Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* SPDX-License-Identifier: GPL-2.0 */ |
| 2 | #ifndef __LINUX_BITMAP_H |
| 3 | #define __LINUX_BITMAP_H |
| 4 | |
| 5 | #ifndef __ASSEMBLY__ |
| 6 | |
| 7 | #include <linux/types.h> |
| 8 | #include <linux/bitops.h> |
| 9 | #include <linux/string.h> |
| 10 | #include <linux/kernel.h> |
| 11 | |
| 12 | /* |
| 13 | * bitmaps provide bit arrays that consume one or more unsigned |
| 14 | * longs. The bitmap interface and available operations are listed |
| 15 | * here, in bitmap.h |
| 16 | * |
| 17 | * Function implementations generic to all architectures are in |
| 18 | * lib/bitmap.c. Functions implementations that are architecture |
| 19 | * specific are in various include/asm-<arch>/bitops.h headers |
| 20 | * and other arch/<arch> specific files. |
| 21 | * |
| 22 | * See lib/bitmap.c for more details. |
| 23 | */ |
| 24 | |
| 25 | /** |
| 26 | * DOC: bitmap overview |
| 27 | * |
| 28 | * The available bitmap operations and their rough meaning in the |
| 29 | * case that the bitmap is a single unsigned long are thus: |
| 30 | * |
| 31 | * Note that nbits should be always a compile time evaluable constant. |
| 32 | * Otherwise many inlines will generate horrible code. |
| 33 | * |
| 34 | * :: |
| 35 | * |
| 36 | * bitmap_zero(dst, nbits) *dst = 0UL |
| 37 | * bitmap_fill(dst, nbits) *dst = ~0UL |
| 38 | * bitmap_copy(dst, src, nbits) *dst = *src |
| 39 | * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 |
| 40 | * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 |
| 41 | * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 |
| 42 | * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) |
| 43 | * bitmap_complement(dst, src, nbits) *dst = ~(*src) |
| 44 | * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? |
| 45 | * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? |
| 46 | * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? |
| 47 | * bitmap_empty(src, nbits) Are all bits zero in *src? |
| 48 | * bitmap_full(src, nbits) Are all bits set in *src? |
| 49 | * bitmap_weight(src, nbits) Hamming Weight: number set bits |
| 50 | * bitmap_set(dst, pos, nbits) Set specified bit area |
| 51 | * bitmap_clear(dst, pos, nbits) Clear specified bit area |
| 52 | * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area |
| 53 | * bitmap_find_next_zero_area_off(buf, len, pos, n, mask) as above |
| 54 | * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n |
| 55 | * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n |
| 56 | * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) |
| 57 | * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) |
| 58 | * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap |
| 59 | * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz |
| 60 | * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf |
| 61 | * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf |
| 62 | * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf |
| 63 | * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf |
| 64 | * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region |
| 65 | * bitmap_release_region(bitmap, pos, order) Free specified bit region |
| 66 | * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region |
| 67 | * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst |
| 68 | * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst |
| 69 | * |
| 70 | * Note, bitmap_zero() and bitmap_fill() operate over the region of |
| 71 | * unsigned longs, that is, bits behind bitmap till the unsigned long |
| 72 | * boundary will be zeroed or filled as well. Consider to use |
| 73 | * bitmap_clear() or bitmap_set() to make explicit zeroing or filling |
| 74 | * respectively. |
| 75 | */ |
| 76 | |
| 77 | /** |
| 78 | * DOC: bitmap bitops |
| 79 | * |
| 80 | * Also the following operations in asm/bitops.h apply to bitmaps.:: |
| 81 | * |
| 82 | * set_bit(bit, addr) *addr |= bit |
| 83 | * clear_bit(bit, addr) *addr &= ~bit |
| 84 | * change_bit(bit, addr) *addr ^= bit |
| 85 | * test_bit(bit, addr) Is bit set in *addr? |
| 86 | * test_and_set_bit(bit, addr) Set bit and return old value |
