blob: 1c70d11491863d23fdea535de66b32fe81633261 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-or-later
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/* Common capabilities, needed by capability.o.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003 */
4
5#include <linux/capability.h>
6#include <linux/audit.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00007#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/lsm_hooks.h>
10#include <linux/file.h>
11#include <linux/mm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/skbuff.h>
16#include <linux/netlink.h>
17#include <linux/ptrace.h>
18#include <linux/xattr.h>
19#include <linux/hugetlb.h>
20#include <linux/mount.h>
21#include <linux/sched.h>
22#include <linux/prctl.h>
23#include <linux/securebits.h>
24#include <linux/user_namespace.h>
25#include <linux/binfmts.h>
26#include <linux/personality.h>
27
28/*
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
36 *
37 * Warn if that happens, once per boot.
38 */
39static void warn_setuid_and_fcaps_mixed(const char *fname)
40{
41 static int warned;
42 if (!warned) {
43 printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname);
46 warned = 1;
47 }
48}
49
50/**
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
David Brazdil0f672f62019-12-10 10:32:29 +000055 * @opts: Bitmask of options defined in include/linux/security.h
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000056 *
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
59 *
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
64 */
65int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
David Brazdil0f672f62019-12-10 10:32:29 +000066 int cap, unsigned int opts)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000067{
68 struct user_namespace *ns = targ_ns;
69
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
73 */
74 for (;;) {
75 /* Do we have the necessary capabilities? */
76 if (ns == cred->user_ns)
77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78
79 /*
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
82 */
83 if (ns->level <= cred->user_ns->level)
84 return -EPERM;
85
86 /*
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
89 */
90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 return 0;
92
93 /*
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
96 */
97 ns = ns->parent;
98 }
99
100 /* We never get here */
101}
102
103/**
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
107 *
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
110 */
111int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112{
113 if (!capable(CAP_SYS_TIME))
114 return -EPERM;
115 return 0;
116}
117
118/**
119 * cap_ptrace_access_check - Determine whether the current process may access
120 * another
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
123 *
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
127 * access is allowed.
128 * Else denied.
129 *
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
132 */
133int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134{
135 int ret = 0;
136 const struct cred *cred, *child_cred;
137 const kernel_cap_t *caller_caps;
138
139 rcu_read_lock();
140 cred = current_cred();
141 child_cred = __task_cred(child);
142 if (mode & PTRACE_MODE_FSCREDS)
143 caller_caps = &cred->cap_effective;
144 else
145 caller_caps = &cred->cap_permitted;
146 if (cred->user_ns == child_cred->user_ns &&
147 cap_issubset(child_cred->cap_permitted, *caller_caps))
148 goto out;
149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152out:
153 rcu_read_unlock();
154 return ret;
155}
156
157/**
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
160 *
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
166 *
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
169 */
170int cap_ptrace_traceme(struct task_struct *parent)
171{
172 int ret = 0;
173 const struct cred *cred, *child_cred;
174
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user_ns == child_cred->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184out:
185 rcu_read_unlock();
186 return ret;
187}
188
189/**
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
195 *
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
198 */
199int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
201{
202 const struct cred *cred;
203
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
212}
213
214/*
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
217 */
218static inline int cap_inh_is_capped(void)
219{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000220 /* they are so limited unless the current task has the CAP_SETPCAP
221 * capability
222 */
223 if (cap_capable(current_cred(), current_cred()->user_ns,
David Brazdil0f672f62019-12-10 10:32:29 +0000224 CAP_SETPCAP, CAP_OPT_NONE) == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000225 return 0;
226 return 1;
227}
228
229/**
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
236 *
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
240 */
241int cap_capset(struct cred *new,
242 const struct cred *old,
243 const kernel_cap_t *effective,
244 const kernel_cap_t *inheritable,
245 const kernel_cap_t *permitted)
246{
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable,
249 cap_combine(old->cap_inheritable,
250 old->cap_permitted)))
251 /* incapable of using this inheritable set */
252 return -EPERM;
253
254 if (!cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_bset)))
257 /* no new pI capabilities outside bounding set */
258 return -EPERM;
259
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted, old->cap_permitted))
262 return -EPERM;
263
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective, *permitted))
266 return -EPERM;
267
268 new->cap_effective = *effective;
269 new->cap_inheritable = *inheritable;
270 new->cap_permitted = *permitted;
271
272 /*
273 * Mask off ambient bits that are no longer both permitted and
274 * inheritable.
275 */
276 new->cap_ambient = cap_intersect(new->cap_ambient,
277 cap_intersect(*permitted,
278 *inheritable));
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 return -EINVAL;
281 return 0;
282}
283
284/**
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287 *
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
291 *
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
294 */
295int cap_inode_need_killpriv(struct dentry *dentry)
296{
297 struct inode *inode = d_backing_inode(dentry);
298 int error;
299
300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 return error > 0;
302}
303
304/**
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
307 *
308 * Erase the privilege-enhancing security markings on an inode.
