blob: b119c44435bfff20eb4e2bf0e3f8021a029068e8 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/mm.h>
32#include <linux/random.h>
33#include <linux/sched/signal.h>
34#include <linux/export.h>
35#include <linux/swap.h>
36#include <linux/uio.h>
37#include <linux/khugepaged.h>
38#include <linux/hugetlb.h>
David Brazdil0f672f62019-12-10 10:32:29 +000039#include <linux/frontswap.h>
40#include <linux/fs_parser.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000041
42#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43
44static struct vfsmount *shm_mnt;
45
46#ifdef CONFIG_SHMEM
47/*
48 * This virtual memory filesystem is heavily based on the ramfs. It
49 * extends ramfs by the ability to use swap and honor resource limits
50 * which makes it a completely usable filesystem.
51 */
52
53#include <linux/xattr.h>
54#include <linux/exportfs.h>
55#include <linux/posix_acl.h>
56#include <linux/posix_acl_xattr.h>
57#include <linux/mman.h>
58#include <linux/string.h>
59#include <linux/slab.h>
60#include <linux/backing-dev.h>
61#include <linux/shmem_fs.h>
62#include <linux/writeback.h>
63#include <linux/blkdev.h>
64#include <linux/pagevec.h>
65#include <linux/percpu_counter.h>
66#include <linux/falloc.h>
67#include <linux/splice.h>
68#include <linux/security.h>
69#include <linux/swapops.h>
70#include <linux/mempolicy.h>
71#include <linux/namei.h>
72#include <linux/ctype.h>
73#include <linux/migrate.h>
74#include <linux/highmem.h>
75#include <linux/seq_file.h>
76#include <linux/magic.h>
77#include <linux/syscalls.h>
78#include <linux/fcntl.h>
79#include <uapi/linux/memfd.h>
80#include <linux/userfaultfd_k.h>
81#include <linux/rmap.h>
82#include <linux/uuid.h>
83
84#include <linux/uaccess.h>
85#include <asm/pgtable.h>
86
87#include "internal.h"
88
89#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92/* Pretend that each entry is of this size in directory's i_size */
93#define BOGO_DIRENT_SIZE 20
94
95/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
96#define SHORT_SYMLINK_LEN 128
97
98/*
99 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
100 * inode->i_private (with i_mutex making sure that it has only one user at
101 * a time): we would prefer not to enlarge the shmem inode just for that.
102 */
103struct shmem_falloc {
104 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
105 pgoff_t start; /* start of range currently being fallocated */
106 pgoff_t next; /* the next page offset to be fallocated */
107 pgoff_t nr_falloced; /* how many new pages have been fallocated */
108 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
109};
110
David Brazdil0f672f62019-12-10 10:32:29 +0000111struct shmem_options {
112 unsigned long long blocks;
113 unsigned long long inodes;
114 struct mempolicy *mpol;
115 kuid_t uid;
116 kgid_t gid;
117 umode_t mode;
118 int huge;
119 int seen;
120#define SHMEM_SEEN_BLOCKS 1
121#define SHMEM_SEEN_INODES 2
122#define SHMEM_SEEN_HUGE 4
123};
124
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000125#ifdef CONFIG_TMPFS
126static unsigned long shmem_default_max_blocks(void)
127{
David Brazdil0f672f62019-12-10 10:32:29 +0000128 return totalram_pages() / 2;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000129}
130
131static unsigned long shmem_default_max_inodes(void)
132{
David Brazdil0f672f62019-12-10 10:32:29 +0000133 unsigned long nr_pages = totalram_pages();
134
135 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000136}
137#endif
138
139static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
140static int shmem_replace_page(struct page **pagep, gfp_t gfp,
141 struct shmem_inode_info *info, pgoff_t index);
David Brazdil0f672f62019-12-10 10:32:29 +0000142static int shmem_swapin_page(struct inode *inode, pgoff_t index,
143 struct page **pagep, enum sgp_type sgp,
144 gfp_t gfp, struct vm_area_struct *vma,
145 vm_fault_t *fault_type);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000146static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
147 struct page **pagep, enum sgp_type sgp,
148 gfp_t gfp, struct vm_area_struct *vma,
149 struct vm_fault *vmf, vm_fault_t *fault_type);
150
151int shmem_getpage(struct inode *inode, pgoff_t index,
152 struct page **pagep, enum sgp_type sgp)
153{
154 return shmem_getpage_gfp(inode, index, pagep, sgp,
155 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
156}
157
158static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
159{
160 return sb->s_fs_info;
161}
162
163/*
164 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
165 * for shared memory and for shared anonymous (/dev/zero) mappings
166 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
167 * consistent with the pre-accounting of private mappings ...
168 */
169static inline int shmem_acct_size(unsigned long flags, loff_t size)
170{
171 return (flags & VM_NORESERVE) ?
172 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
173}
174
175static inline void shmem_unacct_size(unsigned long flags, loff_t size)
176{
177 if (!(flags & VM_NORESERVE))
178 vm_unacct_memory(VM_ACCT(size));
179}
180
181static inline int shmem_reacct_size(unsigned long flags,
182 loff_t oldsize, loff_t newsize)
183{
184 if (!(flags & VM_NORESERVE)) {
185 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
186 return security_vm_enough_memory_mm(current->mm,
187 VM_ACCT(newsize) - VM_ACCT(oldsize));
188 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
189 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
190 }
191 return 0;
192}
193
194/*
195 * ... whereas tmpfs objects are accounted incrementally as
196 * pages are allocated, in order to allow large sparse files.
197 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
198 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
199 */
200static inline int shmem_acct_block(unsigned long flags, long pages)
201{
202 if (!(flags & VM_NORESERVE))
203 return 0;
204
205 return security_vm_enough_memory_mm(current->mm,
206 pages * VM_ACCT(PAGE_SIZE));
207}
208
209static inline void shmem_unacct_blocks(unsigned long flags, long pages)
210{
211 if (flags & VM_NORESERVE)
212 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
213}
214
215static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
216{
217 struct shmem_inode_info *info = SHMEM_I(inode);
218 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
219
220 if (shmem_acct_block(info->flags, pages))
221 return false;
222
223 if (sbinfo->max_blocks) {
224 if (percpu_counter_compare(&sbinfo->used_blocks,
225 sbinfo->max_blocks - pages) > 0)
226 goto unacct;
227 percpu_counter_add(&sbinfo->used_blocks, pages);
228 }
229
230 return true;
231
232unacct:
233 shmem_unacct_blocks(info->flags, pages);
234 return false;
235}
236
237static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
238{
239 struct shmem_inode_info *info = SHMEM_I(inode);
240 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
241
242 if (sbinfo->max_blocks)
243 percpu_counter_sub(&sbinfo->used_blocks, pages);
244 shmem_unacct_blocks(info->flags, pages);
245}
246
247static const struct super_operations shmem_ops;
248static const struct address_space_operations shmem_aops;
249static const struct file_operations shmem_file_operations;
250static const struct inode_operations shmem_inode_operations;
251static const struct inode_operations shmem_dir_inode_operations;
252static const struct inode_operations shmem_special_inode_operations;
253static const struct vm_operations_struct shmem_vm_ops;
254static struct file_system_type shmem_fs_type;
255
256bool vma_is_shmem(struct vm_area_struct *vma)
257{
258 return vma->vm_ops == &shmem_vm_ops;
259}
260
261static LIST_HEAD(shmem_swaplist);
262static DEFINE_MUTEX(shmem_swaplist_mutex);
263
264static int shmem_reserve_inode(struct super_block *sb)
265{
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 if (!sbinfo->free_inodes) {
270 spin_unlock(&sbinfo->stat_lock);
271 return -ENOSPC;
272 }
273 sbinfo->free_inodes--;
274 spin_unlock(&sbinfo->stat_lock);
275 }
276 return 0;
277}
278
279static void shmem_free_inode(struct super_block *sb)
280{
281 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
282 if (sbinfo->max_inodes) {
283 spin_lock(&sbinfo->stat_lock);
284 sbinfo->free_inodes++;
285 spin_unlock(&sbinfo->stat_lock);
286 }
287}
288
289/**
290 * shmem_recalc_inode - recalculate the block usage of an inode
291 * @inode: inode to recalc
292 *
293 * We have to calculate the free blocks since the mm can drop
294 * undirtied hole pages behind our back.
295 *
296 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
297 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
298 *
299 * It has to be called with the spinlock held.
300 */
301static void shmem_recalc_inode(struct inode *inode)
302{
303 struct shmem_inode_info *info = SHMEM_I(inode);
304 long freed;
305
306 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
307 if (freed > 0) {
308 info->alloced -= freed;
309 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
310 shmem_inode_unacct_blocks(inode, freed);
311 }
312}
313
314bool shmem_charge(struct inode *inode, long pages)
315{
316 struct shmem_inode_info *info = SHMEM_I(inode);
317 unsigned long flags;
318
319 if (!shmem_inode_acct_block(inode, pages))
320 return false;
321
322 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
323 inode->i_mapping->nrpages += pages;
324
325 spin_lock_irqsave(&info->lock, flags);
326 info->alloced += pages;
327 inode->i_blocks += pages * BLOCKS_PER_PAGE;
328 shmem_recalc_inode(inode);
329 spin_unlock_irqrestore(&info->lock, flags);
330
331 return true;
332}
333
334void shmem_uncharge(struct inode *inode, long pages)
335{
336 struct shmem_inode_info *info = SHMEM_I(inode);
337 unsigned long flags;
338
339 /* nrpages adjustment done by __delete_from_page_cache() or caller */
340
341 spin_lock_irqsave(&info->lock, flags);
342 info->alloced -= pages;
343 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
344 shmem_recalc_inode(inode);
345 spin_unlock_irqrestore(&info->lock, flags);
346
347 shmem_inode_unacct_blocks(inode, pages);
348}
349
350/*
David Brazdil0f672f62019-12-10 10:32:29 +0000351 * Replace item expected in xarray by a new item, while holding xa_lock.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000352 */
David Brazdil0f672f62019-12-10 10:32:29 +0000353static int shmem_replace_entry(struct address_space *mapping,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000354 pgoff_t index, void *expected, void *replacement)
355{
David Brazdil0f672f62019-12-10 10:32:29 +0000356 XA_STATE(xas, &mapping->i_pages, index);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000357 void *item;
358
359 VM_BUG_ON(!expected);
360 VM_BUG_ON(!replacement);
David Brazdil0f672f62019-12-10 10:32:29 +0000361 item = xas_load(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000362 if (item != expected)
363 return -ENOENT;
David Brazdil0f672f62019-12-10 10:32:29 +0000364 xas_store(&xas, replacement);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000365 return 0;
366}
367
368/*
369 * Sometimes, before we decide whether to proceed or to fail, we must check
370 * that an entry was not already brought back from swap by a racing thread.
371 *
372 * Checking page is not enough: by the time a SwapCache page is locked, it
373 * might be reused, and again be SwapCache, using the same swap as before.
374 */
375static bool shmem_confirm_swap(struct address_space *mapping,
376 pgoff_t index, swp_entry_t swap)
377{
David Brazdil0f672f62019-12-10 10:32:29 +0000378 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000379}
380
381/*
382 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
383 *
384 * SHMEM_HUGE_NEVER:
385 * disables huge pages for the mount;
386 * SHMEM_HUGE_ALWAYS:
387 * enables huge pages for the mount;
388 * SHMEM_HUGE_WITHIN_SIZE:
389 * only allocate huge pages if the page will be fully within i_size,
390 * also respect fadvise()/madvise() hints;
391 * SHMEM_HUGE_ADVISE:
392 * only allocate huge pages if requested with fadvise()/madvise();
393 */
394
395#define SHMEM_HUGE_NEVER 0
396#define SHMEM_HUGE_ALWAYS 1
397#define SHMEM_HUGE_WITHIN_SIZE 2
398#define SHMEM_HUGE_ADVISE 3
399
400/*
401 * Special values.
402 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
403 *
404 * SHMEM_HUGE_DENY:
405 * disables huge on shm_mnt and all mounts, for emergency use;
406 * SHMEM_HUGE_FORCE:
407 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
408 *
409 */
410#define SHMEM_HUGE_DENY (-1)
411#define SHMEM_HUGE_FORCE (-2)
412
413#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
414/* ifdef here to avoid bloating shmem.o when not necessary */
415
416static int shmem_huge __read_mostly;
417
David Brazdil0f672f62019-12-10 10:32:29 +0000418#if defined(CONFIG_SYSFS)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000419static int shmem_parse_huge(const char *str)
420{
421 if (!strcmp(str, "never"))
422 return SHMEM_HUGE_NEVER;
423 if (!strcmp(str, "always"))
424 return SHMEM_HUGE_ALWAYS;
425 if (!strcmp(str, "within_size"))
426 return SHMEM_HUGE_WITHIN_SIZE;
427 if (!strcmp(str, "advise"))
428 return SHMEM_HUGE_ADVISE;
429 if (!strcmp(str, "deny"))
430 return SHMEM_HUGE_DENY;
431 if (!strcmp(str, "force"))
432 return SHMEM_HUGE_FORCE;
433 return -EINVAL;
434}
David Brazdil0f672f62019-12-10 10:32:29 +0000435#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000436
David Brazdil0f672f62019-12-10 10:32:29 +0000437#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000438static const char *shmem_format_huge(int huge)
439{
440 switch (huge) {
441 case SHMEM_HUGE_NEVER:
442 return "never";
443 case SHMEM_HUGE_ALWAYS:
444 return "always";
445 case SHMEM_HUGE_WITHIN_SIZE:
446 return "within_size";
447 case SHMEM_HUGE_ADVISE:
448 return "advise";
449 case SHMEM_HUGE_DENY:
450 return "deny";
451 case SHMEM_HUGE_FORCE:
452 return "force";
453 default:
454 VM_BUG_ON(1);
455 return "bad_val";
456 }
457}
458#endif
459
460static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
461 struct shrink_control *sc, unsigned long nr_to_split)
462{
463 LIST_HEAD(list), *pos, *next;
464 LIST_HEAD(to_remove);
465 struct inode *inode;
466 struct shmem_inode_info *info;
467 struct page *page;
468 unsigned long batch = sc ? sc->nr_to_scan : 128;
469 int removed = 0, split = 0;
470
471 if (list_empty(&sbinfo->shrinklist))
472 return SHRINK_STOP;
473
474 spin_lock(&sbinfo->shrinklist_lock);
475 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
476 info = list_entry(pos, struct shmem_inode_info, shrinklist);
477
478 /* pin the inode */
479 inode = igrab(&info->vfs_inode);
480
481 /* inode is about to be evicted */
482 if (!inode) {
483 list_del_init(&info->shrinklist);
484 removed++;
485 goto next;
486 }
487
488 /* Check if there's anything to gain */
489 if (round_up(inode->i_size, PAGE_SIZE) ==
490 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
491 list_move(&info->shrinklist, &to_remove);
492 removed++;
493 goto next;
494 }
495
496 list_move(&info->shrinklist, &list);
497next:
498 if (!--batch)
499 break;
500 }
501 spin_unlock(&sbinfo->shrinklist_lock);
502
503 list_for_each_safe(pos, next, &to_remove) {
504 info = list_entry(pos, struct shmem_inode_info, shrinklist);
505 inode = &info->vfs_inode;
506 list_del_init(&info->shrinklist);
507 iput(inode);
508 }
509
510 list_for_each_safe(pos, next, &list) {
511 int ret;
512
513 info = list_entry(pos, struct shmem_inode_info, shrinklist);
514 inode = &info->vfs_inode;
515
516 if (nr_to_split && split >= nr_to_split)
517 goto leave;
518
519 page = find_get_page(inode->i_mapping,
520 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
521 if (!page)
522 goto drop;
523
524 /* No huge page at the end of the file: nothing to split */
525 if (!PageTransHuge(page)) {
526 put_page(page);
527 goto drop;
528 }
529
530 /*
531 * Leave the inode on the list if we failed to lock
532 * the page at this time.
533 *
534 * Waiting for the lock may lead to deadlock in the
535 * reclaim path.
536 */
537 if (!trylock_page(page)) {
538 put_page(page);
539 goto leave;
540 }
541
542 ret = split_huge_page(page);
543 unlock_page(page);
544 put_page(page);
545
546 /* If split failed leave the inode on the list */
547 if (ret)
548 goto leave;
549
550 split++;
551drop:
552 list_del_init(&info->shrinklist);
553 removed++;
554leave:
555 iput(inode);
556 }
557
558 spin_lock(&sbinfo->shrinklist_lock);
559 list_splice_tail(&list, &sbinfo->shrinklist);
560 sbinfo->shrinklist_len -= removed;
561 spin_unlock(&sbinfo->shrinklist_lock);
562
563 return split;
564}
565
566static long shmem_unused_huge_scan(struct super_block *sb,
567 struct shrink_control *sc)
568{
569 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
570
571 if (!READ_ONCE(sbinfo->shrinklist_len))
572 return SHRINK_STOP;
573
574 return shmem_unused_huge_shrink(sbinfo, sc, 0);
575}
576
577static long shmem_unused_huge_count(struct super_block *sb,
578 struct shrink_control *sc)
579{
580 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
581 return READ_ONCE(sbinfo->shrinklist_len);
582}
583#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
584
585#define shmem_huge SHMEM_HUGE_DENY
586
587static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
588 struct shrink_control *sc, unsigned long nr_to_split)
589{
590 return 0;
591}
592#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
593
594static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
595{
596 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
597 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
598 shmem_huge != SHMEM_HUGE_DENY)
599 return true;
600 return false;
601}
602
603/*
604 * Like add_to_page_cache_locked, but error if expected item has gone.
