Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * background writeback - scan btree for dirty data and write it to the backing |
| 4 | * device |
| 5 | * |
| 6 | * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com> |
| 7 | * Copyright 2012 Google, Inc. |
| 8 | */ |
| 9 | |
| 10 | #include "bcache.h" |
| 11 | #include "btree.h" |
| 12 | #include "debug.h" |
| 13 | #include "writeback.h" |
| 14 | |
| 15 | #include <linux/delay.h> |
| 16 | #include <linux/kthread.h> |
| 17 | #include <linux/sched/clock.h> |
| 18 | #include <trace/events/bcache.h> |
| 19 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 20 | static void update_gc_after_writeback(struct cache_set *c) |
| 21 | { |
| 22 | if (c->gc_after_writeback != (BCH_ENABLE_AUTO_GC) || |
| 23 | c->gc_stats.in_use < BCH_AUTO_GC_DIRTY_THRESHOLD) |
| 24 | return; |
| 25 | |
| 26 | c->gc_after_writeback |= BCH_DO_AUTO_GC; |
| 27 | } |
| 28 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 29 | /* Rate limiting */ |
| 30 | static uint64_t __calc_target_rate(struct cached_dev *dc) |
| 31 | { |
| 32 | struct cache_set *c = dc->disk.c; |
| 33 | |
| 34 | /* |
| 35 | * This is the size of the cache, minus the amount used for |
| 36 | * flash-only devices |
| 37 | */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 38 | uint64_t cache_sectors = c->nbuckets * c->cache->sb.bucket_size - |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 39 | atomic_long_read(&c->flash_dev_dirty_sectors); |
| 40 | |
| 41 | /* |
| 42 | * Unfortunately there is no control of global dirty data. If the |
| 43 | * user states that they want 10% dirty data in the cache, and has, |
| 44 | * e.g., 5 backing volumes of equal size, we try and ensure each |
| 45 | * backing volume uses about 2% of the cache for dirty data. |
| 46 | */ |
| 47 | uint32_t bdev_share = |
| 48 | div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT, |
| 49 | c->cached_dev_sectors); |
| 50 | |
| 51 | uint64_t cache_dirty_target = |
| 52 | div_u64(cache_sectors * dc->writeback_percent, 100); |
| 53 | |
| 54 | /* Ensure each backing dev gets at least one dirty share */ |
| 55 | if (bdev_share < 1) |
| 56 | bdev_share = 1; |
| 57 | |
| 58 | return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT; |
| 59 | } |
| 60 | |
| 61 | static void __update_writeback_rate(struct cached_dev *dc) |
| 62 | { |
| 63 | /* |
| 64 | * PI controller: |
| 65 | * Figures out the amount that should be written per second. |
| 66 | * |
| 67 | * First, the error (number of sectors that are dirty beyond our |
| 68 | * target) is calculated. The error is accumulated (numerically |
| 69 | * integrated). |
| 70 | * |
| 71 | * Then, the proportional value and integral value are scaled |
| 72 | * based on configured values. These are stored as inverses to |
| 73 | * avoid fixed point math and to make configuration easy-- e.g. |
| 74 | * the default value of 40 for writeback_rate_p_term_inverse |
| 75 | * attempts to write at a rate that would retire all the dirty |
| 76 | * blocks in 40 seconds. |
| 77 | * |
| 78 | * The writeback_rate_i_inverse value of 10000 means that 1/10000th |
| 79 | * of the error is accumulated in the integral term per second. |
| 80 | * This acts as a slow, long-term average that is not subject to |
| 81 | * variations in usage like the p term. |
| 82 | */ |
| 83 | int64_t target = __calc_target_rate(dc); |
| 84 | int64_t dirty = bcache_dev_sectors_dirty(&dc->disk); |
| 85 | int64_t error = dirty - target; |
| 86 | int64_t proportional_scaled = |
| 87 | div_s64(error, dc->writeback_rate_p_term_inverse); |
| 88 | int64_t integral_scaled; |
| 89 | uint32_t new_rate; |
| 90 | |
| 91 | if ((error < 0 && dc->writeback_rate_integral > 0) || |
| 92 | (error > 0 && time_before64(local_clock(), |
| 93 | dc->writeback_rate.next + NSEC_PER_MSEC))) { |
| 94 | /* |
| 95 | * Only decrease the integral term if it's more than |
| 96 | * zero. Only increase the integral term if the device |
| 97 | * is keeping up. (Don't wind up the integral |
| 98 | * ineffectively in either case). |
| 99 | * |
| 100 | * It's necessary to scale this by |
| 101 | * writeback_rate_update_seconds to keep the integral |
| 102 | * term dimensioned properly. |
| 103 | */ |
| 104 | dc->writeback_rate_integral += error * |
| 105 | dc->writeback_rate_update_seconds; |
| 106 | } |
| 107 | |
| 108 | integral_scaled = div_s64(dc->writeback_rate_integral, |
| 109 | dc->writeback_rate_i_term_inverse); |
| 110 | |
| 111 | new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled), |
| 112 | dc->writeback_rate_minimum, NSEC_PER_SEC); |
