Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * Driver for Alauda-based card readers |
| 4 | * |
| 5 | * Current development and maintenance by: |
| 6 | * (c) 2005 Daniel Drake <dsd@gentoo.org> |
| 7 | * |
| 8 | * The 'Alauda' is a chip manufacturered by RATOC for OEM use. |
| 9 | * |
| 10 | * Alauda implements a vendor-specific command set to access two media reader |
| 11 | * ports (XD, SmartMedia). This driver converts SCSI commands to the commands |
| 12 | * which are accepted by these devices. |
| 13 | * |
| 14 | * The driver was developed through reverse-engineering, with the help of the |
| 15 | * sddr09 driver which has many similarities, and with some help from the |
| 16 | * (very old) vendor-supplied GPL sma03 driver. |
| 17 | * |
| 18 | * For protocol info, see http://alauda.sourceforge.net |
| 19 | */ |
| 20 | |
| 21 | #include <linux/module.h> |
| 22 | #include <linux/slab.h> |
| 23 | |
| 24 | #include <scsi/scsi.h> |
| 25 | #include <scsi/scsi_cmnd.h> |
| 26 | #include <scsi/scsi_device.h> |
| 27 | |
| 28 | #include "usb.h" |
| 29 | #include "transport.h" |
| 30 | #include "protocol.h" |
| 31 | #include "debug.h" |
| 32 | #include "scsiglue.h" |
| 33 | |
| 34 | #define DRV_NAME "ums-alauda" |
| 35 | |
| 36 | MODULE_DESCRIPTION("Driver for Alauda-based card readers"); |
| 37 | MODULE_AUTHOR("Daniel Drake <dsd@gentoo.org>"); |
| 38 | MODULE_LICENSE("GPL"); |
| 39 | |
| 40 | /* |
| 41 | * Status bytes |
| 42 | */ |
| 43 | #define ALAUDA_STATUS_ERROR 0x01 |
| 44 | #define ALAUDA_STATUS_READY 0x40 |
| 45 | |
| 46 | /* |
| 47 | * Control opcodes (for request field) |
| 48 | */ |
| 49 | #define ALAUDA_GET_XD_MEDIA_STATUS 0x08 |
| 50 | #define ALAUDA_GET_SM_MEDIA_STATUS 0x98 |
| 51 | #define ALAUDA_ACK_XD_MEDIA_CHANGE 0x0a |
| 52 | #define ALAUDA_ACK_SM_MEDIA_CHANGE 0x9a |
| 53 | #define ALAUDA_GET_XD_MEDIA_SIG 0x86 |
| 54 | #define ALAUDA_GET_SM_MEDIA_SIG 0x96 |
| 55 | |
| 56 | /* |
| 57 | * Bulk command identity (byte 0) |
| 58 | */ |
| 59 | #define ALAUDA_BULK_CMD 0x40 |
| 60 | |
| 61 | /* |
| 62 | * Bulk opcodes (byte 1) |
| 63 | */ |
| 64 | #define ALAUDA_BULK_GET_REDU_DATA 0x85 |
| 65 | #define ALAUDA_BULK_READ_BLOCK 0x94 |
| 66 | #define ALAUDA_BULK_ERASE_BLOCK 0xa3 |
| 67 | #define ALAUDA_BULK_WRITE_BLOCK 0xb4 |
| 68 | #define ALAUDA_BULK_GET_STATUS2 0xb7 |
| 69 | #define ALAUDA_BULK_RESET_MEDIA 0xe0 |
| 70 | |
| 71 | /* |
| 72 | * Port to operate on (byte 8) |
| 73 | */ |
| 74 | #define ALAUDA_PORT_XD 0x00 |
| 75 | #define ALAUDA_PORT_SM 0x01 |
| 76 | |
| 77 | /* |
| 78 | * LBA and PBA are unsigned ints. Special values. |
| 79 | */ |
| 80 | #define UNDEF 0xffff |
| 81 | #define SPARE 0xfffe |
| 82 | #define UNUSABLE 0xfffd |
| 83 | |
| 84 | struct alauda_media_info { |
| 85 | unsigned long capacity; /* total media size in bytes */ |
| 86 | unsigned int pagesize; /* page size in bytes */ |
| 87 | unsigned int blocksize; /* number of pages per block */ |
| 88 | unsigned int uzonesize; /* number of usable blocks per zone */ |
| 89 | unsigned int zonesize; /* number of blocks per zone */ |
| 90 | unsigned int blockmask; /* mask to get page from address */ |
| 91 | |
| 92 | unsigned char pageshift; |
| 93 | unsigned char blockshift; |
| 94 | unsigned char zoneshift; |
| 95 | |
| 96 | u16 **lba_to_pba; /* logical to physical block map */ |
| 97 | u16 **pba_to_lba; /* physical to logical block map */ |
| 98 | }; |
| 99 | |
| 100 | struct alauda_info { |
| 101 | struct alauda_media_info port[2]; |
| 102 | int wr_ep; /* endpoint to write data out of */ |
| 103 | |
| 104 | unsigned char sense_key; |
| 105 | unsigned long sense_asc; /* additional sense code */ |
| 106 | unsigned long sense_ascq; /* additional sense code qualifier */ |
| 107 | }; |
| 108 | |
| 109 | #define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) ) |
| 110 | #define LSB_of(s) ((s)&0xFF) |
| 111 | #define MSB_of(s) ((s)>>8) |
| 112 | |
| 113 | #define MEDIA_PORT(us) us->srb->device->lun |
| 114 | #define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)] |
| 115 | |
| 116 | #define PBA_LO(pba) ((pba & 0xF) << 5) |
| 117 | #define PBA_HI(pba) (pba >> 3) |
| 118 | #define PBA_ZONE(pba) (pba >> 11) |
| 119 | |
| 120 | static int init_alauda(struct us_data *us); |
| 121 | |
| 122 | |
| 123 | /* |
| 124 | * The table of devices |
| 125 | */ |
| 126 | #define UNUSUAL_DEV(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax, \ |
| 127 | vendorName, productName, useProtocol, useTransport, \ |
| 128 | initFunction, flags) \ |
| 129 | { USB_DEVICE_VER(id_vendor, id_product, bcdDeviceMin, bcdDeviceMax), \ |
| 130 | .driver_info = (flags) } |
| 131 | |
| 132 | static struct usb_device_id alauda_usb_ids[] = { |
| 133 | # include "unusual_alauda.h" |
| 134 | { } /* Terminating entry */ |
| 135 | }; |
| 136 | MODULE_DEVICE_TABLE(usb, alauda_usb_ids); |
| 137 | |
| 138 | #undef UNUSUAL_DEV |
| 139 | |
| 140 | /* |
| 141 | * The flags table |
| 142 | */ |
| 143 | #define UNUSUAL_DEV(idVendor, idProduct, bcdDeviceMin, bcdDeviceMax, \ |
| 144 | vendor_name, product_name, use_protocol, use_transport, \ |
| 145 | init_function, Flags) \ |
| 146 | { \ |
| 147 | .vendorName = vendor_name, \ |
| 148 | .productName = product_name, \ |
| 149 | .useProtocol = use_protocol, \ |
| 150 | .useTransport = use_transport, \ |
| 151 | .initFunction = init_function, \ |
| 152 | } |
| 153 | |
| 154 | static struct us_unusual_dev alauda_unusual_dev_list[] = { |
| 155 | # include "unusual_alauda.h" |
| 156 | { } /* Terminating entry */ |
| 157 | }; |
| 158 | |