309 *
310 * Returns 0 if successful, -ve on error.
311 */
312int cap_inode_killpriv(struct dentry *dentry)
313{
314 int error;
315
316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 if (error == -EOPNOTSUPP)
318 error = 0;
319 return error;
320}
321
322static bool rootid_owns_currentns(kuid_t kroot)
323{
324 struct user_namespace *ns;
325
326 if (!uid_valid(kroot))
327 return false;
328
329 for (ns = current_user_ns(); ; ns = ns->parent) {
330 if (from_kuid(ns, kroot) == 0)
331 return true;
332 if (ns == &init_user_ns)
333 break;
334 }
335
336 return false;
337}
338
339static __u32 sansflags(__u32 m)
340{
341 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
342}
343
344static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
345{
346 if (size != XATTR_CAPS_SZ_2)
347 return false;
348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
349}
350
351static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
352{
353 if (size != XATTR_CAPS_SZ_3)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
356}
357
358/*
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
361 *
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
364 *
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
367 * so that's good.
368 */
369int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 bool alloc)
371{
372 int size, ret;
373 kuid_t kroot;
Olivier Deprez0e641232021-09-23 10:07:05 +0200374 u32 nsmagic, magic;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000375 uid_t root, mappedroot;
376 char *tmpbuf = NULL;
377 struct vfs_cap_data *cap;
Olivier Deprez0e641232021-09-23 10:07:05 +0200378 struct vfs_ns_cap_data *nscap = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000379 struct dentry *dentry;
380 struct user_namespace *fs_ns;
381
382 if (strcmp(name, "capability") != 0)
383 return -EOPNOTSUPP;
384
385 dentry = d_find_any_alias(inode);
386 if (!dentry)
387 return -EINVAL;
388
389 size = sizeof(struct vfs_ns_cap_data);
390 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
391 &tmpbuf, size, GFP_NOFS);
392 dput(dentry);
393
Olivier Deprez0e641232021-09-23 10:07:05 +0200394 if (ret < 0 || !tmpbuf)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000395 return ret;
396
397 fs_ns = inode->i_sb->s_user_ns;
398 cap = (struct vfs_cap_data *) tmpbuf;
399 if (is_v2header((size_t) ret, cap)) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200400 root = 0;
401 } else if (is_v3header((size_t) ret, cap)) {
402 nscap = (struct vfs_ns_cap_data *) tmpbuf;
403 root = le32_to_cpu(nscap->rootid);
404 } else {
405 size = -EINVAL;
406 goto out_free;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000407 }
408
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000409 kroot = make_kuid(fs_ns, root);
410
411 /* If the root kuid maps to a valid uid in current ns, then return
412 * this as a nscap. */
413 mappedroot = from_kuid(current_user_ns(), kroot);
414 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200415 size = sizeof(struct vfs_ns_cap_data);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000416 if (alloc) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200417 if (!nscap) {
418 /* v2 -> v3 conversion */
419 nscap = kzalloc(size, GFP_ATOMIC);
420 if (!nscap) {
421 size = -ENOMEM;
422 goto out_free;
423 }
424 nsmagic = VFS_CAP_REVISION_3;
425 magic = le32_to_cpu(cap->magic_etc);
426 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
427 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
428 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
429 nscap->magic_etc = cpu_to_le32(nsmagic);
430 } else {
431 /* use allocated v3 buffer */
432 tmpbuf = NULL;
433 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000434 nscap->rootid = cpu_to_le32(mappedroot);
Olivier Deprez0e641232021-09-23 10:07:05 +0200435 *buffer = nscap;
436 }
437 goto out_free;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000438 }
439
440 if (!rootid_owns_currentns(kroot)) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200441 size = -EOVERFLOW;
442 goto out_free;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000443 }
444
445 /* This comes from a parent namespace. Return as a v2 capability */
446 size = sizeof(struct vfs_cap_data);
447 if (alloc) {
Olivier Deprez0e641232021-09-23 10:07:05 +0200448 if (nscap) {
449 /* v3 -> v2 conversion */
450 cap = kzalloc(size, GFP_ATOMIC);
451 if (!cap) {
452 size = -ENOMEM;
453 goto out_free;
454 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000455 magic = VFS_CAP_REVISION_2;
456 nsmagic = le32_to_cpu(nscap->magic_etc);
457 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
458 magic |= VFS_CAP_FLAGS_EFFECTIVE;
459 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
460 cap->magic_etc = cpu_to_le32(magic);
461 } else {
Olivier Deprez0e641232021-09-23 10:07:05 +0200462 /* use unconverted v2 */
463 tmpbuf = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000464 }
Olivier Deprez0e641232021-09-23 10:07:05 +0200465 *buffer = cap;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000466 }
Olivier Deprez0e641232021-09-23 10:07:05 +0200467out_free:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000468 kfree(tmpbuf);
469 return size;
470}
471
472static kuid_t rootid_from_xattr(const void *value, size_t size,
473 struct user_namespace *task_ns)
474{
475 const struct vfs_ns_cap_data *nscap = value;
476 uid_t rootid = 0;
477
478 if (size == XATTR_CAPS_SZ_3)
479 rootid = le32_to_cpu(nscap->rootid);
480
481 return make_kuid(task_ns, rootid);
482}
483
484static bool validheader(size_t size, const struct vfs_cap_data *cap)
485{
486 return is_v2header(size, cap) || is_v3header(size, cap);
487}
488
489/*
490 * User requested a write of security.capability. If needed, update the
491 * xattr to change from v2 to v3, or to fixup the v3 rootid.
