Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
| 3 | * operating system. INET is implemented using the BSD Socket |
| 4 | * interface as the means of communication with the user level. |
| 5 | * |
| 6 | * The Internet Protocol (IP) output module. |
| 7 | * |
| 8 | * Authors: Ross Biro |
| 9 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
| 10 | * Donald Becker, <becker@super.org> |
| 11 | * Alan Cox, <Alan.Cox@linux.org> |
| 12 | * Richard Underwood |
| 13 | * Stefan Becker, <stefanb@yello.ping.de> |
| 14 | * Jorge Cwik, <jorge@laser.satlink.net> |
| 15 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
| 16 | * Hirokazu Takahashi, <taka@valinux.co.jp> |
| 17 | * |
| 18 | * See ip_input.c for original log |
| 19 | * |
| 20 | * Fixes: |
| 21 | * Alan Cox : Missing nonblock feature in ip_build_xmit. |
| 22 | * Mike Kilburn : htons() missing in ip_build_xmit. |
| 23 | * Bradford Johnson: Fix faulty handling of some frames when |
| 24 | * no route is found. |
| 25 | * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit |
| 26 | * (in case if packet not accepted by |
| 27 | * output firewall rules) |
| 28 | * Mike McLagan : Routing by source |
| 29 | * Alexey Kuznetsov: use new route cache |
| 30 | * Andi Kleen: Fix broken PMTU recovery and remove |
| 31 | * some redundant tests. |
| 32 | * Vitaly E. Lavrov : Transparent proxy revived after year coma. |
| 33 | * Andi Kleen : Replace ip_reply with ip_send_reply. |
| 34 | * Andi Kleen : Split fast and slow ip_build_xmit path |
| 35 | * for decreased register pressure on x86 |
| 36 | * and more readibility. |
| 37 | * Marc Boucher : When call_out_firewall returns FW_QUEUE, |
| 38 | * silently drop skb instead of failing with -EPERM. |
| 39 | * Detlev Wengorz : Copy protocol for fragments. |
| 40 | * Hirokazu Takahashi: HW checksumming for outgoing UDP |
| 41 | * datagrams. |
| 42 | * Hirokazu Takahashi: sendfile() on UDP works now. |
| 43 | */ |
| 44 | |
| 45 | #include <linux/uaccess.h> |
| 46 | #include <linux/module.h> |
| 47 | #include <linux/types.h> |
| 48 | #include <linux/kernel.h> |
| 49 | #include <linux/mm.h> |
| 50 | #include <linux/string.h> |
| 51 | #include <linux/errno.h> |
| 52 | #include <linux/highmem.h> |
| 53 | #include <linux/slab.h> |
| 54 | |
| 55 | #include <linux/socket.h> |
| 56 | #include <linux/sockios.h> |
| 57 | #include <linux/in.h> |
| 58 | #include <linux/inet.h> |
| 59 | #include <linux/netdevice.h> |
| 60 | #include <linux/etherdevice.h> |
| 61 | #include <linux/proc_fs.h> |
| 62 | #include <linux/stat.h> |
| 63 | #include <linux/init.h> |
| 64 | |
| 65 | #include <net/snmp.h> |
| 66 | #include <net/ip.h> |
| 67 | #include <net/protocol.h> |
| 68 | #include <net/route.h> |
| 69 | #include <net/xfrm.h> |
| 70 | #include <linux/skbuff.h> |
| 71 | #include <net/sock.h> |
| 72 | #include <net/arp.h> |
| 73 | #include <net/icmp.h> |
| 74 | #include <net/checksum.h> |
| 75 | #include <net/inetpeer.h> |
| 76 | #include <net/lwtunnel.h> |
| 77 | #include <linux/bpf-cgroup.h> |
| 78 | #include <linux/igmp.h> |
| 79 | #include <linux/netfilter_ipv4.h> |
| 80 | #include <linux/netfilter_bridge.h> |
| 81 | #include <linux/netlink.h> |
| 82 | #include <linux/tcp.h> |
| 83 | |
| 84 | static int |
| 85 | ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
| 86 | unsigned int mtu, |
| 87 | int (*output)(struct net *, struct sock *, struct sk_buff *)); |
| 88 | |
| 89 | /* Generate a checksum for an outgoing IP datagram. */ |
| 90 | void ip_send_check(struct iphdr *iph) |
| 91 | { |
| 92 | iph->check = 0; |
| 93 | iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl); |
| 94 | } |
| 95 | EXPORT_SYMBOL(ip_send_check); |
| 96 | |
| 97 | int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 98 | { |
| 99 | struct iphdr *iph = ip_hdr(skb); |
| 100 | |
| 101 | iph->tot_len = htons(skb->len); |
| 102 | ip_send_check(iph); |
| 103 | |
| 104 | /* if egress device is enslaved to an L3 master device pass the |
| 105 | * skb to its handler for processing |
| 106 | */ |
| 107 | skb = l3mdev_ip_out(sk, skb); |
| 108 | if (unlikely(!skb)) |
| 109 | return 0; |
| 110 | |
| 111 | skb->protocol = htons(ETH_P_IP); |
| 112 | |
| 113 | return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, |
| 114 | net, sk, skb, NULL, skb_dst(skb)->dev, |
| 115 | dst_output); |
| 116 | } |
| 117 | |
| 118 | int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 119 | { |
| 120 | int err; |
| 121 | |
| 122 | err = __ip_local_out(net, sk, skb); |
| 123 | if (likely(err == 1)) |
| 124 | err = dst_output(net, sk, skb); |
| 125 | |
| 126 | return err; |
| 127 | } |
| 128 | EXPORT_SYMBOL_GPL(ip_local_out); |
| 129 | |
| 130 | static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst) |
| 131 | { |
| 132 | int ttl = inet->uc_ttl; |
| 133 | |
| 134 | if (ttl < 0) |
| 135 | ttl = ip4_dst_hoplimit(dst); |
| 136 | return ttl; |
| 137 | } |
| 138 | |
| 139 | /* |
| 140 | * Add an ip header to a skbuff and send it out. |
| 141 | * |
| 142 | */ |
| 143 | int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk, |
| 144 | __be32 saddr, __be32 daddr, struct ip_options_rcu *opt) |
| 145 | { |
| 146 | struct inet_sock *inet = inet_sk(sk); |
| 147 | struct rtable *rt = skb_rtable(skb); |
| 148 | struct net *net = sock_net(sk); |
| 149 | struct iphdr *iph; |
| 150 | |
| 151 | /* Build the IP header. */ |
| 152 | skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0)); |
| 153 | skb_reset_network_header(skb); |
| 154 | iph = ip_hdr(skb); |
| 155 | iph->version = 4; |
| 156 | iph->ihl = 5; |
| 157 | iph->tos = inet->tos; |
| 158 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
| 159 | iph->daddr = (opt && opt->opt.srr ? opt->opt.faddr : daddr); |
| 160 | iph->saddr = saddr; |
| 161 | iph->protocol = sk->sk_protocol; |
| 162 | if (ip_dont_fragment(sk, &rt->dst)) { |
| 163 | iph->frag_off = htons(IP_DF); |
| 164 | iph->id = 0; |
| 165 | } else { |
| 166 | iph->frag_off = 0; |
| 167 | __ip_select_ident(net, iph, 1); |
| 168 | } |
| 169 | |
| 170 | if (opt && opt->opt.optlen) { |
| 171 | iph->ihl += opt->opt.optlen>>2; |
| 172 | ip_options_build(skb, &opt->opt, daddr, rt, 0); |
| 173 | } |
| 174 | |
| 175 | skb->priority = sk->sk_priority; |
| 176 | if (!skb->mark) |
| 177 | skb->mark = sk->sk_mark; |
| 178 | |
| 179 | /* Send it out. */ |
| 180 | return ip_local_out(net, skb->sk, skb); |
| 181 | } |
| 182 | EXPORT_SYMBOL_GPL(ip_build_and_send_pkt); |
| 183 | |
| 184 | static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 185 | { |
| 186 | struct dst_entry *dst = skb_dst(skb); |
| 187 | struct rtable *rt = (struct rtable *)dst; |
| 188 | struct net_device *dev = dst->dev; |
| 189 | unsigned int hh_len = LL_RESERVED_SPACE(dev); |