605 */
606static int shmem_add_to_page_cache(struct page *page,
607 struct address_space *mapping,
David Brazdil0f672f62019-12-10 10:32:29 +0000608 pgoff_t index, void *expected, gfp_t gfp)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000609{
David Brazdil0f672f62019-12-10 10:32:29 +0000610 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
611 unsigned long i = 0;
612 unsigned long nr = compound_nr(page);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000613
614 VM_BUG_ON_PAGE(PageTail(page), page);
615 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
616 VM_BUG_ON_PAGE(!PageLocked(page), page);
617 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
618 VM_BUG_ON(expected && PageTransHuge(page));
619
620 page_ref_add(page, nr);
621 page->mapping = mapping;
622 page->index = index;
623
David Brazdil0f672f62019-12-10 10:32:29 +0000624 do {
625 void *entry;
626 xas_lock_irq(&xas);
627 entry = xas_find_conflict(&xas);
628 if (entry != expected)
629 xas_set_err(&xas, -EEXIST);
630 xas_create_range(&xas);
631 if (xas_error(&xas))
632 goto unlock;
633next:
634 xas_store(&xas, page);
635 if (++i < nr) {
636 xas_next(&xas);
637 goto next;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000638 }
David Brazdil0f672f62019-12-10 10:32:29 +0000639 if (PageTransHuge(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000640 count_vm_event(THP_FILE_ALLOC);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000641 __inc_node_page_state(page, NR_SHMEM_THPS);
David Brazdil0f672f62019-12-10 10:32:29 +0000642 }
643 mapping->nrpages += nr;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000644 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
645 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
David Brazdil0f672f62019-12-10 10:32:29 +0000646unlock:
647 xas_unlock_irq(&xas);
648 } while (xas_nomem(&xas, gfp));
649
650 if (xas_error(&xas)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000651 page->mapping = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000652 page_ref_sub(page, nr);
David Brazdil0f672f62019-12-10 10:32:29 +0000653 return xas_error(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000654 }
David Brazdil0f672f62019-12-10 10:32:29 +0000655
656 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000657}
658
659/*
660 * Like delete_from_page_cache, but substitutes swap for page.
661 */
662static void shmem_delete_from_page_cache(struct page *page, void *radswap)
663{
664 struct address_space *mapping = page->mapping;
665 int error;
666
667 VM_BUG_ON_PAGE(PageCompound(page), page);
668
669 xa_lock_irq(&mapping->i_pages);
David Brazdil0f672f62019-12-10 10:32:29 +0000670 error = shmem_replace_entry(mapping, page->index, page, radswap);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000671 page->mapping = NULL;
672 mapping->nrpages--;
673 __dec_node_page_state(page, NR_FILE_PAGES);
674 __dec_node_page_state(page, NR_SHMEM);
675 xa_unlock_irq(&mapping->i_pages);
676 put_page(page);
677 BUG_ON(error);
678}
679
680/*
David Brazdil0f672f62019-12-10 10:32:29 +0000681 * Remove swap entry from page cache, free the swap and its page cache.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000682 */
683static int shmem_free_swap(struct address_space *mapping,
684 pgoff_t index, void *radswap)
685{
686 void *old;
687
David Brazdil0f672f62019-12-10 10:32:29 +0000688 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000689 if (old != radswap)
690 return -ENOENT;
691 free_swap_and_cache(radix_to_swp_entry(radswap));
692 return 0;
693}
694
695/*
696 * Determine (in bytes) how many of the shmem object's pages mapped by the
697 * given offsets are swapped out.
698 *
699 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
700 * as long as the inode doesn't go away and racy results are not a problem.
701 */
702unsigned long shmem_partial_swap_usage(struct address_space *mapping,
703 pgoff_t start, pgoff_t end)
704{
David Brazdil0f672f62019-12-10 10:32:29 +0000705 XA_STATE(xas, &mapping->i_pages, start);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000706 struct page *page;
707 unsigned long swapped = 0;
708
709 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +0000710 xas_for_each(&xas, page, end - 1) {
711 if (xas_retry(&xas, page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000712 continue;
David Brazdil0f672f62019-12-10 10:32:29 +0000713 if (xa_is_value(page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000714 swapped++;
715
716 if (need_resched()) {
David Brazdil0f672f62019-12-10 10:32:29 +0000717 xas_pause(&xas);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000718 cond_resched_rcu();
719 }
720 }
721
722 rcu_read_unlock();
723
724 return swapped << PAGE_SHIFT;
725}
726
727/*
728 * Determine (in bytes) how many of the shmem object's pages mapped by the
729 * given vma is swapped out.
730 *
731 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
732 * as long as the inode doesn't go away and racy results are not a problem.
733 */
734unsigned long shmem_swap_usage(struct vm_area_struct *vma)
735{
736 struct inode *inode = file_inode(vma->vm_file);
737 struct shmem_inode_info *info = SHMEM_I(inode);
738 struct address_space *mapping = inode->i_mapping;
739 unsigned long swapped;
740
741 /* Be careful as we don't hold info->lock */
742 swapped = READ_ONCE(info->swapped);
743
744 /*
745 * The easier cases are when the shmem object has nothing in swap, or
746 * the vma maps it whole. Then we can simply use the stats that we
747 * already track.
748 */
749 if (!swapped)
750 return 0;
751
752 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
753 return swapped << PAGE_SHIFT;
754
755 /* Here comes the more involved part */
756 return shmem_partial_swap_usage(mapping,
757 linear_page_index(vma, vma->vm_start),
758 linear_page_index(vma, vma->vm_end));
759}
760
761/*
762 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
763 */
764void shmem_unlock_mapping(struct address_space *mapping)
765{
766 struct pagevec pvec;
767 pgoff_t indices[PAGEVEC_SIZE];
768 pgoff_t index = 0;
769
770 pagevec_init(&pvec);
771 /*
772 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
773 */
774 while (!mapping_unevictable(mapping)) {
775 /*
776 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
777 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
778 */
779 pvec.nr = find_get_entries(mapping, index,
780 PAGEVEC_SIZE, pvec.pages, indices);
781 if (!pvec.nr)
782 break;
783 index = indices[pvec.nr - 1] + 1;
784 pagevec_remove_exceptionals(&pvec);
David Brazdil0f672f62019-12-10 10:32:29 +0000785 check_move_unevictable_pages(&pvec);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000786 pagevec_release(&pvec);
787 cond_resched();
788 }
789}
790
791/*
David Brazdil0f672f62019-12-10 10:32:29 +0000792 * Remove range of pages and swap entries from page cache, and free them.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000793 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
794 */
795static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
796 bool unfalloc)
797{
798 struct address_space *mapping = inode->i_mapping;
799 struct shmem_inode_info *info = SHMEM_I(inode);
800 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
801 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
802 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
803 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
804 struct pagevec pvec;
805 pgoff_t indices[PAGEVEC_SIZE];
806 long nr_swaps_freed = 0;
807 pgoff_t index;
808 int i;
809
810 if (lend == -1)
811 end = -1; /* unsigned, so actually very big */
812
813 pagevec_init(&pvec);
814 index = start;
815 while (index < end) {
816 pvec.nr = find_get_entries(mapping, index,
817 min(end - index, (pgoff_t)PAGEVEC_SIZE),
818 pvec.pages, indices);
819 if (!pvec.nr)
820 break;
821 for (i = 0; i < pagevec_count(&pvec); i++) {
822 struct page *page = pvec.pages[i];
823
824 index = indices[i];
825 if (index >= end)
826 break;
827
David Brazdil0f672f62019-12-10 10:32:29 +0000828 if (xa_is_value(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000829 if (unfalloc)
830 continue;
831 nr_swaps_freed += !shmem_free_swap(mapping,
832 index, page);
833 continue;
834 }
835
836 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
837
838 if (!trylock_page(page))
839 continue;
840
841 if (PageTransTail(page)) {
842 /* Middle of THP: zero out the page */
843 clear_highpage(page);
844 unlock_page(page);
845 continue;
846 } else if (PageTransHuge(page)) {
847 if (index == round_down(end, HPAGE_PMD_NR)) {
848 /*
849 * Range ends in the middle of THP:
850 * zero out the page
851 */
852 clear_highpage(page);
853 unlock_page(page);
854 continue;
855 }
856 index += HPAGE_PMD_NR - 1;
857 i += HPAGE_PMD_NR - 1;
858 }
859
860 if (!unfalloc || !PageUptodate(page)) {
861 VM_BUG_ON_PAGE(PageTail(page), page);
862 if (page_mapping(page) == mapping) {
863 VM_BUG_ON_PAGE(PageWriteback(page), page);
864 truncate_inode_page(mapping, page);
865 }
866 }
867 unlock_page(page);
868 }
869 pagevec_remove_exceptionals(&pvec);
870 pagevec_release(&pvec);
871 cond_resched();
872 index++;
873 }
874
875 if (partial_start) {
876 struct page *page = NULL;
877 shmem_getpage(inode, start - 1, &page, SGP_READ);
878 if (page) {
879 unsigned int top = PAGE_SIZE;
880 if (start > end) {
881 top = partial_end;
882 partial_end = 0;
883 }
884 zero_user_segment(page, partial_start, top);
885 set_page_dirty(page);
886 unlock_page(page);
887 put_page(page);
888 }
889 }
890 if (partial_end) {
891 struct page *page = NULL;
892 shmem_getpage(inode, end, &page, SGP_READ);
893 if (page) {
894 zero_user_segment(page, 0, partial_end);
895 set_page_dirty(page);
896 unlock_page(page);
897 put_page(page);
898 }
899 }
900 if (start >= end)
901 return;
902
903 index = start;
904 while (index < end) {
905 cond_resched();
906
907 pvec.nr = find_get_entries(mapping, index,
908 min(end - index, (pgoff_t)PAGEVEC_SIZE),
909 pvec.pages, indices);
910 if (!pvec.nr) {
911 /* If all gone or hole-punch or unfalloc, we're done */
912 if (index == start || end != -1)
913 break;
914 /* But if truncating, restart to make sure all gone */
915 index = start;
916 continue;
917 }
918 for (i = 0; i < pagevec_count(&pvec); i++) {
919 struct page *page = pvec.pages[i];
920
921 index = indices[i];
922 if (index >= end)
923 break;
924
David Brazdil0f672f62019-12-10 10:32:29 +0000925 if (xa_is_value(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000926 if (unfalloc)
927 continue;
928 if (shmem_free_swap(mapping, index, page)) {
929 /* Swap was replaced by page: retry */
930 index--;
931 break;
932 }
933 nr_swaps_freed++;
934 continue;
935 }
936
937 lock_page(page);
938
939 if (PageTransTail(page)) {
940 /* Middle of THP: zero out the page */
941 clear_highpage(page);
942 unlock_page(page);
943 /*
944 * Partial thp truncate due 'start' in middle
945 * of THP: don't need to look on these pages
946 * again on !pvec.nr restart.
947 */
948 if (index != round_down(end, HPAGE_PMD_NR))
949 start++;
950 continue;
951 } else if (PageTransHuge(page)) {
952 if (index == round_down(end, HPAGE_PMD_NR)) {
953 /*
954 * Range ends in the middle of THP:
955 * zero out the page
956 */
957 clear_highpage(page);
958 unlock_page(page);
959 continue;
960 }
961 index += HPAGE_PMD_NR - 1;
962 i += HPAGE_PMD_NR - 1;
963 }
964
965 if (!unfalloc || !PageUptodate(page)) {
966 VM_BUG_ON_PAGE(PageTail(page), page);
967 if (page_mapping(page) == mapping) {
968 VM_BUG_ON_PAGE(PageWriteback(page), page);
969 truncate_inode_page(mapping, page);
970 } else {
971 /* Page was replaced by swap: retry */
972 unlock_page(page);
973 index--;
974 break;
975 }
976 }
977 unlock_page(page);
978 }
979 pagevec_remove_exceptionals(&pvec);
980 pagevec_release(&pvec);
981 index++;
982 }
983
984 spin_lock_irq(&info->lock);
985 info->swapped -= nr_swaps_freed;
986 shmem_recalc_inode(inode);
987 spin_unlock_irq(&info->lock);
988}
989
990void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
991{
992 shmem_undo_range(inode, lstart, lend, false);
993 inode->i_ctime = inode->i_mtime = current_time(inode);
994}
995EXPORT_SYMBOL_GPL(shmem_truncate_range);
996
997static int shmem_getattr(const struct path *path, struct kstat *stat,
998 u32 request_mask, unsigned int query_flags)
999{
1000 struct inode *inode = path->dentry->d_inode;
1001 struct shmem_inode_info *info = SHMEM_I(inode);
1002 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1003
1004 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1005 spin_lock_irq(&info->lock);
1006 shmem_recalc_inode(inode);
1007 spin_unlock_irq(&info->lock);
1008 }
1009 generic_fillattr(inode, stat);
1010
1011 if (is_huge_enabled(sb_info))
1012 stat->blksize = HPAGE_PMD_SIZE;
1013
1014 return 0;
1015}
1016
1017static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1018{
1019 struct inode *inode = d_inode(dentry);
1020 struct shmem_inode_info *info = SHMEM_I(inode);
1021 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1022 int error;
1023
1024 error = setattr_prepare(dentry, attr);
1025 if (error)
1026 return error;
1027
1028 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1029 loff_t oldsize = inode->i_size;
1030 loff_t newsize = attr->ia_size;
1031
1032 /* protected by i_mutex */
1033 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1034 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1035 return -EPERM;
1036
1037 if (newsize != oldsize) {
1038 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1039 oldsize, newsize);
1040 if (error)
1041 return error;
1042 i_size_write(inode, newsize);
1043 inode->i_ctime = inode->i_mtime = current_time(inode);
1044 }
1045 if (newsize <= oldsize) {
1046 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1047 if (oldsize > holebegin)
1048 unmap_mapping_range(inode->i_mapping,
1049 holebegin, 0, 1);
1050 if (info->alloced)
1051 shmem_truncate_range(inode,
1052 newsize, (loff_t)-1);
1053 /* unmap again to remove racily COWed private pages */
1054 if (oldsize > holebegin)
1055 unmap_mapping_range(inode->i_mapping,
1056 holebegin, 0, 1);
1057
1058 /*
1059 * Part of the huge page can be beyond i_size: subject
1060 * to shrink under memory pressure.
1061 */
1062 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1063 spin_lock(&sbinfo->shrinklist_lock);
1064 /*
1065 * _careful to defend against unlocked access to
1066 * ->shrink_list in shmem_unused_huge_shrink()
1067 */
1068 if (list_empty_careful(&info->shrinklist)) {
1069 list_add_tail(&info->shrinklist,
1070 &sbinfo->shrinklist);
1071 sbinfo->shrinklist_len++;
1072 }
1073 spin_unlock(&sbinfo->shrinklist_lock);
1074 }
1075 }
1076 }
1077
1078 setattr_copy(inode, attr);
1079 if (attr->ia_valid & ATTR_MODE)
1080 error = posix_acl_chmod(inode, inode->i_mode);
1081 return error;
1082}
1083
1084static void shmem_evict_inode(struct inode *inode)
1085{
1086 struct shmem_inode_info *info = SHMEM_I(inode);
1087 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1088
1089 if (inode->i_mapping->a_ops == &shmem_aops) {
1090 shmem_unacct_size(info->flags, inode->i_size);
1091 inode->i_size = 0;
1092 shmem_truncate_range(inode, 0, (loff_t)-1);
1093 if (!list_empty(&info->shrinklist)) {
1094 spin_lock(&sbinfo->shrinklist_lock);
1095 if (!list_empty(&info->shrinklist)) {
1096 list_del_init(&info->shrinklist);
1097 sbinfo->shrinklist_len--;
1098 }
1099 spin_unlock(&sbinfo->shrinklist_lock);
1100 }
David Brazdil0f672f62019-12-10 10:32:29 +00001101 while (!list_empty(&info->swaplist)) {
1102 /* Wait while shmem_unuse() is scanning this inode... */
1103 wait_var_event(&info->stop_eviction,
1104 !atomic_read(&info->stop_eviction));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001105 mutex_lock(&shmem_swaplist_mutex);
David Brazdil0f672f62019-12-10 10:32:29 +00001106 /* ...but beware of the race if we peeked too early */
1107 if (!atomic_read(&info->stop_eviction))
1108 list_del_init(&info->swaplist);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001109 mutex_unlock(&shmem_swaplist_mutex);
1110 }
1111 }
1112
1113 simple_xattrs_free(&info->xattrs);
1114 WARN_ON(inode->i_blocks);
1115 shmem_free_inode(inode->i_sb);
1116 clear_inode(inode);
1117}
1118
David Brazdil0f672f62019-12-10 10:32:29 +00001119extern struct swap_info_struct *swap_info[];
1120
1121static int shmem_find_swap_entries(struct address_space *mapping,
1122 pgoff_t start, unsigned int nr_entries,
1123 struct page **entries, pgoff_t *indices,
1124 unsigned int type, bool frontswap)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001125{
David Brazdil0f672f62019-12-10 10:32:29 +00001126 XA_STATE(xas, &mapping->i_pages, start);
1127 struct page *page;
1128 swp_entry_t entry;
1129 unsigned int ret = 0;
1130
1131 if (!nr_entries)
1132 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001133
1134 rcu_read_lock();
David Brazdil0f672f62019-12-10 10:32:29 +00001135 xas_for_each(&xas, page, ULONG_MAX) {
1136 if (xas_retry(&xas, page))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001137 continue;
David Brazdil0f672f62019-12-10 10:32:29 +00001138
1139 if (!xa_is_value(page))
1140 continue;
1141
1142 entry = radix_to_swp_entry(page);
1143 if (swp_type(entry) != type)
1144 continue;
1145 if (frontswap &&
1146 !frontswap_test(swap_info[type], swp_offset(entry)))
1147 continue;
1148
1149 indices[ret] = xas.xa_index;
1150 entries[ret] = page;
1151
1152 if (need_resched()) {
1153 xas_pause(&xas);
1154 cond_resched_rcu();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001155 }
David Brazdil0f672f62019-12-10 10:32:29 +00001156 if (++ret == nr_entries)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001157 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001158 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001159 rcu_read_unlock();
David Brazdil0f672f62019-12-10 10:32:29 +00001160
1161 return ret;
1162}
1163
1164/*
1165 * Move the swapped pages for an inode to page cache. Returns the count
1166 * of pages swapped in, or the error in case of failure.
