blob: 09e6ac4b669b2b2ce67823229a90e0bafa0c3b47 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001/* SPDX-License-Identifier: GPL-2.0+ */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00005 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
David Brazdil0f672f62019-12-10 10:32:29 +00009 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000010 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20#ifndef __LINUX_RCUPDATE_H
21#define __LINUX_RCUPDATE_H
22
23#include <linux/types.h>
24#include <linux/compiler.h>
25#include <linux/atomic.h>
26#include <linux/irqflags.h>
27#include <linux/preempt.h>
28#include <linux/bottom_half.h>
29#include <linux/lockdep.h>
30#include <asm/processor.h>
31#include <linux/cpumask.h>
32
33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35#define ulong2long(a) (*(long *)(&(a)))
36
37/* Exported common interfaces */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000038void call_rcu(struct rcu_head *head, rcu_callback_t func);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000039void rcu_barrier_tasks(void);
David Brazdil0f672f62019-12-10 10:32:29 +000040void synchronize_rcu(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000041
42#ifdef CONFIG_PREEMPT_RCU
43
44void __rcu_read_lock(void);
45void __rcu_read_unlock(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000046
47/*
48 * Defined as a macro as it is a very low level header included from
49 * areas that don't even know about current. This gives the rcu_read_lock()
50 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
51 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
52 */
53#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
54
55#else /* #ifdef CONFIG_PREEMPT_RCU */
56
57static inline void __rcu_read_lock(void)
58{
David Brazdil0f672f62019-12-10 10:32:29 +000059 preempt_disable();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000060}
61
62static inline void __rcu_read_unlock(void)
63{
David Brazdil0f672f62019-12-10 10:32:29 +000064 preempt_enable();
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000065}
66
67static inline int rcu_preempt_depth(void)
68{
69 return 0;
70}
71
72#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
73
74/* Internal to kernel */
75void rcu_init(void);
76extern int rcu_scheduler_active __read_mostly;
David Brazdil0f672f62019-12-10 10:32:29 +000077void rcu_sched_clock_irq(int user);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000078void rcu_report_dead(unsigned int cpu);
79void rcutree_migrate_callbacks(int cpu);
80
81#ifdef CONFIG_RCU_STALL_COMMON
82void rcu_sysrq_start(void);
83void rcu_sysrq_end(void);
84#else /* #ifdef CONFIG_RCU_STALL_COMMON */
85static inline void rcu_sysrq_start(void) { }
86static inline void rcu_sysrq_end(void) { }
87#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
88
89#ifdef CONFIG_NO_HZ_FULL
90void rcu_user_enter(void);
91void rcu_user_exit(void);
92#else
93static inline void rcu_user_enter(void) { }
94static inline void rcu_user_exit(void) { }
95#endif /* CONFIG_NO_HZ_FULL */
96
97#ifdef CONFIG_RCU_NOCB_CPU
98void rcu_init_nohz(void);
Olivier Deprez0e641232021-09-23 10:07:05 +020099void rcu_nocb_flush_deferred_wakeup(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000100#else /* #ifdef CONFIG_RCU_NOCB_CPU */
101static inline void rcu_init_nohz(void) { }
Olivier Deprez0e641232021-09-23 10:07:05 +0200102static inline void rcu_nocb_flush_deferred_wakeup(void) { }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000103#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
104
105/**
106 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
107 * @a: Code that RCU needs to pay attention to.
108 *
David Brazdil0f672f62019-12-10 10:32:29 +0000109 * RCU read-side critical sections are forbidden in the inner idle loop,
110 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
111 * will happily ignore any such read-side critical sections. However,
112 * things like powertop need tracepoints in the inner idle loop.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000113 *
114 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
115 * will tell RCU that it needs to pay attention, invoke its argument
116 * (in this example, calling the do_something_with_RCU() function),
117 * and then tell RCU to go back to ignoring this CPU. It is permissible
118 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
119 * on the order of a million or so, even on 32-bit systems). It is
120 * not legal to block within RCU_NONIDLE(), nor is it permissible to
121 * transfer control either into or out of RCU_NONIDLE()'s statement.
