Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/kernel.h> |
| 3 | |
| 4 | #include <linux/string.h> |
| 5 | #include <linux/bitops.h> |
| 6 | #include <linux/smp.h> |
| 7 | #include <linux/sched.h> |
| 8 | #include <linux/sched/clock.h> |
| 9 | #include <linux/thread_info.h> |
| 10 | #include <linux/init.h> |
| 11 | #include <linux/uaccess.h> |
| 12 | |
| 13 | #include <asm/cpufeature.h> |
| 14 | #include <asm/pgtable.h> |
| 15 | #include <asm/msr.h> |
| 16 | #include <asm/bugs.h> |
| 17 | #include <asm/cpu.h> |
| 18 | #include <asm/intel-family.h> |
| 19 | #include <asm/microcode_intel.h> |
| 20 | #include <asm/hwcap2.h> |
| 21 | #include <asm/elf.h> |
| 22 | |
| 23 | #ifdef CONFIG_X86_64 |
| 24 | #include <linux/topology.h> |
| 25 | #endif |
| 26 | |
| 27 | #include "cpu.h" |
| 28 | |
| 29 | #ifdef CONFIG_X86_LOCAL_APIC |
| 30 | #include <asm/mpspec.h> |
| 31 | #include <asm/apic.h> |
| 32 | #endif |
| 33 | |
| 34 | /* |
| 35 | * Just in case our CPU detection goes bad, or you have a weird system, |
| 36 | * allow a way to override the automatic disabling of MPX. |
| 37 | */ |
| 38 | static int forcempx; |
| 39 | |
| 40 | static int __init forcempx_setup(char *__unused) |
| 41 | { |
| 42 | forcempx = 1; |
| 43 | |
| 44 | return 1; |
| 45 | } |
| 46 | __setup("intel-skd-046-workaround=disable", forcempx_setup); |
| 47 | |
| 48 | void check_mpx_erratum(struct cpuinfo_x86 *c) |
| 49 | { |
| 50 | if (forcempx) |
| 51 | return; |
| 52 | /* |
| 53 | * Turn off the MPX feature on CPUs where SMEP is not |
| 54 | * available or disabled. |
| 55 | * |
| 56 | * Works around Intel Erratum SKD046: "Branch Instructions |
| 57 | * May Initialize MPX Bound Registers Incorrectly". |
| 58 | * |
| 59 | * This might falsely disable MPX on systems without |
| 60 | * SMEP, like Atom processors without SMEP. But there |
| 61 | * is no such hardware known at the moment. |
| 62 | */ |
| 63 | if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) { |
| 64 | setup_clear_cpu_cap(X86_FEATURE_MPX); |
| 65 | pr_warn("x86/mpx: Disabling MPX since SMEP not present\n"); |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | static bool ring3mwait_disabled __read_mostly; |
| 70 | |
| 71 | static int __init ring3mwait_disable(char *__unused) |
| 72 | { |
| 73 | ring3mwait_disabled = true; |
| 74 | return 0; |
| 75 | } |
| 76 | __setup("ring3mwait=disable", ring3mwait_disable); |
| 77 | |
| 78 | static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) |
| 79 | { |
| 80 | /* |
| 81 | * Ring 3 MONITOR/MWAIT feature cannot be detected without |
| 82 | * cpu model and family comparison. |
| 83 | */ |
| 84 | if (c->x86 != 6) |
| 85 | return; |
| 86 | switch (c->x86_model) { |
| 87 | case INTEL_FAM6_XEON_PHI_KNL: |
| 88 | case INTEL_FAM6_XEON_PHI_KNM: |
| 89 | break; |
| 90 | default: |
| 91 | return; |
| 92 | } |
| 93 | |
| 94 | if (ring3mwait_disabled) |
| 95 | return; |
| 96 | |
| 97 | set_cpu_cap(c, X86_FEATURE_RING3MWAIT); |
| 98 | this_cpu_or(msr_misc_features_shadow, |
| 99 | 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); |
| 100 | |
| 101 | if (c == &boot_cpu_data) |
| 102 | ELF_HWCAP2 |= HWCAP2_RING3MWAIT; |
| 103 | } |
| 104 | |
| 105 | /* |
| 106 | * Early microcode releases for the Spectre v2 mitigation were broken. |
| 107 | * Information taken from; |
| 108 | * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf |
| 109 | * - https://kb.vmware.com/s/article/52345 |
| 110 | * - Microcode revisions observed in the wild |
| 111 | * - Release note from 20180108 microcode release |
| 112 | */ |
| 113 | struct sku_microcode { |
| 114 | u8 model; |
| 115 | u8 stepping; |
| 116 | u32 microcode; |
| 117 | }; |
| 118 | static const struct sku_microcode spectre_bad_microcodes[] = { |
| 119 | { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0B, 0x80 }, |
| 120 | { INTEL_FAM6_KABYLAKE_DESKTOP, 0x0A, 0x80 }, |
| 121 | { INTEL_FAM6_KABYLAKE_DESKTOP, 0x09, 0x80 }, |
| 122 | { INTEL_FAM6_KABYLAKE_MOBILE, 0x0A, 0x80 }, |
| 123 | { INTEL_FAM6_KABYLAKE_MOBILE, 0x09, 0x80 }, |
| 124 | { INTEL_FAM6_SKYLAKE_X, 0x03, 0x0100013e }, |
| 125 | { INTEL_FAM6_SKYLAKE_X, 0x04, 0x0200003c }, |
| 126 | { INTEL_FAM6_BROADWELL_CORE, 0x04, 0x28 }, |
| 127 | { INTEL_FAM6_BROADWELL_GT3E, 0x01, 0x1b }, |
| 128 | { INTEL_FAM6_BROADWELL_XEON_D, 0x02, 0x14 }, |
| 129 | { INTEL_FAM6_BROADWELL_XEON_D, 0x03, 0x07000011 }, |
| 130 | { INTEL_FAM6_BROADWELL_X, 0x01, 0x0b000025 }, |
| 131 | { INTEL_FAM6_HASWELL_ULT, 0x01, 0x21 }, |
| 132 | { INTEL_FAM6_HASWELL_GT3E, 0x01, 0x18 }, |
| 133 | { INTEL_FAM6_HASWELL_CORE, 0x03, 0x23 }, |
| 134 | { INTEL_FAM6_HASWELL_X, 0x02, 0x3b }, |
| 135 | { INTEL_FAM6_HASWELL_X, 0x04, 0x10 }, |
| 136 | { INTEL_FAM6_IVYBRIDGE_X, 0x04, 0x42a }, |
| 137 | /* Observed in the wild */ |
| 138 | { INTEL_FAM6_SANDYBRIDGE_X, 0x06, 0x61b }, |
| 139 | { INTEL_FAM6_SANDYBRIDGE_X, 0x07, 0x712 }, |
| 140 | }; |
| 141 | |
| 142 | static bool bad_spectre_microcode(struct cpuinfo_x86 *c) |