| 113 | |
| 114 | dc->writeback_rate_proportional = proportional_scaled; |
| 115 | dc->writeback_rate_integral_scaled = integral_scaled; |
| 116 | dc->writeback_rate_change = new_rate - |
| 117 | atomic_long_read(&dc->writeback_rate.rate); |
| 118 | atomic_long_set(&dc->writeback_rate.rate, new_rate); |
| 119 | dc->writeback_rate_target = target; |
| 120 | } |
| 121 | |
| 122 | static bool set_at_max_writeback_rate(struct cache_set *c, |
| 123 | struct cached_dev *dc) |
| 124 | { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 125 | /* Don't sst max writeback rate if it is disabled */ |
| 126 | if (!c->idle_max_writeback_rate_enabled) |
| 127 | return false; |
| 128 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 129 | /* Don't set max writeback rate if gc is running */ |
| 130 | if (!c->gc_mark_valid) |
| 131 | return false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 132 | /* |
| 133 | * Idle_counter is increased everytime when update_writeback_rate() is |
| 134 | * called. If all backing devices attached to the same cache set have |
| 135 | * identical dc->writeback_rate_update_seconds values, it is about 6 |
| 136 | * rounds of update_writeback_rate() on each backing device before |
| 137 | * c->at_max_writeback_rate is set to 1, and then max wrteback rate set |
| 138 | * to each dc->writeback_rate.rate. |
| 139 | * In order to avoid extra locking cost for counting exact dirty cached |
| 140 | * devices number, c->attached_dev_nr is used to calculate the idle |
| 141 | * throushold. It might be bigger if not all cached device are in write- |
| 142 | * back mode, but it still works well with limited extra rounds of |
| 143 | * update_writeback_rate(). |
| 144 | */ |
| 145 | if (atomic_inc_return(&c->idle_counter) < |
| 146 | atomic_read(&c->attached_dev_nr) * 6) |
| 147 | return false; |
| 148 | |
| 149 | if (atomic_read(&c->at_max_writeback_rate) != 1) |
| 150 | atomic_set(&c->at_max_writeback_rate, 1); |
| 151 | |
| 152 | atomic_long_set(&dc->writeback_rate.rate, INT_MAX); |
| 153 | |
| 154 | /* keep writeback_rate_target as existing value */ |
| 155 | dc->writeback_rate_proportional = 0; |
| 156 | dc->writeback_rate_integral_scaled = 0; |
| 157 | dc->writeback_rate_change = 0; |
| 158 | |
| 159 | /* |
| 160 | * Check c->idle_counter and c->at_max_writeback_rate agagain in case |
| 161 | * new I/O arrives during before set_at_max_writeback_rate() returns. |
| 162 | * Then the writeback rate is set to 1, and its new value should be |
| 163 | * decided via __update_writeback_rate(). |
| 164 | */ |
| 165 | if ((atomic_read(&c->idle_counter) < |
| 166 | atomic_read(&c->attached_dev_nr) * 6) || |
| 167 | !atomic_read(&c->at_max_writeback_rate)) |
| 168 | return false; |
| 169 | |
| 170 | return true; |
| 171 | } |
| 172 | |
| 173 | static void update_writeback_rate(struct work_struct *work) |
| 174 | { |
| 175 | struct cached_dev *dc = container_of(to_delayed_work(work), |
| 176 | struct cached_dev, |
| 177 | writeback_rate_update); |
| 178 | struct cache_set *c = dc->disk.c; |
| 179 | |
| 180 | /* |
| 181 | * should check BCACHE_DEV_RATE_DW_RUNNING before calling |
| 182 | * cancel_delayed_work_sync(). |
| 183 | */ |
| 184 | set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| 185 | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 186 | smp_mb__after_atomic(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 187 | |
| 188 | /* |
| 189 | * CACHE_SET_IO_DISABLE might be set via sysfs interface, |
| 190 | * check it here too. |
| 191 | */ |
| 192 | if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) || |
| 193 | test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 194 | clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| 195 | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 196 | smp_mb__after_atomic(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 197 | return; |
| 198 | } |
| 199 | |
| 200 | if (atomic_read(&dc->has_dirty) && dc->writeback_percent) { |
| 201 | /* |
| 202 | * If the whole cache set is idle, set_at_max_writeback_rate() |
| 203 | * will set writeback rate to a max number. Then it is |
| 204 | * unncessary to update writeback rate for an idle cache set |
| 205 | * in maximum writeback rate number(s). |
| 206 | */ |
| 207 | if (!set_at_max_writeback_rate(c, dc)) { |
| 208 | down_read(&dc->writeback_lock); |
| 209 | __update_writeback_rate(dc); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 210 | update_gc_after_writeback(c); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 211 | up_read(&dc->writeback_lock); |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | |
| 216 | /* |
| 217 | * CACHE_SET_IO_DISABLE might be set via sysfs interface, |
| 218 | * check it here too. |
| 219 | */ |
| 220 | if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) && |
| 221 | !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 222 | schedule_delayed_work(&dc->writeback_rate_update, |
| 223 | dc->writeback_rate_update_seconds * HZ); |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * should check BCACHE_DEV_RATE_DW_RUNNING before calling |
| 228 | * cancel_delayed_work_sync(). |
| 229 | */ |
| 230 | clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags); |
| 231 | /* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */ |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 232 | smp_mb__after_atomic(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 233 | } |
| 234 | |
| 235 | static unsigned int writeback_delay(struct cached_dev *dc, |
| 236 | unsigned int sectors) |
| 237 | { |
| 238 | if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) || |
| 239 | !dc->writeback_percent) |
| 240 | return 0; |
| 241 | |
| 242 | return bch_next_delay(&dc->writeback_rate, sectors); |
| 243 | } |
| 244 | |
| 245 | struct dirty_io { |
| 246 | struct closure cl; |
| 247 | struct cached_dev *dc; |
| 248 | uint16_t sequence; |
| 249 | struct bio bio; |
| 250 | }; |
| 251 | |
| 252 | static void dirty_init(struct keybuf_key *w) |
| 253 | { |
| 254 | struct dirty_io *io = w->private; |
| 255 | struct bio *bio = &io->bio; |
| 256 | |
| 257 | bio_init(bio, bio->bi_inline_vecs, |
| 258 | DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)); |
| 259 | if (!io->dc->writeback_percent) |
| 260 | bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); |
| 261 | |
| 262 | bio->bi_iter.bi_size = KEY_SIZE(&w->key) << 9; |
| 263 | bio->bi_private = w; |
| 264 | bch_bio_map(bio, NULL); |
| 265 | } |
| 266 | |
| 267 | static void dirty_io_destructor(struct closure *cl) |
| 268 | { |
| 269 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 270 | |
| 271 | kfree(io); |
| 272 | } |
| 273 | |
| 274 | static void write_dirty_finish(struct closure *cl) |
| 275 | { |
| 276 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 277 | struct keybuf_key *w = io->bio.bi_private; |
| 278 | struct cached_dev *dc = io->dc; |
| 279 | |
| 280 | bio_free_pages(&io->bio); |
| 281 | |
| 282 | /* This is kind of a dumb way of signalling errors. */ |
| 283 | if (KEY_DIRTY(&w->key)) { |
| 284 | int ret; |
| 285 | unsigned int i; |
| 286 | struct keylist keys; |
| 287 | |
| 288 | bch_keylist_init(&keys); |
| 289 | |
| 290 | bkey_copy(keys.top, &w->key); |
| 291 | SET_KEY_DIRTY(keys.top, false); |
| 292 | bch_keylist_push(&keys); |
| 293 | |
| 294 | for (i = 0; i < KEY_PTRS(&w->key); i++) |
| 295 | atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin); |
| 296 | |
| 297 | ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key); |
| 298 | |
| 299 | if (ret) |
| 300 | trace_bcache_writeback_collision(&w->key); |
| 301 | |
| 302 | atomic_long_inc(ret |
| 303 | ? &dc->disk.c->writeback_keys_failed |
| 304 | : &dc->disk.c->writeback_keys_done); |
| 305 | } |
| 306 | |
| 307 | bch_keybuf_del(&dc->writeback_keys, w); |
| 308 | up(&dc->in_flight); |
| 309 | |
| 310 | closure_return_with_destructor(cl, dirty_io_destructor); |
| 311 | } |
| 312 | |
| 313 | static void dirty_endio(struct bio *bio) |
| 314 | { |
| 315 | struct keybuf_key *w = bio->bi_private; |
| 316 | struct dirty_io *io = w->private; |
| 317 | |
| 318 | if (bio->bi_status) { |
| 319 | SET_KEY_DIRTY(&w->key, false); |
| 320 | bch_count_backing_io_errors(io->dc, bio); |
| 321 | } |
| 322 | |
| 323 | closure_put(&io->cl); |
| 324 | } |
| 325 | |
| 326 | static void write_dirty(struct closure *cl) |
| 327 | { |
| 328 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 329 | struct keybuf_key *w = io->bio.bi_private; |
| 330 | struct cached_dev *dc = io->dc; |
| 331 | |
| 332 | uint16_t next_sequence; |
| 333 | |
| 334 | if (atomic_read(&dc->writeback_sequence_next) != io->sequence) { |
| 335 | /* Not our turn to write; wait for a write to complete */ |
| 336 | closure_wait(&dc->writeback_ordering_wait, cl); |
| 337 | |
| 338 | if (atomic_read(&dc->writeback_sequence_next) == io->sequence) { |
| 339 | /* |
| 340 | * Edge case-- it happened in indeterminate order |
| 341 | * relative to when we were added to wait list.. |
| 342 | */ |
| 343 | closure_wake_up(&dc->writeback_ordering_wait); |
| 344 | } |
| 345 | |