122 */
123#define RCU_NONIDLE(a) \
124 do { \
125 rcu_irq_enter_irqson(); \
126 do { a; } while (0); \
127 rcu_irq_exit_irqson(); \
128 } while (0)
129
130/*
131 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
132 * This is a macro rather than an inline function to avoid #include hell.
133 */
134#ifdef CONFIG_TASKS_RCU
135#define rcu_tasks_qs(t) \
136 do { \
137 if (READ_ONCE((t)->rcu_tasks_holdout)) \
138 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
139 } while (0)
David Brazdil0f672f62019-12-10 10:32:29 +0000140#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000141void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
142void synchronize_rcu_tasks(void);
143void exit_tasks_rcu_start(void);
144void exit_tasks_rcu_finish(void);
145#else /* #ifdef CONFIG_TASKS_RCU */
146#define rcu_tasks_qs(t) do { } while (0)
David Brazdil0f672f62019-12-10 10:32:29 +0000147#define rcu_note_voluntary_context_switch(t) do { } while (0)
148#define call_rcu_tasks call_rcu
149#define synchronize_rcu_tasks synchronize_rcu
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000150static inline void exit_tasks_rcu_start(void) { }
151static inline void exit_tasks_rcu_finish(void) { }
152#endif /* #else #ifdef CONFIG_TASKS_RCU */
153
154/**
155 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
156 *
157 * This macro resembles cond_resched(), except that it is defined to
158 * report potential quiescent states to RCU-tasks even if the cond_resched()
159 * machinery were to be shut off, as some advocate for PREEMPT kernels.
160 */
161#define cond_resched_tasks_rcu_qs() \
162do { \
163 rcu_tasks_qs(current); \
164 cond_resched(); \
165} while (0)
166
167/*
168 * Infrastructure to implement the synchronize_() primitives in
169 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
170 */
171
172#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU)
173#include <linux/rcutree.h>
174#elif defined(CONFIG_TINY_RCU)
175#include <linux/rcutiny.h>
176#else
177#error "Unknown RCU implementation specified to kernel configuration"
178#endif
179
180/*
181 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
182 * are needed for dynamic initialization and destruction of rcu_head
183 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
184 * dynamic initialization and destruction of statically allocated rcu_head
185 * structures. However, rcu_head structures allocated dynamically in the
186 * heap don't need any initialization.
187 */
188#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
189void init_rcu_head(struct rcu_head *head);
190void destroy_rcu_head(struct rcu_head *head);
191void init_rcu_head_on_stack(struct rcu_head *head);
192void destroy_rcu_head_on_stack(struct rcu_head *head);
193#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
194static inline void init_rcu_head(struct rcu_head *head) { }
195static inline void destroy_rcu_head(struct rcu_head *head) { }
196static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
197static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
198#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
199
200#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
201bool rcu_lockdep_current_cpu_online(void);
202#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
203static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
204#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
205
206#ifdef CONFIG_DEBUG_LOCK_ALLOC
207
208static inline void rcu_lock_acquire(struct lockdep_map *map)
209{
210 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
211}
212
213static inline void rcu_lock_release(struct lockdep_map *map)
214{
215 lock_release(map, 1, _THIS_IP_);
216}
217
218extern struct lockdep_map rcu_lock_map;
219extern struct lockdep_map rcu_bh_lock_map;
220extern struct lockdep_map rcu_sched_lock_map;
221extern struct lockdep_map rcu_callback_map;
222int debug_lockdep_rcu_enabled(void);
223int rcu_read_lock_held(void);
224int rcu_read_lock_bh_held(void);
225int rcu_read_lock_sched_held(void);
David Brazdil0f672f62019-12-10 10:32:29 +0000226int rcu_read_lock_any_held(void);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000227
228#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
229
230# define rcu_lock_acquire(a) do { } while (0)
231# define rcu_lock_release(a) do { } while (0)
232
233static inline int rcu_read_lock_held(void)
234{
235 return 1;
236}
237
238static inline int rcu_read_lock_bh_held(void)
239{
240 return 1;
241}
242
243static inline int rcu_read_lock_sched_held(void)
244{
245 return !preemptible();