| 190 | struct neighbour *neigh; |
| 191 | u32 nexthop; |
| 192 | |
| 193 | if (rt->rt_type == RTN_MULTICAST) { |
| 194 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len); |
| 195 | } else if (rt->rt_type == RTN_BROADCAST) |
| 196 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len); |
| 197 | |
| 198 | /* Be paranoid, rather than too clever. */ |
| 199 | if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { |
| 200 | struct sk_buff *skb2; |
| 201 | |
| 202 | skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev)); |
| 203 | if (!skb2) { |
| 204 | kfree_skb(skb); |
| 205 | return -ENOMEM; |
| 206 | } |
| 207 | if (skb->sk) |
| 208 | skb_set_owner_w(skb2, skb->sk); |
| 209 | consume_skb(skb); |
| 210 | skb = skb2; |
| 211 | } |
| 212 | |
| 213 | if (lwtunnel_xmit_redirect(dst->lwtstate)) { |
| 214 | int res = lwtunnel_xmit(skb); |
| 215 | |
| 216 | if (res < 0 || res == LWTUNNEL_XMIT_DONE) |
| 217 | return res; |
| 218 | } |
| 219 | |
| 220 | rcu_read_lock_bh(); |
| 221 | nexthop = (__force u32) rt_nexthop(rt, ip_hdr(skb)->daddr); |
| 222 | neigh = __ipv4_neigh_lookup_noref(dev, nexthop); |
| 223 | if (unlikely(!neigh)) |
| 224 | neigh = __neigh_create(&arp_tbl, &nexthop, dev, false); |
| 225 | if (!IS_ERR(neigh)) { |
| 226 | int res; |
| 227 | |
| 228 | sock_confirm_neigh(skb, neigh); |
| 229 | res = neigh_output(neigh, skb); |
| 230 | |
| 231 | rcu_read_unlock_bh(); |
| 232 | return res; |
| 233 | } |
| 234 | rcu_read_unlock_bh(); |
| 235 | |
| 236 | net_dbg_ratelimited("%s: No header cache and no neighbour!\n", |
| 237 | __func__); |
| 238 | kfree_skb(skb); |
| 239 | return -EINVAL; |
| 240 | } |
| 241 | |
| 242 | static int ip_finish_output_gso(struct net *net, struct sock *sk, |
| 243 | struct sk_buff *skb, unsigned int mtu) |
| 244 | { |
| 245 | netdev_features_t features; |
| 246 | struct sk_buff *segs; |
| 247 | int ret = 0; |
| 248 | |
| 249 | /* common case: seglen is <= mtu |
| 250 | */ |
| 251 | if (skb_gso_validate_network_len(skb, mtu)) |
| 252 | return ip_finish_output2(net, sk, skb); |
| 253 | |
| 254 | /* Slowpath - GSO segment length exceeds the egress MTU. |
| 255 | * |
| 256 | * This can happen in several cases: |
| 257 | * - Forwarding of a TCP GRO skb, when DF flag is not set. |
| 258 | * - Forwarding of an skb that arrived on a virtualization interface |
| 259 | * (virtio-net/vhost/tap) with TSO/GSO size set by other network |
| 260 | * stack. |
| 261 | * - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an |
| 262 | * interface with a smaller MTU. |
| 263 | * - Arriving GRO skb (or GSO skb in a virtualized environment) that is |
| 264 | * bridged to a NETIF_F_TSO tunnel stacked over an interface with an |
| 265 | * insufficent MTU. |
| 266 | */ |
| 267 | features = netif_skb_features(skb); |
| 268 | BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET); |
| 269 | segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK); |
| 270 | if (IS_ERR_OR_NULL(segs)) { |
| 271 | kfree_skb(skb); |
| 272 | return -ENOMEM; |
| 273 | } |
| 274 | |
| 275 | consume_skb(skb); |
| 276 | |
| 277 | do { |
| 278 | struct sk_buff *nskb = segs->next; |
| 279 | int err; |
| 280 | |
| 281 | segs->next = NULL; |
| 282 | err = ip_fragment(net, sk, segs, mtu, ip_finish_output2); |
| 283 | |
| 284 | if (err && ret == 0) |
| 285 | ret = err; |
| 286 | segs = nskb; |
| 287 | } while (segs); |
| 288 | |
| 289 | return ret; |
| 290 | } |
| 291 | |
| 292 | static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 293 | { |
| 294 | unsigned int mtu; |
| 295 | int ret; |
| 296 | |
| 297 | ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); |
| 298 | if (ret) { |
| 299 | kfree_skb(skb); |
| 300 | return ret; |
| 301 | } |
| 302 | |
| 303 | #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM) |
| 304 | /* Policy lookup after SNAT yielded a new policy */ |
| 305 | if (skb_dst(skb)->xfrm) { |
| 306 | IPCB(skb)->flags |= IPSKB_REROUTED; |
| 307 | return dst_output(net, sk, skb); |
| 308 | } |
| 309 | #endif |
| 310 | mtu = ip_skb_dst_mtu(sk, skb); |
| 311 | if (skb_is_gso(skb)) |
| 312 | return ip_finish_output_gso(net, sk, skb, mtu); |
| 313 | |
| 314 | if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU)) |
| 315 | return ip_fragment(net, sk, skb, mtu, ip_finish_output2); |
| 316 | |
| 317 | return ip_finish_output2(net, sk, skb); |
| 318 | } |
| 319 | |
| 320 | static int ip_mc_finish_output(struct net *net, struct sock *sk, |
| 321 | struct sk_buff *skb) |
| 322 | { |
| 323 | int ret; |
| 324 | |
| 325 | ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb); |
| 326 | if (ret) { |
| 327 | kfree_skb(skb); |
| 328 | return ret; |
| 329 | } |
| 330 | |
| 331 | return dev_loopback_xmit(net, sk, skb); |
| 332 | } |
| 333 | |
| 334 | int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 335 | { |
| 336 | struct rtable *rt = skb_rtable(skb); |
| 337 | struct net_device *dev = rt->dst.dev; |
| 338 | |
| 339 | /* |
| 340 | * If the indicated interface is up and running, send the packet. |
| 341 | */ |
| 342 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); |
| 343 | |
| 344 | skb->dev = dev; |
| 345 | skb->protocol = htons(ETH_P_IP); |
| 346 | |
| 347 | /* |
| 348 | * Multicasts are looped back for other local users |
| 349 | */ |
| 350 | |
| 351 | if (rt->rt_flags&RTCF_MULTICAST) { |
| 352 | if (sk_mc_loop(sk) |
| 353 | #ifdef CONFIG_IP_MROUTE |
| 354 | /* Small optimization: do not loopback not local frames, |
| 355 | which returned after forwarding; they will be dropped |
| 356 | by ip_mr_input in any case. |
| 357 | Note, that local frames are looped back to be delivered |
| 358 | to local recipients. |
| 359 | |
| 360 | This check is duplicated in ip_mr_input at the moment. |
| 361 | */ |
| 362 | && |
| 363 | ((rt->rt_flags & RTCF_LOCAL) || |
| 364 | !(IPCB(skb)->flags & IPSKB_FORWARDED)) |
| 365 | #endif |
| 366 | ) { |
| 367 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
| 368 | if (newskb) |
| 369 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 370 | net, sk, newskb, NULL, newskb->dev, |
| 371 | ip_mc_finish_output); |
| 372 | } |
| 373 | |
| 374 | /* Multicasts with ttl 0 must not go beyond the host */ |
| 375 | |
| 376 | if (ip_hdr(skb)->ttl == 0) { |
| 377 | kfree_skb(skb); |
| 378 | return 0; |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | if (rt->rt_flags&RTCF_BROADCAST) { |
| 383 | struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC); |
| 384 | if (newskb) |
| 385 | NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 386 | net, sk, newskb, NULL, newskb->dev, |
| 387 | ip_mc_finish_output); |
| 388 | } |
| 389 | |
| 390 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 391 | net, sk, skb, NULL, skb->dev, |
| 392 | ip_finish_output, |
