David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0-only |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2 | /* |
| 3 | * fs/userfaultfd.c |
| 4 | * |
| 5 | * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> |
| 6 | * Copyright (C) 2008-2009 Red Hat, Inc. |
| 7 | * Copyright (C) 2015 Red Hat, Inc. |
| 8 | * |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 9 | * Some part derived from fs/eventfd.c (anon inode setup) and |
| 10 | * mm/ksm.c (mm hashing). |
| 11 | */ |
| 12 | |
| 13 | #include <linux/list.h> |
| 14 | #include <linux/hashtable.h> |
| 15 | #include <linux/sched/signal.h> |
| 16 | #include <linux/sched/mm.h> |
| 17 | #include <linux/mm.h> |
| 18 | #include <linux/poll.h> |
| 19 | #include <linux/slab.h> |
| 20 | #include <linux/seq_file.h> |
| 21 | #include <linux/file.h> |
| 22 | #include <linux/bug.h> |
| 23 | #include <linux/anon_inodes.h> |
| 24 | #include <linux/syscalls.h> |
| 25 | #include <linux/userfaultfd_k.h> |
| 26 | #include <linux/mempolicy.h> |
| 27 | #include <linux/ioctl.h> |
| 28 | #include <linux/security.h> |
| 29 | #include <linux/hugetlb.h> |
| 30 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 31 | int sysctl_unprivileged_userfaultfd __read_mostly = 1; |
| 32 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 33 | static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; |
| 34 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 35 | /* |
| 36 | * Start with fault_pending_wqh and fault_wqh so they're more likely |
| 37 | * to be in the same cacheline. |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 38 | * |
| 39 | * Locking order: |
| 40 | * fd_wqh.lock |
| 41 | * fault_pending_wqh.lock |
| 42 | * fault_wqh.lock |
| 43 | * event_wqh.lock |
| 44 | * |
| 45 | * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, |
| 46 | * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's |
| 47 | * also taken in IRQ context. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 48 | */ |
| 49 | struct userfaultfd_ctx { |
| 50 | /* waitqueue head for the pending (i.e. not read) userfaults */ |
| 51 | wait_queue_head_t fault_pending_wqh; |
| 52 | /* waitqueue head for the userfaults */ |
| 53 | wait_queue_head_t fault_wqh; |
| 54 | /* waitqueue head for the pseudo fd to wakeup poll/read */ |
| 55 | wait_queue_head_t fd_wqh; |
| 56 | /* waitqueue head for events */ |
| 57 | wait_queue_head_t event_wqh; |
| 58 | /* a refile sequence protected by fault_pending_wqh lock */ |
| 59 | struct seqcount refile_seq; |
| 60 | /* pseudo fd refcounting */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 61 | refcount_t refcount; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 62 | /* userfaultfd syscall flags */ |
| 63 | unsigned int flags; |
| 64 | /* features requested from the userspace */ |
| 65 | unsigned int features; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 66 | /* released */ |
| 67 | bool released; |
| 68 | /* memory mappings are changing because of non-cooperative event */ |
| 69 | bool mmap_changing; |
| 70 | /* mm with one ore more vmas attached to this userfaultfd_ctx */ |
| 71 | struct mm_struct *mm; |
| 72 | }; |
| 73 | |
| 74 | struct userfaultfd_fork_ctx { |
| 75 | struct userfaultfd_ctx *orig; |
| 76 | struct userfaultfd_ctx *new; |
| 77 | struct list_head list; |
| 78 | }; |
| 79 | |
| 80 | struct userfaultfd_unmap_ctx { |
| 81 | struct userfaultfd_ctx *ctx; |
| 82 | unsigned long start; |
| 83 | unsigned long end; |
| 84 | struct list_head list; |
| 85 | }; |
| 86 | |
| 87 | struct userfaultfd_wait_queue { |
| 88 | struct uffd_msg msg; |
| 89 | wait_queue_entry_t wq; |
| 90 | struct userfaultfd_ctx *ctx; |
| 91 | bool waken; |
| 92 | }; |
| 93 | |
| 94 | struct userfaultfd_wake_range { |
| 95 | unsigned long start; |
| 96 | unsigned long len; |
| 97 | }; |
| 98 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 99 | /* internal indication that UFFD_API ioctl was successfully executed */ |
| 100 | #define UFFD_FEATURE_INITIALIZED (1u << 31) |
| 101 | |
| 102 | static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) |
| 103 | { |
| 104 | return ctx->features & UFFD_FEATURE_INITIALIZED; |
| 105 | } |
| 106 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 107 | static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, |
| 108 | int wake_flags, void *key) |
| 109 | { |
| 110 | struct userfaultfd_wake_range *range = key; |
| 111 | int ret; |
| 112 | struct userfaultfd_wait_queue *uwq; |
| 113 | unsigned long start, len; |
| 114 | |
| 115 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
| 116 | ret = 0; |
| 117 | /* len == 0 means wake all */ |
| 118 | start = range->start; |
| 119 | len = range->len; |
| 120 | if (len && (start > uwq->msg.arg.pagefault.address || |
| 121 | start + len <= uwq->msg.arg.pagefault.address)) |
| 122 | goto out; |
| 123 | WRITE_ONCE(uwq->waken, true); |
| 124 | /* |
| 125 | * The Program-Order guarantees provided by the scheduler |
| 126 | * ensure uwq->waken is visible before the task is woken. |
| 127 | */ |
| 128 | ret = wake_up_state(wq->private, mode); |
| 129 | if (ret) { |
| 130 | /* |
| 131 | * Wake only once, autoremove behavior. |
| 132 | * |
| 133 | * After the effect of list_del_init is visible to the other |
| 134 | * CPUs, the waitqueue may disappear from under us, see the |
| 135 | * !list_empty_careful() in handle_userfault(). |
| 136 | * |
| 137 | * try_to_wake_up() has an implicit smp_mb(), and the |
| 138 | * wq->private is read before calling the extern function |
| 139 | * "wake_up_state" (which in turns calls try_to_wake_up). |
| 140 | */ |
| 141 | list_del_init(&wq->entry); |
| 142 | } |
| 143 | out: |
| 144 | return ret; |
| 145 | } |
| 146 | |
| 147 | /** |
| 148 | * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd |
| 149 | * context. |
| 150 | * @ctx: [in] Pointer to the userfaultfd context. |
| 151 | */ |
| 152 | static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) |
| 153 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 154 | refcount_inc(&ctx->refcount); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 155 | } |
| 156 | |
| 157 | /** |
| 158 | * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd |
| 159 | * context. |
| 160 | * @ctx: [in] Pointer to userfaultfd context. |
| 161 | * |
| 162 | * The userfaultfd context reference must have been previously acquired either |
| 163 | * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). |
| 164 | */ |
| 165 | static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) |
| 166 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 167 | if (refcount_dec_and_test(&ctx->refcount)) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 168 | VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); |
| 169 | VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); |
| 170 | VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); |
| 171 | VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); |
| 172 | VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); |
| 173 | VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); |
| 174 | VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); |
| 175 | VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); |
| 176 | mmdrop(ctx->mm); |
| 177 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
| 178 | } |
| 179 | } |
| 180 | |
| 181 | static inline void msg_init(struct uffd_msg *msg) |
| 182 | { |
| 183 | BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); |
| 184 | /* |
| 185 | * Must use memset to zero out the paddings or kernel data is |
| 186 | * leaked to userland. |
| 187 | */ |
| 188 | memset(msg, 0, sizeof(struct uffd_msg)); |
| 189 | } |
| 190 | |
| 191 | static inline struct uffd_msg userfault_msg(unsigned long address, |
| 192 | unsigned int flags, |
| 193 | unsigned long reason, |
| 194 | unsigned int features) |
| 195 | { |
| 196 | struct uffd_msg msg; |
| 197 | msg_init(&msg); |
| 198 | msg.event = UFFD_EVENT_PAGEFAULT; |
| 199 | msg.arg.pagefault.address = address; |
| 200 | if (flags & FAULT_FLAG_WRITE) |
| 201 | /* |
| 202 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
| 203 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE |
| 204 | * was not set in a UFFD_EVENT_PAGEFAULT, it means it |
| 205 | * was a read fault, otherwise if set it means it's |
| 206 | * a write fault. |
| 207 | */ |
| 208 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; |
| 209 | if (reason & VM_UFFD_WP) |
| 210 | /* |
| 211 | * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the |
| 212 | * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was |
| 213 | * not set in a UFFD_EVENT_PAGEFAULT, it means it was |
| 214 | * a missing fault, otherwise if set it means it's a |
| 215 | * write protect fault. |
| 216 | */ |
| 217 | msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; |
| 218 | if (features & UFFD_FEATURE_THREAD_ID) |
| 219 | msg.arg.pagefault.feat.ptid = task_pid_vnr(current); |
| 220 | return msg; |
| 221 | } |
| 222 | |
| 223 | #ifdef CONFIG_HUGETLB_PAGE |
| 224 | /* |
| 225 | * Same functionality as userfaultfd_must_wait below with modifications for |
| 226 | * hugepmd ranges. |
| 227 | */ |
| 228 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, |
| 229 | struct vm_area_struct *vma, |
| 230 | unsigned long address, |