| 143 | { |
| 144 | int i; |
| 145 | |
| 146 | /* |
| 147 | * We know that the hypervisor lie to us on the microcode version so |
| 148 | * we may as well hope that it is running the correct version. |
| 149 | */ |
| 150 | if (cpu_has(c, X86_FEATURE_HYPERVISOR)) |
| 151 | return false; |
| 152 | |
| 153 | if (c->x86 != 6) |
| 154 | return false; |
| 155 | |
| 156 | for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { |
| 157 | if (c->x86_model == spectre_bad_microcodes[i].model && |
| 158 | c->x86_stepping == spectre_bad_microcodes[i].stepping) |
| 159 | return (c->microcode <= spectre_bad_microcodes[i].microcode); |
| 160 | } |
| 161 | return false; |
| 162 | } |
| 163 | |
| 164 | static void early_init_intel(struct cpuinfo_x86 *c) |
| 165 | { |
| 166 | u64 misc_enable; |
| 167 | |
| 168 | /* Unmask CPUID levels if masked: */ |
| 169 | if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { |
| 170 | if (msr_clear_bit(MSR_IA32_MISC_ENABLE, |
| 171 | MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { |
| 172 | c->cpuid_level = cpuid_eax(0); |
| 173 | get_cpu_cap(c); |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | if ((c->x86 == 0xf && c->x86_model >= 0x03) || |
| 178 | (c->x86 == 0x6 && c->x86_model >= 0x0e)) |
| 179 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| 180 | |
| 181 | if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) |
| 182 | c->microcode = intel_get_microcode_revision(); |
| 183 | |
| 184 | /* Now if any of them are set, check the blacklist and clear the lot */ |
| 185 | if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || |
| 186 | cpu_has(c, X86_FEATURE_INTEL_STIBP) || |
| 187 | cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || |
| 188 | cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { |
| 189 | pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); |
| 190 | setup_clear_cpu_cap(X86_FEATURE_IBRS); |
| 191 | setup_clear_cpu_cap(X86_FEATURE_IBPB); |
| 192 | setup_clear_cpu_cap(X86_FEATURE_STIBP); |
| 193 | setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); |
| 194 | setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); |
| 195 | setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); |
| 196 | setup_clear_cpu_cap(X86_FEATURE_SSBD); |
| 197 | setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); |
| 198 | } |
| 199 | |
| 200 | /* |
| 201 | * Atom erratum AAE44/AAF40/AAG38/AAH41: |
| 202 | * |
| 203 | * A race condition between speculative fetches and invalidating |
| 204 | * a large page. This is worked around in microcode, but we |
| 205 | * need the microcode to have already been loaded... so if it is |
| 206 | * not, recommend a BIOS update and disable large pages. |
| 207 | */ |
| 208 | if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && |
| 209 | c->microcode < 0x20e) { |
| 210 | pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); |
| 211 | clear_cpu_cap(c, X86_FEATURE_PSE); |
| 212 | } |
| 213 | |
| 214 | #ifdef CONFIG_X86_64 |
| 215 | set_cpu_cap(c, X86_FEATURE_SYSENTER32); |
| 216 | #else |
| 217 | /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ |
| 218 | if (c->x86 == 15 && c->x86_cache_alignment == 64) |
| 219 | c->x86_cache_alignment = 128; |
| 220 | #endif |
| 221 | |
| 222 | /* CPUID workaround for 0F33/0F34 CPU */ |
| 223 | if (c->x86 == 0xF && c->x86_model == 0x3 |
| 224 | && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) |
| 225 | c->x86_phys_bits = 36; |
| 226 | |
| 227 | /* |
| 228 | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate |
| 229 | * with P/T states and does not stop in deep C-states. |
| 230 | * |
| 231 | * It is also reliable across cores and sockets. (but not across |
| 232 | * cabinets - we turn it off in that case explicitly.) |
| 233 | */ |
| 234 | if (c->x86_power & (1 << 8)) { |
| 235 | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); |
| 236 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); |
| 237 | } |
| 238 | |
| 239 | /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ |
| 240 | if (c->x86 == 6) { |
| 241 | switch (c->x86_model) { |
| 242 | case 0x27: /* Penwell */ |
| 243 | case 0x35: /* Cloverview */ |
| 244 | case 0x4a: /* Merrifield */ |
| 245 | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); |
| 246 | break; |
| 247 | default: |
| 248 | break; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | /* |
| 253 | * There is a known erratum on Pentium III and Core Solo |
| 254 | * and Core Duo CPUs. |
| 255 | * " Page with PAT set to WC while associated MTRR is UC |
| 256 | * may consolidate to UC " |
| 257 | * Because of this erratum, it is better to stick with |
| 258 | * setting WC in MTRR rather than using PAT on these CPUs. |
| 259 | * |
| 260 | * Enable PAT WC only on P4, Core 2 or later CPUs. |
| 261 | */ |
| 262 | if (c->x86 == 6 && c->x86_model < 15) |
| 263 | clear_cpu_cap(c, X86_FEATURE_PAT); |
| 264 | |
| 265 | /* |