| 393 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
| 394 | } |
| 395 | |
| 396 | int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 397 | { |
| 398 | struct net_device *dev = skb_dst(skb)->dev; |
| 399 | |
| 400 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); |
| 401 | |
| 402 | skb->dev = dev; |
| 403 | skb->protocol = htons(ETH_P_IP); |
| 404 | |
| 405 | return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, |
| 406 | net, sk, skb, NULL, dev, |
| 407 | ip_finish_output, |
| 408 | !(IPCB(skb)->flags & IPSKB_REROUTED)); |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * copy saddr and daddr, possibly using 64bit load/stores |
| 413 | * Equivalent to : |
| 414 | * iph->saddr = fl4->saddr; |
| 415 | * iph->daddr = fl4->daddr; |
| 416 | */ |
| 417 | static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4) |
| 418 | { |
| 419 | BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) != |
| 420 | offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr)); |
| 421 | memcpy(&iph->saddr, &fl4->saddr, |
| 422 | sizeof(fl4->saddr) + sizeof(fl4->daddr)); |
| 423 | } |
| 424 | |
| 425 | /* Note: skb->sk can be different from sk, in case of tunnels */ |
| 426 | int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl, |
| 427 | __u8 tos) |
| 428 | { |
| 429 | struct inet_sock *inet = inet_sk(sk); |
| 430 | struct net *net = sock_net(sk); |
| 431 | struct ip_options_rcu *inet_opt; |
| 432 | struct flowi4 *fl4; |
| 433 | struct rtable *rt; |
| 434 | struct iphdr *iph; |
| 435 | int res; |
| 436 | |
| 437 | /* Skip all of this if the packet is already routed, |
| 438 | * f.e. by something like SCTP. |
| 439 | */ |
| 440 | rcu_read_lock(); |
| 441 | inet_opt = rcu_dereference(inet->inet_opt); |
| 442 | fl4 = &fl->u.ip4; |
| 443 | rt = skb_rtable(skb); |
| 444 | if (rt) |
| 445 | goto packet_routed; |
| 446 | |
| 447 | /* Make sure we can route this packet. */ |
| 448 | rt = (struct rtable *)__sk_dst_check(sk, 0); |
| 449 | if (!rt) { |
| 450 | __be32 daddr; |
| 451 | |
| 452 | /* Use correct destination address if we have options. */ |
| 453 | daddr = inet->inet_daddr; |
| 454 | if (inet_opt && inet_opt->opt.srr) |
| 455 | daddr = inet_opt->opt.faddr; |
| 456 | |
| 457 | /* If this fails, retransmit mechanism of transport layer will |
| 458 | * keep trying until route appears or the connection times |
| 459 | * itself out. |
| 460 | */ |
| 461 | rt = ip_route_output_ports(net, fl4, sk, |
| 462 | daddr, inet->inet_saddr, |
| 463 | inet->inet_dport, |
| 464 | inet->inet_sport, |
| 465 | sk->sk_protocol, |
| 466 | RT_CONN_FLAGS_TOS(sk, tos), |
| 467 | sk->sk_bound_dev_if); |
| 468 | if (IS_ERR(rt)) |
| 469 | goto no_route; |
| 470 | sk_setup_caps(sk, &rt->dst); |
| 471 | } |
| 472 | skb_dst_set_noref(skb, &rt->dst); |
| 473 | |
| 474 | packet_routed: |
| 475 | if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway) |
| 476 | goto no_route; |
| 477 | |
| 478 | /* OK, we know where to send it, allocate and build IP header. */ |
| 479 | skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0)); |
| 480 | skb_reset_network_header(skb); |
| 481 | iph = ip_hdr(skb); |
| 482 | *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff)); |
| 483 | if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df) |
| 484 | iph->frag_off = htons(IP_DF); |
| 485 | else |
| 486 | iph->frag_off = 0; |
| 487 | iph->ttl = ip_select_ttl(inet, &rt->dst); |
| 488 | iph->protocol = sk->sk_protocol; |
| 489 | ip_copy_addrs(iph, fl4); |
| 490 | |
| 491 | /* Transport layer set skb->h.foo itself. */ |
| 492 | |
| 493 | if (inet_opt && inet_opt->opt.optlen) { |
| 494 | iph->ihl += inet_opt->opt.optlen >> 2; |
| 495 | ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0); |
| 496 | } |
| 497 | |
| 498 | ip_select_ident_segs(net, skb, sk, |
| 499 | skb_shinfo(skb)->gso_segs ?: 1); |
| 500 | |
| 501 | /* TODO : should we use skb->sk here instead of sk ? */ |
| 502 | skb->priority = sk->sk_priority; |
| 503 | skb->mark = sk->sk_mark; |
| 504 | |
| 505 | res = ip_local_out(net, sk, skb); |
| 506 | rcu_read_unlock(); |
| 507 | return res; |
| 508 | |
| 509 | no_route: |
| 510 | rcu_read_unlock(); |
| 511 | IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); |
| 512 | kfree_skb(skb); |
| 513 | return -EHOSTUNREACH; |
| 514 | } |
| 515 | EXPORT_SYMBOL(__ip_queue_xmit); |
| 516 | |
| 517 | static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from) |
| 518 | { |
| 519 | to->pkt_type = from->pkt_type; |
| 520 | to->priority = from->priority; |
| 521 | to->protocol = from->protocol; |
| 522 | skb_dst_drop(to); |
| 523 | skb_dst_copy(to, from); |
| 524 | to->dev = from->dev; |
| 525 | to->mark = from->mark; |
| 526 | |
| 527 | skb_copy_hash(to, from); |
| 528 | |
| 529 | /* Copy the flags to each fragment. */ |
| 530 | IPCB(to)->flags = IPCB(from)->flags; |
| 531 | |
| 532 | #ifdef CONFIG_NET_SCHED |
| 533 | to->tc_index = from->tc_index; |
| 534 | #endif |
| 535 | nf_copy(to, from); |
| 536 | #if IS_ENABLED(CONFIG_IP_VS) |
| 537 | to->ipvs_property = from->ipvs_property; |
| 538 | #endif |
| 539 | skb_copy_secmark(to, from); |
| 540 | } |
| 541 | |
| 542 | static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
| 543 | unsigned int mtu, |
| 544 | int (*output)(struct net *, struct sock *, struct sk_buff *)) |
| 545 | { |
| 546 | struct iphdr *iph = ip_hdr(skb); |
| 547 | |
| 548 | if ((iph->frag_off & htons(IP_DF)) == 0) |
| 549 | return ip_do_fragment(net, sk, skb, output); |
| 550 | |
| 551 | if (unlikely(!skb->ignore_df || |
| 552 | (IPCB(skb)->frag_max_size && |
| 553 | IPCB(skb)->frag_max_size > mtu))) { |
| 554 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
| 555 | icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED, |
| 556 | htonl(mtu)); |
| 557 | kfree_skb(skb); |
| 558 | return -EMSGSIZE; |
| 559 | } |
| 560 | |
| 561 | return ip_do_fragment(net, sk, skb, output); |
| 562 | } |
| 563 | |
| 564 | /* |
| 565 | * This IP datagram is too large to be sent in one piece. Break it up into |
| 566 | * smaller pieces (each of size equal to IP header plus |
| 567 | * a block of the data of the original IP data part) that will yet fit in a |
| 568 | * single device frame, and queue such a frame for sending. |
| 569 | */ |
| 570 | |
| 571 | int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb, |
| 572 | int (*output)(struct net *, struct sock *, struct sk_buff *)) |
| 573 | { |
| 574 | struct iphdr *iph; |
| 575 | int ptr; |
| 576 | struct sk_buff *skb2; |
| 577 | unsigned int mtu, hlen, left, len, ll_rs; |
| 578 | int offset; |
| 579 | __be16 not_last_frag; |
| 580 | struct rtable *rt = skb_rtable(skb); |
| 581 | int err = 0; |
| 582 | |