492 *
493 * If all is ok, we return the new size, on error return < 0.
494 */
495int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
496{
497 struct vfs_ns_cap_data *nscap;
498 uid_t nsrootid;
499 const struct vfs_cap_data *cap = *ivalue;
500 __u32 magic, nsmagic;
501 struct inode *inode = d_backing_inode(dentry);
502 struct user_namespace *task_ns = current_user_ns(),
503 *fs_ns = inode->i_sb->s_user_ns;
504 kuid_t rootid;
505 size_t newsize;
506
507 if (!*ivalue)
508 return -EINVAL;
509 if (!validheader(size, cap))
510 return -EINVAL;
511 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
512 return -EPERM;
513 if (size == XATTR_CAPS_SZ_2)
514 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
515 /* user is privileged, just write the v2 */
516 return size;
517
518 rootid = rootid_from_xattr(*ivalue, size, task_ns);
519 if (!uid_valid(rootid))
520 return -EINVAL;
521
522 nsrootid = from_kuid(fs_ns, rootid);
523 if (nsrootid == -1)
524 return -EINVAL;
525
526 newsize = sizeof(struct vfs_ns_cap_data);
527 nscap = kmalloc(newsize, GFP_ATOMIC);
528 if (!nscap)
529 return -ENOMEM;
530 nscap->rootid = cpu_to_le32(nsrootid);
531 nsmagic = VFS_CAP_REVISION_3;
532 magic = le32_to_cpu(cap->magic_etc);
533 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
534 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
535 nscap->magic_etc = cpu_to_le32(nsmagic);
536 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
537
538 kvfree(*ivalue);
539 *ivalue = nscap;
540 return newsize;
541}
542
543/*
544 * Calculate the new process capability sets from the capability sets attached
545 * to a file.
546 */
547static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
548 struct linux_binprm *bprm,
549 bool *effective,
550 bool *has_fcap)
551{
552 struct cred *new = bprm->cred;
553 unsigned i;
554 int ret = 0;
555
556 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
557 *effective = true;
558
559 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
560 *has_fcap = true;
561
562 CAP_FOR_EACH_U32(i) {
563 __u32 permitted = caps->permitted.cap[i];
564 __u32 inheritable = caps->inheritable.cap[i];
565
566 /*
567 * pP' = (X & fP) | (pI & fI)
568 * The addition of pA' is handled later.
569 */
570 new->cap_permitted.cap[i] =
571 (new->cap_bset.cap[i] & permitted) |
572 (new->cap_inheritable.cap[i] & inheritable);
573
574 if (permitted & ~new->cap_permitted.cap[i])
575 /* insufficient to execute correctly */
576 ret = -EPERM;
577 }
578
579 /*
580 * For legacy apps, with no internal support for recognizing they
581 * do not have enough capabilities, we return an error if they are
582 * missing some "forced" (aka file-permitted) capabilities.
583 */
584 return *effective ? ret : 0;
585}
586
587/*
588 * Extract the on-exec-apply capability sets for an executable file.
589 */
590int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
591{
592 struct inode *inode = d_backing_inode(dentry);
593 __u32 magic_etc;
594 unsigned tocopy, i;
595 int size;
596 struct vfs_ns_cap_data data, *nscaps = &data;
597 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
598 kuid_t rootkuid;
599 struct user_namespace *fs_ns;
600
601 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
602
603 if (!inode)
604 return -ENODATA;
605
606 fs_ns = inode->i_sb->s_user_ns;
607 size = __vfs_getxattr((struct dentry *)dentry, inode,
608 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
609 if (size == -ENODATA || size == -EOPNOTSUPP)
610 /* no data, that's ok */
611 return -ENODATA;
612
613 if (size < 0)
614 return size;
615
616 if (size < sizeof(magic_etc))
617 return -EINVAL;
618
619 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
620
621 rootkuid = make_kuid(fs_ns, 0);
622 switch (magic_etc & VFS_CAP_REVISION_MASK) {
623 case VFS_CAP_REVISION_1:
624 if (size != XATTR_CAPS_SZ_1)
625 return -EINVAL;
626 tocopy = VFS_CAP_U32_1;
627 break;
628 case VFS_CAP_REVISION_2:
629 if (size != XATTR_CAPS_SZ_2)
630 return -EINVAL;
631 tocopy = VFS_CAP_U32_2;
632 break;
633 case VFS_CAP_REVISION_3:
634 if (size != XATTR_CAPS_SZ_3)
635 return -EINVAL;
636 tocopy = VFS_CAP_U32_3;
637 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
638 break;
639
640 default:
641 return -EINVAL;
642 }
643 /* Limit the caps to the mounter of the filesystem
644 * or the more limited uid specified in the xattr.