| 159 | #undef UNUSUAL_DEV |
| 160 | |
| 161 | |
| 162 | /* |
| 163 | * Media handling |
| 164 | */ |
| 165 | |
| 166 | struct alauda_card_info { |
| 167 | unsigned char id; /* id byte */ |
| 168 | unsigned char chipshift; /* 1<<cs bytes total capacity */ |
| 169 | unsigned char pageshift; /* 1<<ps bytes in a page */ |
| 170 | unsigned char blockshift; /* 1<<bs pages per block */ |
| 171 | unsigned char zoneshift; /* 1<<zs blocks per zone */ |
| 172 | }; |
| 173 | |
| 174 | static struct alauda_card_info alauda_card_ids[] = { |
| 175 | /* NAND flash */ |
| 176 | { 0x6e, 20, 8, 4, 8}, /* 1 MB */ |
| 177 | { 0xe8, 20, 8, 4, 8}, /* 1 MB */ |
| 178 | { 0xec, 20, 8, 4, 8}, /* 1 MB */ |
| 179 | { 0x64, 21, 8, 4, 9}, /* 2 MB */ |
| 180 | { 0xea, 21, 8, 4, 9}, /* 2 MB */ |
| 181 | { 0x6b, 22, 9, 4, 9}, /* 4 MB */ |
| 182 | { 0xe3, 22, 9, 4, 9}, /* 4 MB */ |
| 183 | { 0xe5, 22, 9, 4, 9}, /* 4 MB */ |
| 184 | { 0xe6, 23, 9, 4, 10}, /* 8 MB */ |
| 185 | { 0x73, 24, 9, 5, 10}, /* 16 MB */ |
| 186 | { 0x75, 25, 9, 5, 10}, /* 32 MB */ |
| 187 | { 0x76, 26, 9, 5, 10}, /* 64 MB */ |
| 188 | { 0x79, 27, 9, 5, 10}, /* 128 MB */ |
| 189 | { 0x71, 28, 9, 5, 10}, /* 256 MB */ |
| 190 | |
| 191 | /* MASK ROM */ |
| 192 | { 0x5d, 21, 9, 4, 8}, /* 2 MB */ |
| 193 | { 0xd5, 22, 9, 4, 9}, /* 4 MB */ |
| 194 | { 0xd6, 23, 9, 4, 10}, /* 8 MB */ |
| 195 | { 0x57, 24, 9, 4, 11}, /* 16 MB */ |
| 196 | { 0x58, 25, 9, 4, 12}, /* 32 MB */ |
| 197 | { 0,} |
| 198 | }; |
| 199 | |
| 200 | static struct alauda_card_info *alauda_card_find_id(unsigned char id) |
| 201 | { |
| 202 | int i; |
| 203 | |
| 204 | for (i = 0; alauda_card_ids[i].id != 0; i++) |
| 205 | if (alauda_card_ids[i].id == id) |
| 206 | return &(alauda_card_ids[i]); |
| 207 | return NULL; |
| 208 | } |
| 209 | |
| 210 | /* |
| 211 | * ECC computation. |
| 212 | */ |
| 213 | |
| 214 | static unsigned char parity[256]; |
| 215 | static unsigned char ecc2[256]; |
| 216 | |
| 217 | static void nand_init_ecc(void) |
| 218 | { |
| 219 | int i, j, a; |
| 220 | |
| 221 | parity[0] = 0; |
| 222 | for (i = 1; i < 256; i++) |
| 223 | parity[i] = (parity[i&(i-1)] ^ 1); |
| 224 | |
| 225 | for (i = 0; i < 256; i++) { |
| 226 | a = 0; |
| 227 | for (j = 0; j < 8; j++) { |
| 228 | if (i & (1<<j)) { |
| 229 | if ((j & 1) == 0) |
| 230 | a ^= 0x04; |
| 231 | if ((j & 2) == 0) |
| 232 | a ^= 0x10; |
| 233 | if ((j & 4) == 0) |
| 234 | a ^= 0x40; |
| 235 | } |
| 236 | } |
| 237 | ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0)); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | /* compute 3-byte ecc on 256 bytes */ |
| 242 | static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) |
| 243 | { |
| 244 | int i, j, a; |
| 245 | unsigned char par = 0, bit, bits[8] = {0}; |
| 246 | |
| 247 | /* collect 16 checksum bits */ |
| 248 | for (i = 0; i < 256; i++) { |
| 249 | par ^= data[i]; |
| 250 | bit = parity[data[i]]; |
| 251 | for (j = 0; j < 8; j++) |
| 252 | if ((i & (1<<j)) == 0) |
| 253 | bits[j] ^= bit; |
| 254 | } |
| 255 | |
| 256 | /* put 4+4+4 = 12 bits in the ecc */ |
| 257 | a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0]; |
| 258 | ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); |
| 259 | |
| 260 | a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4]; |
| 261 | ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0)); |
| 262 | |
| 263 | ecc[2] = ecc2[par]; |
| 264 | } |
| 265 | |
| 266 | static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) |
| 267 | { |
| 268 | return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]); |
| 269 | } |
| 270 | |
| 271 | static void nand_store_ecc(unsigned char *data, unsigned char *ecc) |
| 272 | { |
| 273 | memcpy(data, ecc, 3); |
| 274 | } |
| 275 | |
| 276 | /* |
| 277 | * Alauda driver |
| 278 | */ |
| 279 | |
| 280 | /* |
| 281 | * Forget our PBA <---> LBA mappings for a particular port |
| 282 | */ |
| 283 | static void alauda_free_maps (struct alauda_media_info *media_info) |
| 284 | { |
| 285 | unsigned int shift = media_info->zoneshift |
| 286 | + media_info->blockshift + media_info->pageshift; |
| 287 | unsigned int num_zones = media_info->capacity >> shift; |
| 288 | unsigned int i; |
| 289 | |
| 290 | if (media_info->lba_to_pba != NULL) |
| 291 | for (i = 0; i < num_zones; i++) { |
| 292 | kfree(media_info->lba_to_pba[i]); |
| 293 | media_info->lba_to_pba[i] = NULL; |
| 294 | } |
| 295 | |
| 296 | if (media_info->pba_to_lba != NULL) |
| 297 | for (i = 0; i < num_zones; i++) { |
| 298 | kfree(media_info->pba_to_lba[i]); |
| 299 | media_info->pba_to_lba[i] = NULL; |
| 300 | } |
| 301 | } |
| 302 | |
| 303 | /* |
| 304 | * Returns 2 bytes of status data |
| 305 | * The first byte describes media status, and second byte describes door status |
| 306 | */ |
| 307 | static int alauda_get_media_status(struct us_data *us, unsigned char *data) |
| 308 | { |
| 309 | int rc; |
| 310 | unsigned char command; |
| 311 | |
| 312 | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) |
| 313 | command = ALAUDA_GET_XD_MEDIA_STATUS; |
| 314 | else |
| 315 | command = ALAUDA_GET_SM_MEDIA_STATUS; |
| 316 | |
| 317 | rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, |
| 318 | command, 0xc0, 0, 1, data, 2); |
| 319 | |
| 320 | usb_stor_dbg(us, "Media status %02X %02X\n", data[0], data[1]); |
| 321 | |
| 322 | return rc; |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Clears the "media was changed" bit so that we know when it changes again |
| 327 | * in the future. |
| 328 | */ |
| 329 | static int alauda_ack_media(struct us_data *us) |