| 583 | /* for offloaded checksums cleanup checksum before fragmentation */ |
| 584 | if (skb->ip_summed == CHECKSUM_PARTIAL && |
| 585 | (err = skb_checksum_help(skb))) |
| 586 | goto fail; |
| 587 | |
| 588 | /* |
| 589 | * Point into the IP datagram header. |
| 590 | */ |
| 591 | |
| 592 | iph = ip_hdr(skb); |
| 593 | |
| 594 | mtu = ip_skb_dst_mtu(sk, skb); |
| 595 | if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu) |
| 596 | mtu = IPCB(skb)->frag_max_size; |
| 597 | |
| 598 | /* |
| 599 | * Setup starting values. |
| 600 | */ |
| 601 | |
| 602 | hlen = iph->ihl * 4; |
| 603 | mtu = mtu - hlen; /* Size of data space */ |
| 604 | IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE; |
| 605 | ll_rs = LL_RESERVED_SPACE(rt->dst.dev); |
| 606 | |
| 607 | /* When frag_list is given, use it. First, check its validity: |
| 608 | * some transformers could create wrong frag_list or break existing |
| 609 | * one, it is not prohibited. In this case fall back to copying. |
| 610 | * |
| 611 | * LATER: this step can be merged to real generation of fragments, |
| 612 | * we can switch to copy when see the first bad fragment. |
| 613 | */ |
| 614 | if (skb_has_frag_list(skb)) { |
| 615 | struct sk_buff *frag, *frag2; |
| 616 | unsigned int first_len = skb_pagelen(skb); |
| 617 | |
| 618 | if (first_len - hlen > mtu || |
| 619 | ((first_len - hlen) & 7) || |
| 620 | ip_is_fragment(iph) || |
| 621 | skb_cloned(skb) || |
| 622 | skb_headroom(skb) < ll_rs) |
| 623 | goto slow_path; |
| 624 | |
| 625 | skb_walk_frags(skb, frag) { |
| 626 | /* Correct geometry. */ |
| 627 | if (frag->len > mtu || |
| 628 | ((frag->len & 7) && frag->next) || |
| 629 | skb_headroom(frag) < hlen + ll_rs) |
| 630 | goto slow_path_clean; |
| 631 | |
| 632 | /* Partially cloned skb? */ |
| 633 | if (skb_shared(frag)) |
| 634 | goto slow_path_clean; |
| 635 | |
| 636 | BUG_ON(frag->sk); |
| 637 | if (skb->sk) { |
| 638 | frag->sk = skb->sk; |
| 639 | frag->destructor = sock_wfree; |
| 640 | } |
| 641 | skb->truesize -= frag->truesize; |
| 642 | } |
| 643 | |
| 644 | /* Everything is OK. Generate! */ |
| 645 | |
| 646 | err = 0; |
| 647 | offset = 0; |
| 648 | frag = skb_shinfo(skb)->frag_list; |
| 649 | skb_frag_list_init(skb); |
| 650 | skb->data_len = first_len - skb_headlen(skb); |
| 651 | skb->len = first_len; |
| 652 | iph->tot_len = htons(first_len); |
| 653 | iph->frag_off = htons(IP_MF); |
| 654 | ip_send_check(iph); |
| 655 | |
| 656 | for (;;) { |
| 657 | /* Prepare header of the next frame, |
| 658 | * before previous one went down. */ |
| 659 | if (frag) { |
| 660 | frag->ip_summed = CHECKSUM_NONE; |
| 661 | skb_reset_transport_header(frag); |
| 662 | __skb_push(frag, hlen); |
| 663 | skb_reset_network_header(frag); |
| 664 | memcpy(skb_network_header(frag), iph, hlen); |
| 665 | iph = ip_hdr(frag); |
| 666 | iph->tot_len = htons(frag->len); |
| 667 | ip_copy_metadata(frag, skb); |
| 668 | if (offset == 0) |
| 669 | ip_options_fragment(frag); |
| 670 | offset += skb->len - hlen; |
| 671 | iph->frag_off = htons(offset>>3); |
| 672 | if (frag->next) |
| 673 | iph->frag_off |= htons(IP_MF); |
| 674 | /* Ready, complete checksum */ |
| 675 | ip_send_check(iph); |
| 676 | } |
| 677 | |
| 678 | err = output(net, sk, skb); |
| 679 | |
| 680 | if (!err) |
| 681 | IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); |
| 682 | if (err || !frag) |
| 683 | break; |
| 684 | |
| 685 | skb = frag; |
| 686 | frag = skb->next; |
| 687 | skb->next = NULL; |
| 688 | } |
| 689 | |
| 690 | if (err == 0) { |
| 691 | IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); |
| 692 | return 0; |
| 693 | } |
| 694 | |
| 695 | while (frag) { |
| 696 | skb = frag->next; |
| 697 | kfree_skb(frag); |
| 698 | frag = skb; |
| 699 | } |
| 700 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
| 701 | return err; |
| 702 | |
| 703 | slow_path_clean: |
| 704 | skb_walk_frags(skb, frag2) { |
| 705 | if (frag2 == frag) |
| 706 | break; |
| 707 | frag2->sk = NULL; |
| 708 | frag2->destructor = NULL; |
| 709 | skb->truesize += frag2->truesize; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | slow_path: |
| 714 | iph = ip_hdr(skb); |
| 715 | |
| 716 | left = skb->len - hlen; /* Space per frame */ |
| 717 | ptr = hlen; /* Where to start from */ |
| 718 | |
| 719 | /* |
| 720 | * Fragment the datagram. |
| 721 | */ |
| 722 | |
| 723 | offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3; |
| 724 | not_last_frag = iph->frag_off & htons(IP_MF); |
| 725 | |
| 726 | /* |
| 727 | * Keep copying data until we run out. |
| 728 | */ |
| 729 | |
| 730 | while (left > 0) { |
| 731 | len = left; |
| 732 | /* IF: it doesn't fit, use 'mtu' - the data space left */ |
| 733 | if (len > mtu) |
| 734 | len = mtu; |
| 735 | /* IF: we are not sending up to and including the packet end |
| 736 | then align the next start on an eight byte boundary */ |
| 737 | if (len < left) { |
| 738 | len &= ~7; |
| 739 | } |
| 740 | |
| 741 | /* Allocate buffer */ |
| 742 | skb2 = alloc_skb(len + hlen + ll_rs, GFP_ATOMIC); |
| 743 | if (!skb2) { |
| 744 | err = -ENOMEM; |
| 745 | goto fail; |
| 746 | } |
| 747 | |
| 748 | /* |
| 749 | * Set up data on packet |
| 750 | */ |
| 751 | |
| 752 | ip_copy_metadata(skb2, skb); |
| 753 | skb_reserve(skb2, ll_rs); |
| 754 | skb_put(skb2, len + hlen); |
| 755 | skb_reset_network_header(skb2); |
| 756 | skb2->transport_header = skb2->network_header + hlen; |
| 757 | |
| 758 | /* |
| 759 | * Charge the memory for the fragment to any owner |
| 760 | * it might possess |
| 761 | */ |
| 762 | |
| 763 | if (skb->sk) |
| 764 | skb_set_owner_w(skb2, skb->sk); |
| 765 | |
| 766 | /* |
| 767 | * Copy the packet header into the new buffer. |
| 768 | */ |
| 769 | |
| 770 | skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen); |
| 771 | |
| 772 | /* |
| 773 | * Copy a block of the IP datagram. |
| 774 | */ |
| 775 | if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len)) |
| 776 | BUG(); |
| 777 | left -= len; |
| 778 | |
| 779 | /* |
| 780 | * Fill in the new header fields. |
| 781 | */ |
| 782 | iph = ip_hdr(skb2); |
| 783 | iph->frag_off = htons((offset >> 3)); |
| 784 | |
| 785 | if (IPCB(skb)->flags & IPSKB_FRAG_PMTU) |
| 786 | iph->frag_off |= htons(IP_DF); |
| 787 | |
| 788 | /* ANK: dirty, but effective trick. Upgrade options only if |
| 789 | * the segment to be fragmented was THE FIRST (otherwise, |
| 790 | * options are already fixed) and make it ONCE |
| 791 | * on the initial skb, so that all the following fragments |
| 792 | * will inherit fixed options. |
| 793 | */ |
| 794 | if (offset == 0) |
| 795 | ip_options_fragment(skb); |
| 796 | |
| 797 | /* |
| 798 | * Added AC : If we are fragmenting a fragment that's not the |