645 */
646 if (!rootid_owns_currentns(rootkuid))
647 return -ENODATA;
648
649 CAP_FOR_EACH_U32(i) {
650 if (i >= tocopy)
651 break;
652 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
653 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
654 }
655
656 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
657 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
658
David Brazdil0f672f62019-12-10 10:32:29 +0000659 cpu_caps->rootid = rootkuid;
660
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000661 return 0;
662}
663
664/*
665 * Attempt to get the on-exec apply capability sets for an executable file from
666 * its xattrs and, if present, apply them to the proposed credentials being
667 * constructed by execve().
668 */
669static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
670{
671 int rc = 0;
672 struct cpu_vfs_cap_data vcaps;
673
674 cap_clear(bprm->cred->cap_permitted);
675
676 if (!file_caps_enabled)
677 return 0;
678
679 if (!mnt_may_suid(bprm->file->f_path.mnt))
680 return 0;
681
682 /*
683 * This check is redundant with mnt_may_suid() but is kept to make
684 * explicit that capability bits are limited to s_user_ns and its
685 * descendants.
686 */
687 if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
688 return 0;
689
690 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
691 if (rc < 0) {
692 if (rc == -EINVAL)
693 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
694 bprm->filename);
695 else if (rc == -ENODATA)
696 rc = 0;
697 goto out;
698 }
699
700 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000701
702out:
703 if (rc)
704 cap_clear(bprm->cred->cap_permitted);
705
706 return rc;
707}
708
709static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
710
711static inline bool __is_real(kuid_t uid, struct cred *cred)
712{ return uid_eq(cred->uid, uid); }
713
714static inline bool __is_eff(kuid_t uid, struct cred *cred)
715{ return uid_eq(cred->euid, uid); }
716
717static inline bool __is_suid(kuid_t uid, struct cred *cred)
718{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
719
720/*
721 * handle_privileged_root - Handle case of privileged root
722 * @bprm: The execution parameters, including the proposed creds
723 * @has_fcap: Are any file capabilities set?
724 * @effective: Do we have effective root privilege?
725 * @root_uid: This namespace' root UID WRT initial USER namespace
726 *
727 * Handle the case where root is privileged and hasn't been neutered by
728 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
729 * set UID root and nothing is changed. If we are root, cap_permitted is
730 * updated. If we have become set UID root, the effective bit is set.
731 */
732static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
733 bool *effective, kuid_t root_uid)
734{
735 const struct cred *old = current_cred();
736 struct cred *new = bprm->cred;
737
738 if (!root_privileged())
739 return;
740 /*
741 * If the legacy file capability is set, then don't set privs
742 * for a setuid root binary run by a non-root user. Do set it
743 * for a root user just to cause least surprise to an admin.
744 */
745 if (has_fcap && __is_suid(root_uid, new)) {
746 warn_setuid_and_fcaps_mixed(bprm->filename);
747 return;
748 }
749 /*
750 * To support inheritance of root-permissions and suid-root
751 * executables under compatibility mode, we override the
752 * capability sets for the file.
753 */
754 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
755 /* pP' = (cap_bset & ~0) | (pI & ~0) */
756 new->cap_permitted = cap_combine(old->cap_bset,
757 old->cap_inheritable);
758 }
759 /*
760 * If only the real uid is 0, we do not set the effective bit.
761 */
762 if (__is_eff(root_uid, new))
763 *effective = true;
764}
765
766#define __cap_gained(field, target, source) \
767 !cap_issubset(target->cap_##field, source->cap_##field)
768#define __cap_grew(target, source, cred) \
769 !cap_issubset(cred->cap_##target, cred->cap_##source)
770#define __cap_full(field, cred) \
771 cap_issubset(CAP_FULL_SET, cred->cap_##field)
772
773static inline bool __is_setuid(struct cred *new, const struct cred *old)
774{ return !uid_eq(new->euid, old->uid); }
775
776static inline bool __is_setgid(struct cred *new, const struct cred *old)
777{ return !gid_eq(new->egid, old->gid); }
778
779/*
780 * 1) Audit candidate if current->cap_effective is set
781 *
782 * We do not bother to audit if 3 things are true:
783 * 1) cap_effective has all caps
784 * 2) we became root *OR* are were already root
785 * 3) root is supposed to have all caps (SECURE_NOROOT)
786 * Since this is just a normal root execing a process.