| 266 | * If fast string is not enabled in IA32_MISC_ENABLE for any reason, |
| 267 | * clear the fast string and enhanced fast string CPU capabilities. |
| 268 | */ |
| 269 | if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { |
| 270 | rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); |
| 271 | if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { |
| 272 | pr_info("Disabled fast string operations\n"); |
| 273 | setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); |
| 274 | setup_clear_cpu_cap(X86_FEATURE_ERMS); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /* |
| 279 | * Intel Quark Core DevMan_001.pdf section 6.4.11 |
| 280 | * "The operating system also is required to invalidate (i.e., flush) |
| 281 | * the TLB when any changes are made to any of the page table entries. |
| 282 | * The operating system must reload CR3 to cause the TLB to be flushed" |
| 283 | * |
| 284 | * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h |
| 285 | * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE |
| 286 | * to be modified. |
| 287 | */ |
| 288 | if (c->x86 == 5 && c->x86_model == 9) { |
| 289 | pr_info("Disabling PGE capability bit\n"); |
| 290 | setup_clear_cpu_cap(X86_FEATURE_PGE); |
| 291 | } |
| 292 | |
| 293 | if (c->cpuid_level >= 0x00000001) { |
| 294 | u32 eax, ebx, ecx, edx; |
| 295 | |
| 296 | cpuid(0x00000001, &eax, &ebx, &ecx, &edx); |
| 297 | /* |
| 298 | * If HTT (EDX[28]) is set EBX[16:23] contain the number of |
| 299 | * apicids which are reserved per package. Store the resulting |
| 300 | * shift value for the package management code. |
| 301 | */ |
| 302 | if (edx & (1U << 28)) |
| 303 | c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); |
| 304 | } |
| 305 | |
| 306 | check_mpx_erratum(c); |
| 307 | |
| 308 | /* |
| 309 | * Get the number of SMT siblings early from the extended topology |
| 310 | * leaf, if available. Otherwise try the legacy SMT detection. |
| 311 | */ |
| 312 | if (detect_extended_topology_early(c) < 0) |
| 313 | detect_ht_early(c); |
| 314 | } |
| 315 | |
| 316 | #ifdef CONFIG_X86_32 |
| 317 | /* |
| 318 | * Early probe support logic for ppro memory erratum #50 |
| 319 | * |
| 320 | * This is called before we do cpu ident work |
| 321 | */ |
| 322 | |
| 323 | int ppro_with_ram_bug(void) |
| 324 | { |
| 325 | /* Uses data from early_cpu_detect now */ |
| 326 | if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && |
| 327 | boot_cpu_data.x86 == 6 && |
| 328 | boot_cpu_data.x86_model == 1 && |
| 329 | boot_cpu_data.x86_stepping < 8) { |
| 330 | pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); |
| 331 | return 1; |
| 332 | } |
| 333 | return 0; |
| 334 | } |
| 335 | |
| 336 | static void intel_smp_check(struct cpuinfo_x86 *c) |
| 337 | { |
| 338 | /* calling is from identify_secondary_cpu() ? */ |
| 339 | if (!c->cpu_index) |
| 340 | return; |
| 341 | |
| 342 | /* |
| 343 | * Mask B, Pentium, but not Pentium MMX |
| 344 | */ |
| 345 | if (c->x86 == 5 && |
| 346 | c->x86_stepping >= 1 && c->x86_stepping <= 4 && |
| 347 | c->x86_model <= 3) { |
| 348 | /* |
| 349 | * Remember we have B step Pentia with bugs |
| 350 | */ |
| 351 | WARN_ONCE(1, "WARNING: SMP operation may be unreliable" |
| 352 | "with B stepping processors.\n"); |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | static int forcepae; |
| 357 | static int __init forcepae_setup(char *__unused) |
| 358 | { |
| 359 | forcepae = 1; |
| 360 | return 1; |
| 361 | } |
| 362 | __setup("forcepae", forcepae_setup); |
| 363 | |
| 364 | static void intel_workarounds(struct cpuinfo_x86 *c) |
| 365 | { |
| 366 | #ifdef CONFIG_X86_F00F_BUG |
| 367 | /* |
| 368 | * All models of Pentium and Pentium with MMX technology CPUs |
| 369 | * have the F0 0F bug, which lets nonprivileged users lock up the |
| 370 | * system. Announce that the fault handler will be checking for it. |
| 371 | * The Quark is also family 5, but does not have the same bug. |
| 372 | */ |
| 373 | clear_cpu_bug(c, X86_BUG_F00F); |
| 374 | if (c->x86 == 5 && c->x86_model < 9) { |
| 375 | static int f00f_workaround_enabled; |
| 376 | |
| 377 | set_cpu_bug(c, X86_BUG_F00F); |
| 378 | if (!f00f_workaround_enabled) { |
| 379 | pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); |
| 380 | f00f_workaround_enabled = 1; |
| 381 | } |
| 382 | } |
| 383 | #endif |
| 384 | |
| 385 | /* |
| 386 | * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until |
| 387 | * model 3 mask 3 |
| 388 | */ |
| 389 | if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) |
| 390 | clear_cpu_cap(c, X86_FEATURE_SEP); |
| 391 | |
| 392 | /* |
| 393 | * PAE CPUID issue: many Pentium M report no PAE but may have a |
| 394 | * functionally usable PAE implementation. |
| 395 | * Forcefully enable PAE if kernel parameter "forcepae" is present. |
| 396 | */ |
| 397 | if (forcepae) { |
| 398 | pr_warn("PAE forced!\n"); |
| 399 | set_cpu_cap(c, X86_FEATURE_PAE); |
| 400 | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); |