| 330 | { |
| 331 | unsigned char command; |
| 332 | |
| 333 | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) |
| 334 | command = ALAUDA_ACK_XD_MEDIA_CHANGE; |
| 335 | else |
| 336 | command = ALAUDA_ACK_SM_MEDIA_CHANGE; |
| 337 | |
| 338 | return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe, |
| 339 | command, 0x40, 0, 1, NULL, 0); |
| 340 | } |
| 341 | |
| 342 | /* |
| 343 | * Retrieves a 4-byte media signature, which indicates manufacturer, capacity, |
| 344 | * and some other details. |
| 345 | */ |
| 346 | static int alauda_get_media_signature(struct us_data *us, unsigned char *data) |
| 347 | { |
| 348 | unsigned char command; |
| 349 | |
| 350 | if (MEDIA_PORT(us) == ALAUDA_PORT_XD) |
| 351 | command = ALAUDA_GET_XD_MEDIA_SIG; |
| 352 | else |
| 353 | command = ALAUDA_GET_SM_MEDIA_SIG; |
| 354 | |
| 355 | return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe, |
| 356 | command, 0xc0, 0, 0, data, 4); |
| 357 | } |
| 358 | |
| 359 | /* |
| 360 | * Resets the media status (but not the whole device?) |
| 361 | */ |
| 362 | static int alauda_reset_media(struct us_data *us) |
| 363 | { |
| 364 | unsigned char *command = us->iobuf; |
| 365 | |
| 366 | memset(command, 0, 9); |
| 367 | command[0] = ALAUDA_BULK_CMD; |
| 368 | command[1] = ALAUDA_BULK_RESET_MEDIA; |
| 369 | command[8] = MEDIA_PORT(us); |
| 370 | |
| 371 | return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| 372 | command, 9, NULL); |
| 373 | } |
| 374 | |
| 375 | /* |
| 376 | * Examines the media and deduces capacity, etc. |
| 377 | */ |
| 378 | static int alauda_init_media(struct us_data *us) |
| 379 | { |
| 380 | unsigned char *data = us->iobuf; |
| 381 | int ready = 0; |
| 382 | struct alauda_card_info *media_info; |
| 383 | unsigned int num_zones; |
| 384 | |
| 385 | while (ready == 0) { |
| 386 | msleep(20); |
| 387 | |
| 388 | if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) |
| 389 | return USB_STOR_TRANSPORT_ERROR; |
| 390 | |
| 391 | if (data[0] & 0x10) |
| 392 | ready = 1; |
| 393 | } |
| 394 | |
| 395 | usb_stor_dbg(us, "We are ready for action!\n"); |
| 396 | |
| 397 | if (alauda_ack_media(us) != USB_STOR_XFER_GOOD) |
| 398 | return USB_STOR_TRANSPORT_ERROR; |
| 399 | |
| 400 | msleep(10); |
| 401 | |
| 402 | if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD) |
| 403 | return USB_STOR_TRANSPORT_ERROR; |
| 404 | |
| 405 | if (data[0] != 0x14) { |
| 406 | usb_stor_dbg(us, "Media not ready after ack\n"); |
| 407 | return USB_STOR_TRANSPORT_ERROR; |
| 408 | } |
| 409 | |
| 410 | if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD) |
| 411 | return USB_STOR_TRANSPORT_ERROR; |
| 412 | |
| 413 | usb_stor_dbg(us, "Media signature: %4ph\n", data); |
| 414 | media_info = alauda_card_find_id(data[1]); |
| 415 | if (media_info == NULL) { |
| 416 | pr_warn("alauda_init_media: Unrecognised media signature: %4ph\n", |
| 417 | data); |
| 418 | return USB_STOR_TRANSPORT_ERROR; |
| 419 | } |
| 420 | |
| 421 | MEDIA_INFO(us).capacity = 1 << media_info->chipshift; |
| 422 | usb_stor_dbg(us, "Found media with capacity: %ldMB\n", |
| 423 | MEDIA_INFO(us).capacity >> 20); |
| 424 | |
| 425 | MEDIA_INFO(us).pageshift = media_info->pageshift; |
| 426 | MEDIA_INFO(us).blockshift = media_info->blockshift; |
| 427 | MEDIA_INFO(us).zoneshift = media_info->zoneshift; |
| 428 | |
| 429 | MEDIA_INFO(us).pagesize = 1 << media_info->pageshift; |
| 430 | MEDIA_INFO(us).blocksize = 1 << media_info->blockshift; |
| 431 | MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift; |
| 432 | |
| 433 | MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125; |
| 434 | MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1; |
| 435 | |
| 436 | num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift |
| 437 | + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); |
| 438 | MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); |
| 439 | MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO); |
| 440 | |
| 441 | if (alauda_reset_media(us) != USB_STOR_XFER_GOOD) |
| 442 | return USB_STOR_TRANSPORT_ERROR; |
| 443 | |
| 444 | return USB_STOR_TRANSPORT_GOOD; |
| 445 | } |
| 446 | |
| 447 | /* |
| 448 | * Examines the media status and does the right thing when the media has gone, |
| 449 | * appeared, or changed. |
| 450 | */ |
| 451 | static int alauda_check_media(struct us_data *us) |
| 452 | { |
| 453 | struct alauda_info *info = (struct alauda_info *) us->extra; |
| 454 | unsigned char status[2]; |
| 455 | int rc; |
| 456 | |
| 457 | rc = alauda_get_media_status(us, status); |
| 458 | |
| 459 | /* Check for no media or door open */ |
| 460 | if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10) |
| 461 | || ((status[1] & 0x01) == 0)) { |
| 462 | usb_stor_dbg(us, "No media, or door open\n"); |
| 463 | alauda_free_maps(&MEDIA_INFO(us)); |
| 464 | info->sense_key = 0x02; |
| 465 | info->sense_asc = 0x3A; |
| 466 | info->sense_ascq = 0x00; |
| 467 | return USB_STOR_TRANSPORT_FAILED; |
| 468 | } |
| 469 | |
| 470 | /* Check for media change */ |
| 471 | if (status[0] & 0x08) { |
| 472 | usb_stor_dbg(us, "Media change detected\n"); |
| 473 | alauda_free_maps(&MEDIA_INFO(us)); |
| 474 | alauda_init_media(us); |
| 475 | |
| 476 | info->sense_key = UNIT_ATTENTION; |
| 477 | info->sense_asc = 0x28; |
| 478 | info->sense_ascq = 0x00; |
| 479 | return USB_STOR_TRANSPORT_FAILED; |
| 480 | } |
| 481 | |
| 482 | return USB_STOR_TRANSPORT_GOOD; |
| 483 | } |
| 484 | |
| 485 | /* |
| 486 | * Checks the status from the 2nd status register |