| 231 | unsigned long flags, |
| 232 | unsigned long reason) |
| 233 | { |
| 234 | struct mm_struct *mm = ctx->mm; |
| 235 | pte_t *ptep, pte; |
| 236 | bool ret = true; |
| 237 | |
| 238 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); |
| 239 | |
| 240 | ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); |
| 241 | |
| 242 | if (!ptep) |
| 243 | goto out; |
| 244 | |
| 245 | ret = false; |
| 246 | pte = huge_ptep_get(ptep); |
| 247 | |
| 248 | /* |
| 249 | * Lockless access: we're in a wait_event so it's ok if it |
| 250 | * changes under us. |
| 251 | */ |
| 252 | if (huge_pte_none(pte)) |
| 253 | ret = true; |
| 254 | if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) |
| 255 | ret = true; |
| 256 | out: |
| 257 | return ret; |
| 258 | } |
| 259 | #else |
| 260 | static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, |
| 261 | struct vm_area_struct *vma, |
| 262 | unsigned long address, |
| 263 | unsigned long flags, |
| 264 | unsigned long reason) |
| 265 | { |
| 266 | return false; /* should never get here */ |
| 267 | } |
| 268 | #endif /* CONFIG_HUGETLB_PAGE */ |
| 269 | |
| 270 | /* |
| 271 | * Verify the pagetables are still not ok after having reigstered into |
| 272 | * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any |
| 273 | * userfault that has already been resolved, if userfaultfd_read and |
| 274 | * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different |
| 275 | * threads. |
| 276 | */ |
| 277 | static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, |
| 278 | unsigned long address, |
| 279 | unsigned long flags, |
| 280 | unsigned long reason) |
| 281 | { |
| 282 | struct mm_struct *mm = ctx->mm; |
| 283 | pgd_t *pgd; |
| 284 | p4d_t *p4d; |
| 285 | pud_t *pud; |
| 286 | pmd_t *pmd, _pmd; |
| 287 | pte_t *pte; |
| 288 | bool ret = true; |
| 289 | |
| 290 | VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); |
| 291 | |
| 292 | pgd = pgd_offset(mm, address); |
| 293 | if (!pgd_present(*pgd)) |
| 294 | goto out; |
| 295 | p4d = p4d_offset(pgd, address); |
| 296 | if (!p4d_present(*p4d)) |
| 297 | goto out; |
| 298 | pud = pud_offset(p4d, address); |
| 299 | if (!pud_present(*pud)) |
| 300 | goto out; |
| 301 | pmd = pmd_offset(pud, address); |
| 302 | /* |
| 303 | * READ_ONCE must function as a barrier with narrower scope |
| 304 | * and it must be equivalent to: |
| 305 | * _pmd = *pmd; barrier(); |
| 306 | * |
| 307 | * This is to deal with the instability (as in |
| 308 | * pmd_trans_unstable) of the pmd. |
| 309 | */ |
| 310 | _pmd = READ_ONCE(*pmd); |
| 311 | if (pmd_none(_pmd)) |
| 312 | goto out; |
| 313 | |
| 314 | ret = false; |
| 315 | if (!pmd_present(_pmd)) |
| 316 | goto out; |
| 317 | |
| 318 | if (pmd_trans_huge(_pmd)) |
| 319 | goto out; |
| 320 | |
| 321 | /* |
| 322 | * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it |
| 323 | * and use the standard pte_offset_map() instead of parsing _pmd. |
| 324 | */ |
| 325 | pte = pte_offset_map(pmd, address); |
| 326 | /* |
| 327 | * Lockless access: we're in a wait_event so it's ok if it |
| 328 | * changes under us. |
| 329 | */ |
| 330 | if (pte_none(*pte)) |
| 331 | ret = true; |
| 332 | pte_unmap(pte); |
| 333 | |
| 334 | out: |
| 335 | return ret; |
| 336 | } |
| 337 | |
| 338 | /* |
| 339 | * The locking rules involved in returning VM_FAULT_RETRY depending on |
| 340 | * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and |
| 341 | * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" |
| 342 | * recommendation in __lock_page_or_retry is not an understatement. |
| 343 | * |
| 344 | * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released |
| 345 | * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is |
| 346 | * not set. |
| 347 | * |
| 348 | * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not |
| 349 | * set, VM_FAULT_RETRY can still be returned if and only if there are |
| 350 | * fatal_signal_pending()s, and the mmap_sem must be released before |
| 351 | * returning it. |
| 352 | */ |
| 353 | vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) |
| 354 | { |
| 355 | struct mm_struct *mm = vmf->vma->vm_mm; |
| 356 | struct userfaultfd_ctx *ctx; |
| 357 | struct userfaultfd_wait_queue uwq; |
| 358 | vm_fault_t ret = VM_FAULT_SIGBUS; |
| 359 | bool must_wait, return_to_userland; |
| 360 | long blocking_state; |
| 361 | |
| 362 | /* |
| 363 | * We don't do userfault handling for the final child pid update. |
| 364 | * |
| 365 | * We also don't do userfault handling during |
| 366 | * coredumping. hugetlbfs has the special |
| 367 | * follow_hugetlb_page() to skip missing pages in the |
| 368 | * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with |
| 369 | * the no_page_table() helper in follow_page_mask(), but the |
| 370 | * shmem_vm_ops->fault method is invoked even during |
| 371 | * coredumping without mmap_sem and it ends up here. |
| 372 | */ |
| 373 | if (current->flags & (PF_EXITING|PF_DUMPCORE)) |
| 374 | goto out; |
| 375 | |
| 376 | /* |
| 377 | * Coredumping runs without mmap_sem so we can only check that |
| 378 | * the mmap_sem is held, if PF_DUMPCORE was not set. |
| 379 | */ |
| 380 | WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); |
| 381 | |
| 382 | ctx = vmf->vma->vm_userfaultfd_ctx.ctx; |
| 383 | if (!ctx) |
| 384 | goto out; |
| 385 | |
| 386 | BUG_ON(ctx->mm != mm); |
| 387 | |
| 388 | VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); |
| 389 | VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); |
| 390 | |
| 391 | if (ctx->features & UFFD_FEATURE_SIGBUS) |
| 392 | goto out; |
| 393 | |
| 394 | /* |
| 395 | * If it's already released don't get it. This avoids to loop |
| 396 | * in __get_user_pages if userfaultfd_release waits on the |
| 397 | * caller of handle_userfault to release the mmap_sem. |
| 398 | */ |
| 399 | if (unlikely(READ_ONCE(ctx->released))) { |
| 400 | /* |
| 401 | * Don't return VM_FAULT_SIGBUS in this case, so a non |
| 402 | * cooperative manager can close the uffd after the |
| 403 | * last UFFDIO_COPY, without risking to trigger an |
| 404 | * involuntary SIGBUS if the process was starting the |
| 405 | * userfaultfd while the userfaultfd was still armed |
| 406 | * (but after the last UFFDIO_COPY). If the uffd |
| 407 | * wasn't already closed when the userfault reached |
| 408 | * this point, that would normally be solved by |
| 409 | * userfaultfd_must_wait returning 'false'. |
| 410 | * |
| 411 | * If we were to return VM_FAULT_SIGBUS here, the non |
| 412 | * cooperative manager would be instead forced to |
| 413 | * always call UFFDIO_UNREGISTER before it can safely |
| 414 | * close the uffd. |
| 415 | */ |
| 416 | ret = VM_FAULT_NOPAGE; |
| 417 | goto out; |
| 418 | } |
| 419 | |
| 420 | /* |
| 421 | * Check that we can return VM_FAULT_RETRY. |
| 422 | * |
| 423 | * NOTE: it should become possible to return VM_FAULT_RETRY |
| 424 | * even if FAULT_FLAG_TRIED is set without leading to gup() |
| 425 | * -EBUSY failures, if the userfaultfd is to be extended for |
| 426 | * VM_UFFD_WP tracking and we intend to arm the userfault |
| 427 | * without first stopping userland access to the memory. For |
| 428 | * VM_UFFD_MISSING userfaults this is enough for now. |
| 429 | */ |
| 430 | if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { |
| 431 | /* |
| 432 | * Validate the invariant that nowait must allow retry |
| 433 | * to be sure not to return SIGBUS erroneously on |
| 434 | * nowait invocations. |
| 435 | */ |
| 436 | BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); |
| 437 | #ifdef CONFIG_DEBUG_VM |
| 438 | if (printk_ratelimit()) { |
| 439 | printk(KERN_WARNING |
| 440 | "FAULT_FLAG_ALLOW_RETRY missing %x\n", |
| 441 | vmf->flags); |
| 442 | dump_stack(); |
| 443 | } |
| 444 | #endif |
| 445 | goto out; |
| 446 | } |
| 447 | |
| 448 | /* |
| 449 | * Handle nowait, not much to do other than tell it to retry |
| 450 | * and wait. |
| 451 | */ |
| 452 | ret = VM_FAULT_RETRY; |
| 453 | if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) |
| 454 | goto out; |
| 455 | |
| 456 | /* take the reference before dropping the mmap_sem */ |
| 457 | userfaultfd_ctx_get(ctx); |
| 458 | |
| 459 | init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); |
| 460 | uwq.wq.private = current; |
| 461 | uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, |
| 462 | ctx->features); |
| 463 | uwq.ctx = ctx; |
| 464 | uwq.waken = false; |
| 465 | |
| 466 | return_to_userland = |
| 467 | (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == |
| 468 | (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); |
| 469 | blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : |
| 470 | TASK_KILLABLE; |
| 471 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 472 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 473 | /* |
| 474 | * After the __add_wait_queue the uwq is visible to userland |
| 475 | * through poll/read(). |
| 476 | */ |
| 477 | __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); |
| 478 | /* |
| 479 | * The smp_mb() after __set_current_state prevents the reads |
| 480 | * following the spin_unlock to happen before the list_add in |
| 481 | * __add_wait_queue. |
| 482 | */ |
| 483 | set_current_state(blocking_state); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 484 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 485 | |