| 401 | } |
| 402 | |
| 403 | /* |
| 404 | * P4 Xeon erratum 037 workaround. |
| 405 | * Hardware prefetcher may cause stale data to be loaded into the cache. |
| 406 | */ |
| 407 | if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { |
| 408 | if (msr_set_bit(MSR_IA32_MISC_ENABLE, |
| 409 | MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { |
| 410 | pr_info("CPU: C0 stepping P4 Xeon detected.\n"); |
| 411 | pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); |
| 412 | } |
| 413 | } |
| 414 | |
| 415 | /* |
| 416 | * See if we have a good local APIC by checking for buggy Pentia, |
| 417 | * i.e. all B steppings and the C2 stepping of P54C when using their |
| 418 | * integrated APIC (see 11AP erratum in "Pentium Processor |
| 419 | * Specification Update"). |
| 420 | */ |
| 421 | if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && |
| 422 | (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) |
| 423 | set_cpu_bug(c, X86_BUG_11AP); |
| 424 | |
| 425 | |
| 426 | #ifdef CONFIG_X86_INTEL_USERCOPY |
| 427 | /* |
| 428 | * Set up the preferred alignment for movsl bulk memory moves |
| 429 | */ |
| 430 | switch (c->x86) { |
| 431 | case 4: /* 486: untested */ |
| 432 | break; |
| 433 | case 5: /* Old Pentia: untested */ |
| 434 | break; |
| 435 | case 6: /* PII/PIII only like movsl with 8-byte alignment */ |
| 436 | movsl_mask.mask = 7; |
| 437 | break; |
| 438 | case 15: /* P4 is OK down to 8-byte alignment */ |
| 439 | movsl_mask.mask = 7; |
| 440 | break; |
| 441 | } |
| 442 | #endif |
| 443 | |
| 444 | intel_smp_check(c); |
| 445 | } |
| 446 | #else |
| 447 | static void intel_workarounds(struct cpuinfo_x86 *c) |
| 448 | { |
| 449 | } |
| 450 | #endif |
| 451 | |
| 452 | static void srat_detect_node(struct cpuinfo_x86 *c) |
| 453 | { |
| 454 | #ifdef CONFIG_NUMA |
| 455 | unsigned node; |
| 456 | int cpu = smp_processor_id(); |
| 457 | |
| 458 | /* Don't do the funky fallback heuristics the AMD version employs |
| 459 | for now. */ |
| 460 | node = numa_cpu_node(cpu); |
| 461 | if (node == NUMA_NO_NODE || !node_online(node)) { |
| 462 | /* reuse the value from init_cpu_to_node() */ |
| 463 | node = cpu_to_node(cpu); |
| 464 | } |
| 465 | numa_set_node(cpu, node); |
| 466 | #endif |
| 467 | } |
| 468 | |
| 469 | static void detect_vmx_virtcap(struct cpuinfo_x86 *c) |
| 470 | { |
| 471 | /* Intel VMX MSR indicated features */ |
| 472 | #define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW 0x00200000 |
| 473 | #define X86_VMX_FEATURE_PROC_CTLS_VNMI 0x00400000 |
| 474 | #define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS 0x80000000 |
| 475 | #define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC 0x00000001 |
| 476 | #define X86_VMX_FEATURE_PROC_CTLS2_EPT 0x00000002 |
| 477 | #define X86_VMX_FEATURE_PROC_CTLS2_VPID 0x00000020 |
| 478 | #define x86_VMX_FEATURE_EPT_CAP_AD 0x00200000 |
| 479 | |
| 480 | u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2; |
| 481 | u32 msr_vpid_cap, msr_ept_cap; |
| 482 | |
| 483 | clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW); |
| 484 | clear_cpu_cap(c, X86_FEATURE_VNMI); |
| 485 | clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY); |
| 486 | clear_cpu_cap(c, X86_FEATURE_EPT); |
| 487 | clear_cpu_cap(c, X86_FEATURE_VPID); |
| 488 | clear_cpu_cap(c, X86_FEATURE_EPT_AD); |
| 489 | |
| 490 | rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high); |
| 491 | msr_ctl = vmx_msr_high | vmx_msr_low; |
| 492 | if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW) |
| 493 | set_cpu_cap(c, X86_FEATURE_TPR_SHADOW); |
| 494 | if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI) |
| 495 | set_cpu_cap(c, X86_FEATURE_VNMI); |
| 496 | if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) { |
| 497 | rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, |
| 498 | vmx_msr_low, vmx_msr_high); |
| 499 | msr_ctl2 = vmx_msr_high | vmx_msr_low; |
| 500 | if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) && |
| 501 | (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)) |
| 502 | set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY); |
| 503 | if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT) { |
| 504 | set_cpu_cap(c, X86_FEATURE_EPT); |
| 505 | rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, |
| 506 | msr_ept_cap, msr_vpid_cap); |
| 507 | if (msr_ept_cap & x86_VMX_FEATURE_EPT_CAP_AD) |
| 508 | set_cpu_cap(c, X86_FEATURE_EPT_AD); |
| 509 | } |
| 510 | if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID) |
| 511 | set_cpu_cap(c, X86_FEATURE_VPID); |
| 512 | } |
| 513 | } |
| 514 | |
| 515 | #define MSR_IA32_TME_ACTIVATE 0x982 |
| 516 | |
| 517 | /* Helpers to access TME_ACTIVATE MSR */ |
| 518 | #define TME_ACTIVATE_LOCKED(x) (x & 0x1) |
| 519 | #define TME_ACTIVATE_ENABLED(x) (x & 0x2) |
| 520 | |
| 521 | #define TME_ACTIVATE_POLICY(x) ((x >> 4) & 0xf) /* Bits 7:4 */ |