| 487 | * Returns 3 bytes of status data, only the first is known |
| 488 | */ |
| 489 | static int alauda_check_status2(struct us_data *us) |
| 490 | { |
| 491 | int rc; |
| 492 | unsigned char command[] = { |
| 493 | ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2, |
| 494 | 0, 0, 0, 0, 3, 0, MEDIA_PORT(us) |
| 495 | }; |
| 496 | unsigned char data[3]; |
| 497 | |
| 498 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| 499 | command, 9, NULL); |
| 500 | if (rc != USB_STOR_XFER_GOOD) |
| 501 | return rc; |
| 502 | |
| 503 | rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| 504 | data, 3, NULL); |
| 505 | if (rc != USB_STOR_XFER_GOOD) |
| 506 | return rc; |
| 507 | |
| 508 | usb_stor_dbg(us, "%3ph\n", data); |
| 509 | if (data[0] & ALAUDA_STATUS_ERROR) |
| 510 | return USB_STOR_XFER_ERROR; |
| 511 | |
| 512 | return USB_STOR_XFER_GOOD; |
| 513 | } |
| 514 | |
| 515 | /* |
| 516 | * Gets the redundancy data for the first page of a PBA |
| 517 | * Returns 16 bytes. |
| 518 | */ |
| 519 | static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data) |
| 520 | { |
| 521 | int rc; |
| 522 | unsigned char command[] = { |
| 523 | ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA, |
| 524 | PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us) |
| 525 | }; |
| 526 | |
| 527 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| 528 | command, 9, NULL); |
| 529 | if (rc != USB_STOR_XFER_GOOD) |
| 530 | return rc; |
| 531 | |
| 532 | return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| 533 | data, 16, NULL); |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | * Finds the first unused PBA in a zone |
| 538 | * Returns the absolute PBA of an unused PBA, or 0 if none found. |
| 539 | */ |
| 540 | static u16 alauda_find_unused_pba(struct alauda_media_info *info, |
| 541 | unsigned int zone) |
| 542 | { |
| 543 | u16 *pba_to_lba = info->pba_to_lba[zone]; |
| 544 | unsigned int i; |
| 545 | |
| 546 | for (i = 0; i < info->zonesize; i++) |
| 547 | if (pba_to_lba[i] == UNDEF) |
| 548 | return (zone << info->zoneshift) + i; |
| 549 | |
| 550 | return 0; |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * Reads the redundancy data for all PBA's in a zone |
| 555 | * Produces lba <--> pba mappings |
| 556 | */ |
| 557 | static int alauda_read_map(struct us_data *us, unsigned int zone) |
| 558 | { |
| 559 | unsigned char *data = us->iobuf; |
| 560 | int result; |
| 561 | int i, j; |
| 562 | unsigned int zonesize = MEDIA_INFO(us).zonesize; |
| 563 | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; |
| 564 | unsigned int lba_offset, lba_real, blocknum; |
| 565 | unsigned int zone_base_lba = zone * uzonesize; |
| 566 | unsigned int zone_base_pba = zone * zonesize; |
| 567 | u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); |
| 568 | u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO); |
| 569 | if (lba_to_pba == NULL || pba_to_lba == NULL) { |
| 570 | result = USB_STOR_TRANSPORT_ERROR; |
| 571 | goto error; |
| 572 | } |
| 573 | |
| 574 | usb_stor_dbg(us, "Mapping blocks for zone %d\n", zone); |
| 575 | |
| 576 | /* 1024 PBA's per zone */ |
| 577 | for (i = 0; i < zonesize; i++) |
| 578 | lba_to_pba[i] = pba_to_lba[i] = UNDEF; |
| 579 | |
| 580 | for (i = 0; i < zonesize; i++) { |
| 581 | blocknum = zone_base_pba + i; |
| 582 | |
| 583 | result = alauda_get_redu_data(us, blocknum, data); |
| 584 | if (result != USB_STOR_XFER_GOOD) { |
| 585 | result = USB_STOR_TRANSPORT_ERROR; |
| 586 | goto error; |
| 587 | } |
| 588 | |
| 589 | /* special PBAs have control field 0^16 */ |
| 590 | for (j = 0; j < 16; j++) |
| 591 | if (data[j] != 0) |
| 592 | goto nonz; |
| 593 | pba_to_lba[i] = UNUSABLE; |
| 594 | usb_stor_dbg(us, "PBA %d has no logical mapping\n", blocknum); |
| 595 | continue; |
| 596 | |
| 597 | nonz: |
| 598 | /* unwritten PBAs have control field FF^16 */ |
| 599 | for (j = 0; j < 16; j++) |
| 600 | if (data[j] != 0xff) |
| 601 | goto nonff; |
| 602 | continue; |
| 603 | |
| 604 | nonff: |
| 605 | /* normal PBAs start with six FFs */ |
| 606 | if (j < 6) { |
| 607 | usb_stor_dbg(us, "PBA %d has no logical mapping: reserved area = %02X%02X%02X%02X data status %02X block status %02X\n", |
| 608 | blocknum, |
| 609 | data[0], data[1], data[2], data[3], |
| 610 | data[4], data[5]); |
| 611 | pba_to_lba[i] = UNUSABLE; |
| 612 | continue; |
| 613 | } |
| 614 | |
| 615 | if ((data[6] >> 4) != 0x01) { |
| 616 | usb_stor_dbg(us, "PBA %d has invalid address field %02X%02X/%02X%02X\n", |
| 617 | blocknum, data[6], data[7], |
| 618 | data[11], data[12]); |
| 619 | pba_to_lba[i] = UNUSABLE; |
| 620 | continue; |
| 621 | } |
| 622 | |
| 623 | /* check even parity */ |
| 624 | if (parity[data[6] ^ data[7]]) { |
| 625 | printk(KERN_WARNING |
| 626 | "alauda_read_map: Bad parity in LBA for block %d" |
| 627 | " (%02X %02X)\n", i, data[6], data[7]); |
| 628 | pba_to_lba[i] = UNUSABLE; |
| 629 | continue; |
| 630 | } |
| 631 | |
| 632 | lba_offset = short_pack(data[7], data[6]); |
| 633 | lba_offset = (lba_offset & 0x07FF) >> 1; |
| 634 | lba_real = lba_offset + zone_base_lba; |
| 635 | |
| 636 | /* |
| 637 | * Every 1024 physical blocks ("zone"), the LBA numbers |
| 638 | * go back to zero, but are within a higher block of LBA's. |
| 639 | * Also, there is a maximum of 1000 LBA's per zone. |
| 640 | * In other words, in PBA 1024-2047 you will find LBA 0-999 |
| 641 | * which are really LBA 1000-1999. This allows for 24 bad |
| 642 | * or special physical blocks per zone. |
| 643 | */ |
| 644 | |