| 486 | if (!is_vm_hugetlb_page(vmf->vma)) |
| 487 | must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, |
| 488 | reason); |
| 489 | else |
| 490 | must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, |
| 491 | vmf->address, |
| 492 | vmf->flags, reason); |
| 493 | up_read(&mm->mmap_sem); |
| 494 | |
| 495 | if (likely(must_wait && !READ_ONCE(ctx->released) && |
| 496 | (return_to_userland ? !signal_pending(current) : |
| 497 | !fatal_signal_pending(current)))) { |
| 498 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
| 499 | schedule(); |
| 500 | ret |= VM_FAULT_MAJOR; |
| 501 | |
| 502 | /* |
| 503 | * False wakeups can orginate even from rwsem before |
| 504 | * up_read() however userfaults will wait either for a |
| 505 | * targeted wakeup on the specific uwq waitqueue from |
| 506 | * wake_userfault() or for signals or for uffd |
| 507 | * release. |
| 508 | */ |
| 509 | while (!READ_ONCE(uwq.waken)) { |
| 510 | /* |
| 511 | * This needs the full smp_store_mb() |
| 512 | * guarantee as the state write must be |
| 513 | * visible to other CPUs before reading |
| 514 | * uwq.waken from other CPUs. |
| 515 | */ |
| 516 | set_current_state(blocking_state); |
| 517 | if (READ_ONCE(uwq.waken) || |
| 518 | READ_ONCE(ctx->released) || |
| 519 | (return_to_userland ? signal_pending(current) : |
| 520 | fatal_signal_pending(current))) |
| 521 | break; |
| 522 | schedule(); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | __set_current_state(TASK_RUNNING); |
| 527 | |
| 528 | if (return_to_userland) { |
| 529 | if (signal_pending(current) && |
| 530 | !fatal_signal_pending(current)) { |
| 531 | /* |
| 532 | * If we got a SIGSTOP or SIGCONT and this is |
| 533 | * a normal userland page fault, just let |
| 534 | * userland return so the signal will be |
| 535 | * handled and gdb debugging works. The page |
| 536 | * fault code immediately after we return from |
| 537 | * this function is going to release the |
| 538 | * mmap_sem and it's not depending on it |
| 539 | * (unlike gup would if we were not to return |
| 540 | * VM_FAULT_RETRY). |
| 541 | * |
| 542 | * If a fatal signal is pending we still take |
| 543 | * the streamlined VM_FAULT_RETRY failure path |
| 544 | * and there's no need to retake the mmap_sem |
| 545 | * in such case. |
| 546 | */ |
| 547 | down_read(&mm->mmap_sem); |
| 548 | ret = VM_FAULT_NOPAGE; |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | /* |
| 553 | * Here we race with the list_del; list_add in |
| 554 | * userfaultfd_ctx_read(), however because we don't ever run |
| 555 | * list_del_init() to refile across the two lists, the prev |
| 556 | * and next pointers will never point to self. list_add also |
| 557 | * would never let any of the two pointers to point to |
| 558 | * self. So list_empty_careful won't risk to see both pointers |
| 559 | * pointing to self at any time during the list refile. The |
| 560 | * only case where list_del_init() is called is the full |
| 561 | * removal in the wake function and there we don't re-list_add |
| 562 | * and it's fine not to block on the spinlock. The uwq on this |
| 563 | * kernel stack can be released after the list_del_init. |
| 564 | */ |
| 565 | if (!list_empty_careful(&uwq.wq.entry)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 566 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 567 | /* |
| 568 | * No need of list_del_init(), the uwq on the stack |
| 569 | * will be freed shortly anyway. |
| 570 | */ |
| 571 | list_del(&uwq.wq.entry); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 572 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 573 | } |
| 574 | |
| 575 | /* |
| 576 | * ctx may go away after this if the userfault pseudo fd is |
| 577 | * already released. |
| 578 | */ |
| 579 | userfaultfd_ctx_put(ctx); |
| 580 | |
| 581 | out: |
| 582 | return ret; |
| 583 | } |
| 584 | |
| 585 | static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, |
| 586 | struct userfaultfd_wait_queue *ewq) |
| 587 | { |
| 588 | struct userfaultfd_ctx *release_new_ctx; |
| 589 | |
| 590 | if (WARN_ON_ONCE(current->flags & PF_EXITING)) |
| 591 | goto out; |
| 592 | |
| 593 | ewq->ctx = ctx; |
| 594 | init_waitqueue_entry(&ewq->wq, current); |
| 595 | release_new_ctx = NULL; |
| 596 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 597 | spin_lock_irq(&ctx->event_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 598 | /* |
| 599 | * After the __add_wait_queue the uwq is visible to userland |
| 600 | * through poll/read(). |
| 601 | */ |
| 602 | __add_wait_queue(&ctx->event_wqh, &ewq->wq); |
| 603 | for (;;) { |
| 604 | set_current_state(TASK_KILLABLE); |
| 605 | if (ewq->msg.event == 0) |
| 606 | break; |
| 607 | if (READ_ONCE(ctx->released) || |
| 608 | fatal_signal_pending(current)) { |
| 609 | /* |
| 610 | * &ewq->wq may be queued in fork_event, but |
| 611 | * __remove_wait_queue ignores the head |
| 612 | * parameter. It would be a problem if it |
| 613 | * didn't. |
| 614 | */ |
| 615 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); |
| 616 | if (ewq->msg.event == UFFD_EVENT_FORK) { |
| 617 | struct userfaultfd_ctx *new; |
| 618 | |
| 619 | new = (struct userfaultfd_ctx *) |
| 620 | (unsigned long) |
| 621 | ewq->msg.arg.reserved.reserved1; |
| 622 | release_new_ctx = new; |
| 623 | } |
| 624 | break; |
| 625 | } |
| 626 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 627 | spin_unlock_irq(&ctx->event_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 628 | |
| 629 | wake_up_poll(&ctx->fd_wqh, EPOLLIN); |
| 630 | schedule(); |
| 631 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 632 | spin_lock_irq(&ctx->event_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 633 | } |
| 634 | __set_current_state(TASK_RUNNING); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 635 | spin_unlock_irq(&ctx->event_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 636 | |
| 637 | if (release_new_ctx) { |
| 638 | struct vm_area_struct *vma; |
| 639 | struct mm_struct *mm = release_new_ctx->mm; |
| 640 | |
| 641 | /* the various vma->vm_userfaultfd_ctx still points to it */ |
| 642 | down_write(&mm->mmap_sem); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 643 | /* no task can run (and in turn coredump) yet */ |
| 644 | VM_WARN_ON(!mmget_still_valid(mm)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 645 | for (vma = mm->mmap; vma; vma = vma->vm_next) |
| 646 | if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { |
| 647 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 648 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); |
| 649 | } |
| 650 | up_write(&mm->mmap_sem); |
| 651 | |
| 652 | userfaultfd_ctx_put(release_new_ctx); |
| 653 | } |
| 654 | |
| 655 | /* |
| 656 | * ctx may go away after this if the userfault pseudo fd is |
| 657 | * already released. |
| 658 | */ |
| 659 | out: |
| 660 | WRITE_ONCE(ctx->mmap_changing, false); |
| 661 | userfaultfd_ctx_put(ctx); |
| 662 | } |
| 663 | |
| 664 | static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, |
| 665 | struct userfaultfd_wait_queue *ewq) |
| 666 | { |
| 667 | ewq->msg.event = 0; |
| 668 | wake_up_locked(&ctx->event_wqh); |
| 669 | __remove_wait_queue(&ctx->event_wqh, &ewq->wq); |
| 670 | } |
| 671 | |
| 672 | int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) |
| 673 | { |
| 674 | struct userfaultfd_ctx *ctx = NULL, *octx; |
| 675 | struct userfaultfd_fork_ctx *fctx; |
| 676 | |
| 677 | octx = vma->vm_userfaultfd_ctx.ctx; |
| 678 | if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { |
| 679 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 680 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); |
| 681 | return 0; |
| 682 | } |
| 683 | |
| 684 | list_for_each_entry(fctx, fcs, list) |
| 685 | if (fctx->orig == octx) { |
| 686 | ctx = fctx->new; |
| 687 | break; |
| 688 | } |
| 689 | |
| 690 | if (!ctx) { |
| 691 | fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); |
| 692 | if (!fctx) |
| 693 | return -ENOMEM; |
| 694 | |
| 695 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
| 696 | if (!ctx) { |
| 697 | kfree(fctx); |
| 698 | return -ENOMEM; |
| 699 | } |
| 700 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 701 | refcount_set(&ctx->refcount, 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 702 | ctx->flags = octx->flags; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 703 | ctx->features = octx->features; |
| 704 | ctx->released = false; |
| 705 | ctx->mmap_changing = false; |
| 706 | ctx->mm = vma->vm_mm; |
| 707 | mmgrab(ctx->mm); |
| 708 | |
| 709 | userfaultfd_ctx_get(octx); |
| 710 | WRITE_ONCE(octx->mmap_changing, true); |
| 711 | fctx->orig = octx; |
| 712 | fctx->new = ctx; |
| 713 | list_add_tail(&fctx->list, fcs); |
| 714 | } |
| 715 | |
| 716 | vma->vm_userfaultfd_ctx.ctx = ctx; |
| 717 | return 0; |
| 718 | } |
| 719 | |
| 720 | static void dup_fctx(struct userfaultfd_fork_ctx *fctx) |
| 721 | { |
| 722 | struct userfaultfd_ctx *ctx = fctx->orig; |
| 723 | struct userfaultfd_wait_queue ewq; |
| 724 | |
| 725 | msg_init(&ewq.msg); |
| 726 | |
| 727 | ewq.msg.event = UFFD_EVENT_FORK; |
| 728 | ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; |
| 729 | |
| 730 | userfaultfd_event_wait_completion(ctx, &ewq); |