787 *
788 * Number 1 above might fail if you don't have a full bset, but I think
789 * that is interesting information to audit.
790 *
791 * A number of other conditions require logging:
792 * 2) something prevented setuid root getting all caps
793 * 3) non-setuid root gets fcaps
794 * 4) non-setuid root gets ambient
795 */
796static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
797 kuid_t root, bool has_fcap)
798{
799 bool ret = false;
800
801 if ((__cap_grew(effective, ambient, new) &&
802 !(__cap_full(effective, new) &&
803 (__is_eff(root, new) || __is_real(root, new)) &&
804 root_privileged())) ||
805 (root_privileged() &&
806 __is_suid(root, new) &&
807 !__cap_full(effective, new)) ||
808 (!__is_setuid(new, old) &&
809 ((has_fcap &&
810 __cap_gained(permitted, new, old)) ||
811 __cap_gained(ambient, new, old))))
812
813 ret = true;
814
815 return ret;
816}
817
818/**
819 * cap_bprm_set_creds - Set up the proposed credentials for execve().
820 * @bprm: The execution parameters, including the proposed creds
821 *
822 * Set up the proposed credentials for a new execution context being
823 * constructed by execve(). The proposed creds in @bprm->cred is altered,
824 * which won't take effect immediately. Returns 0 if successful, -ve on error.
825 */
826int cap_bprm_set_creds(struct linux_binprm *bprm)
827{
828 const struct cred *old = current_cred();
829 struct cred *new = bprm->cred;
830 bool effective = false, has_fcap = false, is_setid;
831 int ret;
832 kuid_t root_uid;
833
Olivier Deprez0e641232021-09-23 10:07:05 +0200834 new->cap_ambient = old->cap_ambient;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000835 if (WARN_ON(!cap_ambient_invariant_ok(old)))
836 return -EPERM;
837
838 ret = get_file_caps(bprm, &effective, &has_fcap);
839 if (ret < 0)
840 return ret;
841
842 root_uid = make_kuid(new->user_ns, 0);
843
844 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
845
846 /* if we have fs caps, clear dangerous personality flags */
847 if (__cap_gained(permitted, new, old))
848 bprm->per_clear |= PER_CLEAR_ON_SETID;
849
850 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
851 * credentials unless they have the appropriate permit.
852 *
853 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
854 */
855 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
856
857 if ((is_setid || __cap_gained(permitted, new, old)) &&
858 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
859 !ptracer_capable(current, new->user_ns))) {
860 /* downgrade; they get no more than they had, and maybe less */
861 if (!ns_capable(new->user_ns, CAP_SETUID) ||
862 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
863 new->euid = new->uid;
864 new->egid = new->gid;
865 }
866 new->cap_permitted = cap_intersect(new->cap_permitted,
867 old->cap_permitted);
868 }
869
870 new->suid = new->fsuid = new->euid;
871 new->sgid = new->fsgid = new->egid;
872
873 /* File caps or setid cancels ambient. */
874 if (has_fcap || is_setid)
875 cap_clear(new->cap_ambient);
876
877 /*
878 * Now that we've computed pA', update pP' to give:
879 * pP' = (X & fP) | (pI & fI) | pA'
880 */
881 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
882
883 /*
884 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
885 * this is the same as pE' = (fE ? pP' : 0) | pA'.
886 */
887 if (effective)
888 new->cap_effective = new->cap_permitted;
889 else
890 new->cap_effective = new->cap_ambient;
891
892 if (WARN_ON(!cap_ambient_invariant_ok(new)))
893 return -EPERM;
894
895 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
896 ret = audit_log_bprm_fcaps(bprm, new, old);
897 if (ret < 0)
898 return ret;
899 }
900
901 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
902
903 if (WARN_ON(!cap_ambient_invariant_ok(new)))
904 return -EPERM;
905
906 /* Check for privilege-elevated exec. */
907 bprm->cap_elevated = 0;
908 if (is_setid ||
909 (!__is_real(root_uid, new) &&
910 (effective ||
911 __cap_grew(permitted, ambient, new))))
912 bprm->cap_elevated = 1;
913
914 return 0;
915}
916
917/**
918 * cap_inode_setxattr - Determine whether an xattr may be altered
919 * @dentry: The inode/dentry being altered
920 * @name: The name of the xattr to be changed
921 * @value: The value that the xattr will be changed to
922 * @size: The size of value
923 * @flags: The replacement flag
924 *
925 * Determine whether an xattr may be altered or set on an inode, returning 0 if
926 * permission is granted, -ve if denied.
927 *
928 * This is used to make sure security xattrs don't get updated or set by those
929 * who aren't privileged to do so.