| 87 | * test_and_clear_bit(bit, addr) Clear bit and return old value |
| 88 | * test_and_change_bit(bit, addr) Change bit and return old value |
| 89 | * find_first_zero_bit(addr, nbits) Position first zero bit in *addr |
| 90 | * find_first_bit(addr, nbits) Position first set bit in *addr |
| 91 | * find_next_zero_bit(addr, nbits, bit) |
| 92 | * Position next zero bit in *addr >= bit |
| 93 | * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit |
| 94 | * find_next_and_bit(addr1, addr2, nbits, bit) |
| 95 | * Same as find_next_bit, but in |
| 96 | * (*addr1 & *addr2) |
| 97 | * |
| 98 | */ |
| 99 | |
| 100 | /** |
| 101 | * DOC: declare bitmap |
| 102 | * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used |
| 103 | * to declare an array named 'name' of just enough unsigned longs to |
| 104 | * contain all bit positions from 0 to 'bits' - 1. |
| 105 | */ |
| 106 | |
| 107 | /* |
| 108 | * Allocation and deallocation of bitmap. |
| 109 | * Provided in lib/bitmap.c to avoid circular dependency. |
| 110 | */ |
| 111 | extern unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); |
| 112 | extern unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); |
| 113 | extern void bitmap_free(const unsigned long *bitmap); |
| 114 | |
| 115 | /* |
| 116 | * lib/bitmap.c provides these functions: |
| 117 | */ |
| 118 | |
| 119 | extern int __bitmap_empty(const unsigned long *bitmap, unsigned int nbits); |
| 120 | extern int __bitmap_full(const unsigned long *bitmap, unsigned int nbits); |
| 121 | extern int __bitmap_equal(const unsigned long *bitmap1, |
| 122 | const unsigned long *bitmap2, unsigned int nbits); |
| 123 | extern void __bitmap_complement(unsigned long *dst, const unsigned long *src, |
| 124 | unsigned int nbits); |
| 125 | extern void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, |
| 126 | unsigned int shift, unsigned int nbits); |
| 127 | extern void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, |
| 128 | unsigned int shift, unsigned int nbits); |
| 129 | extern int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, |
| 130 | const unsigned long *bitmap2, unsigned int nbits); |
| 131 | extern void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, |
| 132 | const unsigned long *bitmap2, unsigned int nbits); |
| 133 | extern void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, |
| 134 | const unsigned long *bitmap2, unsigned int nbits); |
| 135 | extern int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, |
| 136 | const unsigned long *bitmap2, unsigned int nbits); |
| 137 | extern int __bitmap_intersects(const unsigned long *bitmap1, |
| 138 | const unsigned long *bitmap2, unsigned int nbits); |
| 139 | extern int __bitmap_subset(const unsigned long *bitmap1, |
| 140 | const unsigned long *bitmap2, unsigned int nbits); |
| 141 | extern int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); |
| 142 | extern void __bitmap_set(unsigned long *map, unsigned int start, int len); |
| 143 | extern void __bitmap_clear(unsigned long *map, unsigned int start, int len); |
| 144 | |
| 145 | extern unsigned long bitmap_find_next_zero_area_off(unsigned long *map, |
| 146 | unsigned long size, |
| 147 | unsigned long start, |
| 148 | unsigned int nr, |
| 149 | unsigned long align_mask, |
| 150 | unsigned long align_offset); |
| 151 | |
| 152 | /** |
| 153 | * bitmap_find_next_zero_area - find a contiguous aligned zero area |
| 154 | * @map: The address to base the search on |
| 155 | * @size: The bitmap size in bits |
| 156 | * @start: The bitnumber to start searching at |
| 157 | * @nr: The number of zeroed bits we're looking for |
| 158 | * @align_mask: Alignment mask for zero area |
| 159 | * |
| 160 | * The @align_mask should be one less than a power of 2; the effect is that |
| 161 | * the bit offset of all zero areas this function finds is multiples of that |
| 162 | * power of 2. A @align_mask of 0 means no alignment is required. |
| 163 | */ |
| 164 | static inline unsigned long |
| 165 | bitmap_find_next_zero_area(unsigned long *map, |
| 166 | unsigned long size, |
| 167 | unsigned long start, |