246}
David Brazdil0f672f62019-12-10 10:32:29 +0000247
248static inline int rcu_read_lock_any_held(void)
249{
250 return !preemptible();
251}
252
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000253#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
254
255#ifdef CONFIG_PROVE_RCU
256
257/**
258 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
259 * @c: condition to check
260 * @s: informative message
261 */
262#define RCU_LOCKDEP_WARN(c, s) \
263 do { \
264 static bool __section(.data.unlikely) __warned; \
265 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
266 __warned = true; \
267 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
268 } \
269 } while (0)
270
271#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
272static inline void rcu_preempt_sleep_check(void)
273{
274 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
275 "Illegal context switch in RCU read-side critical section");
276}
277#else /* #ifdef CONFIG_PROVE_RCU */
278static inline void rcu_preempt_sleep_check(void) { }
279#endif /* #else #ifdef CONFIG_PROVE_RCU */
280
281#define rcu_sleep_check() \
282 do { \
283 rcu_preempt_sleep_check(); \
284 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
285 "Illegal context switch in RCU-bh read-side critical section"); \
286 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
287 "Illegal context switch in RCU-sched read-side critical section"); \
288 } while (0)
289
290#else /* #ifdef CONFIG_PROVE_RCU */
291
292#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
293#define rcu_sleep_check() do { } while (0)
294
295#endif /* #else #ifdef CONFIG_PROVE_RCU */
296
297/*
298 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
299 * and rcu_assign_pointer(). Some of these could be folded into their
300 * callers, but they are left separate in order to ease introduction of
David Brazdil0f672f62019-12-10 10:32:29 +0000301 * multiple pointers markings to match different RCU implementations
302 * (e.g., __srcu), should this make sense in the future.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000303 */
304
305#ifdef __CHECKER__
David Brazdil0f672f62019-12-10 10:32:29 +0000306#define rcu_check_sparse(p, space) \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000307 ((void)(((typeof(*p) space *)p) == p))
308#else /* #ifdef __CHECKER__ */
David Brazdil0f672f62019-12-10 10:32:29 +0000309#define rcu_check_sparse(p, space)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000310#endif /* #else #ifdef __CHECKER__ */
311
312#define __rcu_access_pointer(p, space) \
313({ \
314 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
David Brazdil0f672f62019-12-10 10:32:29 +0000315 rcu_check_sparse(p, space); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000316 ((typeof(*p) __force __kernel *)(_________p1)); \
317})
318#define __rcu_dereference_check(p, c, space) \
319({ \
320 /* Dependency order vs. p above. */ \
321 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
322 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
David Brazdil0f672f62019-12-10 10:32:29 +0000323 rcu_check_sparse(p, space); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000324 ((typeof(*p) __force __kernel *)(________p1)); \
325})
326#define __rcu_dereference_protected(p, c, space) \
327({ \
328 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
David Brazdil0f672f62019-12-10 10:32:29 +0000329 rcu_check_sparse(p, space); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000330 ((typeof(*p) __force __kernel *)(p)); \
331})
332#define rcu_dereference_raw(p) \
333({ \
334 /* Dependency order vs. p above. */ \
335 typeof(p) ________p1 = READ_ONCE(p); \
336 ((typeof(*p) __force __kernel *)(________p1)); \
337})
338
339/**
340 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
341 * @v: The value to statically initialize with.
342 */
343#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
344
345/**
346 * rcu_assign_pointer() - assign to RCU-protected pointer
347 * @p: pointer to assign to
348 * @v: value to assign (publish)
349 *
350 * Assigns the specified value to the specified RCU-protected
351 * pointer, ensuring that any concurrent RCU readers will see
352 * any prior initialization.
353 *
354 * Inserts memory barriers on architectures that require them
355 * (which is most of them), and also prevents the compiler from
356 * reordering the code that initializes the structure after the pointer
357 * assignment. More importantly, this call documents which pointers
358 * will be dereferenced by RCU read-side code.