930 */
931int cap_inode_setxattr(struct dentry *dentry, const char *name,
932 const void *value, size_t size, int flags)
933{
934 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
935
936 /* Ignore non-security xattrs */
937 if (strncmp(name, XATTR_SECURITY_PREFIX,
David Brazdil0f672f62019-12-10 10:32:29 +0000938 XATTR_SECURITY_PREFIX_LEN) != 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000939 return 0;
940
941 /*
942 * For XATTR_NAME_CAPS the check will be done in
943 * cap_convert_nscap(), called by setxattr()
944 */
945 if (strcmp(name, XATTR_NAME_CAPS) == 0)
946 return 0;
947
948 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
949 return -EPERM;
950 return 0;
951}
952
953/**
954 * cap_inode_removexattr - Determine whether an xattr may be removed
955 * @dentry: The inode/dentry being altered
956 * @name: The name of the xattr to be changed
957 *
958 * Determine whether an xattr may be removed from an inode, returning 0 if
959 * permission is granted, -ve if denied.
960 *
961 * This is used to make sure security xattrs don't get removed by those who
962 * aren't privileged to remove them.
963 */
964int cap_inode_removexattr(struct dentry *dentry, const char *name)
965{
966 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
967
968 /* Ignore non-security xattrs */
969 if (strncmp(name, XATTR_SECURITY_PREFIX,
David Brazdil0f672f62019-12-10 10:32:29 +0000970 XATTR_SECURITY_PREFIX_LEN) != 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000971 return 0;
972
973 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
974 /* security.capability gets namespaced */
975 struct inode *inode = d_backing_inode(dentry);
976 if (!inode)
977 return -EINVAL;
978 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
979 return -EPERM;
980 return 0;
981 }
982
983 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
984 return -EPERM;
985 return 0;
986}
987
988/*
989 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
990 * a process after a call to setuid, setreuid, or setresuid.
991 *
992 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
993 * {r,e,s}uid != 0, the permitted and effective capabilities are
994 * cleared.
995 *
996 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
997 * capabilities of the process are cleared.
998 *
999 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
1000 * capabilities are set to the permitted capabilities.
1001 *
1002 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
1003 * never happen.
1004 *
1005 * -astor
1006 *
1007 * cevans - New behaviour, Oct '99
1008 * A process may, via prctl(), elect to keep its capabilities when it
1009 * calls setuid() and switches away from uid==0. Both permitted and
1010 * effective sets will be retained.
1011 * Without this change, it was impossible for a daemon to drop only some
1012 * of its privilege. The call to setuid(!=0) would drop all privileges!
1013 * Keeping uid 0 is not an option because uid 0 owns too many vital
1014 * files..
1015 * Thanks to Olaf Kirch and Peter Benie for spotting this.
1016 */
1017static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1018{
1019 kuid_t root_uid = make_kuid(old->user_ns, 0);
1020
1021 if ((uid_eq(old->uid, root_uid) ||
1022 uid_eq(old->euid, root_uid) ||
1023 uid_eq(old->suid, root_uid)) &&
1024 (!uid_eq(new->uid, root_uid) &&
1025 !uid_eq(new->euid, root_uid) &&
1026 !uid_eq(new->suid, root_uid))) {
1027 if (!issecure(SECURE_KEEP_CAPS)) {
1028 cap_clear(new->cap_permitted);
1029 cap_clear(new->cap_effective);
1030 }
1031
1032 /*
1033 * Pre-ambient programs expect setresuid to nonroot followed
1034 * by exec to drop capabilities. We should make sure that
1035 * this remains the case.
1036 */
1037 cap_clear(new->cap_ambient);
1038 }
1039 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1040 cap_clear(new->cap_effective);
1041 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1042 new->cap_effective = new->cap_permitted;
1043}
1044
1045/**
1046 * cap_task_fix_setuid - Fix up the results of setuid() call
1047 * @new: The proposed credentials
1048 * @old: The current task's current credentials
1049 * @flags: Indications of what has changed
1050 *
1051 * Fix up the results of setuid() call before the credential changes are
1052 * actually applied, returning 0 to grant the changes, -ve to deny them.
1053 */
1054int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1055{
1056 switch (flags) {
1057 case LSM_SETID_RE:
1058 case LSM_SETID_ID:
1059 case LSM_SETID_RES:
1060 /* juggle the capabilities to follow [RES]UID changes unless
1061 * otherwise suppressed */
1062 if (!issecure(SECURE_NO_SETUID_FIXUP))
1063 cap_emulate_setxuid(new, old);
1064 break;
1065
1066 case LSM_SETID_FS:
1067 /* juggle the capabilties to follow FSUID changes, unless
1068 * otherwise suppressed
1069 *
1070 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1071 * if not, we might be a bit too harsh here.