| 731 | } |
| 732 | |
| 733 | void dup_userfaultfd_complete(struct list_head *fcs) |
| 734 | { |
| 735 | struct userfaultfd_fork_ctx *fctx, *n; |
| 736 | |
| 737 | list_for_each_entry_safe(fctx, n, fcs, list) { |
| 738 | dup_fctx(fctx); |
| 739 | list_del(&fctx->list); |
| 740 | kfree(fctx); |
| 741 | } |
| 742 | } |
| 743 | |
| 744 | void mremap_userfaultfd_prep(struct vm_area_struct *vma, |
| 745 | struct vm_userfaultfd_ctx *vm_ctx) |
| 746 | { |
| 747 | struct userfaultfd_ctx *ctx; |
| 748 | |
| 749 | ctx = vma->vm_userfaultfd_ctx.ctx; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 750 | |
| 751 | if (!ctx) |
| 752 | return; |
| 753 | |
| 754 | if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 755 | vm_ctx->ctx = ctx; |
| 756 | userfaultfd_ctx_get(ctx); |
| 757 | WRITE_ONCE(ctx->mmap_changing, true); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 758 | } else { |
| 759 | /* Drop uffd context if remap feature not enabled */ |
| 760 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 761 | vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 762 | } |
| 763 | } |
| 764 | |
| 765 | void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, |
| 766 | unsigned long from, unsigned long to, |
| 767 | unsigned long len) |
| 768 | { |
| 769 | struct userfaultfd_ctx *ctx = vm_ctx->ctx; |
| 770 | struct userfaultfd_wait_queue ewq; |
| 771 | |
| 772 | if (!ctx) |
| 773 | return; |
| 774 | |
| 775 | if (to & ~PAGE_MASK) { |
| 776 | userfaultfd_ctx_put(ctx); |
| 777 | return; |
| 778 | } |
| 779 | |
| 780 | msg_init(&ewq.msg); |
| 781 | |
| 782 | ewq.msg.event = UFFD_EVENT_REMAP; |
| 783 | ewq.msg.arg.remap.from = from; |
| 784 | ewq.msg.arg.remap.to = to; |
| 785 | ewq.msg.arg.remap.len = len; |
| 786 | |
| 787 | userfaultfd_event_wait_completion(ctx, &ewq); |
| 788 | } |
| 789 | |
| 790 | bool userfaultfd_remove(struct vm_area_struct *vma, |
| 791 | unsigned long start, unsigned long end) |
| 792 | { |
| 793 | struct mm_struct *mm = vma->vm_mm; |
| 794 | struct userfaultfd_ctx *ctx; |
| 795 | struct userfaultfd_wait_queue ewq; |
| 796 | |
| 797 | ctx = vma->vm_userfaultfd_ctx.ctx; |
| 798 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) |
| 799 | return true; |
| 800 | |
| 801 | userfaultfd_ctx_get(ctx); |
| 802 | WRITE_ONCE(ctx->mmap_changing, true); |
| 803 | up_read(&mm->mmap_sem); |
| 804 | |
| 805 | msg_init(&ewq.msg); |
| 806 | |
| 807 | ewq.msg.event = UFFD_EVENT_REMOVE; |
| 808 | ewq.msg.arg.remove.start = start; |
| 809 | ewq.msg.arg.remove.end = end; |
| 810 | |
| 811 | userfaultfd_event_wait_completion(ctx, &ewq); |
| 812 | |
| 813 | return false; |
| 814 | } |
| 815 | |
| 816 | static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, |
| 817 | unsigned long start, unsigned long end) |
| 818 | { |
| 819 | struct userfaultfd_unmap_ctx *unmap_ctx; |
| 820 | |
| 821 | list_for_each_entry(unmap_ctx, unmaps, list) |
| 822 | if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && |
| 823 | unmap_ctx->end == end) |
| 824 | return true; |
| 825 | |
| 826 | return false; |
| 827 | } |
| 828 | |
| 829 | int userfaultfd_unmap_prep(struct vm_area_struct *vma, |
| 830 | unsigned long start, unsigned long end, |
| 831 | struct list_head *unmaps) |
| 832 | { |
| 833 | for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { |
| 834 | struct userfaultfd_unmap_ctx *unmap_ctx; |
| 835 | struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; |
| 836 | |
| 837 | if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || |
| 838 | has_unmap_ctx(ctx, unmaps, start, end)) |
| 839 | continue; |
| 840 | |
| 841 | unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); |
| 842 | if (!unmap_ctx) |
| 843 | return -ENOMEM; |
| 844 | |
| 845 | userfaultfd_ctx_get(ctx); |
| 846 | WRITE_ONCE(ctx->mmap_changing, true); |
| 847 | unmap_ctx->ctx = ctx; |
| 848 | unmap_ctx->start = start; |
| 849 | unmap_ctx->end = end; |
| 850 | list_add_tail(&unmap_ctx->list, unmaps); |
| 851 | } |
| 852 | |
| 853 | return 0; |
| 854 | } |
| 855 | |
| 856 | void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) |
| 857 | { |
| 858 | struct userfaultfd_unmap_ctx *ctx, *n; |
| 859 | struct userfaultfd_wait_queue ewq; |
| 860 | |
| 861 | list_for_each_entry_safe(ctx, n, uf, list) { |
| 862 | msg_init(&ewq.msg); |
| 863 | |
| 864 | ewq.msg.event = UFFD_EVENT_UNMAP; |
| 865 | ewq.msg.arg.remove.start = ctx->start; |
| 866 | ewq.msg.arg.remove.end = ctx->end; |
| 867 | |
| 868 | userfaultfd_event_wait_completion(ctx->ctx, &ewq); |
| 869 | |
| 870 | list_del(&ctx->list); |
| 871 | kfree(ctx); |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | static int userfaultfd_release(struct inode *inode, struct file *file) |
| 876 | { |
| 877 | struct userfaultfd_ctx *ctx = file->private_data; |
| 878 | struct mm_struct *mm = ctx->mm; |
| 879 | struct vm_area_struct *vma, *prev; |
| 880 | /* len == 0 means wake all */ |
| 881 | struct userfaultfd_wake_range range = { .len = 0, }; |
| 882 | unsigned long new_flags; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 883 | bool still_valid; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 884 | |
| 885 | WRITE_ONCE(ctx->released, true); |
| 886 | |
| 887 | if (!mmget_not_zero(mm)) |
| 888 | goto wakeup; |
| 889 | |
| 890 | /* |
| 891 | * Flush page faults out of all CPUs. NOTE: all page faults |
| 892 | * must be retried without returning VM_FAULT_SIGBUS if |
| 893 | * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx |
| 894 | * changes while handle_userfault released the mmap_sem. So |
| 895 | * it's critical that released is set to true (above), before |
| 896 | * taking the mmap_sem for writing. |
| 897 | */ |
| 898 | down_write(&mm->mmap_sem); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 899 | still_valid = mmget_still_valid(mm); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 900 | prev = NULL; |
| 901 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
| 902 | cond_resched(); |
| 903 | BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ |
| 904 | !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); |
| 905 | if (vma->vm_userfaultfd_ctx.ctx != ctx) { |
| 906 | prev = vma; |
| 907 | continue; |
| 908 | } |
| 909 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 910 | if (still_valid) { |
| 911 | prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, |
| 912 | new_flags, vma->anon_vma, |
| 913 | vma->vm_file, vma->vm_pgoff, |
| 914 | vma_policy(vma), |
| 915 | NULL_VM_UFFD_CTX); |
| 916 | if (prev) |
| 917 | vma = prev; |
| 918 | else |
| 919 | prev = vma; |
| 920 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 921 | vma->vm_flags = new_flags; |
| 922 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 923 | } |
| 924 | up_write(&mm->mmap_sem); |
| 925 | mmput(mm); |
| 926 | wakeup: |
| 927 | /* |
| 928 | * After no new page faults can wait on this fault_*wqh, flush |
| 929 | * the last page faults that may have been already waiting on |
| 930 | * the fault_*wqh. |
| 931 | */ |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 932 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 933 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); |
| 934 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 935 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 936 | |
| 937 | /* Flush pending events that may still wait on event_wqh */ |
| 938 | wake_up_all(&ctx->event_wqh); |
| 939 | |
| 940 | wake_up_poll(&ctx->fd_wqh, EPOLLHUP); |
| 941 | userfaultfd_ctx_put(ctx); |
| 942 | return 0; |
| 943 | } |
| 944 | |
| 945 | /* fault_pending_wqh.lock must be hold by the caller */ |
| 946 | static inline struct userfaultfd_wait_queue *find_userfault_in( |
| 947 | wait_queue_head_t *wqh) |
| 948 | { |
| 949 | wait_queue_entry_t *wq; |
| 950 | struct userfaultfd_wait_queue *uwq; |
| 951 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 952 | lockdep_assert_held(&wqh->lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 953 | |
| 954 | uwq = NULL; |
| 955 | if (!waitqueue_active(wqh)) |
| 956 | goto out; |
| 957 | /* walk in reverse to provide FIFO behavior to read userfaults */ |
| 958 | wq = list_last_entry(&wqh->head, typeof(*wq), entry); |
| 959 | uwq = container_of(wq, struct userfaultfd_wait_queue, wq); |
| 960 | out: |
| 961 | return uwq; |
| 962 | } |
| 963 | |
| 964 | static inline struct userfaultfd_wait_queue *find_userfault( |
| 965 | struct userfaultfd_ctx *ctx) |
| 966 | { |
| 967 | return find_userfault_in(&ctx->fault_pending_wqh); |
| 968 | } |
| 969 | |
| 970 | static inline struct userfaultfd_wait_queue *find_userfault_evt( |
| 971 | struct userfaultfd_ctx *ctx) |
| 972 | { |
| 973 | return find_userfault_in(&ctx->event_wqh); |
| 974 | } |
| 975 | |
| 976 | static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) |
| 977 | { |
| 978 | struct userfaultfd_ctx *ctx = file->private_data; |
| 979 | __poll_t ret; |
| 980 | |
| 981 | poll_wait(file, &ctx->fd_wqh, wait); |
| 982 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 983 | if (!userfaultfd_is_initialized(ctx)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 984 | return EPOLLERR; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 985 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 986 | /* |
| 987 | * poll() never guarantees that read won't block. |