359 *
360 * In some special cases, you may use RCU_INIT_POINTER() instead
361 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
362 * to the fact that it does not constrain either the CPU or the compiler.
363 * That said, using RCU_INIT_POINTER() when you should have used
364 * rcu_assign_pointer() is a very bad thing that results in
365 * impossible-to-diagnose memory corruption. So please be careful.
366 * See the RCU_INIT_POINTER() comment header for details.
367 *
368 * Note that rcu_assign_pointer() evaluates each of its arguments only
369 * once, appearances notwithstanding. One of the "extra" evaluations
370 * is in typeof() and the other visible only to sparse (__CHECKER__),
371 * neither of which actually execute the argument. As with most cpp
372 * macros, this execute-arguments-only-once property is important, so
373 * please be careful when making changes to rcu_assign_pointer() and the
374 * other macros that it invokes.
375 */
376#define rcu_assign_pointer(p, v) \
David Brazdil0f672f62019-12-10 10:32:29 +0000377do { \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000378 uintptr_t _r_a_p__v = (uintptr_t)(v); \
David Brazdil0f672f62019-12-10 10:32:29 +0000379 rcu_check_sparse(p, __rcu); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000380 \
381 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
382 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
383 else \
384 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
David Brazdil0f672f62019-12-10 10:32:29 +0000385} while (0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000386
387/**
388 * rcu_swap_protected() - swap an RCU and a regular pointer
389 * @rcu_ptr: RCU pointer
390 * @ptr: regular pointer
391 * @c: the conditions under which the dereference will take place
392 *
393 * Perform swap(@rcu_ptr, @ptr) where @rcu_ptr is an RCU-annotated pointer and
394 * @c is the argument that is passed to the rcu_dereference_protected() call
395 * used to read that pointer.
396 */
397#define rcu_swap_protected(rcu_ptr, ptr, c) do { \
398 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
399 rcu_assign_pointer((rcu_ptr), (ptr)); \
400 (ptr) = __tmp; \
401} while (0)
402
403/**
404 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
405 * @p: The pointer to read
406 *
407 * Return the value of the specified RCU-protected pointer, but omit the
408 * lockdep checks for being in an RCU read-side critical section. This is
409 * useful when the value of this pointer is accessed, but the pointer is
410 * not dereferenced, for example, when testing an RCU-protected pointer
411 * against NULL. Although rcu_access_pointer() may also be used in cases
412 * where update-side locks prevent the value of the pointer from changing,
413 * you should instead use rcu_dereference_protected() for this use case.
414 *
415 * It is also permissible to use rcu_access_pointer() when read-side
416 * access to the pointer was removed at least one grace period ago, as
417 * is the case in the context of the RCU callback that is freeing up
418 * the data, or after a synchronize_rcu() returns. This can be useful
419 * when tearing down multi-linked structures after a grace period
420 * has elapsed.
421 */
422#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
423
424/**
425 * rcu_dereference_check() - rcu_dereference with debug checking
426 * @p: The pointer to read, prior to dereferencing
427 * @c: The conditions under which the dereference will take place
428 *
429 * Do an rcu_dereference(), but check that the conditions under which the
430 * dereference will take place are correct. Typically the conditions
431 * indicate the various locking conditions that should be held at that
432 * point. The check should return true if the conditions are satisfied.
433 * An implicit check for being in an RCU read-side critical section
434 * (rcu_read_lock()) is included.
435 *
436 * For example:
437 *
438 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
439 *
440 * could be used to indicate to lockdep that foo->bar may only be dereferenced
441 * if either rcu_read_lock() is held, or that the lock required to replace
442 * the bar struct at foo->bar is held.
443 *
444 * Note that the list of conditions may also include indications of when a lock
445 * need not be held, for example during initialisation or destruction of the
446 * target struct:
447 *
448 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
449 * atomic_read(&foo->usage) == 0);
450 *
451 * Inserts memory barriers on architectures that require them
452 * (currently only the Alpha), prevents the compiler from refetching
453 * (and from merging fetches), and, more importantly, documents exactly
454 * which pointers are protected by RCU and checks that the pointer is
455 * annotated as __rcu.