| 346 | continue_at(cl, write_dirty, io->dc->writeback_write_wq); |
| 347 | return; |
| 348 | } |
| 349 | |
| 350 | next_sequence = io->sequence + 1; |
| 351 | |
| 352 | /* |
| 353 | * IO errors are signalled using the dirty bit on the key. |
| 354 | * If we failed to read, we should not attempt to write to the |
| 355 | * backing device. Instead, immediately go to write_dirty_finish |
| 356 | * to clean up. |
| 357 | */ |
| 358 | if (KEY_DIRTY(&w->key)) { |
| 359 | dirty_init(w); |
| 360 | bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0); |
| 361 | io->bio.bi_iter.bi_sector = KEY_START(&w->key); |
| 362 | bio_set_dev(&io->bio, io->dc->bdev); |
| 363 | io->bio.bi_end_io = dirty_endio; |
| 364 | |
| 365 | /* I/O request sent to backing device */ |
| 366 | closure_bio_submit(io->dc->disk.c, &io->bio, cl); |
| 367 | } |
| 368 | |
| 369 | atomic_set(&dc->writeback_sequence_next, next_sequence); |
| 370 | closure_wake_up(&dc->writeback_ordering_wait); |
| 371 | |
| 372 | continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq); |
| 373 | } |
| 374 | |
| 375 | static void read_dirty_endio(struct bio *bio) |
| 376 | { |
| 377 | struct keybuf_key *w = bio->bi_private; |
| 378 | struct dirty_io *io = w->private; |
| 379 | |
| 380 | /* is_read = 1 */ |
| 381 | bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0), |
| 382 | bio->bi_status, 1, |
| 383 | "reading dirty data from cache"); |
| 384 | |
| 385 | dirty_endio(bio); |
| 386 | } |
| 387 | |
| 388 | static void read_dirty_submit(struct closure *cl) |
| 389 | { |
| 390 | struct dirty_io *io = container_of(cl, struct dirty_io, cl); |
| 391 | |
| 392 | closure_bio_submit(io->dc->disk.c, &io->bio, cl); |
| 393 | |
| 394 | continue_at(cl, write_dirty, io->dc->writeback_write_wq); |
| 395 | } |
| 396 | |
| 397 | static void read_dirty(struct cached_dev *dc) |
| 398 | { |
| 399 | unsigned int delay = 0; |
| 400 | struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w; |
| 401 | size_t size; |
| 402 | int nk, i; |
| 403 | struct dirty_io *io; |
| 404 | struct closure cl; |
| 405 | uint16_t sequence = 0; |
| 406 | |
| 407 | BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list)); |
| 408 | atomic_set(&dc->writeback_sequence_next, sequence); |
| 409 | closure_init_stack(&cl); |
| 410 | |
| 411 | /* |
| 412 | * XXX: if we error, background writeback just spins. Should use some |
| 413 | * mempools. |
| 414 | */ |
| 415 | |
| 416 | next = bch_keybuf_next(&dc->writeback_keys); |
| 417 | |
| 418 | while (!kthread_should_stop() && |
| 419 | !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && |
| 420 | next) { |
| 421 | size = 0; |
| 422 | nk = 0; |
| 423 | |
| 424 | do { |
| 425 | BUG_ON(ptr_stale(dc->disk.c, &next->key, 0)); |
| 426 | |
| 427 | /* |
| 428 | * Don't combine too many operations, even if they |
| 429 | * are all small. |
| 430 | */ |
| 431 | if (nk >= MAX_WRITEBACKS_IN_PASS) |
| 432 | break; |
| 433 | |
| 434 | /* |
| 435 | * If the current operation is very large, don't |
| 436 | * further combine operations. |
| 437 | */ |
| 438 | if (size >= MAX_WRITESIZE_IN_PASS) |
| 439 | break; |
| 440 | |
| 441 | /* |
| 442 | * Operations are only eligible to be combined |
| 443 | * if they are contiguous. |
| 444 | * |
| 445 | * TODO: add a heuristic willing to fire a |
| 446 | * certain amount of non-contiguous IO per pass, |
| 447 | * so that we can benefit from backing device |
| 448 | * command queueing. |
| 449 | */ |
| 450 | if ((nk != 0) && bkey_cmp(&keys[nk-1]->key, |
| 451 | &START_KEY(&next->key))) |
| 452 | break; |
| 453 | |
| 454 | size += KEY_SIZE(&next->key); |
| 455 | keys[nk++] = next; |
| 456 | } while ((next = bch_keybuf_next(&dc->writeback_keys))); |
| 457 | |
| 458 | /* Now we have gathered a set of 1..5 keys to write back. */ |
| 459 | for (i = 0; i < nk; i++) { |
| 460 | w = keys[i]; |
| 461 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 462 | io = kzalloc(struct_size(io, bio.bi_inline_vecs, |
| 463 | DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS)), |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 464 | GFP_KERNEL); |
| 465 | if (!io) |
| 466 | goto err; |
| 467 | |
| 468 | w->private = io; |
| 469 | io->dc = dc; |
| 470 | io->sequence = sequence++; |
| 471 | |
| 472 | dirty_init(w); |
| 473 | bio_set_op_attrs(&io->bio, REQ_OP_READ, 0); |
| 474 | io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0); |
| 475 | bio_set_dev(&io->bio, |
| 476 | PTR_CACHE(dc->disk.c, &w->key, 0)->bdev); |
| 477 | io->bio.bi_end_io = read_dirty_endio; |
| 478 | |
| 479 | if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL)) |