1072 */
1073 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1074 kuid_t root_uid = make_kuid(old->user_ns, 0);
1075 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1076 new->cap_effective =
1077 cap_drop_fs_set(new->cap_effective);
1078
1079 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1080 new->cap_effective =
1081 cap_raise_fs_set(new->cap_effective,
1082 new->cap_permitted);
1083 }
1084 break;
1085
1086 default:
1087 return -EINVAL;
1088 }
1089
1090 return 0;
1091}
1092
1093/*
1094 * Rationale: code calling task_setscheduler, task_setioprio, and
1095 * task_setnice, assumes that
1096 * . if capable(cap_sys_nice), then those actions should be allowed
1097 * . if not capable(cap_sys_nice), but acting on your own processes,
1098 * then those actions should be allowed
1099 * This is insufficient now since you can call code without suid, but
1100 * yet with increased caps.
1101 * So we check for increased caps on the target process.
1102 */
1103static int cap_safe_nice(struct task_struct *p)
1104{
1105 int is_subset, ret = 0;
1106
1107 rcu_read_lock();
1108 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1109 current_cred()->cap_permitted);
1110 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1111 ret = -EPERM;
1112 rcu_read_unlock();
1113
1114 return ret;
1115}
1116
1117/**
1118 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1119 * @p: The task to affect
1120 *
1121 * Detemine if the requested scheduler policy change is permitted for the
1122 * specified task, returning 0 if permission is granted, -ve if denied.
1123 */
1124int cap_task_setscheduler(struct task_struct *p)
1125{
1126 return cap_safe_nice(p);
1127}
1128
1129/**
1130 * cap_task_ioprio - Detemine if I/O priority change is permitted
1131 * @p: The task to affect
1132 * @ioprio: The I/O priority to set
1133 *
1134 * Detemine if the requested I/O priority change is permitted for the specified
1135 * task, returning 0 if permission is granted, -ve if denied.
1136 */
1137int cap_task_setioprio(struct task_struct *p, int ioprio)
1138{
1139 return cap_safe_nice(p);
1140}
1141
1142/**
1143 * cap_task_ioprio - Detemine if task priority change is permitted
1144 * @p: The task to affect
1145 * @nice: The nice value to set
1146 *
1147 * Detemine if the requested task priority change is permitted for the
1148 * specified task, returning 0 if permission is granted, -ve if denied.
1149 */
1150int cap_task_setnice(struct task_struct *p, int nice)
1151{
1152 return cap_safe_nice(p);
1153}
1154
1155/*
1156 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1157 * the current task's bounding set. Returns 0 on success, -ve on error.
1158 */
1159static int cap_prctl_drop(unsigned long cap)
1160{
1161 struct cred *new;
1162
1163 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1164 return -EPERM;
1165 if (!cap_valid(cap))
1166 return -EINVAL;
1167
1168 new = prepare_creds();
1169 if (!new)
1170 return -ENOMEM;
1171 cap_lower(new->cap_bset, cap);
1172 return commit_creds(new);
1173}
1174
1175/**
1176 * cap_task_prctl - Implement process control functions for this security module
1177 * @option: The process control function requested
1178 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1179 *
1180 * Allow process control functions (sys_prctl()) to alter capabilities; may
1181 * also deny access to other functions not otherwise implemented here.
1182 *
1183 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1184 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1185 * modules will consider performing the function.
1186 */
1187int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1188 unsigned long arg4, unsigned long arg5)
1189{
1190 const struct cred *old = current_cred();
1191 struct cred *new;
1192
1193 switch (option) {
1194 case PR_CAPBSET_READ:
1195 if (!cap_valid(arg2))
1196 return -EINVAL;
1197 return !!cap_raised(old->cap_bset, arg2);
1198
1199 case PR_CAPBSET_DROP:
1200 return cap_prctl_drop(arg2);
1201
1202 /*
1203 * The next four prctl's remain to assist with transitioning a
1204 * system from legacy UID=0 based privilege (when filesystem
1205 * capabilities are not in use) to a system using filesystem
1206 * capabilities only - as the POSIX.1e draft intended.
1207 *
1208 * Note:
1209 *
1210 * PR_SET_SECUREBITS =
1211 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1212 * | issecure_mask(SECURE_NOROOT)
1213 * | issecure_mask(SECURE_NOROOT_LOCKED)
1214 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1215 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1216 *
1217 * will ensure that the current process and all of its
1218 * children will be locked into a pure
1219 * capability-based-privilege environment.