| 988 | * userfaults can be waken before they're read(). |
| 989 | */ |
| 990 | if (unlikely(!(file->f_flags & O_NONBLOCK))) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 991 | return EPOLLERR; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 992 | /* |
| 993 | * lockless access to see if there are pending faults |
| 994 | * __pollwait last action is the add_wait_queue but |
| 995 | * the spin_unlock would allow the waitqueue_active to |
| 996 | * pass above the actual list_add inside |
| 997 | * add_wait_queue critical section. So use a full |
| 998 | * memory barrier to serialize the list_add write of |
| 999 | * add_wait_queue() with the waitqueue_active read |
| 1000 | * below. |
| 1001 | */ |
| 1002 | ret = 0; |
| 1003 | smp_mb(); |
| 1004 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
| 1005 | ret = EPOLLIN; |
| 1006 | else if (waitqueue_active(&ctx->event_wqh)) |
| 1007 | ret = EPOLLIN; |
| 1008 | |
| 1009 | return ret; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1010 | } |
| 1011 | |
| 1012 | static const struct file_operations userfaultfd_fops; |
| 1013 | |
| 1014 | static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, |
| 1015 | struct userfaultfd_ctx *new, |
| 1016 | struct uffd_msg *msg) |
| 1017 | { |
| 1018 | int fd; |
| 1019 | |
| 1020 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, |
| 1021 | O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); |
| 1022 | if (fd < 0) |
| 1023 | return fd; |
| 1024 | |
| 1025 | msg->arg.reserved.reserved1 = 0; |
| 1026 | msg->arg.fork.ufd = fd; |
| 1027 | return 0; |
| 1028 | } |
| 1029 | |
| 1030 | static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, |
| 1031 | struct uffd_msg *msg) |
| 1032 | { |
| 1033 | ssize_t ret; |
| 1034 | DECLARE_WAITQUEUE(wait, current); |
| 1035 | struct userfaultfd_wait_queue *uwq; |
| 1036 | /* |
| 1037 | * Handling fork event requires sleeping operations, so |
| 1038 | * we drop the event_wqh lock, then do these ops, then |
| 1039 | * lock it back and wake up the waiter. While the lock is |
| 1040 | * dropped the ewq may go away so we keep track of it |
| 1041 | * carefully. |
| 1042 | */ |
| 1043 | LIST_HEAD(fork_event); |
| 1044 | struct userfaultfd_ctx *fork_nctx = NULL; |
| 1045 | |
| 1046 | /* always take the fd_wqh lock before the fault_pending_wqh lock */ |
| 1047 | spin_lock_irq(&ctx->fd_wqh.lock); |
| 1048 | __add_wait_queue(&ctx->fd_wqh, &wait); |
| 1049 | for (;;) { |
| 1050 | set_current_state(TASK_INTERRUPTIBLE); |
| 1051 | spin_lock(&ctx->fault_pending_wqh.lock); |
| 1052 | uwq = find_userfault(ctx); |
| 1053 | if (uwq) { |
| 1054 | /* |
| 1055 | * Use a seqcount to repeat the lockless check |
| 1056 | * in wake_userfault() to avoid missing |
| 1057 | * wakeups because during the refile both |
| 1058 | * waitqueue could become empty if this is the |
| 1059 | * only userfault. |
| 1060 | */ |
| 1061 | write_seqcount_begin(&ctx->refile_seq); |
| 1062 | |
| 1063 | /* |
| 1064 | * The fault_pending_wqh.lock prevents the uwq |
| 1065 | * to disappear from under us. |
| 1066 | * |
| 1067 | * Refile this userfault from |
| 1068 | * fault_pending_wqh to fault_wqh, it's not |
| 1069 | * pending anymore after we read it. |
| 1070 | * |
| 1071 | * Use list_del() by hand (as |
| 1072 | * userfaultfd_wake_function also uses |
| 1073 | * list_del_init() by hand) to be sure nobody |
| 1074 | * changes __remove_wait_queue() to use |
| 1075 | * list_del_init() in turn breaking the |
| 1076 | * !list_empty_careful() check in |
| 1077 | * handle_userfault(). The uwq->wq.head list |
| 1078 | * must never be empty at any time during the |
| 1079 | * refile, or the waitqueue could disappear |
| 1080 | * from under us. The "wait_queue_head_t" |
| 1081 | * parameter of __remove_wait_queue() is unused |
| 1082 | * anyway. |
| 1083 | */ |
| 1084 | list_del(&uwq->wq.entry); |
| 1085 | add_wait_queue(&ctx->fault_wqh, &uwq->wq); |
| 1086 | |
| 1087 | write_seqcount_end(&ctx->refile_seq); |
| 1088 | |
| 1089 | /* careful to always initialize msg if ret == 0 */ |
| 1090 | *msg = uwq->msg; |
| 1091 | spin_unlock(&ctx->fault_pending_wqh.lock); |
| 1092 | ret = 0; |
| 1093 | break; |
| 1094 | } |
| 1095 | spin_unlock(&ctx->fault_pending_wqh.lock); |
| 1096 | |
| 1097 | spin_lock(&ctx->event_wqh.lock); |
| 1098 | uwq = find_userfault_evt(ctx); |
| 1099 | if (uwq) { |
| 1100 | *msg = uwq->msg; |
| 1101 | |
| 1102 | if (uwq->msg.event == UFFD_EVENT_FORK) { |
| 1103 | fork_nctx = (struct userfaultfd_ctx *) |
| 1104 | (unsigned long) |
| 1105 | uwq->msg.arg.reserved.reserved1; |
| 1106 | list_move(&uwq->wq.entry, &fork_event); |
| 1107 | /* |
| 1108 | * fork_nctx can be freed as soon as |
| 1109 | * we drop the lock, unless we take a |
| 1110 | * reference on it. |
| 1111 | */ |
| 1112 | userfaultfd_ctx_get(fork_nctx); |
| 1113 | spin_unlock(&ctx->event_wqh.lock); |
| 1114 | ret = 0; |
| 1115 | break; |
| 1116 | } |
| 1117 | |
| 1118 | userfaultfd_event_complete(ctx, uwq); |
| 1119 | spin_unlock(&ctx->event_wqh.lock); |
| 1120 | ret = 0; |
| 1121 | break; |
| 1122 | } |
| 1123 | spin_unlock(&ctx->event_wqh.lock); |
| 1124 | |
| 1125 | if (signal_pending(current)) { |
| 1126 | ret = -ERESTARTSYS; |
| 1127 | break; |
| 1128 | } |
| 1129 | if (no_wait) { |
| 1130 | ret = -EAGAIN; |
| 1131 | break; |
| 1132 | } |
| 1133 | spin_unlock_irq(&ctx->fd_wqh.lock); |
| 1134 | schedule(); |
| 1135 | spin_lock_irq(&ctx->fd_wqh.lock); |
| 1136 | } |
| 1137 | __remove_wait_queue(&ctx->fd_wqh, &wait); |
| 1138 | __set_current_state(TASK_RUNNING); |
| 1139 | spin_unlock_irq(&ctx->fd_wqh.lock); |
| 1140 | |
| 1141 | if (!ret && msg->event == UFFD_EVENT_FORK) { |
| 1142 | ret = resolve_userfault_fork(ctx, fork_nctx, msg); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1143 | spin_lock_irq(&ctx->event_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1144 | if (!list_empty(&fork_event)) { |
| 1145 | /* |
| 1146 | * The fork thread didn't abort, so we can |
| 1147 | * drop the temporary refcount. |
| 1148 | */ |
| 1149 | userfaultfd_ctx_put(fork_nctx); |
| 1150 | |
| 1151 | uwq = list_first_entry(&fork_event, |
| 1152 | typeof(*uwq), |
| 1153 | wq.entry); |
| 1154 | /* |
| 1155 | * If fork_event list wasn't empty and in turn |
| 1156 | * the event wasn't already released by fork |
| 1157 | * (the event is allocated on fork kernel |
| 1158 | * stack), put the event back to its place in |
| 1159 | * the event_wq. fork_event head will be freed |
| 1160 | * as soon as we return so the event cannot |
| 1161 | * stay queued there no matter the current |
| 1162 | * "ret" value. |
| 1163 | */ |
| 1164 | list_del(&uwq->wq.entry); |
| 1165 | __add_wait_queue(&ctx->event_wqh, &uwq->wq); |
| 1166 | |
| 1167 | /* |
| 1168 | * Leave the event in the waitqueue and report |
| 1169 | * error to userland if we failed to resolve |
| 1170 | * the userfault fork. |
| 1171 | */ |
| 1172 | if (likely(!ret)) |
| 1173 | userfaultfd_event_complete(ctx, uwq); |
| 1174 | } else { |
| 1175 | /* |
| 1176 | * Here the fork thread aborted and the |
| 1177 | * refcount from the fork thread on fork_nctx |
| 1178 | * has already been released. We still hold |
| 1179 | * the reference we took before releasing the |
| 1180 | * lock above. If resolve_userfault_fork |
| 1181 | * failed we've to drop it because the |
| 1182 | * fork_nctx has to be freed in such case. If |
| 1183 | * it succeeded we'll hold it because the new |
| 1184 | * uffd references it. |
| 1185 | */ |
| 1186 | if (ret) |
| 1187 | userfaultfd_ctx_put(fork_nctx); |
| 1188 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1189 | spin_unlock_irq(&ctx->event_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1190 | } |
| 1191 | |
| 1192 | return ret; |
| 1193 | } |
| 1194 | |
| 1195 | static ssize_t userfaultfd_read(struct file *file, char __user *buf, |
| 1196 | size_t count, loff_t *ppos) |
| 1197 | { |
| 1198 | struct userfaultfd_ctx *ctx = file->private_data; |
| 1199 | ssize_t _ret, ret = 0; |
| 1200 | struct uffd_msg msg; |
| 1201 | int no_wait = file->f_flags & O_NONBLOCK; |
| 1202 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1203 | if (!userfaultfd_is_initialized(ctx)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1204 | return -EINVAL; |
| 1205 | |
| 1206 | for (;;) { |
| 1207 | if (count < sizeof(msg)) |
| 1208 | return ret ? ret : -EINVAL; |
| 1209 | _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); |
| 1210 | if (_ret < 0) |
| 1211 | return ret ? ret : _ret; |
| 1212 | if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) |
| 1213 | return ret ? ret : -EFAULT; |
| 1214 | ret += sizeof(msg); |
| 1215 | buf += sizeof(msg); |
| 1216 | count -= sizeof(msg); |
| 1217 | /* |
| 1218 | * Allow to read more than one fault at time but only |
| 1219 | * block if waiting for the very first one. |
| 1220 | */ |
| 1221 | no_wait = O_NONBLOCK; |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | static void __wake_userfault(struct userfaultfd_ctx *ctx, |
| 1226 | struct userfaultfd_wake_range *range) |
| 1227 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1228 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1229 | /* wake all in the range and autoremove */ |
| 1230 | if (waitqueue_active(&ctx->fault_pending_wqh)) |
| 1231 | __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, |