456 */
457#define rcu_dereference_check(p, c) \
458 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
459
460/**
461 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
462 * @p: The pointer to read, prior to dereferencing
463 * @c: The conditions under which the dereference will take place
464 *
465 * This is the RCU-bh counterpart to rcu_dereference_check().
466 */
467#define rcu_dereference_bh_check(p, c) \
468 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
469
470/**
471 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
472 * @p: The pointer to read, prior to dereferencing
473 * @c: The conditions under which the dereference will take place
474 *
475 * This is the RCU-sched counterpart to rcu_dereference_check().
476 */
477#define rcu_dereference_sched_check(p, c) \
478 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
479 __rcu)
480
481/*
482 * The tracing infrastructure traces RCU (we want that), but unfortunately
483 * some of the RCU checks causes tracing to lock up the system.
484 *
485 * The no-tracing version of rcu_dereference_raw() must not call
486 * rcu_read_lock_held().
487 */
David Brazdil0f672f62019-12-10 10:32:29 +0000488#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000489
490/**
491 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
492 * @p: The pointer to read, prior to dereferencing
493 * @c: The conditions under which the dereference will take place
494 *
495 * Return the value of the specified RCU-protected pointer, but omit
496 * the READ_ONCE(). This is useful in cases where update-side locks
497 * prevent the value of the pointer from changing. Please note that this
498 * primitive does *not* prevent the compiler from repeating this reference
499 * or combining it with other references, so it should not be used without
500 * protection of appropriate locks.
501 *
502 * This function is only for update-side use. Using this function
503 * when protected only by rcu_read_lock() will result in infrequent
504 * but very ugly failures.
505 */
506#define rcu_dereference_protected(p, c) \
507 __rcu_dereference_protected((p), (c), __rcu)
508
509
510/**
511 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
512 * @p: The pointer to read, prior to dereferencing
513 *
514 * This is a simple wrapper around rcu_dereference_check().
515 */
516#define rcu_dereference(p) rcu_dereference_check(p, 0)
517
518/**
519 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
520 * @p: The pointer to read, prior to dereferencing
521 *
522 * Makes rcu_dereference_check() do the dirty work.
523 */
524#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
525
526/**
527 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
528 * @p: The pointer to read, prior to dereferencing
529 *
530 * Makes rcu_dereference_check() do the dirty work.
531 */
532#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
533
534/**
535 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
536 * @p: The pointer to hand off
537 *
538 * This is simply an identity function, but it documents where a pointer
539 * is handed off from RCU to some other synchronization mechanism, for
540 * example, reference counting or locking. In C11, it would map to
541 * kill_dependency(). It could be used as follows::
542 *
543 * rcu_read_lock();
544 * p = rcu_dereference(gp);
545 * long_lived = is_long_lived(p);
546 * if (long_lived) {
547 * if (!atomic_inc_not_zero(p->refcnt))
548 * long_lived = false;
549 * else
550 * p = rcu_pointer_handoff(p);
551 * }
552 * rcu_read_unlock();
553 */
554#define rcu_pointer_handoff(p) (p)
555
556/**
557 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
558 *
559 * When synchronize_rcu() is invoked on one CPU while other CPUs
560 * are within RCU read-side critical sections, then the
561 * synchronize_rcu() is guaranteed to block until after all the other
562 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
563 * on one CPU while other CPUs are within RCU read-side critical
564 * sections, invocation of the corresponding RCU callback is deferred
565 * until after the all the other CPUs exit their critical sections.
566 *
567 * Note, however, that RCU callbacks are permitted to run concurrently
568 * with new RCU read-side critical sections. One way that this can happen
569 * is via the following sequence of events: (1) CPU 0 enters an RCU
570 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
571 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
572 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
573 * callback is invoked. This is legal, because the RCU read-side critical
574 * section that was running concurrently with the call_rcu() (and which
575 * therefore might be referencing something that the corresponding RCU
576 * callback would free up) has completed before the corresponding
577 * RCU callback is invoked.