1167 */
1168static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1169 pgoff_t *indices)
1170{
1171 int i = 0;
1172 int ret = 0;
1173 int error = 0;
1174 struct address_space *mapping = inode->i_mapping;
1175
1176 for (i = 0; i < pvec.nr; i++) {
1177 struct page *page = pvec.pages[i];
1178
1179 if (!xa_is_value(page))
1180 continue;
1181 error = shmem_swapin_page(inode, indices[i],
1182 &page, SGP_CACHE,
1183 mapping_gfp_mask(mapping),
1184 NULL, NULL);
1185 if (error == 0) {
1186 unlock_page(page);
1187 put_page(page);
1188 ret++;
1189 }
1190 if (error == -ENOMEM)
1191 break;
1192 error = 0;
1193 }
1194 return error ? error : ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001195}
1196
1197/*
1198 * If swap found in inode, free it and move page from swapcache to filecache.
1199 */
David Brazdil0f672f62019-12-10 10:32:29 +00001200static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1201 bool frontswap, unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001202{
David Brazdil0f672f62019-12-10 10:32:29 +00001203 struct address_space *mapping = inode->i_mapping;
1204 pgoff_t start = 0;
1205 struct pagevec pvec;
1206 pgoff_t indices[PAGEVEC_SIZE];
1207 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1208 int ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001209
David Brazdil0f672f62019-12-10 10:32:29 +00001210 pagevec_init(&pvec);
1211 do {
1212 unsigned int nr_entries = PAGEVEC_SIZE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001213
David Brazdil0f672f62019-12-10 10:32:29 +00001214 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1215 nr_entries = *fs_pages_to_unuse;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001216
David Brazdil0f672f62019-12-10 10:32:29 +00001217 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1218 pvec.pages, indices,
1219 type, frontswap);
1220 if (pvec.nr == 0) {
1221 ret = 0;
1222 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001223 }
David Brazdil0f672f62019-12-10 10:32:29 +00001224
1225 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1226 if (ret < 0)
1227 break;
1228
1229 if (frontswap_partial) {
1230 *fs_pages_to_unuse -= ret;
1231 if (*fs_pages_to_unuse == 0) {
1232 ret = FRONTSWAP_PAGES_UNUSED;
1233 break;
1234 }
1235 }
1236
1237 start = indices[pvec.nr - 1];
1238 } while (true);
1239
1240 return ret;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001241}
1242
1243/*
David Brazdil0f672f62019-12-10 10:32:29 +00001244 * Read all the shared memory data that resides in the swap
1245 * device 'type' back into memory, so the swap device can be
1246 * unused.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001247 */
David Brazdil0f672f62019-12-10 10:32:29 +00001248int shmem_unuse(unsigned int type, bool frontswap,
1249 unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001250{
David Brazdil0f672f62019-12-10 10:32:29 +00001251 struct shmem_inode_info *info, *next;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001252 int error = 0;
1253
David Brazdil0f672f62019-12-10 10:32:29 +00001254 if (list_empty(&shmem_swaplist))
1255 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001256
1257 mutex_lock(&shmem_swaplist_mutex);
David Brazdil0f672f62019-12-10 10:32:29 +00001258 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1259 if (!info->swapped) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001260 list_del_init(&info->swaplist);
David Brazdil0f672f62019-12-10 10:32:29 +00001261 continue;
1262 }
1263 /*
1264 * Drop the swaplist mutex while searching the inode for swap;
1265 * but before doing so, make sure shmem_evict_inode() will not
1266 * remove placeholder inode from swaplist, nor let it be freed
1267 * (igrab() would protect from unlink, but not from unmount).
1268 */
1269 atomic_inc(&info->stop_eviction);
1270 mutex_unlock(&shmem_swaplist_mutex);
1271
1272 error = shmem_unuse_inode(&info->vfs_inode, type, frontswap,
1273 fs_pages_to_unuse);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001274 cond_resched();
David Brazdil0f672f62019-12-10 10:32:29 +00001275
1276 mutex_lock(&shmem_swaplist_mutex);
1277 next = list_next_entry(info, swaplist);
1278 if (!info->swapped)
1279 list_del_init(&info->swaplist);
1280 if (atomic_dec_and_test(&info->stop_eviction))
1281 wake_up_var(&info->stop_eviction);
1282 if (error)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001283 break;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001284 }
1285 mutex_unlock(&shmem_swaplist_mutex);
1286
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001287 return error;
1288}
1289
1290/*
1291 * Move the page from the page cache to the swap cache.
1292 */
1293static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1294{
1295 struct shmem_inode_info *info;
1296 struct address_space *mapping;
1297 struct inode *inode;
1298 swp_entry_t swap;
1299 pgoff_t index;
1300
1301 VM_BUG_ON_PAGE(PageCompound(page), page);
1302 BUG_ON(!PageLocked(page));
1303 mapping = page->mapping;
1304 index = page->index;
1305 inode = mapping->host;
1306 info = SHMEM_I(inode);
1307 if (info->flags & VM_LOCKED)
1308 goto redirty;
1309 if (!total_swap_pages)
1310 goto redirty;
1311
1312 /*
1313 * Our capabilities prevent regular writeback or sync from ever calling
1314 * shmem_writepage; but a stacking filesystem might use ->writepage of
1315 * its underlying filesystem, in which case tmpfs should write out to
1316 * swap only in response to memory pressure, and not for the writeback
1317 * threads or sync.
1318 */
1319 if (!wbc->for_reclaim) {
1320 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1321 goto redirty;
1322 }
1323
1324 /*
1325 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1326 * value into swapfile.c, the only way we can correctly account for a
1327 * fallocated page arriving here is now to initialize it and write it.
1328 *
1329 * That's okay for a page already fallocated earlier, but if we have
1330 * not yet completed the fallocation, then (a) we want to keep track
1331 * of this page in case we have to undo it, and (b) it may not be a
1332 * good idea to continue anyway, once we're pushing into swap. So
1333 * reactivate the page, and let shmem_fallocate() quit when too many.
1334 */
1335 if (!PageUptodate(page)) {
1336 if (inode->i_private) {
1337 struct shmem_falloc *shmem_falloc;
1338 spin_lock(&inode->i_lock);
1339 shmem_falloc = inode->i_private;
1340 if (shmem_falloc &&
1341 !shmem_falloc->waitq &&
1342 index >= shmem_falloc->start &&
1343 index < shmem_falloc->next)
1344 shmem_falloc->nr_unswapped++;
1345 else
1346 shmem_falloc = NULL;
1347 spin_unlock(&inode->i_lock);
1348 if (shmem_falloc)
1349 goto redirty;
1350 }
1351 clear_highpage(page);
1352 flush_dcache_page(page);
1353 SetPageUptodate(page);
1354 }
1355
1356 swap = get_swap_page(page);
1357 if (!swap.val)
1358 goto redirty;
1359
1360 /*
1361 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1362 * if it's not already there. Do it now before the page is
1363 * moved to swap cache, when its pagelock no longer protects
1364 * the inode from eviction. But don't unlock the mutex until
1365 * we've incremented swapped, because shmem_unuse_inode() will
1366 * prune a !swapped inode from the swaplist under this mutex.
1367 */
1368 mutex_lock(&shmem_swaplist_mutex);
1369 if (list_empty(&info->swaplist))
David Brazdil0f672f62019-12-10 10:32:29 +00001370 list_add(&info->swaplist, &shmem_swaplist);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001371
1372 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1373 spin_lock_irq(&info->lock);
1374 shmem_recalc_inode(inode);
1375 info->swapped++;
1376 spin_unlock_irq(&info->lock);
1377
1378 swap_shmem_alloc(swap);
1379 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1380
1381 mutex_unlock(&shmem_swaplist_mutex);
1382 BUG_ON(page_mapped(page));
1383 swap_writepage(page, wbc);
1384 return 0;
1385 }
1386
1387 mutex_unlock(&shmem_swaplist_mutex);
1388 put_swap_page(page, swap);
1389redirty:
1390 set_page_dirty(page);
1391 if (wbc->for_reclaim)
1392 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1393 unlock_page(page);
1394 return 0;
1395}
1396
1397#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1398static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1399{
1400 char buffer[64];
1401
1402 if (!mpol || mpol->mode == MPOL_DEFAULT)
1403 return; /* show nothing */
1404
1405 mpol_to_str(buffer, sizeof(buffer), mpol);
1406
1407 seq_printf(seq, ",mpol=%s", buffer);
1408}
1409
1410static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1411{
1412 struct mempolicy *mpol = NULL;
1413 if (sbinfo->mpol) {
1414 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1415 mpol = sbinfo->mpol;
1416 mpol_get(mpol);
1417 spin_unlock(&sbinfo->stat_lock);
1418 }
1419 return mpol;
1420}
1421#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1422static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1423{
1424}
1425static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1426{
1427 return NULL;
1428}
1429#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1430#ifndef CONFIG_NUMA
1431#define vm_policy vm_private_data
1432#endif
1433
1434static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1435 struct shmem_inode_info *info, pgoff_t index)
1436{
1437 /* Create a pseudo vma that just contains the policy */
1438 vma_init(vma, NULL);
1439 /* Bias interleave by inode number to distribute better across nodes */
1440 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1441 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1442}
1443
1444static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1445{
1446 /* Drop reference taken by mpol_shared_policy_lookup() */
1447 mpol_cond_put(vma->vm_policy);
1448}
1449
1450static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1451 struct shmem_inode_info *info, pgoff_t index)
1452{
1453 struct vm_area_struct pvma;
1454 struct page *page;
1455 struct vm_fault vmf;
1456
1457 shmem_pseudo_vma_init(&pvma, info, index);
1458 vmf.vma = &pvma;
1459 vmf.address = 0;
1460 page = swap_cluster_readahead(swap, gfp, &vmf);
1461 shmem_pseudo_vma_destroy(&pvma);
1462
1463 return page;
1464}
1465
1466static struct page *shmem_alloc_hugepage(gfp_t gfp,
1467 struct shmem_inode_info *info, pgoff_t index)
1468{
1469 struct vm_area_struct pvma;
David Brazdil0f672f62019-12-10 10:32:29 +00001470 struct address_space *mapping = info->vfs_inode.i_mapping;
1471 pgoff_t hindex;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001472 struct page *page;
1473
1474 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1475 return NULL;
1476
1477 hindex = round_down(index, HPAGE_PMD_NR);
David Brazdil0f672f62019-12-10 10:32:29 +00001478 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1479 XA_PRESENT))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001480 return NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001481
1482 shmem_pseudo_vma_init(&pvma, info, hindex);
1483 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1484 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1485 shmem_pseudo_vma_destroy(&pvma);
1486 if (page)
1487 prep_transhuge_page(page);
1488 return page;
1489}
1490
1491static struct page *shmem_alloc_page(gfp_t gfp,
1492 struct shmem_inode_info *info, pgoff_t index)
1493{
1494 struct vm_area_struct pvma;
1495 struct page *page;
1496
1497 shmem_pseudo_vma_init(&pvma, info, index);
1498 page = alloc_page_vma(gfp, &pvma, 0);
1499 shmem_pseudo_vma_destroy(&pvma);
1500
1501 return page;
1502}
1503
1504static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1505 struct inode *inode,
1506 pgoff_t index, bool huge)
1507{
1508 struct shmem_inode_info *info = SHMEM_I(inode);
1509 struct page *page;
1510 int nr;
1511 int err = -ENOSPC;
1512
1513 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1514 huge = false;
1515 nr = huge ? HPAGE_PMD_NR : 1;
1516
1517 if (!shmem_inode_acct_block(inode, nr))
1518 goto failed;
1519
1520 if (huge)
1521 page = shmem_alloc_hugepage(gfp, info, index);
1522 else
1523 page = shmem_alloc_page(gfp, info, index);
1524 if (page) {
1525 __SetPageLocked(page);
1526 __SetPageSwapBacked(page);
1527 return page;
1528 }
1529
1530 err = -ENOMEM;
1531 shmem_inode_unacct_blocks(inode, nr);
1532failed:
1533 return ERR_PTR(err);
1534}
1535
1536/*
1537 * When a page is moved from swapcache to shmem filecache (either by the
1538 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1539 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1540 * ignorance of the mapping it belongs to. If that mapping has special
1541 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1542 * we may need to copy to a suitable page before moving to filecache.
1543 *
1544 * In a future release, this may well be extended to respect cpuset and
1545 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1546 * but for now it is a simple matter of zone.
1547 */
1548static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1549{
1550 return page_zonenum(page) > gfp_zone(gfp);
1551}
1552
1553static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1554 struct shmem_inode_info *info, pgoff_t index)
1555{
1556 struct page *oldpage, *newpage;
1557 struct address_space *swap_mapping;
1558 swp_entry_t entry;
1559 pgoff_t swap_index;
1560 int error;
1561
1562 oldpage = *pagep;
1563 entry.val = page_private(oldpage);
1564 swap_index = swp_offset(entry);
1565 swap_mapping = page_mapping(oldpage);
1566
1567 /*
1568 * We have arrived here because our zones are constrained, so don't
1569 * limit chance of success by further cpuset and node constraints.
1570 */
1571 gfp &= ~GFP_CONSTRAINT_MASK;
1572 newpage = shmem_alloc_page(gfp, info, index);
1573 if (!newpage)
1574 return -ENOMEM;
1575
1576 get_page(newpage);
1577 copy_highpage(newpage, oldpage);
1578 flush_dcache_page(newpage);
1579
1580 __SetPageLocked(newpage);
1581 __SetPageSwapBacked(newpage);
1582 SetPageUptodate(newpage);
1583 set_page_private(newpage, entry.val);
1584 SetPageSwapCache(newpage);
1585
1586 /*
1587 * Our caller will very soon move newpage out of swapcache, but it's
1588 * a nice clean interface for us to replace oldpage by newpage there.
1589 */
1590 xa_lock_irq(&swap_mapping->i_pages);
David Brazdil0f672f62019-12-10 10:32:29 +00001591 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001592 if (!error) {
1593 __inc_node_page_state(newpage, NR_FILE_PAGES);
1594 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1595 }
1596 xa_unlock_irq(&swap_mapping->i_pages);
1597
1598 if (unlikely(error)) {
1599 /*
1600 * Is this possible? I think not, now that our callers check
1601 * both PageSwapCache and page_private after getting page lock;
1602 * but be defensive. Reverse old to newpage for clear and free.
1603 */
1604 oldpage = newpage;
1605 } else {
1606 mem_cgroup_migrate(oldpage, newpage);
1607 lru_cache_add_anon(newpage);
1608 *pagep = newpage;
1609 }
1610
1611 ClearPageSwapCache(oldpage);
1612 set_page_private(oldpage, 0);
1613
1614 unlock_page(oldpage);
1615 put_page(oldpage);
1616 put_page(oldpage);
1617 return error;
1618}
1619
1620/*
David Brazdil0f672f62019-12-10 10:32:29 +00001621 * Swap in the page pointed to by *pagep.
1622 * Caller has to make sure that *pagep contains a valid swapped page.