| 168 | unsigned int nr, |
| 169 | unsigned long align_mask) |
| 170 | { |
| 171 | return bitmap_find_next_zero_area_off(map, size, start, nr, |
| 172 | align_mask, 0); |
| 173 | } |
| 174 | |
| 175 | extern int __bitmap_parse(const char *buf, unsigned int buflen, int is_user, |
| 176 | unsigned long *dst, int nbits); |
| 177 | extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, |
| 178 | unsigned long *dst, int nbits); |
| 179 | extern int bitmap_parselist(const char *buf, unsigned long *maskp, |
| 180 | int nmaskbits); |
| 181 | extern int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, |
| 182 | unsigned long *dst, int nbits); |
| 183 | extern void bitmap_remap(unsigned long *dst, const unsigned long *src, |
| 184 | const unsigned long *old, const unsigned long *new, unsigned int nbits); |
| 185 | extern int bitmap_bitremap(int oldbit, |
| 186 | const unsigned long *old, const unsigned long *new, int bits); |
| 187 | extern void bitmap_onto(unsigned long *dst, const unsigned long *orig, |
| 188 | const unsigned long *relmap, unsigned int bits); |
| 189 | extern void bitmap_fold(unsigned long *dst, const unsigned long *orig, |
| 190 | unsigned int sz, unsigned int nbits); |
| 191 | extern int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); |
| 192 | extern void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); |
| 193 | extern int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); |
| 194 | |
| 195 | #ifdef __BIG_ENDIAN |
| 196 | extern void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); |
| 197 | #else |
| 198 | #define bitmap_copy_le bitmap_copy |
| 199 | #endif |
| 200 | extern unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); |
| 201 | extern int bitmap_print_to_pagebuf(bool list, char *buf, |
| 202 | const unsigned long *maskp, int nmaskbits); |
| 203 | |
| 204 | #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) |
| 205 | #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) |
| 206 | |
| 207 | #define small_const_nbits(nbits) \ |
| 208 | (__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG) |
| 209 | |
| 210 | static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) |
| 211 | { |
| 212 | if (small_const_nbits(nbits)) |
| 213 | *dst = 0UL; |
| 214 | else { |
| 215 | unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); |
| 216 | memset(dst, 0, len); |
| 217 | } |
| 218 | } |
| 219 | |
| 220 | static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) |
| 221 | { |
| 222 | if (small_const_nbits(nbits)) |
| 223 | *dst = ~0UL; |
| 224 | else { |
| 225 | unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); |
| 226 | memset(dst, 0xff, len); |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, |
| 231 | unsigned int nbits) |
| 232 | { |
| 233 | if (small_const_nbits(nbits)) |
| 234 | *dst = *src; |
| 235 | else { |
| 236 | unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); |
| 237 | memcpy(dst, src, len); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * Copy bitmap and clear tail bits in last word. |
| 243 | */ |
| 244 | static inline void bitmap_copy_clear_tail(unsigned long *dst, |
| 245 | const unsigned long *src, unsigned int nbits) |
| 246 | { |
| 247 | bitmap_copy(dst, src, nbits); |
| 248 | if (nbits % BITS_PER_LONG) |
| 249 | dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | * On 32-bit systems bitmaps are represented as u32 arrays internally, and |
| 254 | * therefore conversion is not needed when copying data from/to arrays of u32. |
| 255 | */ |
| 256 | #if BITS_PER_LONG == 64 |
| 257 | extern void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, |
| 258 | unsigned int nbits); |
| 259 | extern void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, |
| 260 | unsigned int nbits); |
| 261 | #else |
| 262 | #define bitmap_from_arr32(bitmap, buf, nbits) \ |
| 263 | bitmap_copy_clear_tail((unsigned long *) (bitmap), \ |
| 264 | (const unsigned long *) (buf), (nbits)) |
| 265 | #define bitmap_to_arr32(buf, bitmap, nbits) \ |
| 266 | bitmap_copy_clear_tail((unsigned long *) (buf), \ |
| 267 | (const unsigned long *) (bitmap), (nbits)) |