| 480 | goto err_free; |
| 481 | |
| 482 | trace_bcache_writeback(&w->key); |
| 483 | |
| 484 | down(&dc->in_flight); |
| 485 | |
| 486 | /* |
| 487 | * We've acquired a semaphore for the maximum |
| 488 | * simultaneous number of writebacks; from here |
| 489 | * everything happens asynchronously. |
| 490 | */ |
| 491 | closure_call(&io->cl, read_dirty_submit, NULL, &cl); |
| 492 | } |
| 493 | |
| 494 | delay = writeback_delay(dc, size); |
| 495 | |
| 496 | while (!kthread_should_stop() && |
| 497 | !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) && |
| 498 | delay) { |
| 499 | schedule_timeout_interruptible(delay); |
| 500 | delay = writeback_delay(dc, 0); |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | if (0) { |
| 505 | err_free: |
| 506 | kfree(w->private); |
| 507 | err: |
| 508 | bch_keybuf_del(&dc->writeback_keys, w); |
| 509 | } |
| 510 | |
| 511 | /* |
| 512 | * Wait for outstanding writeback IOs to finish (and keybuf slots to be |
| 513 | * freed) before refilling again |
| 514 | */ |
| 515 | closure_sync(&cl); |
| 516 | } |
| 517 | |
| 518 | /* Scan for dirty data */ |
| 519 | |
| 520 | void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode, |
| 521 | uint64_t offset, int nr_sectors) |
| 522 | { |
| 523 | struct bcache_device *d = c->devices[inode]; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 524 | unsigned int stripe_offset, sectors_dirty; |
| 525 | int stripe; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 526 | |
| 527 | if (!d) |
| 528 | return; |
| 529 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 530 | stripe = offset_to_stripe(d, offset); |
| 531 | if (stripe < 0) |
| 532 | return; |
| 533 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 534 | if (UUID_FLASH_ONLY(&c->uuids[inode])) |
| 535 | atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors); |
| 536 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 537 | stripe_offset = offset & (d->stripe_size - 1); |
| 538 | |
| 539 | while (nr_sectors) { |
| 540 | int s = min_t(unsigned int, abs(nr_sectors), |
| 541 | d->stripe_size - stripe_offset); |
| 542 | |
| 543 | if (nr_sectors < 0) |
| 544 | s = -s; |
| 545 | |
| 546 | if (stripe >= d->nr_stripes) |
| 547 | return; |
| 548 | |
| 549 | sectors_dirty = atomic_add_return(s, |
| 550 | d->stripe_sectors_dirty + stripe); |
| 551 | if (sectors_dirty == d->stripe_size) |
| 552 | set_bit(stripe, d->full_dirty_stripes); |
| 553 | else |
| 554 | clear_bit(stripe, d->full_dirty_stripes); |
| 555 | |
| 556 | nr_sectors -= s; |
| 557 | stripe_offset = 0; |
| 558 | stripe++; |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | static bool dirty_pred(struct keybuf *buf, struct bkey *k) |
| 563 | { |
| 564 | struct cached_dev *dc = container_of(buf, |
| 565 | struct cached_dev, |
| 566 | writeback_keys); |
| 567 | |
| 568 | BUG_ON(KEY_INODE(k) != dc->disk.id); |
| 569 | |
| 570 | return KEY_DIRTY(k); |
| 571 | } |
| 572 | |
| 573 | static void refill_full_stripes(struct cached_dev *dc) |
| 574 | { |
| 575 | struct keybuf *buf = &dc->writeback_keys; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 576 | unsigned int start_stripe, next_stripe; |
| 577 | int stripe; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 578 | bool wrapped = false; |
| 579 | |
| 580 | stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned)); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame] | 581 | if (stripe < 0) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 582 | stripe = 0; |
| 583 | |
| 584 | start_stripe = stripe; |
| 585 | |
| 586 | while (1) { |
| 587 | stripe = find_next_bit(dc->disk.full_dirty_stripes, |
| 588 | dc->disk.nr_stripes, stripe); |
| 589 | |
| 590 | if (stripe == dc->disk.nr_stripes) |
| 591 | goto next; |
| 592 | |
| 593 | next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes, |
| 594 | dc->disk.nr_stripes, stripe); |
| 595 | |
| 596 | buf->last_scanned = KEY(dc->disk.id, |
| 597 | stripe * dc->disk.stripe_size, 0); |
| 598 | |
| 599 | bch_refill_keybuf(dc->disk.c, buf, |
| 600 | &KEY(dc->disk.id, |
| 601 | next_stripe * dc->disk.stripe_size, 0), |
| 602 | dirty_pred); |
| 603 | |
| 604 | if (array_freelist_empty(&buf->freelist)) |
| 605 | return; |
| 606 | |
| 607 | stripe = next_stripe; |
| 608 | next: |
| 609 | if (wrapped && stripe > start_stripe) |
| 610 | return; |
| 611 | |
| 612 | if (stripe == dc->disk.nr_stripes) { |
| 613 | stripe = 0; |
| 614 | wrapped = true; |
| 615 | } |
| 616 | } |
| 617 | } |
| 618 | |
| 619 | /* |
| 620 | * Returns true if we scanned the entire disk |