| 799 | * last fragment then keep MF on each bit |
| 800 | */ |
| 801 | if (left > 0 || not_last_frag) |
| 802 | iph->frag_off |= htons(IP_MF); |
| 803 | ptr += len; |
| 804 | offset += len; |
| 805 | |
| 806 | /* |
| 807 | * Put this fragment into the sending queue. |
| 808 | */ |
| 809 | iph->tot_len = htons(len + hlen); |
| 810 | |
| 811 | ip_send_check(iph); |
| 812 | |
| 813 | err = output(net, sk, skb2); |
| 814 | if (err) |
| 815 | goto fail; |
| 816 | |
| 817 | IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES); |
| 818 | } |
| 819 | consume_skb(skb); |
| 820 | IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS); |
| 821 | return err; |
| 822 | |
| 823 | fail: |
| 824 | kfree_skb(skb); |
| 825 | IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS); |
| 826 | return err; |
| 827 | } |
| 828 | EXPORT_SYMBOL(ip_do_fragment); |
| 829 | |
| 830 | int |
| 831 | ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb) |
| 832 | { |
| 833 | struct msghdr *msg = from; |
| 834 | |
| 835 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| 836 | if (!copy_from_iter_full(to, len, &msg->msg_iter)) |
| 837 | return -EFAULT; |
| 838 | } else { |
| 839 | __wsum csum = 0; |
| 840 | if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter)) |
| 841 | return -EFAULT; |
| 842 | skb->csum = csum_block_add(skb->csum, csum, odd); |
| 843 | } |
| 844 | return 0; |
| 845 | } |
| 846 | EXPORT_SYMBOL(ip_generic_getfrag); |
| 847 | |
| 848 | static inline __wsum |
| 849 | csum_page(struct page *page, int offset, int copy) |
| 850 | { |
| 851 | char *kaddr; |
| 852 | __wsum csum; |
| 853 | kaddr = kmap(page); |
| 854 | csum = csum_partial(kaddr + offset, copy, 0); |
| 855 | kunmap(page); |
| 856 | return csum; |
| 857 | } |
| 858 | |
| 859 | static int __ip_append_data(struct sock *sk, |
| 860 | struct flowi4 *fl4, |
| 861 | struct sk_buff_head *queue, |
| 862 | struct inet_cork *cork, |
| 863 | struct page_frag *pfrag, |
| 864 | int getfrag(void *from, char *to, int offset, |
| 865 | int len, int odd, struct sk_buff *skb), |
| 866 | void *from, int length, int transhdrlen, |
| 867 | unsigned int flags) |
| 868 | { |
| 869 | struct inet_sock *inet = inet_sk(sk); |
| 870 | struct sk_buff *skb; |
| 871 | |
| 872 | struct ip_options *opt = cork->opt; |
| 873 | int hh_len; |
| 874 | int exthdrlen; |
| 875 | int mtu; |
| 876 | int copy; |
| 877 | int err; |
| 878 | int offset = 0; |
| 879 | unsigned int maxfraglen, fragheaderlen, maxnonfragsize; |
| 880 | int csummode = CHECKSUM_NONE; |
| 881 | struct rtable *rt = (struct rtable *)cork->dst; |
| 882 | unsigned int wmem_alloc_delta = 0; |
| 883 | u32 tskey = 0; |
| 884 | bool paged; |
| 885 | |
| 886 | skb = skb_peek_tail(queue); |
| 887 | |
| 888 | exthdrlen = !skb ? rt->dst.header_len : 0; |
| 889 | mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; |
| 890 | paged = !!cork->gso_size; |
| 891 | |
| 892 | if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP && |
| 893 | sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) |
| 894 | tskey = sk->sk_tskey++; |
| 895 | |
| 896 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); |
| 897 | |
| 898 | fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); |
| 899 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; |
| 900 | maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; |
| 901 | |
| 902 | if (cork->length + length > maxnonfragsize - fragheaderlen) { |
| 903 | ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, |
| 904 | mtu - (opt ? opt->optlen : 0)); |
| 905 | return -EMSGSIZE; |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * transhdrlen > 0 means that this is the first fragment and we wish |
| 910 | * it won't be fragmented in the future. |
| 911 | */ |
| 912 | if (transhdrlen && |
| 913 | length + fragheaderlen <= mtu && |
| 914 | rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) && |
| 915 | (!(flags & MSG_MORE) || cork->gso_size) && |
| 916 | (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM))) |
| 917 | csummode = CHECKSUM_PARTIAL; |
| 918 | |
| 919 | cork->length += length; |
| 920 | |
| 921 | /* So, what's going on in the loop below? |
| 922 | * |
| 923 | * We use calculated fragment length to generate chained skb, |
| 924 | * each of segments is IP fragment ready for sending to network after |
| 925 | * adding appropriate IP header. |
| 926 | */ |
| 927 | |
| 928 | if (!skb) |
| 929 | goto alloc_new_skb; |
| 930 | |
| 931 | while (length > 0) { |
| 932 | /* Check if the remaining data fits into current packet. */ |
| 933 | copy = mtu - skb->len; |
| 934 | if (copy < length) |
| 935 | copy = maxfraglen - skb->len; |
| 936 | if (copy <= 0) { |
| 937 | char *data; |
| 938 | unsigned int datalen; |
| 939 | unsigned int fraglen; |
| 940 | unsigned int fraggap; |
| 941 | unsigned int alloclen; |
| 942 | unsigned int pagedlen = 0; |
| 943 | struct sk_buff *skb_prev; |
| 944 | alloc_new_skb: |
| 945 | skb_prev = skb; |
| 946 | if (skb_prev) |
| 947 | fraggap = skb_prev->len - maxfraglen; |
| 948 | else |
| 949 | fraggap = 0; |
| 950 | |
| 951 | /* |
| 952 | * If remaining data exceeds the mtu, |
| 953 | * we know we need more fragment(s). |
| 954 | */ |
| 955 | datalen = length + fraggap; |
| 956 | if (datalen > mtu - fragheaderlen) |
| 957 | datalen = maxfraglen - fragheaderlen; |
| 958 | fraglen = datalen + fragheaderlen; |
| 959 | |
| 960 | if ((flags & MSG_MORE) && |
| 961 | !(rt->dst.dev->features&NETIF_F_SG)) |
| 962 | alloclen = mtu; |
| 963 | else if (!paged) |
| 964 | alloclen = fraglen; |
| 965 | else { |
| 966 | alloclen = min_t(int, fraglen, MAX_HEADER); |
| 967 | pagedlen = fraglen - alloclen; |
| 968 | } |
| 969 | |
| 970 | alloclen += exthdrlen; |
| 971 | |
| 972 | /* The last fragment gets additional space at tail. |
| 973 | * Note, with MSG_MORE we overallocate on fragments, |
| 974 | * because we have no idea what fragment will be |
| 975 | * the last. |
| 976 | */ |
| 977 | if (datalen == length + fraggap) |
| 978 | alloclen += rt->dst.trailer_len; |
| 979 | |
| 980 | if (transhdrlen) { |
| 981 | skb = sock_alloc_send_skb(sk, |
| 982 | alloclen + hh_len + 15, |
| 983 | (flags & MSG_DONTWAIT), &err); |
| 984 | } else { |
| 985 | skb = NULL; |
| 986 | if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <= |
| 987 | 2 * sk->sk_sndbuf) |
| 988 | skb = alloc_skb(alloclen + hh_len + 15, |
| 989 | sk->sk_allocation); |
| 990 | if (unlikely(!skb)) |
| 991 | err = -ENOBUFS; |
| 992 | } |
| 993 | if (!skb) |
| 994 | goto error; |
| 995 | |
| 996 | /* |
| 997 | * Fill in the control structures |
| 998 | */ |
| 999 | skb->ip_summed = csummode; |
| 1000 | skb->csum = 0; |
| 1001 | skb_reserve(skb, hh_len); |
| 1002 | |
| 1003 | /* only the initial fragment is time stamped */ |