1623 * Returns 0 and the page in pagep if success. On failure, returns the
1624 * the error code and NULL in *pagep.
1625 */
1626static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1627 struct page **pagep, enum sgp_type sgp,
1628 gfp_t gfp, struct vm_area_struct *vma,
1629 vm_fault_t *fault_type)
1630{
1631 struct address_space *mapping = inode->i_mapping;
1632 struct shmem_inode_info *info = SHMEM_I(inode);
1633 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1634 struct mem_cgroup *memcg;
1635 struct page *page;
1636 swp_entry_t swap;
1637 int error;
1638
1639 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1640 swap = radix_to_swp_entry(*pagep);
1641 *pagep = NULL;
1642
1643 /* Look it up and read it in.. */
1644 page = lookup_swap_cache(swap, NULL, 0);
1645 if (!page) {
1646 /* Or update major stats only when swapin succeeds?? */
1647 if (fault_type) {
1648 *fault_type |= VM_FAULT_MAJOR;
1649 count_vm_event(PGMAJFAULT);
1650 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1651 }
1652 /* Here we actually start the io */
1653 page = shmem_swapin(swap, gfp, info, index);
1654 if (!page) {
1655 error = -ENOMEM;
1656 goto failed;
1657 }
1658 }
1659
1660 /* We have to do this with page locked to prevent races */
1661 lock_page(page);
1662 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663 !shmem_confirm_swap(mapping, index, swap)) {
1664 error = -EEXIST;
1665 goto unlock;
1666 }
1667 if (!PageUptodate(page)) {
1668 error = -EIO;
1669 goto failed;
1670 }
1671 wait_on_page_writeback(page);
1672
1673 if (shmem_should_replace_page(page, gfp)) {
1674 error = shmem_replace_page(&page, gfp, info, index);
1675 if (error)
1676 goto failed;
1677 }
1678
1679 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1680 false);
1681 if (!error) {
1682 error = shmem_add_to_page_cache(page, mapping, index,
1683 swp_to_radix_entry(swap), gfp);
1684 /*
1685 * We already confirmed swap under page lock, and make
1686 * no memory allocation here, so usually no possibility
1687 * of error; but free_swap_and_cache() only trylocks a
1688 * page, so it is just possible that the entry has been
1689 * truncated or holepunched since swap was confirmed.
1690 * shmem_undo_range() will have done some of the
1691 * unaccounting, now delete_from_swap_cache() will do
1692 * the rest.
1693 */
1694 if (error) {
1695 mem_cgroup_cancel_charge(page, memcg, false);
1696 delete_from_swap_cache(page);
1697 }
1698 }
1699 if (error)
1700 goto failed;
1701
1702 mem_cgroup_commit_charge(page, memcg, true, false);
1703
1704 spin_lock_irq(&info->lock);
1705 info->swapped--;
1706 shmem_recalc_inode(inode);
1707 spin_unlock_irq(&info->lock);
1708
1709 if (sgp == SGP_WRITE)
1710 mark_page_accessed(page);
1711
1712 delete_from_swap_cache(page);
1713 set_page_dirty(page);
1714 swap_free(swap);
1715
1716 *pagep = page;
1717 return 0;
1718failed:
1719 if (!shmem_confirm_swap(mapping, index, swap))
1720 error = -EEXIST;
1721unlock:
1722 if (page) {
1723 unlock_page(page);
1724 put_page(page);
1725 }
1726
1727 return error;
1728}
1729
1730/*
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001731 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1732 *
1733 * If we allocate a new one we do not mark it dirty. That's up to the
1734 * vm. If we swap it in we mark it dirty since we also free the swap
1735 * entry since a page cannot live in both the swap and page cache.
1736 *
David Brazdil0f672f62019-12-10 10:32:29 +00001737 * vmf and fault_type are only supplied by shmem_fault:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001738 * otherwise they are NULL.
1739 */
1740static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1741 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1742 struct vm_area_struct *vma, struct vm_fault *vmf,
1743 vm_fault_t *fault_type)
1744{
1745 struct address_space *mapping = inode->i_mapping;
1746 struct shmem_inode_info *info = SHMEM_I(inode);
1747 struct shmem_sb_info *sbinfo;
1748 struct mm_struct *charge_mm;
1749 struct mem_cgroup *memcg;
1750 struct page *page;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001751 enum sgp_type sgp_huge = sgp;
1752 pgoff_t hindex = index;
1753 int error;
1754 int once = 0;
1755 int alloced = 0;
1756
1757 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1758 return -EFBIG;
1759 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1760 sgp = SGP_CACHE;
1761repeat:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001762 if (sgp <= SGP_CACHE &&
1763 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
David Brazdil0f672f62019-12-10 10:32:29 +00001764 return -EINVAL;
1765 }
1766
1767 sbinfo = SHMEM_SB(inode->i_sb);
1768 charge_mm = vma ? vma->vm_mm : current->mm;
1769
1770 page = find_lock_entry(mapping, index);
1771 if (xa_is_value(page)) {
1772 error = shmem_swapin_page(inode, index, &page,
1773 sgp, gfp, vma, fault_type);
1774 if (error == -EEXIST)
1775 goto repeat;
1776
1777 *pagep = page;
1778 return error;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001779 }
1780
1781 if (page && sgp == SGP_WRITE)
1782 mark_page_accessed(page);
1783
1784 /* fallocated page? */
1785 if (page && !PageUptodate(page)) {
1786 if (sgp != SGP_READ)
1787 goto clear;
1788 unlock_page(page);
1789 put_page(page);
1790 page = NULL;
1791 }
David Brazdil0f672f62019-12-10 10:32:29 +00001792 if (page || sgp == SGP_READ) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001793 *pagep = page;
1794 return 0;
1795 }
1796
1797 /*
1798 * Fast cache lookup did not find it:
1799 * bring it back from swap or allocate.
1800 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001801
David Brazdil0f672f62019-12-10 10:32:29 +00001802 if (vma && userfaultfd_missing(vma)) {
1803 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1804 return 0;
1805 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001806
David Brazdil0f672f62019-12-10 10:32:29 +00001807 /* shmem_symlink() */
1808 if (mapping->a_ops != &shmem_aops)
1809 goto alloc_nohuge;
1810 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1811 goto alloc_nohuge;
1812 if (shmem_huge == SHMEM_HUGE_FORCE)
1813 goto alloc_huge;
1814 switch (sbinfo->huge) {
1815 loff_t i_size;
1816 pgoff_t off;
1817 case SHMEM_HUGE_NEVER:
1818 goto alloc_nohuge;
1819 case SHMEM_HUGE_WITHIN_SIZE:
1820 off = round_up(index, HPAGE_PMD_NR);
1821 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1822 if (i_size >= HPAGE_PMD_SIZE &&
1823 i_size >> PAGE_SHIFT >= off)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001824 goto alloc_huge;
David Brazdil0f672f62019-12-10 10:32:29 +00001825 /* fallthrough */
1826 case SHMEM_HUGE_ADVISE:
1827 if (sgp_huge == SGP_HUGE)
1828 goto alloc_huge;
1829 /* TODO: implement fadvise() hints */
1830 goto alloc_nohuge;
1831 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001832
1833alloc_huge:
David Brazdil0f672f62019-12-10 10:32:29 +00001834 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1835 if (IS_ERR(page)) {
1836alloc_nohuge:
1837 page = shmem_alloc_and_acct_page(gfp, inode,
1838 index, false);
1839 }
1840 if (IS_ERR(page)) {
1841 int retry = 5;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001842
David Brazdil0f672f62019-12-10 10:32:29 +00001843 error = PTR_ERR(page);
1844 page = NULL;
1845 if (error != -ENOSPC)
1846 goto unlock;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001847 /*
David Brazdil0f672f62019-12-10 10:32:29 +00001848 * Try to reclaim some space by splitting a huge page
1849 * beyond i_size on the filesystem.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001850 */
David Brazdil0f672f62019-12-10 10:32:29 +00001851 while (retry--) {
1852 int ret;
1853
1854 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1855 if (ret == SHRINK_STOP)
1856 break;
1857 if (ret)
1858 goto alloc_nohuge;
1859 }
1860 goto unlock;
1861 }
1862
1863 if (PageTransHuge(page))
1864 hindex = round_down(index, HPAGE_PMD_NR);
1865 else
1866 hindex = index;
1867
1868 if (sgp == SGP_WRITE)
1869 __SetPageReferenced(page);
1870
1871 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1872 PageTransHuge(page));
1873 if (error)
1874 goto unacct;
1875 error = shmem_add_to_page_cache(page, mapping, hindex,
1876 NULL, gfp & GFP_RECLAIM_MASK);
1877 if (error) {
1878 mem_cgroup_cancel_charge(page, memcg,
1879 PageTransHuge(page));
1880 goto unacct;
1881 }
1882 mem_cgroup_commit_charge(page, memcg, false,
1883 PageTransHuge(page));
1884 lru_cache_add_anon(page);
1885
1886 spin_lock_irq(&info->lock);
1887 info->alloced += compound_nr(page);
1888 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1889 shmem_recalc_inode(inode);
1890 spin_unlock_irq(&info->lock);
1891 alloced = true;
1892
1893 if (PageTransHuge(page) &&
1894 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1895 hindex + HPAGE_PMD_NR - 1) {
1896 /*
1897 * Part of the huge page is beyond i_size: subject
1898 * to shrink under memory pressure.
1899 */
1900 spin_lock(&sbinfo->shrinklist_lock);
1901 /*
1902 * _careful to defend against unlocked access to
1903 * ->shrink_list in shmem_unused_huge_shrink()
1904 */
1905 if (list_empty_careful(&info->shrinklist)) {
1906 list_add_tail(&info->shrinklist,
1907 &sbinfo->shrinklist);
1908 sbinfo->shrinklist_len++;
1909 }
1910 spin_unlock(&sbinfo->shrinklist_lock);
1911 }
1912
1913 /*
1914 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1915 */
1916 if (sgp == SGP_FALLOC)
1917 sgp = SGP_WRITE;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001918clear:
David Brazdil0f672f62019-12-10 10:32:29 +00001919 /*
1920 * Let SGP_WRITE caller clear ends if write does not fill page;
1921 * but SGP_FALLOC on a page fallocated earlier must initialize
1922 * it now, lest undo on failure cancel our earlier guarantee.
1923 */
1924 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1925 struct page *head = compound_head(page);
1926 int i;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001927
David Brazdil0f672f62019-12-10 10:32:29 +00001928 for (i = 0; i < compound_nr(head); i++) {
1929 clear_highpage(head + i);
1930 flush_dcache_page(head + i);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001931 }
David Brazdil0f672f62019-12-10 10:32:29 +00001932 SetPageUptodate(head);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001933 }
1934
1935 /* Perhaps the file has been truncated since we checked */
1936 if (sgp <= SGP_CACHE &&
1937 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1938 if (alloced) {
1939 ClearPageDirty(page);
1940 delete_from_page_cache(page);
1941 spin_lock_irq(&info->lock);
1942 shmem_recalc_inode(inode);
1943 spin_unlock_irq(&info->lock);
1944 }
1945 error = -EINVAL;
1946 goto unlock;
1947 }
1948 *pagep = page + index - hindex;
1949 return 0;
1950
1951 /*
1952 * Error recovery.
1953 */
1954unacct:
David Brazdil0f672f62019-12-10 10:32:29 +00001955 shmem_inode_unacct_blocks(inode, compound_nr(page));
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001956
1957 if (PageTransHuge(page)) {
1958 unlock_page(page);
1959 put_page(page);
1960 goto alloc_nohuge;
1961 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001962unlock:
1963 if (page) {
1964 unlock_page(page);
1965 put_page(page);
1966 }
1967 if (error == -ENOSPC && !once++) {
1968 spin_lock_irq(&info->lock);
1969 shmem_recalc_inode(inode);
1970 spin_unlock_irq(&info->lock);
1971 goto repeat;
1972 }
David Brazdil0f672f62019-12-10 10:32:29 +00001973 if (error == -EEXIST)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001974 goto repeat;
1975 return error;
1976}
1977
1978/*
1979 * This is like autoremove_wake_function, but it removes the wait queue
1980 * entry unconditionally - even if something else had already woken the
1981 * target.
1982 */
1983static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1984{
1985 int ret = default_wake_function(wait, mode, sync, key);
1986 list_del_init(&wait->entry);
1987 return ret;
1988}
1989
1990static vm_fault_t shmem_fault(struct vm_fault *vmf)
1991{
1992 struct vm_area_struct *vma = vmf->vma;
1993 struct inode *inode = file_inode(vma->vm_file);
1994 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1995 enum sgp_type sgp;
1996 int err;
1997 vm_fault_t ret = VM_FAULT_LOCKED;
1998
1999 /*
2000 * Trinity finds that probing a hole which tmpfs is punching can
2001 * prevent the hole-punch from ever completing: which in turn
2002 * locks writers out with its hold on i_mutex. So refrain from
2003 * faulting pages into the hole while it's being punched. Although
2004 * shmem_undo_range() does remove the additions, it may be unable to
2005 * keep up, as each new page needs its own unmap_mapping_range() call,
2006 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2007 *
2008 * It does not matter if we sometimes reach this check just before the
2009 * hole-punch begins, so that one fault then races with the punch:
2010 * we just need to make racing faults a rare case.
2011 *
2012 * The implementation below would be much simpler if we just used a
2013 * standard mutex or completion: but we cannot take i_mutex in fault,
2014 * and bloating every shmem inode for this unlikely case would be sad.
2015 */
2016 if (unlikely(inode->i_private)) {
2017 struct shmem_falloc *shmem_falloc;
2018
2019 spin_lock(&inode->i_lock);
2020 shmem_falloc = inode->i_private;
2021 if (shmem_falloc &&
2022 shmem_falloc->waitq &&
2023 vmf->pgoff >= shmem_falloc->start &&
2024 vmf->pgoff < shmem_falloc->next) {
Olivier Deprez0e641232021-09-23 10:07:05 +02002025 struct file *fpin;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002026 wait_queue_head_t *shmem_falloc_waitq;
2027 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2028
2029 ret = VM_FAULT_NOPAGE;
Olivier Deprez0e641232021-09-23 10:07:05 +02002030 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2031 if (fpin)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002032 ret = VM_FAULT_RETRY;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002033
2034 shmem_falloc_waitq = shmem_falloc->waitq;
2035 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2036 TASK_UNINTERRUPTIBLE);
2037 spin_unlock(&inode->i_lock);
2038 schedule();
2039
2040 /*
2041 * shmem_falloc_waitq points into the shmem_fallocate()
2042 * stack of the hole-punching task: shmem_falloc_waitq
2043 * is usually invalid by the time we reach here, but
2044 * finish_wait() does not dereference it in that case;
2045 * though i_lock needed lest racing with wake_up_all().
2046 */
2047 spin_lock(&inode->i_lock);
2048 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2049 spin_unlock(&inode->i_lock);
Olivier Deprez0e641232021-09-23 10:07:05 +02002050
2051 if (fpin)
2052 fput(fpin);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002053 return ret;
2054 }
2055 spin_unlock(&inode->i_lock);
2056 }
2057
2058 sgp = SGP_CACHE;
2059
2060 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2061 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2062 sgp = SGP_NOHUGE;
2063 else if (vma->vm_flags & VM_HUGEPAGE)
2064 sgp = SGP_HUGE;
2065
2066 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2067 gfp, vma, vmf, &ret);
2068 if (err)
2069 return vmf_error(err);
2070 return ret;
2071}
2072
2073unsigned long shmem_get_unmapped_area(struct file *file,
2074 unsigned long uaddr, unsigned long len,
2075 unsigned long pgoff, unsigned long flags)
2076{
2077 unsigned long (*get_area)(struct file *,
2078 unsigned long, unsigned long, unsigned long, unsigned long);
2079 unsigned long addr;
2080 unsigned long offset;
2081 unsigned long inflated_len;
2082 unsigned long inflated_addr;
2083 unsigned long inflated_offset;
2084
2085 if (len > TASK_SIZE)
2086 return -ENOMEM;
2087
2088 get_area = current->mm->get_unmapped_area;
2089 addr = get_area(file, uaddr, len, pgoff, flags);
2090
2091 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2092 return addr;
2093 if (IS_ERR_VALUE(addr))
2094 return addr;
2095 if (addr & ~PAGE_MASK)
2096 return addr;
2097 if (addr > TASK_SIZE - len)
2098 return addr;
2099
2100 if (shmem_huge == SHMEM_HUGE_DENY)
2101 return addr;
2102 if (len < HPAGE_PMD_SIZE)
2103 return addr;
2104 if (flags & MAP_FIXED)
2105 return addr;
2106 /*
2107 * Our priority is to support MAP_SHARED mapped hugely;
2108 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
Olivier Deprez0e641232021-09-23 10:07:05 +02002109 * But if caller specified an address hint and we allocated area there
2110 * successfully, respect that as before.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002111 */
Olivier Deprez0e641232021-09-23 10:07:05 +02002112 if (uaddr == addr)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002113 return addr;
2114
2115 if (shmem_huge != SHMEM_HUGE_FORCE) {
2116 struct super_block *sb;
2117
2118 if (file) {
2119 VM_BUG_ON(file->f_op != &shmem_file_operations);
2120 sb = file_inode(file)->i_sb;
2121 } else {
2122 /*
2123 * Called directly from mm/mmap.c, or drivers/char/mem.c
2124 * for "/dev/zero", to create a shared anonymous object.