| 522 | #define TME_ACTIVATE_POLICY_AES_XTS_128 0 |
| 523 | |
| 524 | #define TME_ACTIVATE_KEYID_BITS(x) ((x >> 32) & 0xf) /* Bits 35:32 */ |
| 525 | |
| 526 | #define TME_ACTIVATE_CRYPTO_ALGS(x) ((x >> 48) & 0xffff) /* Bits 63:48 */ |
| 527 | #define TME_ACTIVATE_CRYPTO_AES_XTS_128 1 |
| 528 | |
| 529 | /* Values for mktme_status (SW only construct) */ |
| 530 | #define MKTME_ENABLED 0 |
| 531 | #define MKTME_DISABLED 1 |
| 532 | #define MKTME_UNINITIALIZED 2 |
| 533 | static int mktme_status = MKTME_UNINITIALIZED; |
| 534 | |
| 535 | static void detect_tme(struct cpuinfo_x86 *c) |
| 536 | { |
| 537 | u64 tme_activate, tme_policy, tme_crypto_algs; |
| 538 | int keyid_bits = 0, nr_keyids = 0; |
| 539 | static u64 tme_activate_cpu0 = 0; |
| 540 | |
| 541 | rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); |
| 542 | |
| 543 | if (mktme_status != MKTME_UNINITIALIZED) { |
| 544 | if (tme_activate != tme_activate_cpu0) { |
| 545 | /* Broken BIOS? */ |
| 546 | pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); |
| 547 | pr_err_once("x86/tme: MKTME is not usable\n"); |
| 548 | mktme_status = MKTME_DISABLED; |
| 549 | |
| 550 | /* Proceed. We may need to exclude bits from x86_phys_bits. */ |
| 551 | } |
| 552 | } else { |
| 553 | tme_activate_cpu0 = tme_activate; |
| 554 | } |
| 555 | |
| 556 | if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { |
| 557 | pr_info_once("x86/tme: not enabled by BIOS\n"); |
| 558 | mktme_status = MKTME_DISABLED; |
| 559 | return; |
| 560 | } |
| 561 | |
| 562 | if (mktme_status != MKTME_UNINITIALIZED) |
| 563 | goto detect_keyid_bits; |
| 564 | |
| 565 | pr_info("x86/tme: enabled by BIOS\n"); |
| 566 | |
| 567 | tme_policy = TME_ACTIVATE_POLICY(tme_activate); |
| 568 | if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) |
| 569 | pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); |
| 570 | |
| 571 | tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); |
| 572 | if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { |
| 573 | pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", |
| 574 | tme_crypto_algs); |
| 575 | mktme_status = MKTME_DISABLED; |
| 576 | } |
| 577 | detect_keyid_bits: |
| 578 | keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); |
| 579 | nr_keyids = (1UL << keyid_bits) - 1; |
| 580 | if (nr_keyids) { |
| 581 | pr_info_once("x86/mktme: enabled by BIOS\n"); |
| 582 | pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); |
| 583 | } else { |
| 584 | pr_info_once("x86/mktme: disabled by BIOS\n"); |
| 585 | } |
| 586 | |
| 587 | if (mktme_status == MKTME_UNINITIALIZED) { |
| 588 | /* MKTME is usable */ |
| 589 | mktme_status = MKTME_ENABLED; |
| 590 | } |
| 591 | |
| 592 | /* |
| 593 | * KeyID bits effectively lower the number of physical address |
| 594 | * bits. Update cpuinfo_x86::x86_phys_bits accordingly. |
| 595 | */ |
| 596 | c->x86_phys_bits -= keyid_bits; |
| 597 | } |
| 598 | |
| 599 | static void init_intel_energy_perf(struct cpuinfo_x86 *c) |
| 600 | { |
| 601 | u64 epb; |
| 602 | |
| 603 | /* |
| 604 | * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized. |
| 605 | * (x86_energy_perf_policy(8) is available to change it at run-time.) |
| 606 | */ |
| 607 | if (!cpu_has(c, X86_FEATURE_EPB)) |
| 608 | return; |
| 609 | |
| 610 | rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb); |
| 611 | if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE) |
| 612 | return; |
| 613 | |
| 614 | pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n"); |
| 615 | pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n"); |
| 616 | epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL; |
| 617 | wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb); |
| 618 | } |
| 619 | |
| 620 | static void intel_bsp_resume(struct cpuinfo_x86 *c) |
| 621 | { |
| 622 | /* |
| 623 | * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume, |
| 624 | * so reinitialize it properly like during bootup: |
| 625 | */ |
| 626 | init_intel_energy_perf(c); |
| 627 | } |
| 628 | |
| 629 | static void init_cpuid_fault(struct cpuinfo_x86 *c) |
| 630 | { |
| 631 | u64 msr; |
| 632 | |
| 633 | if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { |
| 634 | if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) |
| 635 | set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | static void init_intel_misc_features(struct cpuinfo_x86 *c) |
| 640 | { |
| 641 | u64 msr; |
| 642 | |
| 643 | if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) |
| 644 | return; |
| 645 | |
| 646 | /* Clear all MISC features */ |
| 647 | this_cpu_write(msr_misc_features_shadow, 0); |
| 648 | |
| 649 | /* Check features and update capabilities and shadow control bits */ |
| 650 | init_cpuid_fault(c); |
| 651 | probe_xeon_phi_r3mwait(c); |
| 652 | |
| 653 | msr = this_cpu_read(msr_misc_features_shadow); |
| 654 | wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); |
| 655 | } |
| 656 | |