| 1232 | range); |
| 1233 | if (waitqueue_active(&ctx->fault_wqh)) |
| 1234 | __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1235 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1236 | } |
| 1237 | |
| 1238 | static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, |
| 1239 | struct userfaultfd_wake_range *range) |
| 1240 | { |
| 1241 | unsigned seq; |
| 1242 | bool need_wakeup; |
| 1243 | |
| 1244 | /* |
| 1245 | * To be sure waitqueue_active() is not reordered by the CPU |
| 1246 | * before the pagetable update, use an explicit SMP memory |
| 1247 | * barrier here. PT lock release or up_read(mmap_sem) still |
| 1248 | * have release semantics that can allow the |
| 1249 | * waitqueue_active() to be reordered before the pte update. |
| 1250 | */ |
| 1251 | smp_mb(); |
| 1252 | |
| 1253 | /* |
| 1254 | * Use waitqueue_active because it's very frequent to |
| 1255 | * change the address space atomically even if there are no |
| 1256 | * userfaults yet. So we take the spinlock only when we're |
| 1257 | * sure we've userfaults to wake. |
| 1258 | */ |
| 1259 | do { |
| 1260 | seq = read_seqcount_begin(&ctx->refile_seq); |
| 1261 | need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || |
| 1262 | waitqueue_active(&ctx->fault_wqh); |
| 1263 | cond_resched(); |
| 1264 | } while (read_seqcount_retry(&ctx->refile_seq, seq)); |
| 1265 | if (need_wakeup) |
| 1266 | __wake_userfault(ctx, range); |
| 1267 | } |
| 1268 | |
| 1269 | static __always_inline int validate_range(struct mm_struct *mm, |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1270 | __u64 start, __u64 len) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1271 | { |
| 1272 | __u64 task_size = mm->task_size; |
| 1273 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1274 | if (start & ~PAGE_MASK) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1275 | return -EINVAL; |
| 1276 | if (len & ~PAGE_MASK) |
| 1277 | return -EINVAL; |
| 1278 | if (!len) |
| 1279 | return -EINVAL; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1280 | if (start < mmap_min_addr) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1281 | return -EINVAL; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1282 | if (start >= task_size) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1283 | return -EINVAL; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1284 | if (len > task_size - start) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1285 | return -EINVAL; |
| 1286 | return 0; |
| 1287 | } |
| 1288 | |
| 1289 | static inline bool vma_can_userfault(struct vm_area_struct *vma) |
| 1290 | { |
| 1291 | return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || |
| 1292 | vma_is_shmem(vma); |
| 1293 | } |
| 1294 | |
| 1295 | static int userfaultfd_register(struct userfaultfd_ctx *ctx, |
| 1296 | unsigned long arg) |
| 1297 | { |
| 1298 | struct mm_struct *mm = ctx->mm; |
| 1299 | struct vm_area_struct *vma, *prev, *cur; |
| 1300 | int ret; |
| 1301 | struct uffdio_register uffdio_register; |
| 1302 | struct uffdio_register __user *user_uffdio_register; |
| 1303 | unsigned long vm_flags, new_flags; |
| 1304 | bool found; |
| 1305 | bool basic_ioctls; |
| 1306 | unsigned long start, end, vma_end; |
| 1307 | |
| 1308 | user_uffdio_register = (struct uffdio_register __user *) arg; |
| 1309 | |
| 1310 | ret = -EFAULT; |
| 1311 | if (copy_from_user(&uffdio_register, user_uffdio_register, |
| 1312 | sizeof(uffdio_register)-sizeof(__u64))) |
| 1313 | goto out; |
| 1314 | |
| 1315 | ret = -EINVAL; |
| 1316 | if (!uffdio_register.mode) |
| 1317 | goto out; |
| 1318 | if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| |
| 1319 | UFFDIO_REGISTER_MODE_WP)) |
| 1320 | goto out; |
| 1321 | vm_flags = 0; |
| 1322 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) |
| 1323 | vm_flags |= VM_UFFD_MISSING; |
| 1324 | if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { |
| 1325 | vm_flags |= VM_UFFD_WP; |
| 1326 | /* |
| 1327 | * FIXME: remove the below error constraint by |
| 1328 | * implementing the wprotect tracking mode. |
| 1329 | */ |
| 1330 | ret = -EINVAL; |
| 1331 | goto out; |
| 1332 | } |
| 1333 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1334 | ret = validate_range(mm, uffdio_register.range.start, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1335 | uffdio_register.range.len); |
| 1336 | if (ret) |
| 1337 | goto out; |
| 1338 | |
| 1339 | start = uffdio_register.range.start; |
| 1340 | end = start + uffdio_register.range.len; |
| 1341 | |
| 1342 | ret = -ENOMEM; |
| 1343 | if (!mmget_not_zero(mm)) |
| 1344 | goto out; |
| 1345 | |
| 1346 | down_write(&mm->mmap_sem); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1347 | if (!mmget_still_valid(mm)) |
| 1348 | goto out_unlock; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1349 | vma = find_vma_prev(mm, start, &prev); |
| 1350 | if (!vma) |
| 1351 | goto out_unlock; |
| 1352 | |
| 1353 | /* check that there's at least one vma in the range */ |
| 1354 | ret = -EINVAL; |
| 1355 | if (vma->vm_start >= end) |
| 1356 | goto out_unlock; |
| 1357 | |
| 1358 | /* |
| 1359 | * If the first vma contains huge pages, make sure start address |
| 1360 | * is aligned to huge page size. |
| 1361 | */ |
| 1362 | if (is_vm_hugetlb_page(vma)) { |
| 1363 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); |
| 1364 | |
| 1365 | if (start & (vma_hpagesize - 1)) |
| 1366 | goto out_unlock; |
| 1367 | } |
| 1368 | |
| 1369 | /* |
| 1370 | * Search for not compatible vmas. |
| 1371 | */ |
| 1372 | found = false; |
| 1373 | basic_ioctls = false; |
| 1374 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
| 1375 | cond_resched(); |
| 1376 | |
| 1377 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ |
| 1378 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); |
| 1379 | |
| 1380 | /* check not compatible vmas */ |
| 1381 | ret = -EINVAL; |
| 1382 | if (!vma_can_userfault(cur)) |
| 1383 | goto out_unlock; |
| 1384 | |
| 1385 | /* |
| 1386 | * UFFDIO_COPY will fill file holes even without |
| 1387 | * PROT_WRITE. This check enforces that if this is a |
| 1388 | * MAP_SHARED, the process has write permission to the backing |
| 1389 | * file. If VM_MAYWRITE is set it also enforces that on a |
| 1390 | * MAP_SHARED vma: there is no F_WRITE_SEAL and no further |
| 1391 | * F_WRITE_SEAL can be taken until the vma is destroyed. |
| 1392 | */ |
| 1393 | ret = -EPERM; |
| 1394 | if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) |
| 1395 | goto out_unlock; |
| 1396 | |
| 1397 | /* |
| 1398 | * If this vma contains ending address, and huge pages |
| 1399 | * check alignment. |
| 1400 | */ |
| 1401 | if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && |
| 1402 | end > cur->vm_start) { |
| 1403 | unsigned long vma_hpagesize = vma_kernel_pagesize(cur); |
| 1404 | |
| 1405 | ret = -EINVAL; |
| 1406 | |
| 1407 | if (end & (vma_hpagesize - 1)) |
| 1408 | goto out_unlock; |
| 1409 | } |
| 1410 | |
| 1411 | /* |
| 1412 | * Check that this vma isn't already owned by a |
| 1413 | * different userfaultfd. We can't allow more than one |
| 1414 | * userfaultfd to own a single vma simultaneously or we |
| 1415 | * wouldn't know which one to deliver the userfaults to. |
| 1416 | */ |
| 1417 | ret = -EBUSY; |
| 1418 | if (cur->vm_userfaultfd_ctx.ctx && |
| 1419 | cur->vm_userfaultfd_ctx.ctx != ctx) |
| 1420 | goto out_unlock; |
| 1421 | |
| 1422 | /* |
| 1423 | * Note vmas containing huge pages |
| 1424 | */ |
| 1425 | if (is_vm_hugetlb_page(cur)) |
| 1426 | basic_ioctls = true; |
| 1427 | |
| 1428 | found = true; |
| 1429 | } |
| 1430 | BUG_ON(!found); |
| 1431 | |
| 1432 | if (vma->vm_start < start) |
| 1433 | prev = vma; |
| 1434 | |
| 1435 | ret = 0; |
| 1436 | do { |
| 1437 | cond_resched(); |
| 1438 | |
| 1439 | BUG_ON(!vma_can_userfault(vma)); |
| 1440 | BUG_ON(vma->vm_userfaultfd_ctx.ctx && |
| 1441 | vma->vm_userfaultfd_ctx.ctx != ctx); |
| 1442 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
| 1443 | |
| 1444 | /* |
| 1445 | * Nothing to do: this vma is already registered into this |
| 1446 | * userfaultfd and with the right tracking mode too. |
| 1447 | */ |
| 1448 | if (vma->vm_userfaultfd_ctx.ctx == ctx && |
| 1449 | (vma->vm_flags & vm_flags) == vm_flags) |
| 1450 | goto skip; |
| 1451 | |
| 1452 | if (vma->vm_start > start) |
| 1453 | start = vma->vm_start; |
| 1454 | vma_end = min(end, vma->vm_end); |
| 1455 | |
| 1456 | new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; |
| 1457 | prev = vma_merge(mm, prev, start, vma_end, new_flags, |
| 1458 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, |
| 1459 | vma_policy(vma), |
| 1460 | ((struct vm_userfaultfd_ctx){ ctx })); |
| 1461 | if (prev) { |
| 1462 | vma = prev; |
| 1463 | goto next; |
| 1464 | } |
| 1465 | if (vma->vm_start < start) { |
| 1466 | ret = split_vma(mm, vma, start, 1); |
| 1467 | if (ret) |
| 1468 | break; |
| 1469 | } |
| 1470 | if (vma->vm_end > end) { |
| 1471 | ret = split_vma(mm, vma, end, 0); |
| 1472 | if (ret) |
| 1473 | break; |
| 1474 | } |
| 1475 | next: |
| 1476 | /* |
| 1477 | * In the vma_merge() successful mprotect-like case 8: |
| 1478 | * the next vma was merged into the current one and |
| 1479 | * the current one has not been updated yet. |
| 1480 | */ |
| 1481 | vma->vm_flags = new_flags; |