2125 */
2126 if (IS_ERR(shm_mnt))
2127 return addr;
2128 sb = shm_mnt->mnt_sb;
2129 }
2130 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2131 return addr;
2132 }
2133
2134 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2135 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2136 return addr;
2137 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2138 return addr;
2139
2140 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2141 if (inflated_len > TASK_SIZE)
2142 return addr;
2143 if (inflated_len < len)
2144 return addr;
2145
Olivier Deprez0e641232021-09-23 10:07:05 +02002146 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002147 if (IS_ERR_VALUE(inflated_addr))
2148 return addr;
2149 if (inflated_addr & ~PAGE_MASK)
2150 return addr;
2151
2152 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2153 inflated_addr += offset - inflated_offset;
2154 if (inflated_offset > offset)
2155 inflated_addr += HPAGE_PMD_SIZE;
2156
2157 if (inflated_addr > TASK_SIZE - len)
2158 return addr;
2159 return inflated_addr;
2160}
2161
2162#ifdef CONFIG_NUMA
2163static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2164{
2165 struct inode *inode = file_inode(vma->vm_file);
2166 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2167}
2168
2169static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2170 unsigned long addr)
2171{
2172 struct inode *inode = file_inode(vma->vm_file);
2173 pgoff_t index;
2174
2175 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2176 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2177}
2178#endif
2179
2180int shmem_lock(struct file *file, int lock, struct user_struct *user)
2181{
2182 struct inode *inode = file_inode(file);
2183 struct shmem_inode_info *info = SHMEM_I(inode);
2184 int retval = -ENOMEM;
2185
Olivier Deprez0e641232021-09-23 10:07:05 +02002186 /*
2187 * What serializes the accesses to info->flags?
2188 * ipc_lock_object() when called from shmctl_do_lock(),
2189 * no serialization needed when called from shm_destroy().
2190 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002191 if (lock && !(info->flags & VM_LOCKED)) {
2192 if (!user_shm_lock(inode->i_size, user))
2193 goto out_nomem;
2194 info->flags |= VM_LOCKED;
2195 mapping_set_unevictable(file->f_mapping);
2196 }
2197 if (!lock && (info->flags & VM_LOCKED) && user) {
2198 user_shm_unlock(inode->i_size, user);
2199 info->flags &= ~VM_LOCKED;
2200 mapping_clear_unevictable(file->f_mapping);
2201 }
2202 retval = 0;
2203
2204out_nomem:
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002205 return retval;
2206}
2207
2208static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2209{
David Brazdil0f672f62019-12-10 10:32:29 +00002210 struct shmem_inode_info *info = SHMEM_I(file_inode(file));
Olivier Deprez0e641232021-09-23 10:07:05 +02002211 int ret;
David Brazdil0f672f62019-12-10 10:32:29 +00002212
Olivier Deprez0e641232021-09-23 10:07:05 +02002213 ret = seal_check_future_write(info->seals, vma);
2214 if (ret)
2215 return ret;
David Brazdil0f672f62019-12-10 10:32:29 +00002216
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002217 file_accessed(file);
2218 vma->vm_ops = &shmem_vm_ops;
2219 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2220 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2221 (vma->vm_end & HPAGE_PMD_MASK)) {
2222 khugepaged_enter(vma, vma->vm_flags);
2223 }
2224 return 0;
2225}
2226
2227static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2228 umode_t mode, dev_t dev, unsigned long flags)
2229{
2230 struct inode *inode;
2231 struct shmem_inode_info *info;
2232 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2233
2234 if (shmem_reserve_inode(sb))
2235 return NULL;
2236
2237 inode = new_inode(sb);
2238 if (inode) {
2239 inode->i_ino = get_next_ino();
2240 inode_init_owner(inode, dir, mode);
2241 inode->i_blocks = 0;
2242 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2243 inode->i_generation = prandom_u32();
2244 info = SHMEM_I(inode);
2245 memset(info, 0, (char *)inode - (char *)info);
2246 spin_lock_init(&info->lock);
David Brazdil0f672f62019-12-10 10:32:29 +00002247 atomic_set(&info->stop_eviction, 0);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002248 info->seals = F_SEAL_SEAL;
2249 info->flags = flags & VM_NORESERVE;
2250 INIT_LIST_HEAD(&info->shrinklist);
2251 INIT_LIST_HEAD(&info->swaplist);
2252 simple_xattrs_init(&info->xattrs);
2253 cache_no_acl(inode);
2254
2255 switch (mode & S_IFMT) {
2256 default:
2257 inode->i_op = &shmem_special_inode_operations;
2258 init_special_inode(inode, mode, dev);
2259 break;
2260 case S_IFREG:
2261 inode->i_mapping->a_ops = &shmem_aops;
2262 inode->i_op = &shmem_inode_operations;
2263 inode->i_fop = &shmem_file_operations;
2264 mpol_shared_policy_init(&info->policy,
2265 shmem_get_sbmpol(sbinfo));
2266 break;
2267 case S_IFDIR:
2268 inc_nlink(inode);
2269 /* Some things misbehave if size == 0 on a directory */
2270 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2271 inode->i_op = &shmem_dir_inode_operations;
2272 inode->i_fop = &simple_dir_operations;
2273 break;
2274 case S_IFLNK:
2275 /*
2276 * Must not load anything in the rbtree,
2277 * mpol_free_shared_policy will not be called.
2278 */
2279 mpol_shared_policy_init(&info->policy, NULL);
2280 break;
2281 }
2282
2283 lockdep_annotate_inode_mutex_key(inode);
2284 } else
2285 shmem_free_inode(sb);
2286 return inode;
2287}
2288
2289bool shmem_mapping(struct address_space *mapping)
2290{
2291 return mapping->a_ops == &shmem_aops;
2292}
2293
2294static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2295 pmd_t *dst_pmd,
2296 struct vm_area_struct *dst_vma,
2297 unsigned long dst_addr,
2298 unsigned long src_addr,
2299 bool zeropage,
2300 struct page **pagep)
2301{
2302 struct inode *inode = file_inode(dst_vma->vm_file);
2303 struct shmem_inode_info *info = SHMEM_I(inode);
2304 struct address_space *mapping = inode->i_mapping;
2305 gfp_t gfp = mapping_gfp_mask(mapping);
2306 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2307 struct mem_cgroup *memcg;
2308 spinlock_t *ptl;
2309 void *page_kaddr;
2310 struct page *page;
2311 pte_t _dst_pte, *dst_pte;
2312 int ret;
2313 pgoff_t offset, max_off;
2314
2315 ret = -ENOMEM;
Olivier Deprez0e641232021-09-23 10:07:05 +02002316 if (!shmem_inode_acct_block(inode, 1)) {
2317 /*
2318 * We may have got a page, returned -ENOENT triggering a retry,
2319 * and now we find ourselves with -ENOMEM. Release the page, to
2320 * avoid a BUG_ON in our caller.
2321 */
2322 if (unlikely(*pagep)) {
2323 put_page(*pagep);
2324 *pagep = NULL;
2325 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002326 goto out;
Olivier Deprez0e641232021-09-23 10:07:05 +02002327 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002328
2329 if (!*pagep) {
2330 page = shmem_alloc_page(gfp, info, pgoff);
2331 if (!page)
2332 goto out_unacct_blocks;
2333
2334 if (!zeropage) { /* mcopy_atomic */
2335 page_kaddr = kmap_atomic(page);
2336 ret = copy_from_user(page_kaddr,
2337 (const void __user *)src_addr,
2338 PAGE_SIZE);
2339 kunmap_atomic(page_kaddr);
2340
2341 /* fallback to copy_from_user outside mmap_sem */
2342 if (unlikely(ret)) {
2343 *pagep = page;
2344 shmem_inode_unacct_blocks(inode, 1);
2345 /* don't free the page */
2346 return -ENOENT;
2347 }
2348 } else { /* mfill_zeropage_atomic */
2349 clear_highpage(page);
2350 }
2351 } else {
2352 page = *pagep;
2353 *pagep = NULL;
2354 }
2355
2356 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2357 __SetPageLocked(page);
2358 __SetPageSwapBacked(page);
2359 __SetPageUptodate(page);
2360
2361 ret = -EFAULT;
2362 offset = linear_page_index(dst_vma, dst_addr);
2363 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2364 if (unlikely(offset >= max_off))
2365 goto out_release;
2366
2367 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2368 if (ret)
2369 goto out_release;
2370
David Brazdil0f672f62019-12-10 10:32:29 +00002371 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2372 gfp & GFP_RECLAIM_MASK);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002373 if (ret)
2374 goto out_release_uncharge;
2375
2376 mem_cgroup_commit_charge(page, memcg, false, false);
2377
2378 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2379 if (dst_vma->vm_flags & VM_WRITE)
2380 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2381 else {
2382 /*
2383 * We don't set the pte dirty if the vma has no
2384 * VM_WRITE permission, so mark the page dirty or it
2385 * could be freed from under us. We could do it
2386 * unconditionally before unlock_page(), but doing it
2387 * only if VM_WRITE is not set is faster.
2388 */
2389 set_page_dirty(page);
2390 }
2391
2392 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2393
2394 ret = -EFAULT;
2395 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2396 if (unlikely(offset >= max_off))
2397 goto out_release_uncharge_unlock;
2398
2399 ret = -EEXIST;
2400 if (!pte_none(*dst_pte))
2401 goto out_release_uncharge_unlock;
2402
2403 lru_cache_add_anon(page);
2404
Olivier Deprez0e641232021-09-23 10:07:05 +02002405 spin_lock_irq(&info->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002406 info->alloced++;
2407 inode->i_blocks += BLOCKS_PER_PAGE;
2408 shmem_recalc_inode(inode);
Olivier Deprez0e641232021-09-23 10:07:05 +02002409 spin_unlock_irq(&info->lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002410
2411 inc_mm_counter(dst_mm, mm_counter_file(page));
2412 page_add_file_rmap(page, false);
2413 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2414
2415 /* No need to invalidate - it was non-present before */
2416 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2417 pte_unmap_unlock(dst_pte, ptl);
2418 unlock_page(page);
2419 ret = 0;
2420out:
2421 return ret;
2422out_release_uncharge_unlock:
2423 pte_unmap_unlock(dst_pte, ptl);
2424 ClearPageDirty(page);
2425 delete_from_page_cache(page);
2426out_release_uncharge:
2427 mem_cgroup_cancel_charge(page, memcg, false);
2428out_release:
2429 unlock_page(page);
2430 put_page(page);
2431out_unacct_blocks:
2432 shmem_inode_unacct_blocks(inode, 1);
2433 goto out;
2434}
2435
2436int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2437 pmd_t *dst_pmd,
2438 struct vm_area_struct *dst_vma,
2439 unsigned long dst_addr,
2440 unsigned long src_addr,
2441 struct page **pagep)
2442{
2443 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2444 dst_addr, src_addr, false, pagep);
2445}
2446
2447int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2448 pmd_t *dst_pmd,
2449 struct vm_area_struct *dst_vma,
2450 unsigned long dst_addr)
2451{
2452 struct page *page = NULL;
2453
2454 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2455 dst_addr, 0, true, &page);
2456}
2457
2458#ifdef CONFIG_TMPFS
2459static const struct inode_operations shmem_symlink_inode_operations;
2460static const struct inode_operations shmem_short_symlink_operations;
2461
2462#ifdef CONFIG_TMPFS_XATTR
2463static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2464#else
2465#define shmem_initxattrs NULL
2466#endif
2467
2468static int
2469shmem_write_begin(struct file *file, struct address_space *mapping,
2470 loff_t pos, unsigned len, unsigned flags,
2471 struct page **pagep, void **fsdata)
2472{
2473 struct inode *inode = mapping->host;
2474 struct shmem_inode_info *info = SHMEM_I(inode);
2475 pgoff_t index = pos >> PAGE_SHIFT;
2476
2477 /* i_mutex is held by caller */
David Brazdil0f672f62019-12-10 10:32:29 +00002478 if (unlikely(info->seals & (F_SEAL_GROW |
2479 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2480 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002481 return -EPERM;
2482 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2483 return -EPERM;
2484 }
2485
2486 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2487}
2488
2489static int
2490shmem_write_end(struct file *file, struct address_space *mapping,
2491 loff_t pos, unsigned len, unsigned copied,
2492 struct page *page, void *fsdata)
2493{
2494 struct inode *inode = mapping->host;
2495
2496 if (pos + copied > inode->i_size)
2497 i_size_write(inode, pos + copied);
2498
2499 if (!PageUptodate(page)) {
2500 struct page *head = compound_head(page);
2501 if (PageTransCompound(page)) {
2502 int i;
2503
2504 for (i = 0; i < HPAGE_PMD_NR; i++) {
2505 if (head + i == page)
2506 continue;
2507 clear_highpage(head + i);
2508 flush_dcache_page(head + i);
2509 }
2510 }
2511 if (copied < PAGE_SIZE) {
2512 unsigned from = pos & (PAGE_SIZE - 1);
2513 zero_user_segments(page, 0, from,
2514 from + copied, PAGE_SIZE);
2515 }
2516 SetPageUptodate(head);
2517 }
2518 set_page_dirty(page);
2519 unlock_page(page);
2520 put_page(page);
2521
2522 return copied;
2523}
2524
2525static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2526{
2527 struct file *file = iocb->ki_filp;
2528 struct inode *inode = file_inode(file);
2529 struct address_space *mapping = inode->i_mapping;
2530 pgoff_t index;
2531 unsigned long offset;
2532 enum sgp_type sgp = SGP_READ;
2533 int error = 0;
2534 ssize_t retval = 0;
2535 loff_t *ppos = &iocb->ki_pos;
2536
2537 /*
2538 * Might this read be for a stacking filesystem? Then when reading
2539 * holes of a sparse file, we actually need to allocate those pages,
2540 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2541 */
2542 if (!iter_is_iovec(to))
2543 sgp = SGP_CACHE;
2544
2545 index = *ppos >> PAGE_SHIFT;
2546 offset = *ppos & ~PAGE_MASK;
2547
2548 for (;;) {
2549 struct page *page = NULL;
2550 pgoff_t end_index;
2551 unsigned long nr, ret;
2552 loff_t i_size = i_size_read(inode);
2553
2554 end_index = i_size >> PAGE_SHIFT;
2555 if (index > end_index)
2556 break;
2557 if (index == end_index) {
2558 nr = i_size & ~PAGE_MASK;
2559 if (nr <= offset)
2560 break;
2561 }
2562
2563 error = shmem_getpage(inode, index, &page, sgp);
2564 if (error) {
2565 if (error == -EINVAL)
2566 error = 0;
2567 break;
2568 }
2569 if (page) {
2570 if (sgp == SGP_CACHE)
2571 set_page_dirty(page);
2572 unlock_page(page);
2573 }
2574
2575 /*
2576 * We must evaluate after, since reads (unlike writes)
2577 * are called without i_mutex protection against truncate
2578 */
2579 nr = PAGE_SIZE;
2580 i_size = i_size_read(inode);
2581 end_index = i_size >> PAGE_SHIFT;
2582 if (index == end_index) {
2583 nr = i_size & ~PAGE_MASK;
2584 if (nr <= offset) {
2585 if (page)
2586 put_page(page);
2587 break;
2588 }
2589 }
2590 nr -= offset;
2591
2592 if (page) {
2593 /*
2594 * If users can be writing to this page using arbitrary
2595 * virtual addresses, take care about potential aliasing
2596 * before reading the page on the kernel side.
2597 */
2598 if (mapping_writably_mapped(mapping))
2599 flush_dcache_page(page);
2600 /*
2601 * Mark the page accessed if we read the beginning.
2602 */
2603 if (!offset)
2604 mark_page_accessed(page);
2605 } else {
2606 page = ZERO_PAGE(0);
2607 get_page(page);
2608 }
2609
2610 /*
2611 * Ok, we have the page, and it's up-to-date, so
2612 * now we can copy it to user space...