| 657 | static void init_intel(struct cpuinfo_x86 *c) |
| 658 | { |
| 659 | early_init_intel(c); |
| 660 | |
| 661 | intel_workarounds(c); |
| 662 | |
| 663 | /* |
| 664 | * Detect the extended topology information if available. This |
| 665 | * will reinitialise the initial_apicid which will be used |
| 666 | * in init_intel_cacheinfo() |
| 667 | */ |
| 668 | detect_extended_topology(c); |
| 669 | |
| 670 | if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { |
| 671 | /* |
| 672 | * let's use the legacy cpuid vector 0x1 and 0x4 for topology |
| 673 | * detection. |
| 674 | */ |
| 675 | detect_num_cpu_cores(c); |
| 676 | #ifdef CONFIG_X86_32 |
| 677 | detect_ht(c); |
| 678 | #endif |
| 679 | } |
| 680 | |
| 681 | init_intel_cacheinfo(c); |
| 682 | |
| 683 | if (c->cpuid_level > 9) { |
| 684 | unsigned eax = cpuid_eax(10); |
| 685 | /* Check for version and the number of counters */ |
| 686 | if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) |
| 687 | set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); |
| 688 | } |
| 689 | |
| 690 | if (cpu_has(c, X86_FEATURE_XMM2)) |
| 691 | set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); |
| 692 | |
| 693 | if (boot_cpu_has(X86_FEATURE_DS)) { |
| 694 | unsigned int l1, l2; |
| 695 | |
| 696 | rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); |
| 697 | if (!(l1 & (1<<11))) |
| 698 | set_cpu_cap(c, X86_FEATURE_BTS); |
| 699 | if (!(l1 & (1<<12))) |
| 700 | set_cpu_cap(c, X86_FEATURE_PEBS); |
| 701 | } |
| 702 | |
| 703 | if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && |
| 704 | (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) |
| 705 | set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); |
| 706 | |
| 707 | if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && |
| 708 | ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) |
| 709 | set_cpu_bug(c, X86_BUG_MONITOR); |
| 710 | |
| 711 | #ifdef CONFIG_X86_64 |
| 712 | if (c->x86 == 15) |
| 713 | c->x86_cache_alignment = c->x86_clflush_size * 2; |
| 714 | if (c->x86 == 6) |
| 715 | set_cpu_cap(c, X86_FEATURE_REP_GOOD); |
| 716 | #else |
| 717 | /* |
| 718 | * Names for the Pentium II/Celeron processors |
| 719 | * detectable only by also checking the cache size. |
| 720 | * Dixon is NOT a Celeron. |
| 721 | */ |
| 722 | if (c->x86 == 6) { |
| 723 | unsigned int l2 = c->x86_cache_size; |
| 724 | char *p = NULL; |
| 725 | |
| 726 | switch (c->x86_model) { |
| 727 | case 5: |
| 728 | if (l2 == 0) |
| 729 | p = "Celeron (Covington)"; |
| 730 | else if (l2 == 256) |
| 731 | p = "Mobile Pentium II (Dixon)"; |
| 732 | break; |
| 733 | |
| 734 | case 6: |
| 735 | if (l2 == 128) |
| 736 | p = "Celeron (Mendocino)"; |
| 737 | else if (c->x86_stepping == 0 || c->x86_stepping == 5) |
| 738 | p = "Celeron-A"; |
| 739 | break; |
| 740 | |
| 741 | case 8: |
| 742 | if (l2 == 128) |
| 743 | p = "Celeron (Coppermine)"; |
| 744 | break; |
| 745 | } |
| 746 | |
| 747 | if (p) |
| 748 | strcpy(c->x86_model_id, p); |
| 749 | } |
| 750 | |
| 751 | if (c->x86 == 15) |
| 752 | set_cpu_cap(c, X86_FEATURE_P4); |
| 753 | if (c->x86 == 6) |
| 754 | set_cpu_cap(c, X86_FEATURE_P3); |
| 755 | #endif |
| 756 | |
| 757 | /* Work around errata */ |
| 758 | srat_detect_node(c); |
| 759 | |
| 760 | if (cpu_has(c, X86_FEATURE_VMX)) |
| 761 | detect_vmx_virtcap(c); |
| 762 | |
| 763 | if (cpu_has(c, X86_FEATURE_TME)) |
| 764 | detect_tme(c); |
| 765 | |
| 766 | init_intel_energy_perf(c); |
| 767 | |
| 768 | init_intel_misc_features(c); |
| 769 | } |
| 770 | |
| 771 | #ifdef CONFIG_X86_32 |
| 772 | static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) |
| 773 | { |
| 774 | /* |
| 775 | * Intel PIII Tualatin. This comes in two flavours. |
| 776 | * One has 256kb of cache, the other 512. We have no way |
| 777 | * to determine which, so we use a boottime override |
| 778 | * for the 512kb model, and assume 256 otherwise. |
| 779 | */ |
| 780 | if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) |
| 781 | size = 256; |
| 782 | |
| 783 | /* |
| 784 | * Intel Quark SoC X1000 contains a 4-way set associative |
| 785 | * 16K cache with a 16 byte cache line and 256 lines per tag |
| 786 | */ |
| 787 | if ((c->x86 == 5) && (c->x86_model == 9)) |
| 788 | size = 16; |
| 789 | return size; |
| 790 | } |
| 791 | #endif |
| 792 | |
| 793 | #define TLB_INST_4K 0x01 |
| 794 | #define TLB_INST_4M 0x02 |
| 795 | #define TLB_INST_2M_4M 0x03 |
| 796 | |
| 797 | #define TLB_INST_ALL 0x05 |
| 798 | #define TLB_INST_1G 0x06 |
| 799 | |
| 800 | #define TLB_DATA_4K 0x11 |
| 801 | #define TLB_DATA_4M 0x12 |
| 802 | #define TLB_DATA_2M_4M 0x13 |
| 803 | #define TLB_DATA_4K_4M 0x14 |
| 804 | |
| 805 | #define TLB_DATA_1G 0x16 |
| 806 | |
| 807 | #define TLB_DATA0_4K 0x21 |
| 808 | #define TLB_DATA0_4M 0x22 |
| 809 | #define TLB_DATA0_2M_4M 0x23 |
| 810 | |
| 811 | #define STLB_4K 0x41 |
| 812 | #define STLB_4K_2M 0x42 |
| 813 | |
| 814 | static const struct _tlb_table intel_tlb_table[] = { |