1220 */
1221 case PR_SET_SECUREBITS:
1222 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1223 & (old->securebits ^ arg2)) /*[1]*/
1224 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1225 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1226 || (cap_capable(current_cred(),
David Brazdil0f672f62019-12-10 10:32:29 +00001227 current_cred()->user_ns,
1228 CAP_SETPCAP,
1229 CAP_OPT_NONE) != 0) /*[4]*/
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001230 /*
1231 * [1] no changing of bits that are locked
1232 * [2] no unlocking of locks
1233 * [3] no setting of unsupported bits
1234 * [4] doing anything requires privilege (go read about
1235 * the "sendmail capabilities bug")
1236 */
1237 )
1238 /* cannot change a locked bit */
1239 return -EPERM;
1240
1241 new = prepare_creds();
1242 if (!new)
1243 return -ENOMEM;
1244 new->securebits = arg2;
1245 return commit_creds(new);
1246
1247 case PR_GET_SECUREBITS:
1248 return old->securebits;
1249
1250 case PR_GET_KEEPCAPS:
1251 return !!issecure(SECURE_KEEP_CAPS);
1252
1253 case PR_SET_KEEPCAPS:
1254 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1255 return -EINVAL;
1256 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1257 return -EPERM;
1258
1259 new = prepare_creds();
1260 if (!new)
1261 return -ENOMEM;
1262 if (arg2)
1263 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1264 else
1265 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1266 return commit_creds(new);
1267
1268 case PR_CAP_AMBIENT:
1269 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1270 if (arg3 | arg4 | arg5)
1271 return -EINVAL;
1272
1273 new = prepare_creds();
1274 if (!new)
1275 return -ENOMEM;
1276 cap_clear(new->cap_ambient);
1277 return commit_creds(new);
1278 }
1279
1280 if (((!cap_valid(arg3)) | arg4 | arg5))
1281 return -EINVAL;
1282
1283 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1284 return !!cap_raised(current_cred()->cap_ambient, arg3);
1285 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1286 arg2 != PR_CAP_AMBIENT_LOWER) {
1287 return -EINVAL;
1288 } else {
1289 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1290 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1291 !cap_raised(current_cred()->cap_inheritable,
1292 arg3) ||
1293 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1294 return -EPERM;
1295
1296 new = prepare_creds();
1297 if (!new)
1298 return -ENOMEM;
1299 if (arg2 == PR_CAP_AMBIENT_RAISE)
1300 cap_raise(new->cap_ambient, arg3);
1301 else
1302 cap_lower(new->cap_ambient, arg3);
1303 return commit_creds(new);
1304 }
1305
1306 default:
1307 /* No functionality available - continue with default */
1308 return -ENOSYS;
1309 }
1310}
1311
1312/**
1313 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1314 * @mm: The VM space in which the new mapping is to be made
1315 * @pages: The size of the mapping
1316 *
1317 * Determine whether the allocation of a new virtual mapping by the current
1318 * task is permitted, returning 1 if permission is granted, 0 if not.
1319 */
1320int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1321{
1322 int cap_sys_admin = 0;
1323
David Brazdil0f672f62019-12-10 10:32:29 +00001324 if (cap_capable(current_cred(), &init_user_ns,
1325 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001326 cap_sys_admin = 1;
David Brazdil0f672f62019-12-10 10:32:29 +00001327
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001328 return cap_sys_admin;
1329}
1330
1331/*
1332 * cap_mmap_addr - check if able to map given addr
1333 * @addr: address attempting to be mapped
1334 *
1335 * If the process is attempting to map memory below dac_mmap_min_addr they need
1336 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1337 * capability security module. Returns 0 if this mapping should be allowed
1338 * -EPERM if not.
1339 */
1340int cap_mmap_addr(unsigned long addr)
1341{
1342 int ret = 0;
1343
1344 if (addr < dac_mmap_min_addr) {
1345 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
David Brazdil0f672f62019-12-10 10:32:29 +00001346 CAP_OPT_NONE);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001347 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1348 if (ret == 0)
1349 current->flags |= PF_SUPERPRIV;
1350 }
1351 return ret;
1352}
1353
1354int cap_mmap_file(struct file *file, unsigned long reqprot,
1355 unsigned long prot, unsigned long flags)
1356{
1357 return 0;
1358}
1359
1360#ifdef CONFIG_SECURITY
1361
David Brazdil0f672f62019-12-10 10:32:29 +00001362static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001363 LSM_HOOK_INIT(capable, cap_capable),
1364 LSM_HOOK_INIT(settime, cap_settime),
1365 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1366 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1367 LSM_HOOK_INIT(capget, cap_capget),
1368 LSM_HOOK_INIT(capset, cap_capset),
1369 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1370 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1371 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1372 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1373 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1374 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1375 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1376 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1377 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1378 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1379 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1380 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1381};
1382
David Brazdil0f672f62019-12-10 10:32:29 +00001383static int __init capability_init(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001384{
1385 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1386 "capability");
David Brazdil0f672f62019-12-10 10:32:29 +00001387 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001388}
1389
David Brazdil0f672f62019-12-10 10:32:29 +00001390DEFINE_LSM(capability) = {
1391 .name = "capability",
1392 .order = LSM_ORDER_FIRST,
1393 .init = capability_init,
1394};
1395
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001396#endif /* CONFIG_SECURITY */