| 268 | #endif |
| 269 | |
| 270 | static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, |
| 271 | const unsigned long *src2, unsigned int nbits) |
| 272 | { |
| 273 | if (small_const_nbits(nbits)) |
| 274 | return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; |
| 275 | return __bitmap_and(dst, src1, src2, nbits); |
| 276 | } |
| 277 | |
| 278 | static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, |
| 279 | const unsigned long *src2, unsigned int nbits) |
| 280 | { |
| 281 | if (small_const_nbits(nbits)) |
| 282 | *dst = *src1 | *src2; |
| 283 | else |
| 284 | __bitmap_or(dst, src1, src2, nbits); |
| 285 | } |
| 286 | |
| 287 | static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, |
| 288 | const unsigned long *src2, unsigned int nbits) |
| 289 | { |
| 290 | if (small_const_nbits(nbits)) |
| 291 | *dst = *src1 ^ *src2; |
| 292 | else |
| 293 | __bitmap_xor(dst, src1, src2, nbits); |
| 294 | } |
| 295 | |
| 296 | static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, |
| 297 | const unsigned long *src2, unsigned int nbits) |
| 298 | { |
| 299 | if (small_const_nbits(nbits)) |
| 300 | return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; |
| 301 | return __bitmap_andnot(dst, src1, src2, nbits); |
| 302 | } |
| 303 | |
| 304 | static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, |
| 305 | unsigned int nbits) |
| 306 | { |
| 307 | if (small_const_nbits(nbits)) |
| 308 | *dst = ~(*src); |
| 309 | else |
| 310 | __bitmap_complement(dst, src, nbits); |
| 311 | } |
| 312 | |
| 313 | #ifdef __LITTLE_ENDIAN |
| 314 | #define BITMAP_MEM_ALIGNMENT 8 |
| 315 | #else |
| 316 | #define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) |
| 317 | #endif |
| 318 | #define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) |
| 319 | |
| 320 | static inline int bitmap_equal(const unsigned long *src1, |
| 321 | const unsigned long *src2, unsigned int nbits) |
| 322 | { |
| 323 | if (small_const_nbits(nbits)) |
| 324 | return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); |
| 325 | if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && |
| 326 | IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) |
| 327 | return !memcmp(src1, src2, nbits / 8); |
| 328 | return __bitmap_equal(src1, src2, nbits); |
| 329 | } |
| 330 | |
| 331 | static inline int bitmap_intersects(const unsigned long *src1, |
| 332 | const unsigned long *src2, unsigned int nbits) |
| 333 | { |
| 334 | if (small_const_nbits(nbits)) |
| 335 | return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; |
| 336 | else |
| 337 | return __bitmap_intersects(src1, src2, nbits); |
| 338 | } |
| 339 | |
| 340 | static inline int bitmap_subset(const unsigned long *src1, |
| 341 | const unsigned long *src2, unsigned int nbits) |
| 342 | { |
| 343 | if (small_const_nbits(nbits)) |
| 344 | return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); |
| 345 | else |
| 346 | return __bitmap_subset(src1, src2, nbits); |
| 347 | } |
| 348 | |
| 349 | static inline int bitmap_empty(const unsigned long *src, unsigned nbits) |
| 350 | { |
| 351 | if (small_const_nbits(nbits)) |
| 352 | return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); |
| 353 | |
| 354 | return find_first_bit(src, nbits) == nbits; |
| 355 | } |
| 356 | |
| 357 | static inline int bitmap_full(const unsigned long *src, unsigned int nbits) |
| 358 | { |
| 359 | if (small_const_nbits(nbits)) |
| 360 | return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); |
| 361 | |
| 362 | return find_first_zero_bit(src, nbits) == nbits; |
| 363 | } |
| 364 | |
| 365 | static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) |
| 366 | { |
| 367 | if (small_const_nbits(nbits)) |
| 368 | return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); |
| 369 | return __bitmap_weight(src, nbits); |
| 370 | } |
| 371 | |
| 372 | static __always_inline void bitmap_set(unsigned long *map, unsigned int start, |
| 373 | unsigned int nbits) |
| 374 | { |
| 375 | if (__builtin_constant_p(nbits) && nbits == 1) |
| 376 | __set_bit(start, map); |
| 377 | else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && |
| 378 | IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && |
| 379 | __builtin_constant_p(nbits & BITMAP_MEM_MASK) && |
| 380 | IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) |
| 381 | memset((char *)map + start / 8, 0xff, nbits / 8); |
| 382 | else |
| 383 | __bitmap_set(map, start, nbits); |
| 384 | } |
| 385 | |
| 386 | static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, |
| 387 | unsigned int nbits) |
| 388 | { |
| 389 | if (__builtin_constant_p(nbits) && nbits == 1) |
| 390 | __clear_bit(start, map); |
| 391 | else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && |
| 392 | IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && |
| 393 | __builtin_constant_p(nbits & BITMAP_MEM_MASK) && |
| 394 | IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) |
| 395 | memset((char *)map + start / 8, 0, nbits / 8); |
| 396 | else |
| 397 | __bitmap_clear(map, start, nbits); |
| 398 | } |
| 399 | |
| 400 | static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, |
| 401 | unsigned int shift, int nbits) |
| 402 | { |
| 403 | if (small_const_nbits(nbits)) |
| 404 | *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; |
| 405 | else |
| 406 | __bitmap_shift_right(dst, src, shift, nbits); |
| 407 | } |
| 408 | |
| 409 | static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, |
| 410 | unsigned int shift, unsigned int nbits) |
| 411 | { |
| 412 | if (small_const_nbits(nbits)) |
| 413 | *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); |
| 414 | else |
| 415 | __bitmap_shift_left(dst, src, shift, nbits); |
| 416 | } |
| 417 | |
| 418 | static inline int bitmap_parse(const char *buf, unsigned int buflen, |
| 419 | unsigned long *maskp, int nmaskbits) |
| 420 | { |
| 421 | return __bitmap_parse(buf, buflen, 0, maskp, nmaskbits); |
| 422 | } |
| 423 | |
| 424 | /** |
| 425 | * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. |
| 426 | * @n: u64 value |
| 427 | * |
| 428 | * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit |
| 429 | * integers in 32-bit environment, and 64-bit integers in 64-bit one. |
| 430 | * |
| 431 | * There are four combinations of endianness and length of the word in linux |
| 432 | * ABIs: LE64, BE64, LE32 and BE32. |
| 433 | * |
| 434 | * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in |
| 435 | * bitmaps and therefore don't require any special handling. |
| 436 | * |
| 437 | * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory |
| 438 | * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the |
| 439 | * other hand is represented as an array of 32-bit words and the position of |
| 440 | * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that |
| 441 | * word. For example, bit #42 is located at 10th position of 2nd word. |
| 442 | * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit |
| 443 | * values in memory as it usually does. But for BE we need to swap hi and lo |
| 444 | * words manually. |
| 445 | * |
| 446 | * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and |
| 447 | * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps |
| 448 | * hi and lo words, as is expected by bitmap. |
| 449 | */ |
| 450 | #if __BITS_PER_LONG == 64 |
| 451 | #define BITMAP_FROM_U64(n) (n) |
| 452 | #else |
| 453 | #define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ |
| 454 | ((unsigned long) ((u64)(n) >> 32)) |
| 455 | #endif |
| 456 | |
| 457 | /** |
| 458 | * bitmap_from_u64 - Check and swap words within u64. |
| 459 | * @mask: source bitmap |
| 460 | * @dst: destination bitmap |
| 461 | * |
| 462 | * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` |
| 463 | * to read u64 mask, we will get the wrong word. |
| 464 | * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, |
| 465 | * but we expect the lower 32-bits of u64. |
| 466 | */ |
| 467 | static inline void bitmap_from_u64(unsigned long *dst, u64 mask) |
| 468 | { |
| 469 | dst[0] = mask & ULONG_MAX; |
| 470 | |
| 471 | if (sizeof(mask) > sizeof(unsigned long)) |
| 472 | dst[1] = mask >> 32; |
| 473 | } |
| 474 | |
| 475 | #endif /* __ASSEMBLY__ */ |
| 476 | |
| 477 | #endif /* __LINUX_BITMAP_H */ |