| 1004 | skb_shinfo(skb)->tx_flags = cork->tx_flags; |
| 1005 | cork->tx_flags = 0; |
| 1006 | skb_shinfo(skb)->tskey = tskey; |
| 1007 | tskey = 0; |
| 1008 | |
| 1009 | /* |
| 1010 | * Find where to start putting bytes. |
| 1011 | */ |
| 1012 | data = skb_put(skb, fraglen + exthdrlen - pagedlen); |
| 1013 | skb_set_network_header(skb, exthdrlen); |
| 1014 | skb->transport_header = (skb->network_header + |
| 1015 | fragheaderlen); |
| 1016 | data += fragheaderlen + exthdrlen; |
| 1017 | |
| 1018 | if (fraggap) { |
| 1019 | skb->csum = skb_copy_and_csum_bits( |
| 1020 | skb_prev, maxfraglen, |
| 1021 | data + transhdrlen, fraggap, 0); |
| 1022 | skb_prev->csum = csum_sub(skb_prev->csum, |
| 1023 | skb->csum); |
| 1024 | data += fraggap; |
| 1025 | pskb_trim_unique(skb_prev, maxfraglen); |
| 1026 | } |
| 1027 | |
| 1028 | copy = datalen - transhdrlen - fraggap - pagedlen; |
| 1029 | if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) { |
| 1030 | err = -EFAULT; |
| 1031 | kfree_skb(skb); |
| 1032 | goto error; |
| 1033 | } |
| 1034 | |
| 1035 | offset += copy; |
| 1036 | length -= copy + transhdrlen; |
| 1037 | transhdrlen = 0; |
| 1038 | exthdrlen = 0; |
| 1039 | csummode = CHECKSUM_NONE; |
| 1040 | |
| 1041 | if ((flags & MSG_CONFIRM) && !skb_prev) |
| 1042 | skb_set_dst_pending_confirm(skb, 1); |
| 1043 | |
| 1044 | /* |
| 1045 | * Put the packet on the pending queue. |
| 1046 | */ |
| 1047 | if (!skb->destructor) { |
| 1048 | skb->destructor = sock_wfree; |
| 1049 | skb->sk = sk; |
| 1050 | wmem_alloc_delta += skb->truesize; |
| 1051 | } |
| 1052 | __skb_queue_tail(queue, skb); |
| 1053 | continue; |
| 1054 | } |
| 1055 | |
| 1056 | if (copy > length) |
| 1057 | copy = length; |
| 1058 | |
| 1059 | if (!(rt->dst.dev->features&NETIF_F_SG) && |
| 1060 | skb_tailroom(skb) >= copy) { |
| 1061 | unsigned int off; |
| 1062 | |
| 1063 | off = skb->len; |
| 1064 | if (getfrag(from, skb_put(skb, copy), |
| 1065 | offset, copy, off, skb) < 0) { |
| 1066 | __skb_trim(skb, off); |
| 1067 | err = -EFAULT; |
| 1068 | goto error; |
| 1069 | } |
| 1070 | } else { |
| 1071 | int i = skb_shinfo(skb)->nr_frags; |
| 1072 | |
| 1073 | err = -ENOMEM; |
| 1074 | if (!sk_page_frag_refill(sk, pfrag)) |
| 1075 | goto error; |
| 1076 | |
| 1077 | if (!skb_can_coalesce(skb, i, pfrag->page, |
| 1078 | pfrag->offset)) { |
| 1079 | err = -EMSGSIZE; |
| 1080 | if (i == MAX_SKB_FRAGS) |
| 1081 | goto error; |
| 1082 | |
| 1083 | __skb_fill_page_desc(skb, i, pfrag->page, |
| 1084 | pfrag->offset, 0); |
| 1085 | skb_shinfo(skb)->nr_frags = ++i; |
| 1086 | get_page(pfrag->page); |
| 1087 | } |
| 1088 | copy = min_t(int, copy, pfrag->size - pfrag->offset); |
| 1089 | if (getfrag(from, |
| 1090 | page_address(pfrag->page) + pfrag->offset, |
| 1091 | offset, copy, skb->len, skb) < 0) |
| 1092 | goto error_efault; |
| 1093 | |
| 1094 | pfrag->offset += copy; |
| 1095 | skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy); |
| 1096 | skb->len += copy; |
| 1097 | skb->data_len += copy; |
| 1098 | skb->truesize += copy; |
| 1099 | wmem_alloc_delta += copy; |
| 1100 | } |
| 1101 | offset += copy; |
| 1102 | length -= copy; |
| 1103 | } |
| 1104 | |
| 1105 | if (wmem_alloc_delta) |
| 1106 | refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); |
| 1107 | return 0; |
| 1108 | |
| 1109 | error_efault: |
| 1110 | err = -EFAULT; |
| 1111 | error: |
| 1112 | cork->length -= length; |
| 1113 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); |
| 1114 | refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc); |
| 1115 | return err; |
| 1116 | } |
| 1117 | |
| 1118 | static int ip_setup_cork(struct sock *sk, struct inet_cork *cork, |
| 1119 | struct ipcm_cookie *ipc, struct rtable **rtp) |
| 1120 | { |
| 1121 | struct ip_options_rcu *opt; |
| 1122 | struct rtable *rt; |
| 1123 | |
| 1124 | rt = *rtp; |
| 1125 | if (unlikely(!rt)) |
| 1126 | return -EFAULT; |
| 1127 | |
| 1128 | /* |
| 1129 | * setup for corking. |
| 1130 | */ |
| 1131 | opt = ipc->opt; |
| 1132 | if (opt) { |
| 1133 | if (!cork->opt) { |
| 1134 | cork->opt = kmalloc(sizeof(struct ip_options) + 40, |
| 1135 | sk->sk_allocation); |
| 1136 | if (unlikely(!cork->opt)) |
| 1137 | return -ENOBUFS; |
| 1138 | } |
| 1139 | memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen); |
| 1140 | cork->flags |= IPCORK_OPT; |
| 1141 | cork->addr = ipc->addr; |
| 1142 | } |
| 1143 | |
| 1144 | /* |
| 1145 | * We steal reference to this route, caller should not release it |
| 1146 | */ |
| 1147 | *rtp = NULL; |
| 1148 | cork->fragsize = ip_sk_use_pmtu(sk) ? |
| 1149 | dst_mtu(&rt->dst) : rt->dst.dev->mtu; |
| 1150 | |
| 1151 | cork->gso_size = ipc->gso_size; |
| 1152 | cork->dst = &rt->dst; |
| 1153 | cork->length = 0; |
| 1154 | cork->ttl = ipc->ttl; |
| 1155 | cork->tos = ipc->tos; |
| 1156 | cork->priority = ipc->priority; |
| 1157 | cork->transmit_time = ipc->sockc.transmit_time; |
| 1158 | cork->tx_flags = 0; |
| 1159 | sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags); |
| 1160 | |
| 1161 | return 0; |
| 1162 | } |
| 1163 | |
| 1164 | /* |
| 1165 | * ip_append_data() and ip_append_page() can make one large IP datagram |
| 1166 | * from many pieces of data. Each pieces will be holded on the socket |
| 1167 | * until ip_push_pending_frames() is called. Each piece can be a page |
| 1168 | * or non-page data. |
| 1169 | * |
| 1170 | * Not only UDP, other transport protocols - e.g. raw sockets - can use |
| 1171 | * this interface potentially. |
| 1172 | * |
| 1173 | * LATER: length must be adjusted by pad at tail, when it is required. |
| 1174 | */ |
| 1175 | int ip_append_data(struct sock *sk, struct flowi4 *fl4, |
| 1176 | int getfrag(void *from, char *to, int offset, int len, |
| 1177 | int odd, struct sk_buff *skb), |
| 1178 | void *from, int length, int transhdrlen, |
| 1179 | struct ipcm_cookie *ipc, struct rtable **rtp, |
| 1180 | unsigned int flags) |
| 1181 | { |
| 1182 | struct inet_sock *inet = inet_sk(sk); |
| 1183 | int err; |
| 1184 | |
| 1185 | if (flags&MSG_PROBE) |
| 1186 | return 0; |
| 1187 | |
| 1188 | if (skb_queue_empty(&sk->sk_write_queue)) { |
| 1189 | err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp); |
| 1190 | if (err) |
| 1191 | return err; |
| 1192 | } else { |
| 1193 | transhdrlen = 0; |
| 1194 | } |
| 1195 | |
| 1196 | return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base, |
| 1197 | sk_page_frag(sk), getfrag, |
| 1198 | from, length, transhdrlen, flags); |
| 1199 | } |
| 1200 | |
| 1201 | ssize_t ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page, |
| 1202 | int offset, size_t size, int flags) |
| 1203 | { |
| 1204 | struct inet_sock *inet = inet_sk(sk); |
| 1205 | struct sk_buff *skb; |
