Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Debug and Guest Debug support |
| 3 | * |
| 4 | * Copyright (C) 2015 - Linaro Ltd |
| 5 | * Author: Alex Bennée <alex.bennee@linaro.org> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 18 | */ |
| 19 | |
| 20 | #include <linux/kvm_host.h> |
| 21 | #include <linux/hw_breakpoint.h> |
| 22 | |
| 23 | #include <asm/debug-monitors.h> |
| 24 | #include <asm/kvm_asm.h> |
| 25 | #include <asm/kvm_arm.h> |
| 26 | #include <asm/kvm_emulate.h> |
| 27 | |
| 28 | #include "trace.h" |
| 29 | |
| 30 | /* These are the bits of MDSCR_EL1 we may manipulate */ |
| 31 | #define MDSCR_EL1_DEBUG_MASK (DBG_MDSCR_SS | \ |
| 32 | DBG_MDSCR_KDE | \ |
| 33 | DBG_MDSCR_MDE) |
| 34 | |
| 35 | static DEFINE_PER_CPU(u32, mdcr_el2); |
| 36 | |
| 37 | /** |
| 38 | * save/restore_guest_debug_regs |
| 39 | * |
| 40 | * For some debug operations we need to tweak some guest registers. As |
| 41 | * a result we need to save the state of those registers before we |
| 42 | * make those modifications. |
| 43 | * |
| 44 | * Guest access to MDSCR_EL1 is trapped by the hypervisor and handled |
| 45 | * after we have restored the preserved value to the main context. |
| 46 | */ |
| 47 | static void save_guest_debug_regs(struct kvm_vcpu *vcpu) |
| 48 | { |
| 49 | u64 val = vcpu_read_sys_reg(vcpu, MDSCR_EL1); |
| 50 | |
| 51 | vcpu->arch.guest_debug_preserved.mdscr_el1 = val; |
| 52 | |
| 53 | trace_kvm_arm_set_dreg32("Saved MDSCR_EL1", |
| 54 | vcpu->arch.guest_debug_preserved.mdscr_el1); |
| 55 | } |
| 56 | |
| 57 | static void restore_guest_debug_regs(struct kvm_vcpu *vcpu) |
| 58 | { |
| 59 | u64 val = vcpu->arch.guest_debug_preserved.mdscr_el1; |
| 60 | |
| 61 | vcpu_write_sys_reg(vcpu, val, MDSCR_EL1); |
| 62 | |
| 63 | trace_kvm_arm_set_dreg32("Restored MDSCR_EL1", |
| 64 | vcpu_read_sys_reg(vcpu, MDSCR_EL1)); |
| 65 | } |
| 66 | |
| 67 | /** |
| 68 | * kvm_arm_init_debug - grab what we need for debug |
| 69 | * |
| 70 | * Currently the sole task of this function is to retrieve the initial |
| 71 | * value of mdcr_el2 so we can preserve MDCR_EL2.HPMN which has |
| 72 | * presumably been set-up by some knowledgeable bootcode. |
| 73 | * |
| 74 | * It is called once per-cpu during CPU hyp initialisation. |
| 75 | */ |
| 76 | |
| 77 | void kvm_arm_init_debug(void) |
| 78 | { |
| 79 | __this_cpu_write(mdcr_el2, kvm_call_hyp(__kvm_get_mdcr_el2)); |
| 80 | } |
| 81 | |
| 82 | /** |
| 83 | * kvm_arm_reset_debug_ptr - reset the debug ptr to point to the vcpu state |
| 84 | */ |
| 85 | |
| 86 | void kvm_arm_reset_debug_ptr(struct kvm_vcpu *vcpu) |
| 87 | { |
| 88 | vcpu->arch.debug_ptr = &vcpu->arch.vcpu_debug_state; |
| 89 | } |
| 90 | |
| 91 | /** |
| 92 | * kvm_arm_setup_debug - set up debug related stuff |
| 93 | * |
| 94 | * @vcpu: the vcpu pointer |
| 95 | * |
| 96 | * This is called before each entry into the hypervisor to setup any |
| 97 | * debug related registers. Currently this just ensures we will trap |
| 98 | * access to: |
| 99 | * - Performance monitors (MDCR_EL2_TPM/MDCR_EL2_TPMCR) |
| 100 | * - Debug ROM Address (MDCR_EL2_TDRA) |
| 101 | * - OS related registers (MDCR_EL2_TDOSA) |