2613 */
2614 ret = copy_page_to_iter(page, offset, nr, to);
2615 retval += ret;
2616 offset += ret;
2617 index += offset >> PAGE_SHIFT;
2618 offset &= ~PAGE_MASK;
2619
2620 put_page(page);
2621 if (!iov_iter_count(to))
2622 break;
2623 if (ret < nr) {
2624 error = -EFAULT;
2625 break;
2626 }
2627 cond_resched();
2628 }
2629
2630 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2631 file_accessed(file);
2632 return retval ? retval : error;
2633}
2634
2635/*
David Brazdil0f672f62019-12-10 10:32:29 +00002636 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002637 */
2638static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2639 pgoff_t index, pgoff_t end, int whence)
2640{
2641 struct page *page;
2642 struct pagevec pvec;
2643 pgoff_t indices[PAGEVEC_SIZE];
2644 bool done = false;
2645 int i;
2646
2647 pagevec_init(&pvec);
2648 pvec.nr = 1; /* start small: we may be there already */
2649 while (!done) {
2650 pvec.nr = find_get_entries(mapping, index,
2651 pvec.nr, pvec.pages, indices);
2652 if (!pvec.nr) {
2653 if (whence == SEEK_DATA)
2654 index = end;
2655 break;
2656 }
2657 for (i = 0; i < pvec.nr; i++, index++) {
2658 if (index < indices[i]) {
2659 if (whence == SEEK_HOLE) {
2660 done = true;
2661 break;
2662 }
2663 index = indices[i];
2664 }
2665 page = pvec.pages[i];
David Brazdil0f672f62019-12-10 10:32:29 +00002666 if (page && !xa_is_value(page)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002667 if (!PageUptodate(page))
2668 page = NULL;
2669 }
2670 if (index >= end ||
2671 (page && whence == SEEK_DATA) ||
2672 (!page && whence == SEEK_HOLE)) {
2673 done = true;
2674 break;
2675 }
2676 }
2677 pagevec_remove_exceptionals(&pvec);
2678 pagevec_release(&pvec);
2679 pvec.nr = PAGEVEC_SIZE;
2680 cond_resched();
2681 }
2682 return index;
2683}
2684
2685static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2686{
2687 struct address_space *mapping = file->f_mapping;
2688 struct inode *inode = mapping->host;
2689 pgoff_t start, end;
2690 loff_t new_offset;
2691
2692 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2693 return generic_file_llseek_size(file, offset, whence,
2694 MAX_LFS_FILESIZE, i_size_read(inode));
2695 inode_lock(inode);
2696 /* We're holding i_mutex so we can access i_size directly */
2697
2698 if (offset < 0 || offset >= inode->i_size)
2699 offset = -ENXIO;
2700 else {
2701 start = offset >> PAGE_SHIFT;
2702 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2703 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2704 new_offset <<= PAGE_SHIFT;
2705 if (new_offset > offset) {
2706 if (new_offset < inode->i_size)
2707 offset = new_offset;
2708 else if (whence == SEEK_DATA)
2709 offset = -ENXIO;
2710 else
2711 offset = inode->i_size;
2712 }
2713 }
2714
2715 if (offset >= 0)
2716 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2717 inode_unlock(inode);
2718 return offset;
2719}
2720
2721static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2722 loff_t len)
2723{
2724 struct inode *inode = file_inode(file);
2725 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2726 struct shmem_inode_info *info = SHMEM_I(inode);
2727 struct shmem_falloc shmem_falloc;
2728 pgoff_t start, index, end;
2729 int error;
2730
2731 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2732 return -EOPNOTSUPP;
2733
2734 inode_lock(inode);
2735
2736 if (mode & FALLOC_FL_PUNCH_HOLE) {
2737 struct address_space *mapping = file->f_mapping;
2738 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2739 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2740 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2741
2742 /* protected by i_mutex */
David Brazdil0f672f62019-12-10 10:32:29 +00002743 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002744 error = -EPERM;
2745 goto out;
2746 }
2747
2748 shmem_falloc.waitq = &shmem_falloc_waitq;
Olivier Deprez0e641232021-09-23 10:07:05 +02002749 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002750 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2751 spin_lock(&inode->i_lock);
2752 inode->i_private = &shmem_falloc;
2753 spin_unlock(&inode->i_lock);
2754
2755 if ((u64)unmap_end > (u64)unmap_start)
2756 unmap_mapping_range(mapping, unmap_start,
2757 1 + unmap_end - unmap_start, 0);
2758 shmem_truncate_range(inode, offset, offset + len - 1);
2759 /* No need to unmap again: hole-punching leaves COWed pages */
2760
2761 spin_lock(&inode->i_lock);
2762 inode->i_private = NULL;
2763 wake_up_all(&shmem_falloc_waitq);
2764 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2765 spin_unlock(&inode->i_lock);
2766 error = 0;
2767 goto out;
2768 }
2769
2770 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2771 error = inode_newsize_ok(inode, offset + len);
2772 if (error)
2773 goto out;
2774
2775 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2776 error = -EPERM;
2777 goto out;
2778 }
2779
2780 start = offset >> PAGE_SHIFT;
2781 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2782 /* Try to avoid a swapstorm if len is impossible to satisfy */
2783 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2784 error = -ENOSPC;
2785 goto out;
2786 }
2787
2788 shmem_falloc.waitq = NULL;
2789 shmem_falloc.start = start;
2790 shmem_falloc.next = start;
2791 shmem_falloc.nr_falloced = 0;
2792 shmem_falloc.nr_unswapped = 0;
2793 spin_lock(&inode->i_lock);
2794 inode->i_private = &shmem_falloc;
2795 spin_unlock(&inode->i_lock);
2796
2797 for (index = start; index < end; index++) {
2798 struct page *page;
2799
2800 /*
2801 * Good, the fallocate(2) manpage permits EINTR: we may have
2802 * been interrupted because we are using up too much memory.
2803 */
2804 if (signal_pending(current))
2805 error = -EINTR;
2806 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2807 error = -ENOMEM;
2808 else
2809 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2810 if (error) {
2811 /* Remove the !PageUptodate pages we added */
2812 if (index > start) {
2813 shmem_undo_range(inode,
2814 (loff_t)start << PAGE_SHIFT,
2815 ((loff_t)index << PAGE_SHIFT) - 1, true);
2816 }
2817 goto undone;
2818 }
2819
2820 /*
2821 * Inform shmem_writepage() how far we have reached.
2822 * No need for lock or barrier: we have the page lock.
2823 */
2824 shmem_falloc.next++;
2825 if (!PageUptodate(page))
2826 shmem_falloc.nr_falloced++;
2827
2828 /*
2829 * If !PageUptodate, leave it that way so that freeable pages
2830 * can be recognized if we need to rollback on error later.
2831 * But set_page_dirty so that memory pressure will swap rather
2832 * than free the pages we are allocating (and SGP_CACHE pages
2833 * might still be clean: we now need to mark those dirty too).
2834 */
2835 set_page_dirty(page);
2836 unlock_page(page);
2837 put_page(page);
2838 cond_resched();
2839 }
2840
2841 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2842 i_size_write(inode, offset + len);
2843 inode->i_ctime = current_time(inode);
2844undone:
2845 spin_lock(&inode->i_lock);
2846 inode->i_private = NULL;
2847 spin_unlock(&inode->i_lock);
2848out:
2849 inode_unlock(inode);
2850 return error;
2851}
2852
2853static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2854{
2855 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2856
2857 buf->f_type = TMPFS_MAGIC;
2858 buf->f_bsize = PAGE_SIZE;
2859 buf->f_namelen = NAME_MAX;
2860 if (sbinfo->max_blocks) {
2861 buf->f_blocks = sbinfo->max_blocks;
2862 buf->f_bavail =
2863 buf->f_bfree = sbinfo->max_blocks -
2864 percpu_counter_sum(&sbinfo->used_blocks);
2865 }
2866 if (sbinfo->max_inodes) {
2867 buf->f_files = sbinfo->max_inodes;
2868 buf->f_ffree = sbinfo->free_inodes;
2869 }
2870 /* else leave those fields 0 like simple_statfs */
2871 return 0;
2872}
2873
2874/*
2875 * File creation. Allocate an inode, and we're done..
2876 */
2877static int
2878shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2879{
2880 struct inode *inode;
2881 int error = -ENOSPC;
2882
2883 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2884 if (inode) {
2885 error = simple_acl_create(dir, inode);
2886 if (error)
2887 goto out_iput;
2888 error = security_inode_init_security(inode, dir,
2889 &dentry->d_name,
2890 shmem_initxattrs, NULL);
2891 if (error && error != -EOPNOTSUPP)
2892 goto out_iput;
2893
2894 error = 0;
2895 dir->i_size += BOGO_DIRENT_SIZE;
2896 dir->i_ctime = dir->i_mtime = current_time(dir);
2897 d_instantiate(dentry, inode);
2898 dget(dentry); /* Extra count - pin the dentry in core */
2899 }
2900 return error;
2901out_iput:
2902 iput(inode);
2903 return error;
2904}
2905
2906static int
2907shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2908{
2909 struct inode *inode;
2910 int error = -ENOSPC;
2911
2912 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2913 if (inode) {
2914 error = security_inode_init_security(inode, dir,
2915 NULL,
2916 shmem_initxattrs, NULL);
2917 if (error && error != -EOPNOTSUPP)
2918 goto out_iput;
2919 error = simple_acl_create(dir, inode);
2920 if (error)
2921 goto out_iput;
2922 d_tmpfile(dentry, inode);
2923 }
2924 return error;
2925out_iput:
2926 iput(inode);
2927 return error;
2928}
2929
2930static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2931{
2932 int error;
2933
2934 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2935 return error;
2936 inc_nlink(dir);
2937 return 0;
2938}
2939
2940static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2941 bool excl)
2942{
2943 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2944}
2945
2946/*
2947 * Link a file..
2948 */
2949static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2950{
2951 struct inode *inode = d_inode(old_dentry);
David Brazdil0f672f62019-12-10 10:32:29 +00002952 int ret = 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002953
2954 /*
2955 * No ordinary (disk based) filesystem counts links as inodes;
2956 * but each new link needs a new dentry, pinning lowmem, and
2957 * tmpfs dentries cannot be pruned until they are unlinked.
David Brazdil0f672f62019-12-10 10:32:29 +00002958 * But if an O_TMPFILE file is linked into the tmpfs, the
2959 * first link must skip that, to get the accounting right.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002960 */
David Brazdil0f672f62019-12-10 10:32:29 +00002961 if (inode->i_nlink) {
2962 ret = shmem_reserve_inode(inode->i_sb);
2963 if (ret)
2964 goto out;
2965 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002966
2967 dir->i_size += BOGO_DIRENT_SIZE;
2968 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2969 inc_nlink(inode);
2970 ihold(inode); /* New dentry reference */
2971 dget(dentry); /* Extra pinning count for the created dentry */
2972 d_instantiate(dentry, inode);
2973out:
2974 return ret;
2975}
2976
2977static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2978{
2979 struct inode *inode = d_inode(dentry);
2980
2981 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2982 shmem_free_inode(inode->i_sb);
2983
2984 dir->i_size -= BOGO_DIRENT_SIZE;
2985 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2986 drop_nlink(inode);
2987 dput(dentry); /* Undo the count from "create" - this does all the work */
2988 return 0;
2989}
2990
2991static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2992{
2993 if (!simple_empty(dentry))
2994 return -ENOTEMPTY;
2995
2996 drop_nlink(d_inode(dentry));
2997 drop_nlink(dir);
2998 return shmem_unlink(dir, dentry);
2999}
3000
3001static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3002{
3003 bool old_is_dir = d_is_dir(old_dentry);
3004 bool new_is_dir = d_is_dir(new_dentry);
3005
3006 if (old_dir != new_dir && old_is_dir != new_is_dir) {
3007 if (old_is_dir) {
3008 drop_nlink(old_dir);
3009 inc_nlink(new_dir);
3010 } else {
3011 drop_nlink(new_dir);
3012 inc_nlink(old_dir);
3013 }
3014 }
3015 old_dir->i_ctime = old_dir->i_mtime =
3016 new_dir->i_ctime = new_dir->i_mtime =
3017 d_inode(old_dentry)->i_ctime =
3018 d_inode(new_dentry)->i_ctime = current_time(old_dir);
3019
3020 return 0;
3021}
3022
3023static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3024{
3025 struct dentry *whiteout;
3026 int error;
3027
3028 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3029 if (!whiteout)
3030 return -ENOMEM;
3031
3032 error = shmem_mknod(old_dir, whiteout,
3033 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3034 dput(whiteout);
3035 if (error)
3036 return error;
3037
3038 /*
3039 * Cheat and hash the whiteout while the old dentry is still in
3040 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3041 *
3042 * d_lookup() will consistently find one of them at this point,
3043 * not sure which one, but that isn't even important.
3044 */
3045 d_rehash(whiteout);
3046 return 0;
3047}
3048
3049/*
3050 * The VFS layer already does all the dentry stuff for rename,
3051 * we just have to decrement the usage count for the target if
3052 * it exists so that the VFS layer correctly free's it when it
3053 * gets overwritten.
3054 */
3055static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3056{
3057 struct inode *inode = d_inode(old_dentry);
3058 int they_are_dirs = S_ISDIR(inode->i_mode);
3059
3060 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3061 return -EINVAL;
3062
3063 if (flags & RENAME_EXCHANGE)
3064 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3065
3066 if (!simple_empty(new_dentry))
3067 return -ENOTEMPTY;
3068
3069 if (flags & RENAME_WHITEOUT) {
3070 int error;
3071
3072 error = shmem_whiteout(old_dir, old_dentry);
3073 if (error)
3074 return error;
3075 }
3076
3077 if (d_really_is_positive(new_dentry)) {
3078 (void) shmem_unlink(new_dir, new_dentry);
3079 if (they_are_dirs) {
3080 drop_nlink(d_inode(new_dentry));
3081 drop_nlink(old_dir);
3082 }
3083 } else if (they_are_dirs) {
3084 drop_nlink(old_dir);
3085 inc_nlink(new_dir);
3086 }
3087
3088 old_dir->i_size -= BOGO_DIRENT_SIZE;
3089 new_dir->i_size += BOGO_DIRENT_SIZE;
3090 old_dir->i_ctime = old_dir->i_mtime =
3091 new_dir->i_ctime = new_dir->i_mtime =
3092 inode->i_ctime = current_time(old_dir);
3093 return 0;
3094}
3095
3096static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3097{
3098 int error;
3099 int len;
3100 struct inode *inode;
3101 struct page *page;
3102
3103 len = strlen(symname) + 1;
3104 if (len > PAGE_SIZE)
3105 return -ENAMETOOLONG;
3106
3107 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3108 VM_NORESERVE);
3109 if (!inode)
3110 return -ENOSPC;
3111
3112 error = security_inode_init_security(inode, dir, &dentry->d_name,
3113 shmem_initxattrs, NULL);
3114 if (error) {
3115 if (error != -EOPNOTSUPP) {
3116 iput(inode);
3117 return error;
3118 }
3119 error = 0;
3120 }
3121
3122 inode->i_size = len-1;
3123 if (len <= SHORT_SYMLINK_LEN) {
3124 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3125 if (!inode->i_link) {
3126 iput(inode);
3127 return -ENOMEM;
3128 }
3129 inode->i_op = &shmem_short_symlink_operations;
3130 } else {
3131 inode_nohighmem(inode);
3132 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3133 if (error) {
3134 iput(inode);
3135 return error;
3136 }
3137 inode->i_mapping->a_ops = &shmem_aops;
3138 inode->i_op = &shmem_symlink_inode_operations;
3139 memcpy(page_address(page), symname, len);
3140 SetPageUptodate(page);
3141 set_page_dirty(page);
3142 unlock_page(page);
3143 put_page(page);
3144 }
3145 dir->i_size += BOGO_DIRENT_SIZE;
3146 dir->i_ctime = dir->i_mtime = current_time(dir);
3147 d_instantiate(dentry, inode);
3148 dget(dentry);
3149 return 0;
3150}
3151
3152static void shmem_put_link(void *arg)
3153{
3154 mark_page_accessed(arg);
3155 put_page(arg);
3156}
3157
3158static const char *shmem_get_link(struct dentry *dentry,
3159 struct inode *inode,
3160 struct delayed_call *done)
3161{
3162 struct page *page = NULL;
3163 int error;
3164 if (!dentry) {
3165 page = find_get_page(inode->i_mapping, 0);
3166 if (!page)
3167 return ERR_PTR(-ECHILD);
3168 if (!PageUptodate(page)) {
3169 put_page(page);
3170 return ERR_PTR(-ECHILD);
3171 }
3172 } else {
3173 error = shmem_getpage(inode, 0, &page, SGP_READ);
3174 if (error)
3175 return ERR_PTR(error);
3176 unlock_page(page);
3177 }
3178 set_delayed_call(done, shmem_put_link, page);
3179 return page_address(page);
3180}
3181
3182#ifdef CONFIG_TMPFS_XATTR
3183/*
3184 * Superblocks without xattr inode operations may get some security.* xattr
3185 * support from the LSM "for free". As soon as we have any other xattrs
3186 * like ACLs, we also need to implement the security.* handlers at
3187 * filesystem level, though.
3188 */
3189
3190/*
3191 * Callback for security_inode_init_security() for acquiring xattrs.