| 815 | { 0x01, TLB_INST_4K, 32, " TLB_INST 4 KByte pages, 4-way set associative" }, |
| 816 | { 0x02, TLB_INST_4M, 2, " TLB_INST 4 MByte pages, full associative" }, |
| 817 | { 0x03, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way set associative" }, |
| 818 | { 0x04, TLB_DATA_4M, 8, " TLB_DATA 4 MByte pages, 4-way set associative" }, |
| 819 | { 0x05, TLB_DATA_4M, 32, " TLB_DATA 4 MByte pages, 4-way set associative" }, |
| 820 | { 0x0b, TLB_INST_4M, 4, " TLB_INST 4 MByte pages, 4-way set associative" }, |
| 821 | { 0x4f, TLB_INST_4K, 32, " TLB_INST 4 KByte pages */" }, |
| 822 | { 0x50, TLB_INST_ALL, 64, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, |
| 823 | { 0x51, TLB_INST_ALL, 128, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, |
| 824 | { 0x52, TLB_INST_ALL, 256, " TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, |
| 825 | { 0x55, TLB_INST_2M_4M, 7, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, |
| 826 | { 0x56, TLB_DATA0_4M, 16, " TLB_DATA0 4 MByte pages, 4-way set associative" }, |
| 827 | { 0x57, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, 4-way associative" }, |
| 828 | { 0x59, TLB_DATA0_4K, 16, " TLB_DATA0 4 KByte pages, fully associative" }, |
| 829 | { 0x5a, TLB_DATA0_2M_4M, 32, " TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, |
| 830 | { 0x5b, TLB_DATA_4K_4M, 64, " TLB_DATA 4 KByte and 4 MByte pages" }, |
| 831 | { 0x5c, TLB_DATA_4K_4M, 128, " TLB_DATA 4 KByte and 4 MByte pages" }, |
| 832 | { 0x5d, TLB_DATA_4K_4M, 256, " TLB_DATA 4 KByte and 4 MByte pages" }, |
| 833 | { 0x61, TLB_INST_4K, 48, " TLB_INST 4 KByte pages, full associative" }, |
| 834 | { 0x63, TLB_DATA_1G, 4, " TLB_DATA 1 GByte pages, 4-way set associative" }, |
| 835 | { 0x6b, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 8-way associative" }, |
| 836 | { 0x6c, TLB_DATA_2M_4M, 128, " TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, |
| 837 | { 0x6d, TLB_DATA_1G, 16, " TLB_DATA 1 GByte pages, fully associative" }, |
| 838 | { 0x76, TLB_INST_2M_4M, 8, " TLB_INST 2-MByte or 4-MByte pages, fully associative" }, |
| 839 | { 0xb0, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 4-way set associative" }, |
| 840 | { 0xb1, TLB_INST_2M_4M, 4, " TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, |
| 841 | { 0xb2, TLB_INST_4K, 64, " TLB_INST 4KByte pages, 4-way set associative" }, |
| 842 | { 0xb3, TLB_DATA_4K, 128, " TLB_DATA 4 KByte pages, 4-way set associative" }, |
| 843 | { 0xb4, TLB_DATA_4K, 256, " TLB_DATA 4 KByte pages, 4-way associative" }, |
| 844 | { 0xb5, TLB_INST_4K, 64, " TLB_INST 4 KByte pages, 8-way set associative" }, |
| 845 | { 0xb6, TLB_INST_4K, 128, " TLB_INST 4 KByte pages, 8-way set associative" }, |
| 846 | { 0xba, TLB_DATA_4K, 64, " TLB_DATA 4 KByte pages, 4-way associative" }, |
| 847 | { 0xc0, TLB_DATA_4K_4M, 8, " TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, |
| 848 | { 0xc1, STLB_4K_2M, 1024, " STLB 4 KByte and 2 MByte pages, 8-way associative" }, |
| 849 | { 0xc2, TLB_DATA_2M_4M, 16, " DTLB 2 MByte/4MByte pages, 4-way associative" }, |
| 850 | { 0xca, STLB_4K, 512, " STLB 4 KByte pages, 4-way associative" }, |
| 851 | { 0x00, 0, 0 } |
| 852 | }; |
| 853 | |
| 854 | static void intel_tlb_lookup(const unsigned char desc) |
| 855 | { |
| 856 | unsigned char k; |
| 857 | if (desc == 0) |
| 858 | return; |
| 859 | |
| 860 | /* look up this descriptor in the table */ |
| 861 | for (k = 0; intel_tlb_table[k].descriptor != desc && \ |
| 862 | intel_tlb_table[k].descriptor != 0; k++) |
| 863 | ; |
| 864 | |
| 865 | if (intel_tlb_table[k].tlb_type == 0) |
| 866 | return; |
| 867 | |
| 868 | switch (intel_tlb_table[k].tlb_type) { |
| 869 | case STLB_4K: |
| 870 | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 871 | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 872 | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 873 | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 874 | break; |
| 875 | case STLB_4K_2M: |
| 876 | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 877 | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 878 | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 879 | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 880 | if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) |
| 881 | tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; |
| 882 | if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) |
| 883 | tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; |
| 884 | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 885 | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 886 | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 887 | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 888 | break; |
| 889 | case TLB_INST_ALL: |
| 890 | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 891 | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 892 | if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) |
