname, "rtas") != 0) |
| 1194 | return 0; |
| 1195 | |
| 1196 | basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); |
| 1197 | entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); |
| 1198 | sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); |
| 1199 | |
| 1200 | if (basep && entryp && sizep) { |
| 1201 | rtas.base = *basep; |
| 1202 | rtas.entry = *entryp; |
| 1203 | rtas.size = *sizep; |
| 1204 | } |
| 1205 | |
| 1206 | #ifdef CONFIG_UDBG_RTAS_CONSOLE |
| 1207 | basep = of_get_flat_dt_prop(node, "put-term-char", NULL); |
| 1208 | if (basep) |
| 1209 | rtas_putchar_token = *basep; |
| 1210 | |
| 1211 | basep = of_get_flat_dt_prop(node, "get-term-char", NULL); |
| 1212 | if (basep) |
| 1213 | rtas_getchar_token = *basep; |
| 1214 | |
| 1215 | if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && |
| 1216 | rtas_getchar_token != RTAS_UNKNOWN_SERVICE) |
| 1217 | udbg_init_rtas_console(); |
| 1218 | |
| 1219 | #endif |
| 1220 | |
| 1221 | /* break now */ |
| 1222 | return 1; |
| 1223 | } |
| 1224 | |
| 1225 | static arch_spinlock_t timebase_lock; |
| 1226 | static u64 timebase = 0; |
| 1227 | |
| 1228 | void rtas_give_timebase(void) |
| 1229 | { |
| 1230 | unsigned long flags; |
| 1231 | |
| 1232 | local_irq_save(flags); |
| 1233 | hard_irq_disable(); |
| 1234 | arch_spin_lock(&timebase_lock); |
| 1235 | rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); |
| 1236 | timebase = get_tb(); |
| 1237 | arch_spin_unlock(&timebase_lock); |
| 1238 | |
| 1239 | while (timebase) |
| 1240 | barrier(); |
| 1241 | rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); |
| 1242 | local_irq_restore(flags); |
| 1243 | } |
| 1244 | |
| 1245 | void rtas_take_timebase(void) |
| 1246 | { |
| 1247 | while (!timebase) |
| 1248 | barrier(); |
| 1249 | arch_spin_lock(&timebase_lock); |
| 1250 | set_tb(timebase >> 32, timebase & 0xffffffff); |
| 1251 | timebase = 0; |
| 1252 | arch_spin_unlock(&timebase_lock); |
| 1253 | } |