| 645 | if (lba_offset >= uzonesize) { |
| 646 | printk(KERN_WARNING |
| 647 | "alauda_read_map: Bad low LBA %d for block %d\n", |
| 648 | lba_real, blocknum); |
| 649 | continue; |
| 650 | } |
| 651 | |
| 652 | if (lba_to_pba[lba_offset] != UNDEF) { |
| 653 | printk(KERN_WARNING |
| 654 | "alauda_read_map: " |
| 655 | "LBA %d seen for PBA %d and %d\n", |
| 656 | lba_real, lba_to_pba[lba_offset], blocknum); |
| 657 | continue; |
| 658 | } |
| 659 | |
| 660 | pba_to_lba[i] = lba_real; |
| 661 | lba_to_pba[lba_offset] = blocknum; |
| 662 | continue; |
| 663 | } |
| 664 | |
| 665 | MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba; |
| 666 | MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba; |
| 667 | result = 0; |
| 668 | goto out; |
| 669 | |
| 670 | error: |
| 671 | kfree(lba_to_pba); |
| 672 | kfree(pba_to_lba); |
| 673 | out: |
| 674 | return result; |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * Checks to see whether we have already mapped a certain zone |
| 679 | * If we haven't, the map is generated |
| 680 | */ |
| 681 | static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone) |
| 682 | { |
| 683 | if (MEDIA_INFO(us).lba_to_pba[zone] == NULL |
| 684 | || MEDIA_INFO(us).pba_to_lba[zone] == NULL) |
| 685 | alauda_read_map(us, zone); |
| 686 | } |
| 687 | |
| 688 | /* |
| 689 | * Erases an entire block |
| 690 | */ |
| 691 | static int alauda_erase_block(struct us_data *us, u16 pba) |
| 692 | { |
| 693 | int rc; |
| 694 | unsigned char command[] = { |
| 695 | ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba), |
| 696 | PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us) |
| 697 | }; |
| 698 | unsigned char buf[2]; |
| 699 | |
| 700 | usb_stor_dbg(us, "Erasing PBA %d\n", pba); |
| 701 | |
| 702 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| 703 | command, 9, NULL); |
| 704 | if (rc != USB_STOR_XFER_GOOD) |
| 705 | return rc; |
| 706 | |
| 707 | rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| 708 | buf, 2, NULL); |
| 709 | if (rc != USB_STOR_XFER_GOOD) |
| 710 | return rc; |
| 711 | |
| 712 | usb_stor_dbg(us, "Erase result: %02X %02X\n", buf[0], buf[1]); |
| 713 | return rc; |
| 714 | } |
| 715 | |
| 716 | /* |
| 717 | * Reads data from a certain offset page inside a PBA, including interleaved |
| 718 | * redundancy data. Returns (pagesize+64)*pages bytes in data. |
| 719 | */ |
| 720 | static int alauda_read_block_raw(struct us_data *us, u16 pba, |
| 721 | unsigned int page, unsigned int pages, unsigned char *data) |
| 722 | { |
| 723 | int rc; |
| 724 | unsigned char command[] = { |
| 725 | ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba), |
| 726 | PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us) |
| 727 | }; |
| 728 | |
| 729 | usb_stor_dbg(us, "pba %d page %d count %d\n", pba, page, pages); |
| 730 | |
| 731 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| 732 | command, 9, NULL); |
| 733 | if (rc != USB_STOR_XFER_GOOD) |
| 734 | return rc; |
| 735 | |
| 736 | return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe, |
| 737 | data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL); |
| 738 | } |
| 739 | |
| 740 | /* |
| 741 | * Reads data from a certain offset page inside a PBA, excluding redundancy |
| 742 | * data. Returns pagesize*pages bytes in data. Note that data must be big enough |
| 743 | * to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra' |
| 744 | * trailing bytes outside this function. |
| 745 | */ |
| 746 | static int alauda_read_block(struct us_data *us, u16 pba, |
| 747 | unsigned int page, unsigned int pages, unsigned char *data) |
| 748 | { |
| 749 | int i, rc; |
| 750 | unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| 751 | |
| 752 | rc = alauda_read_block_raw(us, pba, page, pages, data); |
| 753 | if (rc != USB_STOR_XFER_GOOD) |
| 754 | return rc; |
| 755 | |
| 756 | /* Cut out the redundancy data */ |
| 757 | for (i = 0; i < pages; i++) { |
| 758 | int dest_offset = i * pagesize; |
| 759 | int src_offset = i * (pagesize + 64); |
| 760 | memmove(data + dest_offset, data + src_offset, pagesize); |
| 761 | } |
| 762 | |
| 763 | return rc; |
| 764 | } |
| 765 | |
| 766 | /* |
| 767 | * Writes an entire block of data and checks status after write. |
| 768 | * Redundancy data must be already included in data. Data should be |
| 769 | * (pagesize+64)*blocksize bytes in length. |
| 770 | */ |
| 771 | static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data) |
| 772 | { |
| 773 | int rc; |
| 774 | struct alauda_info *info = (struct alauda_info *) us->extra; |
| 775 | unsigned char command[] = { |
| 776 | ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba), |
| 777 | PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us) |
| 778 | }; |
| 779 | |
| 780 | usb_stor_dbg(us, "pba %d\n", pba); |
| 781 | |
| 782 | rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe, |
| 783 | command, 9, NULL); |
| 784 | if (rc != USB_STOR_XFER_GOOD) |
| 785 | return rc; |
| 786 | |
| 787 | rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data, |
| 788 | (MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize, |
| 789 | NULL); |
| 790 | if (rc != USB_STOR_XFER_GOOD) |
| 791 | return rc; |
| 792 | |
| 793 | return alauda_check_status2(us); |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Write some data to a specific LBA. |
| 798 | */ |
| 799 | static int alauda_write_lba(struct us_data *us, u16 lba, |
| 800 | unsigned int page, unsigned int pages, |
| 801 | unsigned char *ptr, unsigned char *blockbuffer) |