| 621 | */ |
| 622 | static bool refill_dirty(struct cached_dev *dc) |
| 623 | { |
| 624 | struct keybuf *buf = &dc->writeback_keys; |
| 625 | struct bkey start = KEY(dc->disk.id, 0, 0); |
| 626 | struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0); |
| 627 | struct bkey start_pos; |
| 628 | |
| 629 | /* |
| 630 | * make sure keybuf pos is inside the range for this disk - at bringup |
| 631 | * we might not be attached yet so this disk's inode nr isn't |
| 632 | * initialized then |
| 633 | */ |
| 634 | if (bkey_cmp(&buf->last_scanned, &start) < 0 || |
| 635 | bkey_cmp(&buf->last_scanned, &end) > 0) |
| 636 | buf->last_scanned = start; |
| 637 | |
| 638 | if (dc->partial_stripes_expensive) { |
| 639 | refill_full_stripes(dc); |
| 640 | if (array_freelist_empty(&buf->freelist)) |
| 641 | return false; |
| 642 | } |
| 643 | |
| 644 | start_pos = buf->last_scanned; |
| 645 | bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred); |
| 646 | |
| 647 | if (bkey_cmp(&buf->last_scanned, &end) < 0) |
| 648 | return false; |
| 649 | |
| 650 | /* |
| 651 | * If we get to the end start scanning again from the beginning, and |
| 652 | * only scan up to where we initially started scanning from: |
| 653 | */ |
| 654 | buf->last_scanned = start; |
| 655 | bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred); |
| 656 | |
| 657 | return bkey_cmp(&buf->last_scanned, &start_pos) >= 0; |
| 658 | } |
| 659 | |
| 660 | static int bch_writeback_thread(void *arg) |
| 661 | { |
| 662 | struct cached_dev *dc = arg; |
| 663 | struct cache_set *c = dc->disk.c; |
| 664 | bool searched_full_index; |
| 665 | |
| 666 | bch_ratelimit_reset(&dc->writeback_rate); |
| 667 | |
| 668 | while (!kthread_should_stop() && |
| 669 | !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 670 | down_write(&dc->writeback_lock); |
| 671 | set_current_state(TASK_INTERRUPTIBLE); |
| 672 | /* |
| 673 | * If the bache device is detaching, skip here and continue |
| 674 | * to perform writeback. Otherwise, if no dirty data on cache, |
| 675 | * or there is dirty data on cache but writeback is disabled, |
| 676 | * the writeback thread should sleep here and wait for others |
| 677 | * to wake up it. |
| 678 | */ |
| 679 | if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) && |
| 680 | (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) { |
| 681 | up_write(&dc->writeback_lock); |
| 682 | |
| 683 | if (kthread_should_stop() || |
| 684 | test_bit(CACHE_SET_IO_DISABLE, &c->flags)) { |
| 685 | set_current_state(TASK_RUNNING); |
| 686 | break; |
| 687 | } |
| 688 | |
| 689 | schedule(); |
| 690 | continue; |
| 691 | } |
| 692 | set_current_state(TASK_RUNNING); |
| 693 | |
| 694 | searched_full_index = refill_dirty(dc); |
| 695 | |
| 696 | if (searched_full_index && |
| 697 | RB_EMPTY_ROOT(&dc->writeback_keys.keys)) { |
| 698 | atomic_set(&dc->has_dirty, 0); |
| 699 | SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN); |
| 700 | bch_write_bdev_super(dc, NULL); |
| 701 | /* |
| 702 | * If bcache device is detaching via sysfs interface, |
| 703 | * writeback thread should stop after there is no dirty |
| 704 | * data on cache. BCACHE_DEV_DETACHING flag is set in |
| 705 | * bch_cached_dev_detach(). |
| 706 | */ |
| 707 | if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) { |
| 708 | up_write(&dc->writeback_lock); |
| 709 | break; |
| 710 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 711 | |
| 712 | /* |
| 713 | * When dirty data rate is high (e.g. 50%+), there might |
| 714 | * be heavy buckets fragmentation after writeback |
| 715 | * finished, which hurts following write performance. |
| 716 | * If users really care about write performance they |
| 717 | * may set BCH_ENABLE_AUTO_GC via sysfs, then when |
| 718 | * BCH_DO_AUTO_GC is set, garbage collection thread |
| 719 | * will be wake up here. After moving gc, the shrunk |
| 720 | * btree and discarded free buckets SSD space may be |
| 721 | * helpful for following write requests. |
| 722 | */ |
| 723 | if (c->gc_after_writeback == |
| 724 | (BCH_ENABLE_AUTO_GC|BCH_DO_AUTO_GC)) { |
| 725 | c->gc_after_writeback &= ~BCH_DO_AUTO_GC; |
| 726 | force_wake_up_gc(c); |
| 727 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 728 | } |
| 729 | |
| 730 | up_write(&dc->writeback_lock); |
| 731 | |
| 732 | read_dirty(dc); |
| 733 | |
| 734 | if (searched_full_index) { |
| 735 | unsigned int delay = dc->writeback_delay * HZ; |
| 736 | |
| 737 | while (delay && |
| 738 | !kthread_should_stop() && |
| 739 | !test_bit(CACHE_SET_IO_DISABLE, &c->flags) && |