3192 */
3193static int shmem_initxattrs(struct inode *inode,
3194 const struct xattr *xattr_array,
3195 void *fs_info)
3196{
3197 struct shmem_inode_info *info = SHMEM_I(inode);
3198 const struct xattr *xattr;
3199 struct simple_xattr *new_xattr;
3200 size_t len;
3201
3202 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3203 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3204 if (!new_xattr)
3205 return -ENOMEM;
3206
3207 len = strlen(xattr->name) + 1;
3208 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3209 GFP_KERNEL);
3210 if (!new_xattr->name) {
3211 kfree(new_xattr);
3212 return -ENOMEM;
3213 }
3214
3215 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3216 XATTR_SECURITY_PREFIX_LEN);
3217 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3218 xattr->name, len);
3219
3220 simple_xattr_list_add(&info->xattrs, new_xattr);
3221 }
3222
3223 return 0;
3224}
3225
3226static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3227 struct dentry *unused, struct inode *inode,
3228 const char *name, void *buffer, size_t size)
3229{
3230 struct shmem_inode_info *info = SHMEM_I(inode);
3231
3232 name = xattr_full_name(handler, name);
3233 return simple_xattr_get(&info->xattrs, name, buffer, size);
3234}
3235
3236static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3237 struct dentry *unused, struct inode *inode,
3238 const char *name, const void *value,
3239 size_t size, int flags)
3240{
3241 struct shmem_inode_info *info = SHMEM_I(inode);
3242
3243 name = xattr_full_name(handler, name);
3244 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3245}
3246
3247static const struct xattr_handler shmem_security_xattr_handler = {
3248 .prefix = XATTR_SECURITY_PREFIX,
3249 .get = shmem_xattr_handler_get,
3250 .set = shmem_xattr_handler_set,
3251};
3252
3253static const struct xattr_handler shmem_trusted_xattr_handler = {
3254 .prefix = XATTR_TRUSTED_PREFIX,
3255 .get = shmem_xattr_handler_get,
3256 .set = shmem_xattr_handler_set,
3257};
3258
3259static const struct xattr_handler *shmem_xattr_handlers[] = {
3260#ifdef CONFIG_TMPFS_POSIX_ACL
3261 &posix_acl_access_xattr_handler,
3262 &posix_acl_default_xattr_handler,
3263#endif
3264 &shmem_security_xattr_handler,
3265 &shmem_trusted_xattr_handler,
3266 NULL
3267};
3268
3269static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3270{
3271 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3272 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3273}
3274#endif /* CONFIG_TMPFS_XATTR */
3275
3276static const struct inode_operations shmem_short_symlink_operations = {
3277 .get_link = simple_get_link,
3278#ifdef CONFIG_TMPFS_XATTR
3279 .listxattr = shmem_listxattr,
3280#endif
3281};
3282
3283static const struct inode_operations shmem_symlink_inode_operations = {
3284 .get_link = shmem_get_link,
3285#ifdef CONFIG_TMPFS_XATTR
3286 .listxattr = shmem_listxattr,
3287#endif
3288};
3289
3290static struct dentry *shmem_get_parent(struct dentry *child)
3291{
3292 return ERR_PTR(-ESTALE);
3293}
3294
3295static int shmem_match(struct inode *ino, void *vfh)
3296{
3297 __u32 *fh = vfh;
3298 __u64 inum = fh[2];
3299 inum = (inum << 32) | fh[1];
3300 return ino->i_ino == inum && fh[0] == ino->i_generation;
3301}
3302
3303/* Find any alias of inode, but prefer a hashed alias */
3304static struct dentry *shmem_find_alias(struct inode *inode)
3305{
3306 struct dentry *alias = d_find_alias(inode);
3307
3308 return alias ?: d_find_any_alias(inode);
3309}
3310
3311
3312static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3313 struct fid *fid, int fh_len, int fh_type)
3314{
3315 struct inode *inode;
3316 struct dentry *dentry = NULL;
3317 u64 inum;
3318
3319 if (fh_len < 3)
3320 return NULL;
3321
3322 inum = fid->raw[2];
3323 inum = (inum << 32) | fid->raw[1];
3324
3325 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3326 shmem_match, fid->raw);
3327 if (inode) {
3328 dentry = shmem_find_alias(inode);
3329 iput(inode);
3330 }
3331
3332 return dentry;
3333}
3334
3335static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3336 struct inode *parent)
3337{
3338 if (*len < 3) {
3339 *len = 3;
3340 return FILEID_INVALID;
3341 }
3342
3343 if (inode_unhashed(inode)) {
3344 /* Unfortunately insert_inode_hash is not idempotent,
3345 * so as we hash inodes here rather than at creation
3346 * time, we need a lock to ensure we only try
3347 * to do it once
3348 */
3349 static DEFINE_SPINLOCK(lock);
3350 spin_lock(&lock);
3351 if (inode_unhashed(inode))
3352 __insert_inode_hash(inode,
3353 inode->i_ino + inode->i_generation);
3354 spin_unlock(&lock);
3355 }
3356
3357 fh[0] = inode->i_generation;
3358 fh[1] = inode->i_ino;
3359 fh[2] = ((__u64)inode->i_ino) >> 32;
3360
3361 *len = 3;
3362 return 1;
3363}
3364
3365static const struct export_operations shmem_export_ops = {
3366 .get_parent = shmem_get_parent,
3367 .encode_fh = shmem_encode_fh,
3368 .fh_to_dentry = shmem_fh_to_dentry,
3369};
3370
David Brazdil0f672f62019-12-10 10:32:29 +00003371enum shmem_param {
3372 Opt_gid,
3373 Opt_huge,
3374 Opt_mode,
3375 Opt_mpol,
3376 Opt_nr_blocks,
3377 Opt_nr_inodes,
3378 Opt_size,
3379 Opt_uid,
3380};
3381
3382static const struct fs_parameter_spec shmem_param_specs[] = {
3383 fsparam_u32 ("gid", Opt_gid),
3384 fsparam_enum ("huge", Opt_huge),
3385 fsparam_u32oct("mode", Opt_mode),
3386 fsparam_string("mpol", Opt_mpol),
3387 fsparam_string("nr_blocks", Opt_nr_blocks),
3388 fsparam_string("nr_inodes", Opt_nr_inodes),
3389 fsparam_string("size", Opt_size),
3390 fsparam_u32 ("uid", Opt_uid),
3391 {}
3392};
3393
3394static const struct fs_parameter_enum shmem_param_enums[] = {
3395 { Opt_huge, "never", SHMEM_HUGE_NEVER },
3396 { Opt_huge, "always", SHMEM_HUGE_ALWAYS },
3397 { Opt_huge, "within_size", SHMEM_HUGE_WITHIN_SIZE },
3398 { Opt_huge, "advise", SHMEM_HUGE_ADVISE },
3399 {}
3400};
3401
3402const struct fs_parameter_description shmem_fs_parameters = {
3403 .name = "tmpfs",
3404 .specs = shmem_param_specs,
3405 .enums = shmem_param_enums,
3406};
3407
3408static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003409{
David Brazdil0f672f62019-12-10 10:32:29 +00003410 struct shmem_options *ctx = fc->fs_private;
3411 struct fs_parse_result result;
3412 unsigned long long size;
3413 char *rest;
3414 int opt;
3415
3416 opt = fs_parse(fc, &shmem_fs_parameters, param, &result);
3417 if (opt < 0)
3418 return opt;
3419
3420 switch (opt) {
3421 case Opt_size:
3422 size = memparse(param->string, &rest);
3423 if (*rest == '%') {
3424 size <<= PAGE_SHIFT;
3425 size *= totalram_pages();
3426 do_div(size, 100);
3427 rest++;
3428 }
3429 if (*rest)
3430 goto bad_value;
3431 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3432 ctx->seen |= SHMEM_SEEN_BLOCKS;
3433 break;
3434 case Opt_nr_blocks:
3435 ctx->blocks = memparse(param->string, &rest);
3436 if (*rest)
3437 goto bad_value;
3438 ctx->seen |= SHMEM_SEEN_BLOCKS;
3439 break;
3440 case Opt_nr_inodes:
3441 ctx->inodes = memparse(param->string, &rest);
3442 if (*rest)
3443 goto bad_value;
3444 ctx->seen |= SHMEM_SEEN_INODES;
3445 break;
3446 case Opt_mode:
3447 ctx->mode = result.uint_32 & 07777;
3448 break;
3449 case Opt_uid:
3450 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3451 if (!uid_valid(ctx->uid))
3452 goto bad_value;
3453 break;
3454 case Opt_gid:
3455 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3456 if (!gid_valid(ctx->gid))
3457 goto bad_value;
3458 break;
3459 case Opt_huge:
3460 ctx->huge = result.uint_32;
3461 if (ctx->huge != SHMEM_HUGE_NEVER &&
3462 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
3463 has_transparent_hugepage()))
3464 goto unsupported_parameter;
3465 ctx->seen |= SHMEM_SEEN_HUGE;
3466 break;
3467 case Opt_mpol:
3468 if (IS_ENABLED(CONFIG_NUMA)) {
3469 mpol_put(ctx->mpol);
3470 ctx->mpol = NULL;
3471 if (mpol_parse_str(param->string, &ctx->mpol))
3472 goto bad_value;
3473 break;
3474 }
3475 goto unsupported_parameter;
3476 }
3477 return 0;
3478
3479unsupported_parameter:
3480 return invalf(fc, "tmpfs: Unsupported parameter '%s'", param->key);
3481bad_value:
3482 return invalf(fc, "tmpfs: Bad value for '%s'", param->key);
3483}
3484
3485static int shmem_parse_options(struct fs_context *fc, void *data)
3486{
3487 char *options = data;
3488
3489 if (options) {
3490 int err = security_sb_eat_lsm_opts(options, &fc->security);
3491 if (err)
3492 return err;
3493 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003494
3495 while (options != NULL) {
David Brazdil0f672f62019-12-10 10:32:29 +00003496 char *this_char = options;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003497 for (;;) {
3498 /*
3499 * NUL-terminate this option: unfortunately,
3500 * mount options form a comma-separated list,
3501 * but mpol's nodelist may also contain commas.
3502 */
3503 options = strchr(options, ',');
3504 if (options == NULL)
3505 break;
3506 options++;
3507 if (!isdigit(*options)) {
3508 options[-1] = '\0';
3509 break;
3510 }
3511 }
David Brazdil0f672f62019-12-10 10:32:29 +00003512 if (*this_char) {
3513 char *value = strchr(this_char,'=');
3514 size_t len = 0;
3515 int err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003516
David Brazdil0f672f62019-12-10 10:32:29 +00003517 if (value) {
3518 *value++ = '\0';
3519 len = strlen(value);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003520 }
David Brazdil0f672f62019-12-10 10:32:29 +00003521 err = vfs_parse_fs_string(fc, this_char, value, len);
3522 if (err < 0)
3523 return err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003524 }
3525 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003526 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003527}
3528
David Brazdil0f672f62019-12-10 10:32:29 +00003529/*
3530 * Reconfigure a shmem filesystem.
3531 *
3532 * Note that we disallow change from limited->unlimited blocks/inodes while any
3533 * are in use; but we must separately disallow unlimited->limited, because in
3534 * that case we have no record of how much is already in use.
3535 */
3536static int shmem_reconfigure(struct fs_context *fc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003537{
David Brazdil0f672f62019-12-10 10:32:29 +00003538 struct shmem_options *ctx = fc->fs_private;
3539 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003540 unsigned long inodes;
David Brazdil0f672f62019-12-10 10:32:29 +00003541 const char *err;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003542
3543 spin_lock(&sbinfo->stat_lock);
3544 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
David Brazdil0f672f62019-12-10 10:32:29 +00003545 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3546 if (!sbinfo->max_blocks) {
3547 err = "Cannot retroactively limit size";
3548 goto out;
3549 }
3550 if (percpu_counter_compare(&sbinfo->used_blocks,
3551 ctx->blocks) > 0) {
3552 err = "Too small a size for current use";
3553 goto out;
3554 }
3555 }
3556 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3557 if (!sbinfo->max_inodes) {
3558 err = "Cannot retroactively limit inodes";
3559 goto out;
3560 }
3561 if (ctx->inodes < inodes) {
3562 err = "Too few inodes for current use";
3563 goto out;
3564 }
3565 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003566
David Brazdil0f672f62019-12-10 10:32:29 +00003567 if (ctx->seen & SHMEM_SEEN_HUGE)
3568 sbinfo->huge = ctx->huge;
3569 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3570 sbinfo->max_blocks = ctx->blocks;
3571 if (ctx->seen & SHMEM_SEEN_INODES) {
3572 sbinfo->max_inodes = ctx->inodes;
3573 sbinfo->free_inodes = ctx->inodes - inodes;
3574 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003575
3576 /*
3577 * Preserve previous mempolicy unless mpol remount option was specified.
3578 */
David Brazdil0f672f62019-12-10 10:32:29 +00003579 if (ctx->mpol) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003580 mpol_put(sbinfo->mpol);
David Brazdil0f672f62019-12-10 10:32:29 +00003581 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3582 ctx->mpol = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003583 }
David Brazdil0f672f62019-12-10 10:32:29 +00003584 spin_unlock(&sbinfo->stat_lock);
3585 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003586out:
3587 spin_unlock(&sbinfo->stat_lock);
David Brazdil0f672f62019-12-10 10:32:29 +00003588 return invalf(fc, "tmpfs: %s", err);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003589}
3590
3591static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3592{
3593 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3594
3595 if (sbinfo->max_blocks != shmem_default_max_blocks())
3596 seq_printf(seq, ",size=%luk",
3597 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3598 if (sbinfo->max_inodes != shmem_default_max_inodes())
3599 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3600 if (sbinfo->mode != (0777 | S_ISVTX))
3601 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3602 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3603 seq_printf(seq, ",uid=%u",
3604 from_kuid_munged(&init_user_ns, sbinfo->uid));
3605 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3606 seq_printf(seq, ",gid=%u",
3607 from_kgid_munged(&init_user_ns, sbinfo->gid));
3608#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3609 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3610 if (sbinfo->huge)
3611 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3612#endif
3613 shmem_show_mpol(seq, sbinfo->mpol);
3614 return 0;
3615}
3616
3617#endif /* CONFIG_TMPFS */
3618
3619static void shmem_put_super(struct super_block *sb)
3620{
3621 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3622
3623 percpu_counter_destroy(&sbinfo->used_blocks);
3624 mpol_put(sbinfo->mpol);
3625 kfree(sbinfo);
3626 sb->s_fs_info = NULL;
3627}
3628
David Brazdil0f672f62019-12-10 10:32:29 +00003629static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003630{
David Brazdil0f672f62019-12-10 10:32:29 +00003631 struct shmem_options *ctx = fc->fs_private;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003632 struct inode *inode;
3633 struct shmem_sb_info *sbinfo;
3634 int err = -ENOMEM;
3635
3636 /* Round up to L1_CACHE_BYTES to resist false sharing */
3637 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3638 L1_CACHE_BYTES), GFP_KERNEL);
3639 if (!sbinfo)
3640 return -ENOMEM;
3641
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003642 sb->s_fs_info = sbinfo;
3643
3644#ifdef CONFIG_TMPFS
3645 /*
3646 * Per default we only allow half of the physical ram per
3647 * tmpfs instance, limiting inodes to one per page of lowmem;
3648 * but the internal instance is left unlimited.