| 802 | { |
| 803 | u16 pba, lbap, new_pba; |
| 804 | unsigned char *bptr, *cptr, *xptr; |
| 805 | unsigned char ecc[3]; |
| 806 | int i, result; |
| 807 | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; |
| 808 | unsigned int zonesize = MEDIA_INFO(us).zonesize; |
| 809 | unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| 810 | unsigned int blocksize = MEDIA_INFO(us).blocksize; |
| 811 | unsigned int lba_offset = lba % uzonesize; |
| 812 | unsigned int new_pba_offset; |
| 813 | unsigned int zone = lba / uzonesize; |
| 814 | |
| 815 | alauda_ensure_map_for_zone(us, zone); |
| 816 | |
| 817 | pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; |
| 818 | if (pba == 1) { |
| 819 | /* |
| 820 | * Maybe it is impossible to write to PBA 1. |
| 821 | * Fake success, but don't do anything. |
| 822 | */ |
| 823 | printk(KERN_WARNING |
| 824 | "alauda_write_lba: avoid writing to pba 1\n"); |
| 825 | return USB_STOR_TRANSPORT_GOOD; |
| 826 | } |
| 827 | |
| 828 | new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone); |
| 829 | if (!new_pba) { |
| 830 | printk(KERN_WARNING |
| 831 | "alauda_write_lba: Out of unused blocks\n"); |
| 832 | return USB_STOR_TRANSPORT_ERROR; |
| 833 | } |
| 834 | |
| 835 | /* read old contents */ |
| 836 | if (pba != UNDEF) { |
| 837 | result = alauda_read_block_raw(us, pba, 0, |
| 838 | blocksize, blockbuffer); |
| 839 | if (result != USB_STOR_XFER_GOOD) |
| 840 | return result; |
| 841 | } else { |
| 842 | memset(blockbuffer, 0, blocksize * (pagesize + 64)); |
| 843 | } |
| 844 | |
| 845 | lbap = (lba_offset << 1) | 0x1000; |
| 846 | if (parity[MSB_of(lbap) ^ LSB_of(lbap)]) |
| 847 | lbap ^= 1; |
| 848 | |
| 849 | /* check old contents and fill lba */ |
| 850 | for (i = 0; i < blocksize; i++) { |
| 851 | bptr = blockbuffer + (i * (pagesize + 64)); |
| 852 | cptr = bptr + pagesize; |
| 853 | nand_compute_ecc(bptr, ecc); |
| 854 | if (!nand_compare_ecc(cptr+13, ecc)) { |
| 855 | usb_stor_dbg(us, "Warning: bad ecc in page %d- of pba %d\n", |
| 856 | i, pba); |
| 857 | nand_store_ecc(cptr+13, ecc); |
| 858 | } |
| 859 | nand_compute_ecc(bptr + (pagesize / 2), ecc); |
| 860 | if (!nand_compare_ecc(cptr+8, ecc)) { |
| 861 | usb_stor_dbg(us, "Warning: bad ecc in page %d+ of pba %d\n", |
| 862 | i, pba); |
| 863 | nand_store_ecc(cptr+8, ecc); |
| 864 | } |
| 865 | cptr[6] = cptr[11] = MSB_of(lbap); |
| 866 | cptr[7] = cptr[12] = LSB_of(lbap); |
| 867 | } |
| 868 | |
| 869 | /* copy in new stuff and compute ECC */ |
| 870 | xptr = ptr; |
| 871 | for (i = page; i < page+pages; i++) { |
| 872 | bptr = blockbuffer + (i * (pagesize + 64)); |
| 873 | cptr = bptr + pagesize; |
| 874 | memcpy(bptr, xptr, pagesize); |
| 875 | xptr += pagesize; |
| 876 | nand_compute_ecc(bptr, ecc); |
| 877 | nand_store_ecc(cptr+13, ecc); |
| 878 | nand_compute_ecc(bptr + (pagesize / 2), ecc); |
| 879 | nand_store_ecc(cptr+8, ecc); |
| 880 | } |
| 881 | |
| 882 | result = alauda_write_block(us, new_pba, blockbuffer); |
| 883 | if (result != USB_STOR_XFER_GOOD) |
| 884 | return result; |
| 885 | |
| 886 | new_pba_offset = new_pba - (zone * zonesize); |
| 887 | MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba; |
| 888 | MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba; |
| 889 | usb_stor_dbg(us, "Remapped LBA %d to PBA %d\n", lba, new_pba); |
| 890 | |
| 891 | if (pba != UNDEF) { |
| 892 | unsigned int pba_offset = pba - (zone * zonesize); |
| 893 | result = alauda_erase_block(us, pba); |
| 894 | if (result != USB_STOR_XFER_GOOD) |
| 895 | return result; |
| 896 | MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF; |
| 897 | } |
| 898 | |
| 899 | return USB_STOR_TRANSPORT_GOOD; |
| 900 | } |
| 901 | |
| 902 | /* |
| 903 | * Read data from a specific sector address |
| 904 | */ |
| 905 | static int alauda_read_data(struct us_data *us, unsigned long address, |
| 906 | unsigned int sectors) |
| 907 | { |
| 908 | unsigned char *buffer; |
| 909 | u16 lba, max_lba; |
| 910 | unsigned int page, len, offset; |
| 911 | unsigned int blockshift = MEDIA_INFO(us).blockshift; |
| 912 | unsigned int pageshift = MEDIA_INFO(us).pageshift; |
| 913 | unsigned int blocksize = MEDIA_INFO(us).blocksize; |
| 914 | unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| 915 | unsigned int uzonesize = MEDIA_INFO(us).uzonesize; |
| 916 | struct scatterlist *sg; |
| 917 | int result; |
| 918 | |
| 919 | /* |
| 920 | * Since we only read in one block at a time, we have to create |
| 921 | * a bounce buffer and move the data a piece at a time between the |
| 922 | * bounce buffer and the actual transfer buffer. |
| 923 | * We make this buffer big enough to hold temporary redundancy data, |
| 924 | * which we use when reading the data blocks. |
| 925 | */ |
| 926 | |
| 927 | len = min(sectors, blocksize) * (pagesize + 64); |
| 928 | buffer = kmalloc(len, GFP_NOIO); |
| 929 | if (!buffer) |
| 930 | return USB_STOR_TRANSPORT_ERROR; |
| 931 | |
| 932 | /* Figure out the initial LBA and page */ |
| 933 | lba = address >> blockshift; |
| 934 | page = (address & MEDIA_INFO(us).blockmask); |
| 935 | max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift); |
| 936 | |
| 937 | result = USB_STOR_TRANSPORT_GOOD; |
| 938 | offset = 0; |
| 939 | sg = NULL; |
| 940 | |
| 941 | while (sectors > 0) { |
| 942 | unsigned int zone = lba / uzonesize; /* integer division */ |
| 943 | unsigned int lba_offset = lba - (zone * uzonesize); |
| 944 | unsigned int pages; |
| 945 | u16 pba; |
| 946 | alauda_ensure_map_for_zone(us, zone); |