| 740 | !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) |
| 741 | delay = schedule_timeout_interruptible(delay); |
| 742 | |
| 743 | bch_ratelimit_reset(&dc->writeback_rate); |
| 744 | } |
| 745 | } |
| 746 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 747 | if (dc->writeback_write_wq) { |
| 748 | flush_workqueue(dc->writeback_write_wq); |
| 749 | destroy_workqueue(dc->writeback_write_wq); |
| 750 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 751 | cached_dev_put(dc); |
| 752 | wait_for_kthread_stop(); |
| 753 | |
| 754 | return 0; |
| 755 | } |
| 756 | |
| 757 | /* Init */ |
| 758 | #define INIT_KEYS_EACH_TIME 500000 |
| 759 | #define INIT_KEYS_SLEEP_MS 100 |
| 760 | |
| 761 | struct sectors_dirty_init { |
| 762 | struct btree_op op; |
| 763 | unsigned int inode; |
| 764 | size_t count; |
| 765 | struct bkey start; |
| 766 | }; |
| 767 | |
| 768 | static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b, |
| 769 | struct bkey *k) |
| 770 | { |
| 771 | struct sectors_dirty_init *op = container_of(_op, |
| 772 | struct sectors_dirty_init, op); |
| 773 | if (KEY_INODE(k) > op->inode) |
| 774 | return MAP_DONE; |
| 775 | |
| 776 | if (KEY_DIRTY(k)) |
| 777 | bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), |
| 778 | KEY_START(k), KEY_SIZE(k)); |
| 779 | |
| 780 | op->count++; |
| 781 | if (atomic_read(&b->c->search_inflight) && |
| 782 | !(op->count % INIT_KEYS_EACH_TIME)) { |
| 783 | bkey_copy_key(&op->start, k); |
| 784 | return -EAGAIN; |
| 785 | } |
| 786 | |
| 787 | return MAP_CONTINUE; |
| 788 | } |
| 789 | |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 790 | static int bch_root_node_dirty_init(struct cache_set *c, |
| 791 | struct bcache_device *d, |
| 792 | struct bkey *k) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 793 | { |
| 794 | struct sectors_dirty_init op; |
| 795 | int ret; |
| 796 | |
| 797 | bch_btree_op_init(&op.op, -1); |
| 798 | op.inode = d->id; |
| 799 | op.count = 0; |
| 800 | op.start = KEY(op.inode, 0, 0); |
| 801 | |
| 802 | do { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 803 | ret = bcache_btree(map_keys_recurse, |
| 804 | k, |
| 805 | c->root, |
| 806 | &op.op, |
| 807 | &op.start, |
| 808 | sectors_dirty_init_fn, |
| 809 | 0); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 810 | if (ret == -EAGAIN) |
| 811 | schedule_timeout_interruptible( |
| 812 | msecs_to_jiffies(INIT_KEYS_SLEEP_MS)); |
| 813 | else if (ret < 0) { |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 814 | pr_warn("sectors dirty init failed, ret=%d!\n", ret); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 815 | break; |
| 816 | } |
| 817 | } while (ret == -EAGAIN); |
Olivier Deprez | 157378f | 2022-04-04 15:47:50 +0200 | [diff] [blame^] | 818 | |
| 819 | return ret; |
| 820 | } |
| 821 | |
| 822 | static int bch_dirty_init_thread(void *arg) |
| 823 | { |
| 824 | struct dirty_init_thrd_info *info = arg; |
| 825 | struct bch_dirty_init_state *state = info->state; |
| 826 | struct cache_set *c = state->c; |
| 827 | struct btree_iter iter; |
| 828 | struct bkey *k, *p; |
| 829 | int cur_idx, prev_idx, skip_nr; |
| 830 | |
| 831 | k = p = NULL; |
| 832 | cur_idx = prev_idx = 0; |
| 833 | |
| 834 | bch_btree_iter_init(&c->root->keys, &iter, NULL); |
| 835 | k = bch_btree_iter_next_filter(&iter, &c->root->keys, bch_ptr_bad); |
| 836 | BUG_ON(!k); |
| 837 | |
| 838 | p = k; |
| 839 | |
| 840 | while (k) { |
| 841 | spin_lock(&state->idx_lock); |
| 842 | cur_idx = state->key_idx; |
| 843 | state->key_idx++; |
| 844 | spin_unlock(&state->idx_lock); |
| 845 | |
| 846 | skip_nr = cur_idx - prev_idx; |
| 847 | |
| 848 | while (skip_nr) { |
| 849 | k = bch_btree_iter_next_filter(&iter, |
| 850 | &c->root->keys, |
| 851 | bch_ptr_bad); |
| 852 | if (k) |
| 853 | p = k; |
| 854 | else { |
| 855 | atomic_set(&state->enough, 1); |
| 856 | /* Update state->enough earlier */ |
| 857 | smp_mb__after_atomic(); |
| 858 | goto out; |
| 859 | } |
| 860 | skip_nr--; |
| 861 | cond_resched(); |
| 862 | } |
| 863 | |
| 864 | if (p) { |
| 865 | if (bch_root_node_dirty_init(c, state->d, p) < 0) |
| 866 | goto out; |
| 867 | } |
| 868 | |
| 869 | p = NULL; |
| 870 | prev_idx = cur_idx; |
| 871 | cond_resched(); |
| 872 | } |
| 873 | |
| 874 | out: |
| 875 | /* In order to wake up state->wait in time */ |
| 876 | smp_mb__before_atomic(); |
| 877 | if (atomic_dec_and_test(&state->started)) |
| 878 | wake_up(&state->wait); |
| 879 | |
| 880 | return 0; |
| 881 | } |
| 882 | |
| 883 | static int bch_btre_dirty_init_thread_nr(void) |