| 102 | * - Statistical profiler (MDCR_EL2_TPMS/MDCR_EL2_E2PB) |
| 103 | * |
| 104 | * Additionally, KVM only traps guest accesses to the debug registers if |
| 105 | * the guest is not actively using them (see the KVM_ARM64_DEBUG_DIRTY |
| 106 | * flag on vcpu->arch.flags). Since the guest must not interfere |
| 107 | * with the hardware state when debugging the guest, we must ensure that |
| 108 | * trapping is enabled whenever we are debugging the guest using the |
| 109 | * debug registers. |
| 110 | */ |
| 111 | |
| 112 | void kvm_arm_setup_debug(struct kvm_vcpu *vcpu) |
| 113 | { |
| 114 | bool trap_debug = !(vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY); |
| 115 | unsigned long mdscr; |
| 116 | |
| 117 | trace_kvm_arm_setup_debug(vcpu, vcpu->guest_debug); |
| 118 | |
| 119 | /* |
| 120 | * This also clears MDCR_EL2_E2PB_MASK to disable guest access |
| 121 | * to the profiling buffer. |
| 122 | */ |
| 123 | vcpu->arch.mdcr_el2 = __this_cpu_read(mdcr_el2) & MDCR_EL2_HPMN_MASK; |
| 124 | vcpu->arch.mdcr_el2 |= (MDCR_EL2_TPM | |
| 125 | MDCR_EL2_TPMS | |
| 126 | MDCR_EL2_TPMCR | |
| 127 | MDCR_EL2_TDRA | |
| 128 | MDCR_EL2_TDOSA); |
| 129 | |
| 130 | /* Is Guest debugging in effect? */ |
| 131 | if (vcpu->guest_debug) { |
| 132 | /* Route all software debug exceptions to EL2 */ |
| 133 | vcpu->arch.mdcr_el2 |= MDCR_EL2_TDE; |
| 134 | |
| 135 | /* Save guest debug state */ |
| 136 | save_guest_debug_regs(vcpu); |
| 137 | |
| 138 | /* |
| 139 | * Single Step (ARM ARM D2.12.3 The software step state |
| 140 | * machine) |
| 141 | * |
| 142 | * If we are doing Single Step we need to manipulate |
| 143 | * the guest's MDSCR_EL1.SS and PSTATE.SS. Once the |
| 144 | * step has occurred the hypervisor will trap the |
| 145 | * debug exception and we return to userspace. |
| 146 | * |
| 147 | * If the guest attempts to single step its userspace |
| 148 | * we would have to deal with a trapped exception |
| 149 | * while in the guest kernel. Because this would be |
| 150 | * hard to unwind we suppress the guest's ability to |
| 151 | * do so by masking MDSCR_EL.SS. |
| 152 | * |
| 153 | * This confuses guest debuggers which use |
| 154 | * single-step behind the scenes but everything |
| 155 | * returns to normal once the host is no longer |
| 156 | * debugging the system. |
| 157 | */ |
| 158 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| 159 | *vcpu_cpsr(vcpu) |= DBG_SPSR_SS; |
| 160 | mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1); |
| 161 | mdscr |= DBG_MDSCR_SS; |
| 162 | vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1); |
| 163 | } else { |
| 164 | mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1); |
| 165 | mdscr &= ~DBG_MDSCR_SS; |
| 166 | vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1); |
| 167 | } |
| 168 | |
| 169 | trace_kvm_arm_set_dreg32("SPSR_EL2", *vcpu_cpsr(vcpu)); |
| 170 | |
| 171 | /* |
| 172 | * HW Breakpoints and watchpoints |
| 173 | * |
| 174 | * We simply switch the debug_ptr to point to our new |
| 175 | * external_debug_state which has been populated by the |
| 176 | * debug ioctl. The existing KVM_ARM64_DEBUG_DIRTY |
| 177 | * mechanism ensures the registers are updated on the |