| 1482 | vma->vm_userfaultfd_ctx.ctx = ctx; |
| 1483 | |
| 1484 | skip: |
| 1485 | prev = vma; |
| 1486 | start = vma->vm_end; |
| 1487 | vma = vma->vm_next; |
| 1488 | } while (vma && vma->vm_start < end); |
| 1489 | out_unlock: |
| 1490 | up_write(&mm->mmap_sem); |
| 1491 | mmput(mm); |
| 1492 | if (!ret) { |
| 1493 | /* |
| 1494 | * Now that we scanned all vmas we can already tell |
| 1495 | * userland which ioctls methods are guaranteed to |
| 1496 | * succeed on this range. |
| 1497 | */ |
| 1498 | if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : |
| 1499 | UFFD_API_RANGE_IOCTLS, |
| 1500 | &user_uffdio_register->ioctls)) |
| 1501 | ret = -EFAULT; |
| 1502 | } |
| 1503 | out: |
| 1504 | return ret; |
| 1505 | } |
| 1506 | |
| 1507 | static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, |
| 1508 | unsigned long arg) |
| 1509 | { |
| 1510 | struct mm_struct *mm = ctx->mm; |
| 1511 | struct vm_area_struct *vma, *prev, *cur; |
| 1512 | int ret; |
| 1513 | struct uffdio_range uffdio_unregister; |
| 1514 | unsigned long new_flags; |
| 1515 | bool found; |
| 1516 | unsigned long start, end, vma_end; |
| 1517 | const void __user *buf = (void __user *)arg; |
| 1518 | |
| 1519 | ret = -EFAULT; |
| 1520 | if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) |
| 1521 | goto out; |
| 1522 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1523 | ret = validate_range(mm, uffdio_unregister.start, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1524 | uffdio_unregister.len); |
| 1525 | if (ret) |
| 1526 | goto out; |
| 1527 | |
| 1528 | start = uffdio_unregister.start; |
| 1529 | end = start + uffdio_unregister.len; |
| 1530 | |
| 1531 | ret = -ENOMEM; |
| 1532 | if (!mmget_not_zero(mm)) |
| 1533 | goto out; |
| 1534 | |
| 1535 | down_write(&mm->mmap_sem); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1536 | if (!mmget_still_valid(mm)) |
| 1537 | goto out_unlock; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1538 | vma = find_vma_prev(mm, start, &prev); |
| 1539 | if (!vma) |
| 1540 | goto out_unlock; |
| 1541 | |
| 1542 | /* check that there's at least one vma in the range */ |
| 1543 | ret = -EINVAL; |
| 1544 | if (vma->vm_start >= end) |
| 1545 | goto out_unlock; |
| 1546 | |
| 1547 | /* |
| 1548 | * If the first vma contains huge pages, make sure start address |
| 1549 | * is aligned to huge page size. |
| 1550 | */ |
| 1551 | if (is_vm_hugetlb_page(vma)) { |
| 1552 | unsigned long vma_hpagesize = vma_kernel_pagesize(vma); |
| 1553 | |
| 1554 | if (start & (vma_hpagesize - 1)) |
| 1555 | goto out_unlock; |
| 1556 | } |
| 1557 | |
| 1558 | /* |
| 1559 | * Search for not compatible vmas. |
| 1560 | */ |
| 1561 | found = false; |
| 1562 | ret = -EINVAL; |
| 1563 | for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { |
| 1564 | cond_resched(); |
| 1565 | |
| 1566 | BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ |
| 1567 | !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); |
| 1568 | |
| 1569 | /* |
| 1570 | * Check not compatible vmas, not strictly required |
| 1571 | * here as not compatible vmas cannot have an |
| 1572 | * userfaultfd_ctx registered on them, but this |
| 1573 | * provides for more strict behavior to notice |
| 1574 | * unregistration errors. |
| 1575 | */ |
| 1576 | if (!vma_can_userfault(cur)) |
| 1577 | goto out_unlock; |
| 1578 | |
| 1579 | found = true; |
| 1580 | } |
| 1581 | BUG_ON(!found); |
| 1582 | |
| 1583 | if (vma->vm_start < start) |
| 1584 | prev = vma; |
| 1585 | |
| 1586 | ret = 0; |
| 1587 | do { |
| 1588 | cond_resched(); |
| 1589 | |
| 1590 | BUG_ON(!vma_can_userfault(vma)); |
| 1591 | |
| 1592 | /* |
| 1593 | * Nothing to do: this vma is already registered into this |
| 1594 | * userfaultfd and with the right tracking mode too. |
| 1595 | */ |
| 1596 | if (!vma->vm_userfaultfd_ctx.ctx) |
| 1597 | goto skip; |
| 1598 | |
| 1599 | WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); |
| 1600 | |
| 1601 | if (vma->vm_start > start) |
| 1602 | start = vma->vm_start; |
| 1603 | vma_end = min(end, vma->vm_end); |
| 1604 | |
| 1605 | if (userfaultfd_missing(vma)) { |
| 1606 | /* |
| 1607 | * Wake any concurrent pending userfault while |
| 1608 | * we unregister, so they will not hang |
| 1609 | * permanently and it avoids userland to call |
| 1610 | * UFFDIO_WAKE explicitly. |
| 1611 | */ |
| 1612 | struct userfaultfd_wake_range range; |
| 1613 | range.start = start; |
| 1614 | range.len = vma_end - start; |
| 1615 | wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); |
| 1616 | } |
| 1617 | |
| 1618 | new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); |
| 1619 | prev = vma_merge(mm, prev, start, vma_end, new_flags, |
| 1620 | vma->anon_vma, vma->vm_file, vma->vm_pgoff, |
| 1621 | vma_policy(vma), |
| 1622 | NULL_VM_UFFD_CTX); |
| 1623 | if (prev) { |
| 1624 | vma = prev; |
| 1625 | goto next; |
| 1626 | } |
| 1627 | if (vma->vm_start < start) { |
| 1628 | ret = split_vma(mm, vma, start, 1); |
| 1629 | if (ret) |
| 1630 | break; |
| 1631 | } |
| 1632 | if (vma->vm_end > end) { |
| 1633 | ret = split_vma(mm, vma, end, 0); |
| 1634 | if (ret) |
| 1635 | break; |
| 1636 | } |
| 1637 | next: |
| 1638 | /* |
| 1639 | * In the vma_merge() successful mprotect-like case 8: |
| 1640 | * the next vma was merged into the current one and |
| 1641 | * the current one has not been updated yet. |
| 1642 | */ |
| 1643 | vma->vm_flags = new_flags; |
| 1644 | vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; |
| 1645 | |
| 1646 | skip: |
| 1647 | prev = vma; |
| 1648 | start = vma->vm_end; |
| 1649 | vma = vma->vm_next; |
| 1650 | } while (vma && vma->vm_start < end); |
| 1651 | out_unlock: |
| 1652 | up_write(&mm->mmap_sem); |
| 1653 | mmput(mm); |
| 1654 | out: |
| 1655 | return ret; |
| 1656 | } |
| 1657 | |
| 1658 | /* |
| 1659 | * userfaultfd_wake may be used in combination with the |
| 1660 | * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. |
| 1661 | */ |
| 1662 | static int userfaultfd_wake(struct userfaultfd_ctx *ctx, |
| 1663 | unsigned long arg) |
| 1664 | { |
| 1665 | int ret; |
| 1666 | struct uffdio_range uffdio_wake; |
| 1667 | struct userfaultfd_wake_range range; |
| 1668 | const void __user *buf = (void __user *)arg; |
| 1669 | |
| 1670 | ret = -EFAULT; |
| 1671 | if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) |
| 1672 | goto out; |
| 1673 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1674 | ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1675 | if (ret) |
| 1676 | goto out; |
| 1677 | |
| 1678 | range.start = uffdio_wake.start; |
| 1679 | range.len = uffdio_wake.len; |
| 1680 | |
| 1681 | /* |
| 1682 | * len == 0 means wake all and we don't want to wake all here, |
| 1683 | * so check it again to be sure. |
| 1684 | */ |
| 1685 | VM_BUG_ON(!range.len); |
| 1686 | |
| 1687 | wake_userfault(ctx, &range); |
| 1688 | ret = 0; |
| 1689 | |
| 1690 | out: |
| 1691 | return ret; |
| 1692 | } |
| 1693 | |
| 1694 | static int userfaultfd_copy(struct userfaultfd_ctx *ctx, |
| 1695 | unsigned long arg) |
| 1696 | { |
| 1697 | __s64 ret; |
| 1698 | struct uffdio_copy uffdio_copy; |
| 1699 | struct uffdio_copy __user *user_uffdio_copy; |
| 1700 | struct userfaultfd_wake_range range; |
| 1701 | |
| 1702 | user_uffdio_copy = (struct uffdio_copy __user *) arg; |
| 1703 | |
| 1704 | ret = -EAGAIN; |
| 1705 | if (READ_ONCE(ctx->mmap_changing)) |
| 1706 | goto out; |
| 1707 | |
| 1708 | ret = -EFAULT; |
| 1709 | if (copy_from_user(&uffdio_copy, user_uffdio_copy, |
| 1710 | /* don't copy "copy" last field */ |
| 1711 | sizeof(uffdio_copy)-sizeof(__s64))) |
| 1712 | goto out; |
| 1713 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1714 | ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1715 | if (ret) |
| 1716 | goto out; |
| 1717 | /* |
| 1718 | * double check for wraparound just in case. copy_from_user() |
| 1719 | * will later check uffdio_copy.src + uffdio_copy.len to fit |
| 1720 | * in the userland range. |
| 1721 | */ |
| 1722 | ret = -EINVAL; |
| 1723 | if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) |
| 1724 | goto out; |
| 1725 | if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) |
| 1726 | goto out; |
| 1727 | if (mmget_not_zero(ctx->mm)) { |
| 1728 | ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, |
| 1729 | uffdio_copy.len, &ctx->mmap_changing); |
| 1730 | mmput(ctx->mm); |
| 1731 | } else { |
| 1732 | return -ESRCH; |
| 1733 | } |
| 1734 | if (unlikely(put_user(ret, &user_uffdio_copy->copy))) |
| 1735 | return -EFAULT; |
| 1736 | if (ret < 0) |
| 1737 | goto out; |
| 1738 | BUG_ON(!ret); |
| 1739 | /* len == 0 would wake all */ |
| 1740 | range.len = ret; |
| 1741 | if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { |
| 1742 | range.start = uffdio_copy.dst; |
| 1743 | wake_userfault(ctx, &range); |
| 1744 | } |
| 1745 | ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; |
| 1746 | out: |
| 1747 | return ret; |
| 1748 | } |
| 1749 | |
| 1750 | static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, |
| 1751 | unsigned long arg) |
| 1752 | { |
| 1753 | __s64 ret; |
| 1754 | struct uffdio_zeropage uffdio_zeropage; |
| 1755 | struct uffdio_zeropage __user *user_uffdio_zeropage; |
| 1756 | struct userfaultfd_wake_range range; |
| 1757 | |