| 884 | { |
| 885 | int n = num_online_cpus()/2; |
| 886 | |
| 887 | if (n == 0) |
| 888 | n = 1; |
| 889 | else if (n > BCH_DIRTY_INIT_THRD_MAX) |
| 890 | n = BCH_DIRTY_INIT_THRD_MAX; |
| 891 | |
| 892 | return n; |
| 893 | } |
| 894 | |
| 895 | void bch_sectors_dirty_init(struct bcache_device *d) |
| 896 | { |
| 897 | int i; |
| 898 | struct bkey *k = NULL; |
| 899 | struct btree_iter iter; |
| 900 | struct sectors_dirty_init op; |
| 901 | struct cache_set *c = d->c; |
| 902 | struct bch_dirty_init_state *state; |
| 903 | char name[32]; |
| 904 | |
| 905 | /* Just count root keys if no leaf node */ |
| 906 | if (c->root->level == 0) { |
| 907 | bch_btree_op_init(&op.op, -1); |
| 908 | op.inode = d->id; |
| 909 | op.count = 0; |
| 910 | op.start = KEY(op.inode, 0, 0); |
| 911 | |
| 912 | for_each_key_filter(&c->root->keys, |
| 913 | k, &iter, bch_ptr_invalid) |
| 914 | sectors_dirty_init_fn(&op.op, c->root, k); |
| 915 | return; |
| 916 | } |
| 917 | |
| 918 | state = kzalloc(sizeof(struct bch_dirty_init_state), GFP_KERNEL); |
| 919 | if (!state) { |
| 920 | pr_warn("sectors dirty init failed: cannot allocate memory\n"); |
| 921 | return; |
| 922 | } |
| 923 | |
| 924 | state->c = c; |
| 925 | state->d = d; |
| 926 | state->total_threads = bch_btre_dirty_init_thread_nr(); |
| 927 | state->key_idx = 0; |
| 928 | spin_lock_init(&state->idx_lock); |
| 929 | atomic_set(&state->started, 0); |
| 930 | atomic_set(&state->enough, 0); |
| 931 | init_waitqueue_head(&state->wait); |
| 932 | |
| 933 | for (i = 0; i < state->total_threads; i++) { |
| 934 | /* Fetch latest state->enough earlier */ |
| 935 | smp_mb__before_atomic(); |
| 936 | if (atomic_read(&state->enough)) |
| 937 | break; |
| 938 | |
| 939 | state->infos[i].state = state; |
| 940 | atomic_inc(&state->started); |
| 941 | snprintf(name, sizeof(name), "bch_dirty_init[%d]", i); |
| 942 | |
| 943 | state->infos[i].thread = |
| 944 | kthread_run(bch_dirty_init_thread, |
| 945 | &state->infos[i], |
| 946 | name); |
| 947 | if (IS_ERR(state->infos[i].thread)) { |
| 948 | pr_err("fails to run thread bch_dirty_init[%d]\n", i); |
| 949 | for (--i; i >= 0; i--) |
| 950 | kthread_stop(state->infos[i].thread); |
| 951 | goto out; |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | wait_event_interruptible(state->wait, |
| 956 | atomic_read(&state->started) == 0 || |
| 957 | test_bit(CACHE_SET_IO_DISABLE, &c->flags)); |
| 958 | |
| 959 | out: |
| 960 | kfree(state); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 961 | } |
| 962 | |
| 963 | void bch_cached_dev_writeback_init(struct cached_dev *dc) |
| 964 | { |
| 965 | sema_init(&dc->in_flight, 64); |
| 966 | init_rwsem(&dc->writeback_lock); |
| 967 | bch_keybuf_init(&dc->writeback_keys); |
| 968 | |
| 969 | dc->writeback_metadata = true; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 970 | dc->writeback_running = false; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 971 | dc->writeback_percent = 10; |
| 972 | dc->writeback_delay = 30; |
| 973 | atomic_long_set(&dc->writeback_rate.rate, 1024); |
| 974 | dc->writeback_rate_minimum = 8; |
| 975 | |
| 976 | dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT; |
| 977 | dc->writeback_rate_p_term_inverse = 40; |
| 978 | dc->writeback_rate_i_term_inverse = 10000; |
| 979 | |
| 980 | WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); |
| 981 | INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate); |
| 982 | } |
| 983 | |
| 984 | int bch_cached_dev_writeback_start(struct cached_dev *dc) |
| 985 | { |
| 986 | dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq", |
| 987 | WQ_MEM_RECLAIM, 0); |
| 988 | if (!dc->writeback_write_wq) |
| 989 | return -ENOMEM; |
| 990 | |
| 991 | cached_dev_get(dc); |
| 992 | dc->writeback_thread = kthread_create(bch_writeback_thread, dc, |
| 993 | "bcache_writeback"); |
| 994 | if (IS_ERR(dc->writeback_thread)) { |
| 995 | cached_dev_put(dc); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 996 | destroy_workqueue(dc->writeback_write_wq); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 997 | return PTR_ERR(dc->writeback_thread); |
| 998 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 999 | dc->writeback_running = true; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1000 | |
| 1001 | WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags)); |
| 1002 | schedule_delayed_work(&dc->writeback_rate_update, |
| 1003 | dc->writeback_rate_update_seconds * HZ); |
| 1004 | |
| 1005 | bch_writeback_queue(dc); |
| 1006 | |
| 1007 | return 0; |
| 1008 | } |