| 893 | tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; |
| 894 | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 895 | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 896 | break; |
| 897 | case TLB_INST_4K: |
| 898 | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 899 | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 900 | break; |
| 901 | case TLB_INST_4M: |
| 902 | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 903 | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 904 | break; |
| 905 | case TLB_INST_2M_4M: |
| 906 | if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) |
| 907 | tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; |
| 908 | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 909 | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 910 | break; |
| 911 | case TLB_DATA_4K: |
| 912 | case TLB_DATA0_4K: |
| 913 | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 914 | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 915 | break; |
| 916 | case TLB_DATA_4M: |
| 917 | case TLB_DATA0_4M: |
| 918 | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 919 | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 920 | break; |
| 921 | case TLB_DATA_2M_4M: |
| 922 | case TLB_DATA0_2M_4M: |
| 923 | if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) |
| 924 | tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; |
| 925 | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 926 | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 927 | break; |
| 928 | case TLB_DATA_4K_4M: |
| 929 | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) |
| 930 | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; |
| 931 | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) |
| 932 | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; |
| 933 | break; |
| 934 | case TLB_DATA_1G: |
| 935 | if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) |
| 936 | tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; |
| 937 | break; |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | static void intel_detect_tlb(struct cpuinfo_x86 *c) |
| 942 | { |
| 943 | int i, j, n; |
| 944 | unsigned int regs[4]; |
| 945 | unsigned char *desc = (unsigned char *)regs; |
| 946 | |
| 947 | if (c->cpuid_level < 2) |
| 948 | return; |
| 949 | |
| 950 | /* Number of times to iterate */ |
| 951 | n = cpuid_eax(2) & 0xFF; |
| 952 | |
| 953 | for (i = 0 ; i < n ; i++) { |
| 954 | cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); |
| 955 | |
| 956 | /* If bit 31 is set, this is an unknown format */ |
| 957 | for (j = 0 ; j < 3 ; j++) |
| 958 | if (regs[j] & (1 << 31)) |
| 959 | regs[j] = 0; |
| 960 | |
| 961 | /* Byte 0 is level count, not a descriptor */ |
| 962 | for (j = 1 ; j < 16 ; j++) |
| 963 | intel_tlb_lookup(desc[j]); |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | static const struct cpu_dev intel_cpu_dev = { |
| 968 | .c_vendor = "Intel", |
| 969 | .c_ident = { "GenuineIntel" }, |
| 970 | #ifdef CONFIG_X86_32 |
| 971 | .legacy_models = { |
| 972 | { .family = 4, .model_names = |
| 973 | { |
| 974 | [0] = "486 DX-25/33", |
| 975 | [1] = "486 DX-50", |
| 976 | [2] = "486 SX", |
| 977 | [3] = "486 DX/2", |
| 978 | [4] = "486 SL", |
| 979 | [5] = "486 SX/2", |
| 980 | [7] = "486 DX/2-WB", |
| 981 | [8] = "486 DX/4", |
| 982 | [9] = "486 DX/4-WB" |
| 983 | } |
| 984 | }, |
| 985 | { .family = 5, .model_names = |
| 986 | { |
| 987 | [0] = "Pentium 60/66 A-step", |
| 988 | [1] = "Pentium 60/66", |
| 989 | [2] = "Pentium 75 - 200", |
| 990 | [3] = "OverDrive PODP5V83", |
| 991 | [4] = "Pentium MMX", |
| 992 | [7] = "Mobile Pentium 75 - 200", |
| 993 | [8] = "Mobile Pentium MMX", |
| 994 | [9] = "Quark SoC X1000", |
| 995 | } |
| 996 | }, |
| 997 | { .family = 6, .model_names = |
| 998 | { |
| 999 | [0] = "Pentium Pro A-step", |
| 1000 | [1] = "Pentium Pro", |
| 1001 | [3] = "Pentium II (Klamath)", |
| 1002 | [4] = "Pentium II (Deschutes)", |
| 1003 | [5] = "Pentium II (Deschutes)", |
| 1004 | [6] = "Mobile Pentium II", |
| 1005 | [7] = "Pentium III (Katmai)", |
| 1006 | [8] = "Pentium III (Coppermine)", |
| 1007 | [10] = "Pentium III (Cascades)", |
| 1008 | [11] = "Pentium III (Tualatin)", |
| 1009 | } |
| 1010 | }, |
| 1011 | { .family = 15, .model_names = |
| 1012 | { |
| 1013 | [0] = "Pentium 4 (Unknown)", |
| 1014 | [1] = "Pentium 4 (Willamette)", |
| 1015 | [2] = "Pentium 4 (Northwood)", |
| 1016 | [4] = "Pentium 4 (Foster)", |
| 1017 | [5] = "Pentium 4 (Foster)", |
| 1018 | } |
| 1019 | }, |
| 1020 | }, |
| 1021 | .legacy_cache_size = intel_size_cache, |
| 1022 | #endif |
| 1023 | .c_detect_tlb = intel_detect_tlb, |
| 1024 | .c_early_init = early_init_intel, |
| 1025 | .c_init = init_intel, |
| 1026 | .c_bsp_resume = intel_bsp_resume, |
| 1027 | .c_x86_vendor = X86_VENDOR_INTEL, |
| 1028 | }; |
| 1029 | |
| 1030 | cpu_dev_register(intel_cpu_dev); |
| 1031 | |