| 1206 | struct rtable *rt; |
| 1207 | struct ip_options *opt = NULL; |
| 1208 | struct inet_cork *cork; |
| 1209 | int hh_len; |
| 1210 | int mtu; |
| 1211 | int len; |
| 1212 | int err; |
| 1213 | unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize; |
| 1214 | |
| 1215 | if (inet->hdrincl) |
| 1216 | return -EPERM; |
| 1217 | |
| 1218 | if (flags&MSG_PROBE) |
| 1219 | return 0; |
| 1220 | |
| 1221 | if (skb_queue_empty(&sk->sk_write_queue)) |
| 1222 | return -EINVAL; |
| 1223 | |
| 1224 | cork = &inet->cork.base; |
| 1225 | rt = (struct rtable *)cork->dst; |
| 1226 | if (cork->flags & IPCORK_OPT) |
| 1227 | opt = cork->opt; |
| 1228 | |
| 1229 | if (!(rt->dst.dev->features&NETIF_F_SG)) |
| 1230 | return -EOPNOTSUPP; |
| 1231 | |
| 1232 | hh_len = LL_RESERVED_SPACE(rt->dst.dev); |
| 1233 | mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize; |
| 1234 | |
| 1235 | fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0); |
| 1236 | maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen; |
| 1237 | maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu; |
| 1238 | |
| 1239 | if (cork->length + size > maxnonfragsize - fragheaderlen) { |
| 1240 | ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport, |
| 1241 | mtu - (opt ? opt->optlen : 0)); |
| 1242 | return -EMSGSIZE; |
| 1243 | } |
| 1244 | |
| 1245 | skb = skb_peek_tail(&sk->sk_write_queue); |
| 1246 | if (!skb) |
| 1247 | return -EINVAL; |
| 1248 | |
| 1249 | cork->length += size; |
| 1250 | |
| 1251 | while (size > 0) { |
| 1252 | /* Check if the remaining data fits into current packet. */ |
| 1253 | len = mtu - skb->len; |
| 1254 | if (len < size) |
| 1255 | len = maxfraglen - skb->len; |
| 1256 | |
| 1257 | if (len <= 0) { |
| 1258 | struct sk_buff *skb_prev; |
| 1259 | int alloclen; |
| 1260 | |
| 1261 | skb_prev = skb; |
| 1262 | fraggap = skb_prev->len - maxfraglen; |
| 1263 | |
| 1264 | alloclen = fragheaderlen + hh_len + fraggap + 15; |
| 1265 | skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation); |
| 1266 | if (unlikely(!skb)) { |
| 1267 | err = -ENOBUFS; |
| 1268 | goto error; |
| 1269 | } |
| 1270 | |
| 1271 | /* |
| 1272 | * Fill in the control structures |
| 1273 | */ |
| 1274 | skb->ip_summed = CHECKSUM_NONE; |
| 1275 | skb->csum = 0; |
| 1276 | skb_reserve(skb, hh_len); |
| 1277 | |
| 1278 | /* |
| 1279 | * Find where to start putting bytes. |
| 1280 | */ |
| 1281 | skb_put(skb, fragheaderlen + fraggap); |
| 1282 | skb_reset_network_header(skb); |
| 1283 | skb->transport_header = (skb->network_header + |
| 1284 | fragheaderlen); |
| 1285 | if (fraggap) { |
| 1286 | skb->csum = skb_copy_and_csum_bits(skb_prev, |
| 1287 | maxfraglen, |
| 1288 | skb_transport_header(skb), |
| 1289 | fraggap, 0); |
| 1290 | skb_prev->csum = csum_sub(skb_prev->csum, |
| 1291 | skb->csum); |
| 1292 | pskb_trim_unique(skb_prev, maxfraglen); |
| 1293 | } |
| 1294 | |
| 1295 | /* |
| 1296 | * Put the packet on the pending queue. |
| 1297 | */ |
| 1298 | __skb_queue_tail(&sk->sk_write_queue, skb); |
| 1299 | continue; |
| 1300 | } |
| 1301 | |
| 1302 | if (len > size) |
| 1303 | len = size; |
| 1304 | |
| 1305 | if (skb_append_pagefrags(skb, page, offset, len)) { |
| 1306 | err = -EMSGSIZE; |
| 1307 | goto error; |
| 1308 | } |
| 1309 | |
| 1310 | if (skb->ip_summed == CHECKSUM_NONE) { |
| 1311 | __wsum csum; |
| 1312 | csum = csum_page(page, offset, len); |
| 1313 | skb->csum = csum_block_add(skb->csum, csum, skb->len); |
| 1314 | } |
| 1315 | |
| 1316 | skb->len += len; |
| 1317 | skb->data_len += len; |
| 1318 | skb->truesize += len; |
| 1319 | refcount_add(len, &sk->sk_wmem_alloc); |
| 1320 | offset += len; |
| 1321 | size -= len; |
| 1322 | } |
| 1323 | return 0; |
| 1324 | |
| 1325 | error: |
| 1326 | cork->length -= size; |
| 1327 | IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS); |
| 1328 | return err; |
| 1329 | } |
| 1330 | |
| 1331 | static void ip_cork_release(struct inet_cork *cork) |
| 1332 | { |
| 1333 | cork->flags &= ~IPCORK_OPT; |
| 1334 | kfree(cork->opt); |
| 1335 | cork->opt = NULL; |
| 1336 | dst_release(cork->dst); |
| 1337 | cork->dst = NULL; |
| 1338 | } |
| 1339 | |
| 1340 | /* |
| 1341 | * Combined all pending IP fragments on the socket as one IP datagram |
| 1342 | * and push them out. |
| 1343 | */ |
| 1344 | struct sk_buff *__ip_make_skb(struct sock *sk, |
| 1345 | struct flowi4 *fl4, |
| 1346 | struct sk_buff_head *queue, |
| 1347 | struct inet_cork *cork) |
| 1348 | { |
| 1349 | struct sk_buff *skb, *tmp_skb; |
| 1350 | struct sk_buff **tail_skb; |
| 1351 | struct inet_sock *inet = inet_sk(sk); |
| 1352 | struct net *net = sock_net(sk); |
| 1353 | struct ip_options *opt = NULL; |
| 1354 | struct rtable *rt = (struct rtable *)cork->dst; |
| 1355 | struct iphdr *iph; |
| 1356 | __be16 df = 0; |
| 1357 | __u8 ttl; |
| 1358 | |
| 1359 | skb = __skb_dequeue(queue); |
| 1360 | if (!skb) |
| 1361 | goto out; |
| 1362 | tail_skb = &(skb_shinfo(skb)->frag_list); |
| 1363 | |
| 1364 | /* move skb->data to ip header from ext header */ |
| 1365 | if (skb->data < skb_network_header(skb)) |
| 1366 | __skb_pull(skb, skb_network_offset(skb)); |
| 1367 | while ((tmp_skb = __skb_dequeue(queue)) != NULL) { |
| 1368 | __skb_pull(tmp_skb, skb_network_header_len(skb)); |
| 1369 | *tail_skb = tmp_skb; |
| 1370 | tail_skb = &(tmp_skb->next); |
| 1371 | skb->len += tmp_skb->len; |
| 1372 | skb->data_len += tmp_skb->len; |
| 1373 | skb->truesize += tmp_skb->truesize; |
| 1374 | tmp_skb->destructor = NULL; |
| 1375 | tmp_skb->sk = NULL; |
| 1376 | } |
| 1377 | |
| 1378 | /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow |
| 1379 | * to fragment the frame generated here. No matter, what transforms |
| 1380 | * how transforms change size of the packet, it will come out. |
| 1381 | */ |
| 1382 | skb->ignore_df = ip_sk_ignore_df(sk); |
| 1383 | |
| 1384 | /* DF bit is set when we want to see DF on outgoing frames. |
| 1385 | * If ignore_df is set too, we still allow to fragment this frame |
| 1386 | * locally. */ |
| 1387 | if (inet->pmtudisc == IP_PMTUDISC_DO || |
| 1388 | inet->pmtudisc == IP_PMTUDISC_PROBE || |
| 1389 | (skb->len <= dst_mtu(&rt->dst) && |
| 1390 | ip_dont_fragment(sk, &rt->dst))) |
| 1391 | df = htons(IP_DF); |
| 1392 | |
| 1393 | if (cork->flags & IPCORK_OPT) |
| 1394 | opt = cork->opt; |
| 1395 | |
| 1396 | if (cork->ttl != 0) |
| 1397 | ttl = cork->ttl; |
| 1398 | else if (rt->rt_type == RTN_MULTICAST) |
| 1399 | ttl = inet->mc_ttl; |
| 1400 | else |
| 1401 | ttl = ip_select_ttl(inet, &rt->dst); |
| 1402 | |
| 1403 | iph = ip_hdr(skb); |
| 1404 | iph->version = 4; |
| 1405 | iph->ihl = 5; |
| 1406 | iph->tos = (cork->tos != -1) ? cork->tos : inet->tos; |
| 1407 | iph->frag_off = df; |