| 947 | |
| 948 | /* Not overflowing capacity? */ |
| 949 | if (lba >= max_lba) { |
| 950 | usb_stor_dbg(us, "Error: Requested lba %u exceeds maximum %u\n", |
| 951 | lba, max_lba); |
| 952 | result = USB_STOR_TRANSPORT_ERROR; |
| 953 | break; |
| 954 | } |
| 955 | |
| 956 | /* Find number of pages we can read in this block */ |
| 957 | pages = min(sectors, blocksize - page); |
| 958 | len = pages << pageshift; |
| 959 | |
| 960 | /* Find where this lba lives on disk */ |
| 961 | pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset]; |
| 962 | |
| 963 | if (pba == UNDEF) { /* this lba was never written */ |
| 964 | usb_stor_dbg(us, "Read %d zero pages (LBA %d) page %d\n", |
| 965 | pages, lba, page); |
| 966 | |
| 967 | /* |
| 968 | * This is not really an error. It just means |
| 969 | * that the block has never been written. |
| 970 | * Instead of returning USB_STOR_TRANSPORT_ERROR |
| 971 | * it is better to return all zero data. |
| 972 | */ |
| 973 | |
| 974 | memset(buffer, 0, len); |
| 975 | } else { |
| 976 | usb_stor_dbg(us, "Read %d pages, from PBA %d (LBA %d) page %d\n", |
| 977 | pages, pba, lba, page); |
| 978 | |
| 979 | result = alauda_read_block(us, pba, page, pages, buffer); |
| 980 | if (result != USB_STOR_TRANSPORT_GOOD) |
| 981 | break; |
| 982 | } |
| 983 | |
| 984 | /* Store the data in the transfer buffer */ |
| 985 | usb_stor_access_xfer_buf(buffer, len, us->srb, |
| 986 | &sg, &offset, TO_XFER_BUF); |
| 987 | |
| 988 | page = 0; |
| 989 | lba++; |
| 990 | sectors -= pages; |
| 991 | } |
| 992 | |
| 993 | kfree(buffer); |
| 994 | return result; |
| 995 | } |
| 996 | |
| 997 | /* |
| 998 | * Write data to a specific sector address |
| 999 | */ |
| 1000 | static int alauda_write_data(struct us_data *us, unsigned long address, |
| 1001 | unsigned int sectors) |
| 1002 | { |
| 1003 | unsigned char *buffer, *blockbuffer; |
| 1004 | unsigned int page, len, offset; |
| 1005 | unsigned int blockshift = MEDIA_INFO(us).blockshift; |
| 1006 | unsigned int pageshift = MEDIA_INFO(us).pageshift; |
| 1007 | unsigned int blocksize = MEDIA_INFO(us).blocksize; |
| 1008 | unsigned int pagesize = MEDIA_INFO(us).pagesize; |
| 1009 | struct scatterlist *sg; |
| 1010 | u16 lba, max_lba; |
| 1011 | int result; |
| 1012 | |
| 1013 | /* |
| 1014 | * Since we don't write the user data directly to the device, |
| 1015 | * we have to create a bounce buffer and move the data a piece |
| 1016 | * at a time between the bounce buffer and the actual transfer buffer. |
| 1017 | */ |
| 1018 | |
| 1019 | len = min(sectors, blocksize) * pagesize; |
| 1020 | buffer = kmalloc(len, GFP_NOIO); |
| 1021 | if (!buffer) |
| 1022 | return USB_STOR_TRANSPORT_ERROR; |
| 1023 | |
| 1024 | /* |
| 1025 | * We also need a temporary block buffer, where we read in the old data, |
| 1026 | * overwrite parts with the new data, and manipulate the redundancy data |
| 1027 | */ |
| 1028 | blockbuffer = kmalloc_array(pagesize + 64, blocksize, GFP_NOIO); |
| 1029 | if (!blockbuffer) { |
| 1030 | kfree(buffer); |
| 1031 | return USB_STOR_TRANSPORT_ERROR; |
| 1032 | } |
| 1033 | |
| 1034 | /* Figure out the initial LBA and page */ |
| 1035 | lba = address >> blockshift; |
| 1036 | page = (address & MEDIA_INFO(us).blockmask); |
| 1037 | max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift); |
| 1038 | |
| 1039 | result = USB_STOR_TRANSPORT_GOOD; |
| 1040 | offset = 0; |
| 1041 | sg = NULL; |
| 1042 | |
| 1043 | while (sectors > 0) { |
| 1044 | /* Write as many sectors as possible in this block */ |
| 1045 | unsigned int pages = min(sectors, blocksize - page); |
| 1046 | len = pages << pageshift; |
| 1047 | |
| 1048 | /* Not overflowing capacity? */ |
| 1049 | if (lba >= max_lba) { |
| 1050 | usb_stor_dbg(us, "Requested lba %u exceeds maximum %u\n", |
| 1051 | lba, max_lba); |
| 1052 | result = USB_STOR_TRANSPORT_ERROR; |
| 1053 | break; |
| 1054 | } |
| 1055 | |
| 1056 | /* Get the data from the transfer buffer */ |
| 1057 | usb_stor_access_xfer_buf(buffer, len, us->srb, |
| 1058 | &sg, &offset, FROM_XFER_BUF); |
| 1059 | |
| 1060 | result = alauda_write_lba(us, lba, page, pages, buffer, |
| 1061 | blockbuffer); |
| 1062 | if (result != USB_STOR_TRANSPORT_GOOD) |
| 1063 | break; |
| 1064 | |
| 1065 | page = 0; |
| 1066 | lba++; |
| 1067 | sectors -= pages; |
| 1068 | } |
| 1069 | |
| 1070 | kfree(buffer); |
| 1071 | kfree(blockbuffer); |
| 1072 | return result; |
| 1073 | } |
| 1074 | |
| 1075 | /* |
| 1076 | * Our interface with the rest of the world |
| 1077 | */ |
| 1078 | |
| 1079 | static void alauda_info_destructor(void *extra) |
| 1080 | { |
| 1081 | struct alauda_info *info = (struct alauda_info *) extra; |
| 1082 | int port; |
| 1083 | |
| 1084 | if (!info) |
| 1085 | return; |
| 1086 | |
| 1087 | for (port = 0; port < 2; port++) { |
| 1088 | struct alauda_media_info *media_info = &info->port[port]; |
| 1089 | |
| 1090 | alauda_free_maps(media_info); |
| 1091 | kfree(media_info->lba_to_pba); |
| 1092 | kfree(media_info->pba_to_lba); |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | /* |
| 1097 | * Initialize alauda_info struct and find the data-write endpoint |
| 1098 | */ |
| 1099 | static int init_alauda(struct us_data *us) |
| 1100 | { |
| 1101 | struct alauda_info *info; |
| 1102 | struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting; |
| 1103 | nand_init_ecc(); |
| 1104 | |
| 1105 | us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO); |
| 1106 | if (!us->extra) |
| 1107 | return USB_STOR_TRANSPORT_ERROR; |
| 1108 | |