| 1758 | user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; |
| 1759 | |
| 1760 | ret = -EAGAIN; |
| 1761 | if (READ_ONCE(ctx->mmap_changing)) |
| 1762 | goto out; |
| 1763 | |
| 1764 | ret = -EFAULT; |
| 1765 | if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, |
| 1766 | /* don't copy "zeropage" last field */ |
| 1767 | sizeof(uffdio_zeropage)-sizeof(__s64))) |
| 1768 | goto out; |
| 1769 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1770 | ret = validate_range(ctx->mm, uffdio_zeropage.range.start, |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1771 | uffdio_zeropage.range.len); |
| 1772 | if (ret) |
| 1773 | goto out; |
| 1774 | ret = -EINVAL; |
| 1775 | if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) |
| 1776 | goto out; |
| 1777 | |
| 1778 | if (mmget_not_zero(ctx->mm)) { |
| 1779 | ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, |
| 1780 | uffdio_zeropage.range.len, |
| 1781 | &ctx->mmap_changing); |
| 1782 | mmput(ctx->mm); |
| 1783 | } else { |
| 1784 | return -ESRCH; |
| 1785 | } |
| 1786 | if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) |
| 1787 | return -EFAULT; |
| 1788 | if (ret < 0) |
| 1789 | goto out; |
| 1790 | /* len == 0 would wake all */ |
| 1791 | BUG_ON(!ret); |
| 1792 | range.len = ret; |
| 1793 | if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { |
| 1794 | range.start = uffdio_zeropage.range.start; |
| 1795 | wake_userfault(ctx, &range); |
| 1796 | } |
| 1797 | ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; |
| 1798 | out: |
| 1799 | return ret; |
| 1800 | } |
| 1801 | |
| 1802 | static inline unsigned int uffd_ctx_features(__u64 user_features) |
| 1803 | { |
| 1804 | /* |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1805 | * For the current set of features the bits just coincide. Set |
| 1806 | * UFFD_FEATURE_INITIALIZED to mark the features as enabled. |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1807 | */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1808 | return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1809 | } |
| 1810 | |
| 1811 | /* |
| 1812 | * userland asks for a certain API version and we return which bits |
| 1813 | * and ioctl commands are implemented in this kernel for such API |
| 1814 | * version or -EINVAL if unknown. |
| 1815 | */ |
| 1816 | static int userfaultfd_api(struct userfaultfd_ctx *ctx, |
| 1817 | unsigned long arg) |
| 1818 | { |
| 1819 | struct uffdio_api uffdio_api; |
| 1820 | void __user *buf = (void __user *)arg; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1821 | unsigned int ctx_features; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1822 | int ret; |
| 1823 | __u64 features; |
| 1824 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1825 | ret = -EFAULT; |
| 1826 | if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) |
| 1827 | goto out; |
| 1828 | features = uffdio_api.features; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1829 | ret = -EINVAL; |
| 1830 | if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) |
| 1831 | goto err_out; |
| 1832 | ret = -EPERM; |
| 1833 | if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) |
| 1834 | goto err_out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1835 | /* report all available features and ioctls to userland */ |
| 1836 | uffdio_api.features = UFFD_API_FEATURES; |
| 1837 | uffdio_api.ioctls = UFFD_API_IOCTLS; |
| 1838 | ret = -EFAULT; |
| 1839 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) |
| 1840 | goto out; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1841 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1842 | /* only enable the requested features for this uffd context */ |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1843 | ctx_features = uffd_ctx_features(features); |
| 1844 | ret = -EINVAL; |
| 1845 | if (cmpxchg(&ctx->features, 0, ctx_features) != 0) |
| 1846 | goto err_out; |
| 1847 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1848 | ret = 0; |
| 1849 | out: |
| 1850 | return ret; |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1851 | err_out: |
| 1852 | memset(&uffdio_api, 0, sizeof(uffdio_api)); |
| 1853 | if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) |
| 1854 | ret = -EFAULT; |
| 1855 | goto out; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1856 | } |
| 1857 | |
| 1858 | static long userfaultfd_ioctl(struct file *file, unsigned cmd, |
| 1859 | unsigned long arg) |
| 1860 | { |
| 1861 | int ret = -EINVAL; |
| 1862 | struct userfaultfd_ctx *ctx = file->private_data; |
| 1863 | |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1864 | if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1865 | return -EINVAL; |
| 1866 | |
| 1867 | switch(cmd) { |
| 1868 | case UFFDIO_API: |
| 1869 | ret = userfaultfd_api(ctx, arg); |
| 1870 | break; |
| 1871 | case UFFDIO_REGISTER: |
| 1872 | ret = userfaultfd_register(ctx, arg); |
| 1873 | break; |
| 1874 | case UFFDIO_UNREGISTER: |
| 1875 | ret = userfaultfd_unregister(ctx, arg); |
| 1876 | break; |
| 1877 | case UFFDIO_WAKE: |
| 1878 | ret = userfaultfd_wake(ctx, arg); |
| 1879 | break; |
| 1880 | case UFFDIO_COPY: |
| 1881 | ret = userfaultfd_copy(ctx, arg); |
| 1882 | break; |
| 1883 | case UFFDIO_ZEROPAGE: |
| 1884 | ret = userfaultfd_zeropage(ctx, arg); |
| 1885 | break; |
| 1886 | } |
| 1887 | return ret; |
| 1888 | } |
| 1889 | |
| 1890 | #ifdef CONFIG_PROC_FS |
| 1891 | static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) |
| 1892 | { |
| 1893 | struct userfaultfd_ctx *ctx = f->private_data; |
| 1894 | wait_queue_entry_t *wq; |
| 1895 | unsigned long pending = 0, total = 0; |
| 1896 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1897 | spin_lock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1898 | list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { |
| 1899 | pending++; |
| 1900 | total++; |
| 1901 | } |
| 1902 | list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { |
| 1903 | total++; |
| 1904 | } |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1905 | spin_unlock_irq(&ctx->fault_pending_wqh.lock); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1906 | |
| 1907 | /* |
| 1908 | * If more protocols will be added, there will be all shown |
| 1909 | * separated by a space. Like this: |
| 1910 | * protocols: aa:... bb:... |
| 1911 | */ |
| 1912 | seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", |
| 1913 | pending, total, UFFD_API, ctx->features, |
| 1914 | UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); |
| 1915 | } |
| 1916 | #endif |
| 1917 | |
| 1918 | static const struct file_operations userfaultfd_fops = { |
| 1919 | #ifdef CONFIG_PROC_FS |
| 1920 | .show_fdinfo = userfaultfd_show_fdinfo, |
| 1921 | #endif |
| 1922 | .release = userfaultfd_release, |
| 1923 | .poll = userfaultfd_poll, |
| 1924 | .read = userfaultfd_read, |
| 1925 | .unlocked_ioctl = userfaultfd_ioctl, |
| 1926 | .compat_ioctl = userfaultfd_ioctl, |
| 1927 | .llseek = noop_llseek, |
| 1928 | }; |
| 1929 | |
| 1930 | static void init_once_userfaultfd_ctx(void *mem) |
| 1931 | { |
| 1932 | struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; |
| 1933 | |
| 1934 | init_waitqueue_head(&ctx->fault_pending_wqh); |
| 1935 | init_waitqueue_head(&ctx->fault_wqh); |
| 1936 | init_waitqueue_head(&ctx->event_wqh); |
| 1937 | init_waitqueue_head(&ctx->fd_wqh); |
| 1938 | seqcount_init(&ctx->refile_seq); |
| 1939 | } |
| 1940 | |
| 1941 | SYSCALL_DEFINE1(userfaultfd, int, flags) |
| 1942 | { |
| 1943 | struct userfaultfd_ctx *ctx; |
| 1944 | int fd; |
| 1945 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1946 | if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) |
| 1947 | return -EPERM; |
| 1948 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1949 | BUG_ON(!current->mm); |
| 1950 | |
| 1951 | /* Check the UFFD_* constants for consistency. */ |
| 1952 | BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); |
| 1953 | BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); |
| 1954 | |
| 1955 | if (flags & ~UFFD_SHARED_FCNTL_FLAGS) |
| 1956 | return -EINVAL; |
| 1957 | |
| 1958 | ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); |
| 1959 | if (!ctx) |
| 1960 | return -ENOMEM; |
| 1961 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1962 | refcount_set(&ctx->refcount, 1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1963 | ctx->flags = flags; |
| 1964 | ctx->features = 0; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1965 | ctx->released = false; |
| 1966 | ctx->mmap_changing = false; |
| 1967 | ctx->mm = current->mm; |
| 1968 | /* prevent the mm struct to be freed */ |
| 1969 | mmgrab(ctx->mm); |
| 1970 | |
| 1971 | fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, |
| 1972 | O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); |
| 1973 | if (fd < 0) { |
| 1974 | mmdrop(ctx->mm); |
| 1975 | kmem_cache_free(userfaultfd_ctx_cachep, ctx); |
| 1976 | } |
| 1977 | return fd; |
| 1978 | } |
| 1979 | |
| 1980 | static int __init userfaultfd_init(void) |
| 1981 | { |
| 1982 | userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", |
| 1983 | sizeof(struct userfaultfd_ctx), |
| 1984 | 0, |
| 1985 | SLAB_HWCACHE_ALIGN|SLAB_PANIC, |
| 1986 | init_once_userfaultfd_ctx); |
| 1987 | return 0; |
| 1988 | } |
| 1989 | __initcall(userfaultfd_init); |