578 *
579 * RCU read-side critical sections may be nested. Any deferred actions
580 * will be deferred until the outermost RCU read-side critical section
581 * completes.
582 *
583 * You can avoid reading and understanding the next paragraph by
584 * following this rule: don't put anything in an rcu_read_lock() RCU
585 * read-side critical section that would block in a !PREEMPT kernel.
586 * But if you want the full story, read on!
587 *
588 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU),
589 * it is illegal to block while in an RCU read-side critical section.
David Brazdil0f672f62019-12-10 10:32:29 +0000590 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000591 * kernel builds, RCU read-side critical sections may be preempted,
592 * but explicit blocking is illegal. Finally, in preemptible RCU
593 * implementations in real-time (with -rt patchset) kernel builds, RCU
594 * read-side critical sections may be preempted and they may also block, but
595 * only when acquiring spinlocks that are subject to priority inheritance.
596 */
David Brazdil0f672f62019-12-10 10:32:29 +0000597static __always_inline void rcu_read_lock(void)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000598{
599 __rcu_read_lock();
600 __acquire(RCU);
601 rcu_lock_acquire(&rcu_lock_map);
602 RCU_LOCKDEP_WARN(!rcu_is_watching(),
603 "rcu_read_lock() used illegally while idle");
604}
605
606/*
607 * So where is rcu_write_lock()? It does not exist, as there is no
608 * way for writers to lock out RCU readers. This is a feature, not
609 * a bug -- this property is what provides RCU's performance benefits.
610 * Of course, writers must coordinate with each other. The normal
611 * spinlock primitives work well for this, but any other technique may be
612 * used as well. RCU does not care how the writers keep out of each
613 * others' way, as long as they do so.
614 */
615
616/**
617 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
618 *
619 * In most situations, rcu_read_unlock() is immune from deadlock.
620 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
621 * is responsible for deboosting, which it does via rt_mutex_unlock().
622 * Unfortunately, this function acquires the scheduler's runqueue and
623 * priority-inheritance spinlocks. This means that deadlock could result
624 * if the caller of rcu_read_unlock() already holds one of these locks or
625 * any lock that is ever acquired while holding them.
626 *
627 * That said, RCU readers are never priority boosted unless they were
628 * preempted. Therefore, one way to avoid deadlock is to make sure
629 * that preemption never happens within any RCU read-side critical
630 * section whose outermost rcu_read_unlock() is called with one of
631 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
632 * a number of ways, for example, by invoking preempt_disable() before
633 * critical section's outermost rcu_read_lock().
634 *
635 * Given that the set of locks acquired by rt_mutex_unlock() might change
636 * at any time, a somewhat more future-proofed approach is to make sure
637 * that that preemption never happens within any RCU read-side critical
638 * section whose outermost rcu_read_unlock() is called with irqs disabled.
639 * This approach relies on the fact that rt_mutex_unlock() currently only
640 * acquires irq-disabled locks.
641 *
642 * The second of these two approaches is best in most situations,
643 * however, the first approach can also be useful, at least to those
644 * developers willing to keep abreast of the set of locks acquired by
645 * rt_mutex_unlock().
646 *
647 * See rcu_read_lock() for more information.
648 */
649static inline void rcu_read_unlock(void)
650{
651 RCU_LOCKDEP_WARN(!rcu_is_watching(),
652 "rcu_read_unlock() used illegally while idle");
653 __release(RCU);
654 __rcu_read_unlock();
655 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
656}
657
658/**
659 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
660 *
David Brazdil0f672f62019-12-10 10:32:29 +0000661 * This is equivalent of rcu_read_lock(), but also disables softirqs.
662 * Note that anything else that disables softirqs can also serve as
663 * an RCU read-side critical section.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000664 *
665 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
666 * must occur in the same context, for example, it is illegal to invoke
667 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
668 * was invoked from some other task.