| 1109 | info = (struct alauda_info *) us->extra; |
| 1110 | us->extra_destructor = alauda_info_destructor; |
| 1111 | |
| 1112 | info->wr_ep = usb_sndbulkpipe(us->pusb_dev, |
| 1113 | altsetting->endpoint[0].desc.bEndpointAddress |
| 1114 | & USB_ENDPOINT_NUMBER_MASK); |
| 1115 | |
| 1116 | return USB_STOR_TRANSPORT_GOOD; |
| 1117 | } |
| 1118 | |
| 1119 | static int alauda_transport(struct scsi_cmnd *srb, struct us_data *us) |
| 1120 | { |
| 1121 | int rc; |
| 1122 | struct alauda_info *info = (struct alauda_info *) us->extra; |
| 1123 | unsigned char *ptr = us->iobuf; |
| 1124 | static unsigned char inquiry_response[36] = { |
| 1125 | 0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00 |
| 1126 | }; |
| 1127 | |
| 1128 | if (srb->cmnd[0] == INQUIRY) { |
| 1129 | usb_stor_dbg(us, "INQUIRY - Returning bogus response\n"); |
| 1130 | memcpy(ptr, inquiry_response, sizeof(inquiry_response)); |
| 1131 | fill_inquiry_response(us, ptr, 36); |
| 1132 | return USB_STOR_TRANSPORT_GOOD; |
| 1133 | } |
| 1134 | |
| 1135 | if (srb->cmnd[0] == TEST_UNIT_READY) { |
| 1136 | usb_stor_dbg(us, "TEST_UNIT_READY\n"); |
| 1137 | return alauda_check_media(us); |
| 1138 | } |
| 1139 | |
| 1140 | if (srb->cmnd[0] == READ_CAPACITY) { |
| 1141 | unsigned int num_zones; |
| 1142 | unsigned long capacity; |
| 1143 | |
| 1144 | rc = alauda_check_media(us); |
| 1145 | if (rc != USB_STOR_TRANSPORT_GOOD) |
| 1146 | return rc; |
| 1147 | |
| 1148 | num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift |
| 1149 | + MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift); |
| 1150 | |
| 1151 | capacity = num_zones * MEDIA_INFO(us).uzonesize |
| 1152 | * MEDIA_INFO(us).blocksize; |
| 1153 | |
| 1154 | /* Report capacity and page size */ |
| 1155 | ((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1); |
| 1156 | ((__be32 *) ptr)[1] = cpu_to_be32(512); |
| 1157 | |
| 1158 | usb_stor_set_xfer_buf(ptr, 8, srb); |
| 1159 | return USB_STOR_TRANSPORT_GOOD; |
| 1160 | } |
| 1161 | |
| 1162 | if (srb->cmnd[0] == READ_10) { |
| 1163 | unsigned int page, pages; |
| 1164 | |
| 1165 | rc = alauda_check_media(us); |
| 1166 | if (rc != USB_STOR_TRANSPORT_GOOD) |
| 1167 | return rc; |
| 1168 | |
| 1169 | page = short_pack(srb->cmnd[3], srb->cmnd[2]); |
| 1170 | page <<= 16; |
| 1171 | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); |
| 1172 | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); |
| 1173 | |
| 1174 | usb_stor_dbg(us, "READ_10: page %d pagect %d\n", page, pages); |
| 1175 | |
| 1176 | return alauda_read_data(us, page, pages); |
| 1177 | } |
| 1178 | |
| 1179 | if (srb->cmnd[0] == WRITE_10) { |
| 1180 | unsigned int page, pages; |
| 1181 | |
| 1182 | rc = alauda_check_media(us); |
| 1183 | if (rc != USB_STOR_TRANSPORT_GOOD) |
| 1184 | return rc; |
| 1185 | |
| 1186 | page = short_pack(srb->cmnd[3], srb->cmnd[2]); |
| 1187 | page <<= 16; |
| 1188 | page |= short_pack(srb->cmnd[5], srb->cmnd[4]); |
| 1189 | pages = short_pack(srb->cmnd[8], srb->cmnd[7]); |
| 1190 | |
| 1191 | usb_stor_dbg(us, "WRITE_10: page %d pagect %d\n", page, pages); |
| 1192 | |
| 1193 | return alauda_write_data(us, page, pages); |
| 1194 | } |
| 1195 | |
| 1196 | if (srb->cmnd[0] == REQUEST_SENSE) { |
| 1197 | usb_stor_dbg(us, "REQUEST_SENSE\n"); |
| 1198 | |
| 1199 | memset(ptr, 0, 18); |
| 1200 | ptr[0] = 0xF0; |
| 1201 | ptr[2] = info->sense_key; |
| 1202 | ptr[7] = 11; |
| 1203 | ptr[12] = info->sense_asc; |
| 1204 | ptr[13] = info->sense_ascq; |
| 1205 | usb_stor_set_xfer_buf(ptr, 18, srb); |
| 1206 | |
| 1207 | return USB_STOR_TRANSPORT_GOOD; |
| 1208 | } |
| 1209 | |
| 1210 | if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) { |
| 1211 | /* |
| 1212 | * sure. whatever. not like we can stop the user from popping |
| 1213 | * the media out of the device (no locking doors, etc) |
| 1214 | */ |
| 1215 | return USB_STOR_TRANSPORT_GOOD; |
| 1216 | } |
| 1217 | |
| 1218 | usb_stor_dbg(us, "Gah! Unknown command: %d (0x%x)\n", |
| 1219 | srb->cmnd[0], srb->cmnd[0]); |
| 1220 | info->sense_key = 0x05; |
| 1221 | info->sense_asc = 0x20; |
| 1222 | info->sense_ascq = 0x00; |
| 1223 | return USB_STOR_TRANSPORT_FAILED; |
| 1224 | } |
| 1225 | |
| 1226 | static struct scsi_host_template alauda_host_template; |
| 1227 | |
| 1228 | static int alauda_probe(struct usb_interface *intf, |
| 1229 | const struct usb_device_id *id) |
| 1230 | { |
| 1231 | struct us_data *us; |
| 1232 | int result; |
| 1233 | |
| 1234 | result = usb_stor_probe1(&us, intf, id, |
| 1235 | (id - alauda_usb_ids) + alauda_unusual_dev_list, |
| 1236 | &alauda_host_template); |
| 1237 | if (result) |
| 1238 | return result; |
| 1239 | |
| 1240 | us->transport_name = "Alauda Control/Bulk"; |
| 1241 | us->transport = alauda_transport; |
| 1242 | us->transport_reset = usb_stor_Bulk_reset; |
| 1243 | us->max_lun = 1; |
| 1244 | |
| 1245 | result = usb_stor_probe2(us); |
| 1246 | return result; |
| 1247 | } |
| 1248 | |
| 1249 | static struct usb_driver alauda_driver = { |
| 1250 | .name = DRV_NAME, |
| 1251 | .probe = alauda_probe, |
| 1252 | .disconnect = usb_stor_disconnect, |
| 1253 | .suspend = usb_stor_suspend, |
| 1254 | .resume = usb_stor_resume, |
| 1255 | .reset_resume = usb_stor_reset_resume, |
| 1256 | .pre_reset = usb_stor_pre_reset, |
| 1257 | .post_reset = usb_stor_post_reset, |
| 1258 | .id_table = alauda_usb_ids, |
| 1259 | .soft_unbind = 1, |
| 1260 | .no_dynamic_id = 1, |
| 1261 | }; |
| 1262 | |
| 1263 | module_usb_stor_driver(alauda_driver, alauda_host_template, DRV_NAME); |