| 178 | * world switch. |
| 179 | */ |
| 180 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { |
| 181 | /* Enable breakpoints/watchpoints */ |
| 182 | mdscr = vcpu_read_sys_reg(vcpu, MDSCR_EL1); |
| 183 | mdscr |= DBG_MDSCR_MDE; |
| 184 | vcpu_write_sys_reg(vcpu, mdscr, MDSCR_EL1); |
| 185 | |
| 186 | vcpu->arch.debug_ptr = &vcpu->arch.external_debug_state; |
| 187 | vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; |
| 188 | trap_debug = true; |
| 189 | |
| 190 | trace_kvm_arm_set_regset("BKPTS", get_num_brps(), |
| 191 | &vcpu->arch.debug_ptr->dbg_bcr[0], |
| 192 | &vcpu->arch.debug_ptr->dbg_bvr[0]); |
| 193 | |
| 194 | trace_kvm_arm_set_regset("WAPTS", get_num_wrps(), |
| 195 | &vcpu->arch.debug_ptr->dbg_wcr[0], |
| 196 | &vcpu->arch.debug_ptr->dbg_wvr[0]); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | BUG_ON(!vcpu->guest_debug && |
| 201 | vcpu->arch.debug_ptr != &vcpu->arch.vcpu_debug_state); |
| 202 | |
| 203 | /* Trap debug register access */ |
| 204 | if (trap_debug) |
| 205 | vcpu->arch.mdcr_el2 |= MDCR_EL2_TDA; |
| 206 | |
| 207 | /* If KDE or MDE are set, perform a full save/restore cycle. */ |
| 208 | if (vcpu_read_sys_reg(vcpu, MDSCR_EL1) & (DBG_MDSCR_KDE | DBG_MDSCR_MDE)) |
| 209 | vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY; |
| 210 | |
| 211 | trace_kvm_arm_set_dreg32("MDCR_EL2", vcpu->arch.mdcr_el2); |
| 212 | trace_kvm_arm_set_dreg32("MDSCR_EL1", vcpu_read_sys_reg(vcpu, MDSCR_EL1)); |
| 213 | } |
| 214 | |
| 215 | void kvm_arm_clear_debug(struct kvm_vcpu *vcpu) |
| 216 | { |
| 217 | trace_kvm_arm_clear_debug(vcpu->guest_debug); |
| 218 | |
| 219 | if (vcpu->guest_debug) { |
| 220 | restore_guest_debug_regs(vcpu); |
| 221 | |
| 222 | /* |
| 223 | * If we were using HW debug we need to restore the |
| 224 | * debug_ptr to the guest debug state. |
| 225 | */ |
| 226 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) { |
| 227 | kvm_arm_reset_debug_ptr(vcpu); |
| 228 | |
| 229 | trace_kvm_arm_set_regset("BKPTS", get_num_brps(), |
| 230 | &vcpu->arch.debug_ptr->dbg_bcr[0], |
| 231 | &vcpu->arch.debug_ptr->dbg_bvr[0]); |
| 232 | |
| 233 | trace_kvm_arm_set_regset("WAPTS", get_num_wrps(), |
| 234 | &vcpu->arch.debug_ptr->dbg_wcr[0], |
| 235 | &vcpu->arch.debug_ptr->dbg_wvr[0]); |
| 236 | } |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | |
| 241 | /* |
| 242 | * After successfully emulating an instruction, we might want to |
| 243 | * return to user space with a KVM_EXIT_DEBUG. We can only do this |
| 244 | * once the emulation is complete, though, so for userspace emulations |
| 245 | * we have to wait until we have re-entered KVM before calling this |
| 246 | * helper. |
| 247 | * |
| 248 | * Return true (and set exit_reason) to return to userspace or false |
| 249 | * if no further action is required. |
| 250 | */ |
| 251 | bool kvm_arm_handle_step_debug(struct kvm_vcpu *vcpu, struct kvm_run *run) |
| 252 | { |
| 253 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| 254 | run->exit_reason = KVM_EXIT_DEBUG; |
| 255 | run->debug.arch.hsr = ESR_ELx_EC_SOFTSTP_LOW << ESR_ELx_EC_SHIFT; |
| 256 | return true; |
| 257 | } |
| 258 | return false; |
| 259 | } |