3649 */
3650 if (!(sb->s_flags & SB_KERNMOUNT)) {
David Brazdil0f672f62019-12-10 10:32:29 +00003651 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3652 ctx->blocks = shmem_default_max_blocks();
3653 if (!(ctx->seen & SHMEM_SEEN_INODES))
3654 ctx->inodes = shmem_default_max_inodes();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003655 } else {
3656 sb->s_flags |= SB_NOUSER;
3657 }
3658 sb->s_export_op = &shmem_export_ops;
3659 sb->s_flags |= SB_NOSEC;
3660#else
3661 sb->s_flags |= SB_NOUSER;
3662#endif
David Brazdil0f672f62019-12-10 10:32:29 +00003663 sbinfo->max_blocks = ctx->blocks;
3664 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3665 sbinfo->uid = ctx->uid;
3666 sbinfo->gid = ctx->gid;
3667 sbinfo->mode = ctx->mode;
3668 sbinfo->huge = ctx->huge;
3669 sbinfo->mpol = ctx->mpol;
3670 ctx->mpol = NULL;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003671
3672 spin_lock_init(&sbinfo->stat_lock);
3673 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3674 goto failed;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003675 spin_lock_init(&sbinfo->shrinklist_lock);
3676 INIT_LIST_HEAD(&sbinfo->shrinklist);
3677
3678 sb->s_maxbytes = MAX_LFS_FILESIZE;
3679 sb->s_blocksize = PAGE_SIZE;
3680 sb->s_blocksize_bits = PAGE_SHIFT;
3681 sb->s_magic = TMPFS_MAGIC;
3682 sb->s_op = &shmem_ops;
3683 sb->s_time_gran = 1;
3684#ifdef CONFIG_TMPFS_XATTR
3685 sb->s_xattr = shmem_xattr_handlers;
3686#endif
3687#ifdef CONFIG_TMPFS_POSIX_ACL
3688 sb->s_flags |= SB_POSIXACL;
3689#endif
3690 uuid_gen(&sb->s_uuid);
3691
3692 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3693 if (!inode)
3694 goto failed;
3695 inode->i_uid = sbinfo->uid;
3696 inode->i_gid = sbinfo->gid;
3697 sb->s_root = d_make_root(inode);
3698 if (!sb->s_root)
3699 goto failed;
3700 return 0;
3701
3702failed:
3703 shmem_put_super(sb);
3704 return err;
3705}
3706
David Brazdil0f672f62019-12-10 10:32:29 +00003707static int shmem_get_tree(struct fs_context *fc)
3708{
3709 return get_tree_nodev(fc, shmem_fill_super);
3710}
3711
3712static void shmem_free_fc(struct fs_context *fc)
3713{
3714 struct shmem_options *ctx = fc->fs_private;
3715
3716 if (ctx) {
3717 mpol_put(ctx->mpol);
3718 kfree(ctx);
3719 }
3720}
3721
3722static const struct fs_context_operations shmem_fs_context_ops = {
3723 .free = shmem_free_fc,
3724 .get_tree = shmem_get_tree,
3725#ifdef CONFIG_TMPFS
3726 .parse_monolithic = shmem_parse_options,
3727 .parse_param = shmem_parse_one,
3728 .reconfigure = shmem_reconfigure,
3729#endif
3730};
3731
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003732static struct kmem_cache *shmem_inode_cachep;
3733
3734static struct inode *shmem_alloc_inode(struct super_block *sb)
3735{
3736 struct shmem_inode_info *info;
3737 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3738 if (!info)
3739 return NULL;
3740 return &info->vfs_inode;
3741}
3742
David Brazdil0f672f62019-12-10 10:32:29 +00003743static void shmem_free_in_core_inode(struct inode *inode)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003744{
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003745 if (S_ISLNK(inode->i_mode))
3746 kfree(inode->i_link);
3747 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3748}
3749
3750static void shmem_destroy_inode(struct inode *inode)
3751{
3752 if (S_ISREG(inode->i_mode))
3753 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003754}
3755
3756static void shmem_init_inode(void *foo)
3757{
3758 struct shmem_inode_info *info = foo;
3759 inode_init_once(&info->vfs_inode);
3760}
3761
3762static void shmem_init_inodecache(void)
3763{
3764 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3765 sizeof(struct shmem_inode_info),
3766 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3767}
3768
3769static void shmem_destroy_inodecache(void)
3770{
3771 kmem_cache_destroy(shmem_inode_cachep);
3772}
3773
3774static const struct address_space_operations shmem_aops = {
3775 .writepage = shmem_writepage,
3776 .set_page_dirty = __set_page_dirty_no_writeback,
3777#ifdef CONFIG_TMPFS
3778 .write_begin = shmem_write_begin,
3779 .write_end = shmem_write_end,
3780#endif
3781#ifdef CONFIG_MIGRATION
3782 .migratepage = migrate_page,
3783#endif
3784 .error_remove_page = generic_error_remove_page,
3785};
3786
3787static const struct file_operations shmem_file_operations = {
3788 .mmap = shmem_mmap,
3789 .get_unmapped_area = shmem_get_unmapped_area,
3790#ifdef CONFIG_TMPFS
3791 .llseek = shmem_file_llseek,
3792 .read_iter = shmem_file_read_iter,
3793 .write_iter = generic_file_write_iter,
3794 .fsync = noop_fsync,
3795 .splice_read = generic_file_splice_read,
3796 .splice_write = iter_file_splice_write,
3797 .fallocate = shmem_fallocate,
3798#endif
3799};
3800
3801static const struct inode_operations shmem_inode_operations = {
3802 .getattr = shmem_getattr,
3803 .setattr = shmem_setattr,
3804#ifdef CONFIG_TMPFS_XATTR
3805 .listxattr = shmem_listxattr,
3806 .set_acl = simple_set_acl,
3807#endif
3808};
3809
3810static const struct inode_operations shmem_dir_inode_operations = {
3811#ifdef CONFIG_TMPFS
3812 .create = shmem_create,
3813 .lookup = simple_lookup,
3814 .link = shmem_link,
3815 .unlink = shmem_unlink,
3816 .symlink = shmem_symlink,
3817 .mkdir = shmem_mkdir,
3818 .rmdir = shmem_rmdir,
3819 .mknod = shmem_mknod,
3820 .rename = shmem_rename2,
3821 .tmpfile = shmem_tmpfile,
3822#endif
3823#ifdef CONFIG_TMPFS_XATTR
3824 .listxattr = shmem_listxattr,
3825#endif
3826#ifdef CONFIG_TMPFS_POSIX_ACL
3827 .setattr = shmem_setattr,
3828 .set_acl = simple_set_acl,
3829#endif
3830};
3831
3832static const struct inode_operations shmem_special_inode_operations = {
3833#ifdef CONFIG_TMPFS_XATTR
3834 .listxattr = shmem_listxattr,
3835#endif
3836#ifdef CONFIG_TMPFS_POSIX_ACL
3837 .setattr = shmem_setattr,
3838 .set_acl = simple_set_acl,
3839#endif
3840};
3841
3842static const struct super_operations shmem_ops = {
3843 .alloc_inode = shmem_alloc_inode,
David Brazdil0f672f62019-12-10 10:32:29 +00003844 .free_inode = shmem_free_in_core_inode,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003845 .destroy_inode = shmem_destroy_inode,
3846#ifdef CONFIG_TMPFS
3847 .statfs = shmem_statfs,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003848 .show_options = shmem_show_options,
3849#endif
3850 .evict_inode = shmem_evict_inode,
3851 .drop_inode = generic_delete_inode,
3852 .put_super = shmem_put_super,
3853#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3854 .nr_cached_objects = shmem_unused_huge_count,
3855 .free_cached_objects = shmem_unused_huge_scan,
3856#endif
3857};
3858
3859static const struct vm_operations_struct shmem_vm_ops = {
3860 .fault = shmem_fault,
3861 .map_pages = filemap_map_pages,
3862#ifdef CONFIG_NUMA
3863 .set_policy = shmem_set_policy,
3864 .get_policy = shmem_get_policy,
3865#endif
3866};
3867
David Brazdil0f672f62019-12-10 10:32:29 +00003868int shmem_init_fs_context(struct fs_context *fc)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003869{
David Brazdil0f672f62019-12-10 10:32:29 +00003870 struct shmem_options *ctx;
3871
3872 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3873 if (!ctx)
3874 return -ENOMEM;
3875
3876 ctx->mode = 0777 | S_ISVTX;
3877 ctx->uid = current_fsuid();
3878 ctx->gid = current_fsgid();
3879
3880 fc->fs_private = ctx;
3881 fc->ops = &shmem_fs_context_ops;
3882 return 0;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003883}
3884
3885static struct file_system_type shmem_fs_type = {
3886 .owner = THIS_MODULE,
3887 .name = "tmpfs",
David Brazdil0f672f62019-12-10 10:32:29 +00003888 .init_fs_context = shmem_init_fs_context,
3889#ifdef CONFIG_TMPFS
3890 .parameters = &shmem_fs_parameters,
3891#endif
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003892 .kill_sb = kill_litter_super,
3893 .fs_flags = FS_USERNS_MOUNT,
3894};
3895
3896int __init shmem_init(void)
3897{
3898 int error;
3899
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003900 shmem_init_inodecache();
3901
3902 error = register_filesystem(&shmem_fs_type);
3903 if (error) {
3904 pr_err("Could not register tmpfs\n");
3905 goto out2;
3906 }
3907
3908 shm_mnt = kern_mount(&shmem_fs_type);
3909 if (IS_ERR(shm_mnt)) {
3910 error = PTR_ERR(shm_mnt);
3911 pr_err("Could not kern_mount tmpfs\n");
3912 goto out1;
3913 }
3914
3915#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3916 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3917 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3918 else
3919 shmem_huge = 0; /* just in case it was patched */
3920#endif
3921 return 0;
3922
3923out1:
3924 unregister_filesystem(&shmem_fs_type);
3925out2:
3926 shmem_destroy_inodecache();
3927 shm_mnt = ERR_PTR(error);
3928 return error;
3929}
3930
3931#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3932static ssize_t shmem_enabled_show(struct kobject *kobj,
3933 struct kobj_attribute *attr, char *buf)
3934{
3935 int values[] = {
3936 SHMEM_HUGE_ALWAYS,
3937 SHMEM_HUGE_WITHIN_SIZE,
3938 SHMEM_HUGE_ADVISE,
3939 SHMEM_HUGE_NEVER,
3940 SHMEM_HUGE_DENY,
3941 SHMEM_HUGE_FORCE,
3942 };
3943 int i, count;
3944
3945 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3946 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3947
3948 count += sprintf(buf + count, fmt,
3949 shmem_format_huge(values[i]));
3950 }
3951 buf[count - 1] = '\n';
3952 return count;
3953}
3954
3955static ssize_t shmem_enabled_store(struct kobject *kobj,
3956 struct kobj_attribute *attr, const char *buf, size_t count)
3957{
3958 char tmp[16];
3959 int huge;
3960
3961 if (count + 1 > sizeof(tmp))
3962 return -EINVAL;
3963 memcpy(tmp, buf, count);
3964 tmp[count] = '\0';
3965 if (count && tmp[count - 1] == '\n')
3966 tmp[count - 1] = '\0';
3967
3968 huge = shmem_parse_huge(tmp);
3969 if (huge == -EINVAL)
3970 return -EINVAL;
3971 if (!has_transparent_hugepage() &&
3972 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3973 return -EINVAL;
3974
3975 shmem_huge = huge;
3976 if (shmem_huge > SHMEM_HUGE_DENY)
3977 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3978 return count;
3979}
3980
3981struct kobj_attribute shmem_enabled_attr =
3982 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3983#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3984
3985#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3986bool shmem_huge_enabled(struct vm_area_struct *vma)
3987{
3988 struct inode *inode = file_inode(vma->vm_file);
3989 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3990 loff_t i_size;
3991 pgoff_t off;
3992
David Brazdil0f672f62019-12-10 10:32:29 +00003993 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
3994 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
3995 return false;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00003996 if (shmem_huge == SHMEM_HUGE_FORCE)
3997 return true;
3998 if (shmem_huge == SHMEM_HUGE_DENY)
3999 return false;
4000 switch (sbinfo->huge) {
4001 case SHMEM_HUGE_NEVER:
4002 return false;
4003 case SHMEM_HUGE_ALWAYS:
4004 return true;
4005 case SHMEM_HUGE_WITHIN_SIZE:
4006 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4007 i_size = round_up(i_size_read(inode), PAGE_SIZE);
4008 if (i_size >= HPAGE_PMD_SIZE &&
4009 i_size >> PAGE_SHIFT >= off)
4010 return true;
4011 /* fall through */
4012 case SHMEM_HUGE_ADVISE:
4013 /* TODO: implement fadvise() hints */
4014 return (vma->vm_flags & VM_HUGEPAGE);
4015 default:
4016 VM_BUG_ON(1);
4017 return false;
4018 }
4019}
4020#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4021
4022#else /* !CONFIG_SHMEM */
4023
4024/*
4025 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4026 *
4027 * This is intended for small system where the benefits of the full
4028 * shmem code (swap-backed and resource-limited) are outweighed by
4029 * their complexity. On systems without swap this code should be
4030 * effectively equivalent, but much lighter weight.
4031 */
4032
4033static struct file_system_type shmem_fs_type = {
4034 .name = "tmpfs",
David Brazdil0f672f62019-12-10 10:32:29 +00004035 .init_fs_context = ramfs_init_fs_context,
4036 .parameters = &ramfs_fs_parameters,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004037 .kill_sb = kill_litter_super,
4038 .fs_flags = FS_USERNS_MOUNT,
4039};
4040
4041int __init shmem_init(void)
4042{
4043 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4044
4045 shm_mnt = kern_mount(&shmem_fs_type);
4046 BUG_ON(IS_ERR(shm_mnt));
4047
4048 return 0;
4049}
4050
David Brazdil0f672f62019-12-10 10:32:29 +00004051int shmem_unuse(unsigned int type, bool frontswap,
4052 unsigned long *fs_pages_to_unuse)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00004053{
4054 return 0;
4055}
4056
4057int shmem_lock(struct file *file, int lock, struct user_struct *user)
4058{
4059 return 0;
4060}
4061
4062void shmem_unlock_mapping(struct address_space *mapping)
4063{
4064}
4065
4066#ifdef CONFIG_MMU
4067unsigned long shmem_get_unmapped_area(struct file *file,
4068 unsigned long addr, unsigned long len,
4069 unsigned long pgoff, unsigned long flags)
4070{
4071 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4072}
4073#endif
4074
4075void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4076{
4077 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4078}
4079EXPORT_SYMBOL_GPL(shmem_truncate_range);
4080
4081#define shmem_vm_ops generic_file_vm_ops
4082#define shmem_file_operations ramfs_file_operations
4083#define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4084#define shmem_acct_size(flags, size) 0
4085#define shmem_unacct_size(flags, size) do {} while (0)
4086
4087#endif /* CONFIG_SHMEM */
4088
4089/* common code */
4090
4091static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4092 unsigned long flags, unsigned int i_flags)
4093{
4094 struct inode *inode;
4095 struct file *res;
4096
4097 if (IS_ERR(mnt))
4098 return ERR_CAST(mnt);
4099
4100 if (size < 0 || size > MAX_LFS_FILESIZE)
4101 return ERR_PTR(-EINVAL);
4102
4103 if (shmem_acct_size(flags, size))
4104 return ERR_PTR(-ENOMEM);
4105
4106 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4107 flags);
4108 if (unlikely(!inode)) {
4109 shmem_unacct_size(flags, size);
4110 return ERR_PTR(-ENOSPC);
4111 }
4112 inode->i_flags |= i_flags;
4113 inode->i_size = size;
4114 clear_nlink(inode); /* It is unlinked */
4115 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4116 if (!IS_ERR(res))
4117 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4118 &shmem_file_operations);
4119 if (IS_ERR(res))
4120 iput(inode);
4121 return res;
4122}
4123
4124/**
4125 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4126 * kernel internal. There will be NO LSM permission checks against the
4127 * underlying inode. So users of this interface must do LSM checks at a
4128 * higher layer. The users are the big_key and shm implementations. LSM
4129 * checks are provided at the key or shm level rather than the inode.
4130 * @name: name for dentry (to be seen in /proc/<pid>/maps
4131 * @size: size to be set for the file
4132 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4133 */
4134struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4135{
4136 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4137}
4138
4139/**
4140 * shmem_file_setup - get an unlinked file living in tmpfs
4141 * @name: name for dentry (to be seen in /proc/<pid>/maps
4142 * @size: size to be set for the file
4143 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4144 */
4145struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4146{
4147 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4148}
4149EXPORT_SYMBOL_GPL(shmem_file_setup);
4150
4151/**
4152 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4153 * @mnt: the tmpfs mount where the file will be created
4154 * @name: name for dentry (to be seen in /proc/<pid>/maps
4155 * @size: size to be set for the file
4156 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4157 */
4158struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4159 loff_t size, unsigned long flags)
4160{
4161 return __shmem_file_setup(mnt, name, size, flags, 0);
4162}
4163EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4164
4165/**
4166 * shmem_zero_setup - setup a shared anonymous mapping
4167 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4168 */
4169int shmem_zero_setup(struct vm_area_struct *vma)
4170{
4171 struct file *file;
4172 loff_t size = vma->vm_end - vma->vm_start;
4173
4174 /*
4175 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4176 * between XFS directory reading and selinux: since this file is only
4177 * accessible to the user through its mapping, use S_PRIVATE flag to
4178 * bypass file security, in the same way as shmem_kernel_file_setup().
4179 */
4180 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4181 if (IS_ERR(file))
4182 return PTR_ERR(file);
4183
4184 if (vma->vm_file)
4185 fput(vma->vm_file);
4186 vma->vm_file = file;
4187 vma->vm_ops = &shmem_vm_ops;
4188
4189 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4190 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4191 (vma->vm_end & HPAGE_PMD_MASK)) {
4192 khugepaged_enter(vma, vma->vm_flags);
4193 }
4194
4195 return 0;
4196}
4197
4198/**
4199 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4200 * @mapping: the page's address_space
4201 * @index: the page index
4202 * @gfp: the page allocator flags to use if allocating
4203 *
4204 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4205 * with any new page allocations done using the specified allocation flags.
4206 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4207 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4208 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4209 *
4210 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4211 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4212 */
4213struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4214 pgoff_t index, gfp_t gfp)
4215{
4216#ifdef CONFIG_SHMEM
4217 struct inode *inode = mapping->host;
4218 struct page *page;
4219 int error;
4220
4221 BUG_ON(mapping->a_ops != &shmem_aops);
4222 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4223 gfp, NULL, NULL, NULL);
4224 if (error)
4225 page = ERR_PTR(error);
4226 else
4227 unlock_page(page);
4228 return page;
4229#else
4230 /*
4231 * The tiny !SHMEM case uses ramfs without swap
4232 */
4233 return read_cache_page_gfp(mapping, index, gfp);
4234#endif
4235}
4236EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);