669 */
670static inline void rcu_read_lock_bh(void)
671{
672 local_bh_disable();
673 __acquire(RCU_BH);
674 rcu_lock_acquire(&rcu_bh_lock_map);
675 RCU_LOCKDEP_WARN(!rcu_is_watching(),
676 "rcu_read_lock_bh() used illegally while idle");
677}
678
679/*
680 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section
681 *
682 * See rcu_read_lock_bh() for more information.
683 */
684static inline void rcu_read_unlock_bh(void)
685{
686 RCU_LOCKDEP_WARN(!rcu_is_watching(),
687 "rcu_read_unlock_bh() used illegally while idle");
688 rcu_lock_release(&rcu_bh_lock_map);
689 __release(RCU_BH);
690 local_bh_enable();
691}
692
693/**
694 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
695 *
David Brazdil0f672f62019-12-10 10:32:29 +0000696 * This is equivalent of rcu_read_lock(), but disables preemption.
697 * Read-side critical sections can also be introduced by anything else
698 * that disables preemption, including local_irq_disable() and friends.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000699 *
700 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
701 * must occur in the same context, for example, it is illegal to invoke
702 * rcu_read_unlock_sched() from process context if the matching
703 * rcu_read_lock_sched() was invoked from an NMI handler.
704 */
705static inline void rcu_read_lock_sched(void)
706{
707 preempt_disable();
708 __acquire(RCU_SCHED);
709 rcu_lock_acquire(&rcu_sched_lock_map);
710 RCU_LOCKDEP_WARN(!rcu_is_watching(),
711 "rcu_read_lock_sched() used illegally while idle");
712}
713
714/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
715static inline notrace void rcu_read_lock_sched_notrace(void)
716{
717 preempt_disable_notrace();
718 __acquire(RCU_SCHED);
719}
720
721/*
722 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section
723 *
724 * See rcu_read_lock_sched for more information.
725 */
726static inline void rcu_read_unlock_sched(void)
727{
728 RCU_LOCKDEP_WARN(!rcu_is_watching(),
729 "rcu_read_unlock_sched() used illegally while idle");
730 rcu_lock_release(&rcu_sched_lock_map);
731 __release(RCU_SCHED);
732 preempt_enable();
733}
734
735/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
736static inline notrace void rcu_read_unlock_sched_notrace(void)
737{
738 __release(RCU_SCHED);
739 preempt_enable_notrace();
740}
741
742/**
743 * RCU_INIT_POINTER() - initialize an RCU protected pointer
744 * @p: The pointer to be initialized.
745 * @v: The value to initialized the pointer to.
746 *
747 * Initialize an RCU-protected pointer in special cases where readers
748 * do not need ordering constraints on the CPU or the compiler. These
749 * special cases are:
750 *
751 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
752 * 2. The caller has taken whatever steps are required to prevent
753 * RCU readers from concurrently accessing this pointer *or*
754 * 3. The referenced data structure has already been exposed to
755 * readers either at compile time or via rcu_assign_pointer() *and*
756 *
757 * a. You have not made *any* reader-visible changes to
758 * this structure since then *or*
759 * b. It is OK for readers accessing this structure from its
760 * new location to see the old state of the structure. (For
761 * example, the changes were to statistical counters or to
762 * other state where exact synchronization is not required.)
763 *
764 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
765 * result in impossible-to-diagnose memory corruption. As in the structures
766 * will look OK in crash dumps, but any concurrent RCU readers might
767 * see pre-initialized values of the referenced data structure. So
768 * please be very careful how you use RCU_INIT_POINTER()!!!
769 *
770 * If you are creating an RCU-protected linked structure that is accessed
771 * by a single external-to-structure RCU-protected pointer, then you may
772 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
773 * pointers, but you must use rcu_assign_pointer() to initialize the
774 * external-to-structure pointer *after* you have completely initialized
775 * the reader-accessible portions of the linked structure.
776 *
777 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
778 * ordering guarantees for either the CPU or the compiler.
779 */
780#define RCU_INIT_POINTER(p, v) \
781 do { \
David Brazdil0f672f62019-12-10 10:32:29 +0000782 rcu_check_sparse(p, __rcu); \
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000783 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
784 } while (0)
785
786/**
787 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
788 * @p: The pointer to be initialized.