| 1408 | iph->ttl = ttl; |
| 1409 | iph->protocol = sk->sk_protocol; |
| 1410 | ip_copy_addrs(iph, fl4); |
| 1411 | ip_select_ident(net, skb, sk); |
| 1412 | |
| 1413 | if (opt) { |
| 1414 | iph->ihl += opt->optlen>>2; |
| 1415 | ip_options_build(skb, opt, cork->addr, rt, 0); |
| 1416 | } |
| 1417 | |
| 1418 | skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority; |
| 1419 | skb->mark = sk->sk_mark; |
| 1420 | skb->tstamp = cork->transmit_time; |
| 1421 | /* |
| 1422 | * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec |
| 1423 | * on dst refcount |
| 1424 | */ |
| 1425 | cork->dst = NULL; |
| 1426 | skb_dst_set(skb, &rt->dst); |
| 1427 | |
| 1428 | if (iph->protocol == IPPROTO_ICMP) |
| 1429 | icmp_out_count(net, ((struct icmphdr *) |
| 1430 | skb_transport_header(skb))->type); |
| 1431 | |
| 1432 | ip_cork_release(cork); |
| 1433 | out: |
| 1434 | return skb; |
| 1435 | } |
| 1436 | |
| 1437 | int ip_send_skb(struct net *net, struct sk_buff *skb) |
| 1438 | { |
| 1439 | int err; |
| 1440 | |
| 1441 | err = ip_local_out(net, skb->sk, skb); |
| 1442 | if (err) { |
| 1443 | if (err > 0) |
| 1444 | err = net_xmit_errno(err); |
| 1445 | if (err) |
| 1446 | IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS); |
| 1447 | } |
| 1448 | |
| 1449 | return err; |
| 1450 | } |
| 1451 | |
| 1452 | int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4) |
| 1453 | { |
| 1454 | struct sk_buff *skb; |
| 1455 | |
| 1456 | skb = ip_finish_skb(sk, fl4); |
| 1457 | if (!skb) |
| 1458 | return 0; |
| 1459 | |
| 1460 | /* Netfilter gets whole the not fragmented skb. */ |
| 1461 | return ip_send_skb(sock_net(sk), skb); |
| 1462 | } |
| 1463 | |
| 1464 | /* |
| 1465 | * Throw away all pending data on the socket. |
| 1466 | */ |
| 1467 | static void __ip_flush_pending_frames(struct sock *sk, |
| 1468 | struct sk_buff_head *queue, |
| 1469 | struct inet_cork *cork) |
| 1470 | { |
| 1471 | struct sk_buff *skb; |
| 1472 | |
| 1473 | while ((skb = __skb_dequeue_tail(queue)) != NULL) |
| 1474 | kfree_skb(skb); |
| 1475 | |
| 1476 | ip_cork_release(cork); |
| 1477 | } |
| 1478 | |
| 1479 | void ip_flush_pending_frames(struct sock *sk) |
| 1480 | { |
| 1481 | __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base); |
| 1482 | } |
| 1483 | |
| 1484 | struct sk_buff *ip_make_skb(struct sock *sk, |
| 1485 | struct flowi4 *fl4, |
| 1486 | int getfrag(void *from, char *to, int offset, |
| 1487 | int len, int odd, struct sk_buff *skb), |
| 1488 | void *from, int length, int transhdrlen, |
| 1489 | struct ipcm_cookie *ipc, struct rtable **rtp, |
| 1490 | struct inet_cork *cork, unsigned int flags) |
| 1491 | { |
| 1492 | struct sk_buff_head queue; |
| 1493 | int err; |
| 1494 | |
| 1495 | if (flags & MSG_PROBE) |
| 1496 | return NULL; |
| 1497 | |
| 1498 | __skb_queue_head_init(&queue); |
| 1499 | |
| 1500 | cork->flags = 0; |
| 1501 | cork->addr = 0; |
| 1502 | cork->opt = NULL; |
| 1503 | err = ip_setup_cork(sk, cork, ipc, rtp); |
| 1504 | if (err) |
| 1505 | return ERR_PTR(err); |
| 1506 | |
| 1507 | err = __ip_append_data(sk, fl4, &queue, cork, |
| 1508 | ¤t->task_frag, getfrag, |
| 1509 | from, length, transhdrlen, flags); |
| 1510 | if (err) { |
| 1511 | __ip_flush_pending_frames(sk, &queue, cork); |
| 1512 | return ERR_PTR(err); |
| 1513 | } |
| 1514 | |
| 1515 | return __ip_make_skb(sk, fl4, &queue, cork); |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * Fetch data from kernel space and fill in checksum if needed. |
| 1520 | */ |
| 1521 | static int ip_reply_glue_bits(void *dptr, char *to, int offset, |
| 1522 | int len, int odd, struct sk_buff *skb) |
| 1523 | { |
| 1524 | __wsum csum; |
| 1525 | |
| 1526 | csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0); |
| 1527 | skb->csum = csum_block_add(skb->csum, csum, odd); |
| 1528 | return 0; |
| 1529 | } |
| 1530 | |
| 1531 | /* |
| 1532 | * Generic function to send a packet as reply to another packet. |
| 1533 | * Used to send some TCP resets/acks so far. |
| 1534 | */ |
| 1535 | void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb, |
| 1536 | const struct ip_options *sopt, |
| 1537 | __be32 daddr, __be32 saddr, |
| 1538 | const struct ip_reply_arg *arg, |
| 1539 | unsigned int len) |
| 1540 | { |
| 1541 | struct ip_options_data replyopts; |
| 1542 | struct ipcm_cookie ipc; |
| 1543 | struct flowi4 fl4; |
| 1544 | struct rtable *rt = skb_rtable(skb); |
| 1545 | struct net *net = sock_net(sk); |
| 1546 | struct sk_buff *nskb; |
| 1547 | int err; |
| 1548 | int oif; |
| 1549 | |
| 1550 | if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt)) |
| 1551 | return; |
| 1552 | |
| 1553 | ipcm_init(&ipc); |
| 1554 | ipc.addr = daddr; |
| 1555 | |
| 1556 | if (replyopts.opt.opt.optlen) { |
| 1557 | ipc.opt = &replyopts.opt; |
| 1558 | |
| 1559 | if (replyopts.opt.opt.srr) |
| 1560 | daddr = replyopts.opt.opt.faddr; |
| 1561 | } |
| 1562 | |
| 1563 | oif = arg->bound_dev_if; |
| 1564 | if (!oif && netif_index_is_l3_master(net, skb->skb_iif)) |
| 1565 | oif = skb->skb_iif; |
| 1566 | |
| 1567 | flowi4_init_output(&fl4, oif, |
| 1568 | IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark, |
| 1569 | RT_TOS(arg->tos), |
| 1570 | RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol, |
| 1571 | ip_reply_arg_flowi_flags(arg), |
| 1572 | daddr, saddr, |
| 1573 | tcp_hdr(skb)->source, tcp_hdr(skb)->dest, |
| 1574 | arg->uid); |
| 1575 | security_skb_classify_flow(skb, flowi4_to_flowi(&fl4)); |
| 1576 | rt = ip_route_output_key(net, &fl4); |
| 1577 | if (IS_ERR(rt)) |
| 1578 | return; |
| 1579 | |
| 1580 | inet_sk(sk)->tos = arg->tos; |
| 1581 | |
| 1582 | sk->sk_priority = skb->priority; |
| 1583 | sk->sk_protocol = ip_hdr(skb)->protocol; |
| 1584 | sk->sk_bound_dev_if = arg->bound_dev_if; |
| 1585 | sk->sk_sndbuf = sysctl_wmem_default; |
| 1586 | sk->sk_mark = fl4.flowi4_mark; |
| 1587 | err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base, |
| 1588 | len, 0, &ipc, &rt, MSG_DONTWAIT); |
| 1589 | if (unlikely(err)) { |
| 1590 | ip_flush_pending_frames(sk); |
| 1591 | goto out; |
| 1592 | } |
| 1593 | |
| 1594 | nskb = skb_peek(&sk->sk_write_queue); |
| 1595 | if (nskb) { |
| 1596 | if (arg->csumoffset >= 0) |
| 1597 | *((__sum16 *)skb_transport_header(nskb) + |
| 1598 | arg->csumoffset) = csum_fold(csum_add(nskb->csum, |
| 1599 | arg->csum)); |
| 1600 | nskb->ip_summed = CHECKSUM_NONE; |
| 1601 | ip_push_pending_frames(sk, &fl4); |
| 1602 | } |
| 1603 | out: |
| 1604 | ip_rt_put(rt); |
| 1605 | } |
| 1606 | |
| 1607 | void __init ip_init(void) |
| 1608 | { |
| 1609 | ip_rt_init(); |
| 1610 | inet_initpeers(); |
| 1611 | |
| 1612 | #if defined(CONFIG_IP_MULTICAST) |
| 1613 | igmp_mc_init(); |
| 1614 | #endif |
| 1615 | } |