789 * @v: The value to initialized the pointer to.
790 *
791 * GCC-style initialization for an RCU-protected pointer in a structure field.
792 */
793#define RCU_POINTER_INITIALIZER(p, v) \
794 .p = RCU_INITIALIZER(v)
795
796/*
797 * Does the specified offset indicate that the corresponding rcu_head
798 * structure can be handled by kfree_rcu()?
799 */
800#define __is_kfree_rcu_offset(offset) ((offset) < 4096)
801
802/*
803 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
804 */
805#define __kfree_rcu(head, offset) \
806 do { \
807 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \
808 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
809 } while (0)
810
811/**
812 * kfree_rcu() - kfree an object after a grace period.
813 * @ptr: pointer to kfree
David Brazdil0f672f62019-12-10 10:32:29 +0000814 * @rhf: the name of the struct rcu_head within the type of @ptr.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000815 *
816 * Many rcu callbacks functions just call kfree() on the base structure.
817 * These functions are trivial, but their size adds up, and furthermore
818 * when they are used in a kernel module, that module must invoke the
819 * high-latency rcu_barrier() function at module-unload time.
820 *
821 * The kfree_rcu() function handles this issue. Rather than encoding a
822 * function address in the embedded rcu_head structure, kfree_rcu() instead
823 * encodes the offset of the rcu_head structure within the base structure.
824 * Because the functions are not allowed in the low-order 4096 bytes of
825 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
826 * If the offset is larger than 4095 bytes, a compile-time error will
827 * be generated in __kfree_rcu(). If this error is triggered, you can
828 * either fall back to use of call_rcu() or rearrange the structure to
829 * position the rcu_head structure into the first 4096 bytes.
830 *
831 * Note that the allowable offset might decrease in the future, for example,
832 * to allow something like kmem_cache_free_rcu().
833 *
834 * The BUILD_BUG_ON check must not involve any function calls, hence the
835 * checks are done in macros here.
836 */
David Brazdil0f672f62019-12-10 10:32:29 +0000837#define kfree_rcu(ptr, rhf) \
838do { \
839 typeof (ptr) ___p = (ptr); \
840 \
841 if (___p) \
842 __kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
843} while (0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000844
845/*
846 * Place this after a lock-acquisition primitive to guarantee that
847 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
848 * if the UNLOCK and LOCK are executed by the same CPU or if the
849 * UNLOCK and LOCK operate on the same lock variable.
850 */
851#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
852#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
853#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
854#define smp_mb__after_unlock_lock() do { } while (0)
855#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
856
857
David Brazdil0f672f62019-12-10 10:32:29 +0000858/* Has the specified rcu_head structure been handed to call_rcu()? */
859
860/**
861 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
862 * @rhp: The rcu_head structure to initialize.
863 *
864 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
865 * given rcu_head structure has already been passed to call_rcu(), then
866 * you must also invoke this rcu_head_init() function on it just after
867 * allocating that structure. Calls to this function must not race with
868 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
869 */
870static inline void rcu_head_init(struct rcu_head *rhp)
871{
872 rhp->func = (rcu_callback_t)~0L;
873}
874
875/**
876 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()?
877 * @rhp: The rcu_head structure to test.
878 * @f: The function passed to call_rcu() along with @rhp.
879 *
880 * Returns @true if the @rhp has been passed to call_rcu() with @func,
881 * and @false otherwise. Emits a warning in any other case, including
882 * the case where @rhp has already been invoked after a grace period.
883 * Calls to this function must not race with callback invocation. One way
884 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
885 * in an RCU read-side critical section that includes a read-side fetch
886 * of the pointer to the structure containing @rhp.
887 */
888static inline bool
889rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
890{
891 rcu_callback_t func = READ_ONCE(rhp->func);
892
893 if (func == f)
894 return true;
895 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
896 return false;
897}
898
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000899#endif /* __LINUX_RCUPDATE_H */