blob: 758de0e9b2ddcf9129ffd61406064c8d850e4596 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0-only
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000012 */
13
14#include <linux/fs.h>
15#include <linux/slab.h>
16#include <linux/dma-buf.h>
17#include <linux/dma-fence.h>
18#include <linux/anon_inodes.h>
19#include <linux/export.h>
20#include <linux/debugfs.h>
21#include <linux/module.h>
22#include <linux/seq_file.h>
23#include <linux/poll.h>
David Brazdil0f672f62019-12-10 10:32:29 +000024#include <linux/dma-resv.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000025#include <linux/mm.h>
David Brazdil0f672f62019-12-10 10:32:29 +000026#include <linux/mount.h>
27#include <linux/pseudo_fs.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000028
29#include <uapi/linux/dma-buf.h>
David Brazdil0f672f62019-12-10 10:32:29 +000030#include <uapi/linux/magic.h>
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000031
32static inline int is_dma_buf_file(struct file *);
33
34struct dma_buf_list {
35 struct list_head head;
36 struct mutex lock;
37};
38
39static struct dma_buf_list db_list;
40
David Brazdil0f672f62019-12-10 10:32:29 +000041static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42{
43 struct dma_buf *dmabuf;
44 char name[DMA_BUF_NAME_LEN];
45 size_t ret = 0;
46
47 dmabuf = dentry->d_fsdata;
Olivier Deprez0e641232021-09-23 10:07:05 +020048 spin_lock(&dmabuf->name_lock);
David Brazdil0f672f62019-12-10 10:32:29 +000049 if (dmabuf->name)
50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
Olivier Deprez0e641232021-09-23 10:07:05 +020051 spin_unlock(&dmabuf->name_lock);
David Brazdil0f672f62019-12-10 10:32:29 +000052
53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 dentry->d_name.name, ret > 0 ? name : "");
55}
56
Olivier Deprez0e641232021-09-23 10:07:05 +020057static void dma_buf_release(struct dentry *dentry)
58{
59 struct dma_buf *dmabuf;
60
61 dmabuf = dentry->d_fsdata;
62 if (unlikely(!dmabuf))
63 return;
64
65 BUG_ON(dmabuf->vmapping_counter);
66
67 /*
68 * Any fences that a dma-buf poll can wait on should be signaled
69 * before releasing dma-buf. This is the responsibility of each
70 * driver that uses the reservation objects.
71 *
72 * If you hit this BUG() it means someone dropped their ref to the
73 * dma-buf while still having pending operation to the buffer.
74 */
75 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
76
77 dmabuf->ops->release(dmabuf);
78
79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
80 dma_resv_fini(dmabuf->resv);
81
82 module_put(dmabuf->owner);
83 kfree(dmabuf->name);
84 kfree(dmabuf);
85}
86
87static int dma_buf_file_release(struct inode *inode, struct file *file)
88{
89 struct dma_buf *dmabuf;
90
91 if (!is_dma_buf_file(file))
92 return -EINVAL;
93
94 dmabuf = file->private_data;
95
96 mutex_lock(&db_list.lock);
97 list_del(&dmabuf->list_node);
98 mutex_unlock(&db_list.lock);
99
100 return 0;
101}
102
David Brazdil0f672f62019-12-10 10:32:29 +0000103static const struct dentry_operations dma_buf_dentry_ops = {
104 .d_dname = dmabuffs_dname,
Olivier Deprez0e641232021-09-23 10:07:05 +0200105 .d_release = dma_buf_release,
David Brazdil0f672f62019-12-10 10:32:29 +0000106};
107
108static struct vfsmount *dma_buf_mnt;
109
110static int dma_buf_fs_init_context(struct fs_context *fc)
111{
112 struct pseudo_fs_context *ctx;
113
114 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
115 if (!ctx)
116 return -ENOMEM;
117 ctx->dops = &dma_buf_dentry_ops;
118 return 0;
119}
120
121static struct file_system_type dma_buf_fs_type = {
122 .name = "dmabuf",
123 .init_fs_context = dma_buf_fs_init_context,
124 .kill_sb = kill_anon_super,
125};
126
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000127static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
128{
129 struct dma_buf *dmabuf;
130
131 if (!is_dma_buf_file(file))
132 return -EINVAL;
133
134 dmabuf = file->private_data;
135
David Brazdil0f672f62019-12-10 10:32:29 +0000136 /* check if buffer supports mmap */
137 if (!dmabuf->ops->mmap)
138 return -EINVAL;
139
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000140 /* check for overflowing the buffer's size */
141 if (vma->vm_pgoff + vma_pages(vma) >
142 dmabuf->size >> PAGE_SHIFT)
143 return -EINVAL;
144
145 return dmabuf->ops->mmap(dmabuf, vma);
146}
147
148static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
149{
150 struct dma_buf *dmabuf;
151 loff_t base;
152
153 if (!is_dma_buf_file(file))
154 return -EBADF;
155
156 dmabuf = file->private_data;
157
158 /* only support discovering the end of the buffer,
159 but also allow SEEK_SET to maintain the idiomatic
160 SEEK_END(0), SEEK_CUR(0) pattern */
161 if (whence == SEEK_END)
162 base = dmabuf->size;
163 else if (whence == SEEK_SET)
164 base = 0;
165 else
166 return -EINVAL;
167
168 if (offset != 0)
169 return -EINVAL;
170
171 return base + offset;
172}
173
174/**
175 * DOC: fence polling
176 *
177 * To support cross-device and cross-driver synchronization of buffer access
178 * implicit fences (represented internally in the kernel with &struct fence) can
179 * be attached to a &dma_buf. The glue for that and a few related things are
David Brazdil0f672f62019-12-10 10:32:29 +0000180 * provided in the &dma_resv structure.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000181 *
182 * Userspace can query the state of these implicitly tracked fences using poll()
183 * and related system calls:
184 *
185 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
186 * most recent write or exclusive fence.
187 *
188 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
189 * all attached fences, shared and exclusive ones.
190 *
191 * Note that this only signals the completion of the respective fences, i.e. the
192 * DMA transfers are complete. Cache flushing and any other necessary
193 * preparations before CPU access can begin still need to happen.
194 */
195
196static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197{
198 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
199 unsigned long flags;
200
201 spin_lock_irqsave(&dcb->poll->lock, flags);
202 wake_up_locked_poll(dcb->poll, dcb->active);
203 dcb->active = 0;
204 spin_unlock_irqrestore(&dcb->poll->lock, flags);
205}
206
207static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
208{
209 struct dma_buf *dmabuf;
David Brazdil0f672f62019-12-10 10:32:29 +0000210 struct dma_resv *resv;
211 struct dma_resv_list *fobj;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000212 struct dma_fence *fence_excl;
213 __poll_t events;
214 unsigned shared_count, seq;
215
216 dmabuf = file->private_data;
217 if (!dmabuf || !dmabuf->resv)
218 return EPOLLERR;
219
220 resv = dmabuf->resv;
221
222 poll_wait(file, &dmabuf->poll, poll);
223
224 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
225 if (!events)
226 return 0;
227
228retry:
229 seq = read_seqcount_begin(&resv->seq);
230 rcu_read_lock();
231
232 fobj = rcu_dereference(resv->fence);
233 if (fobj)
234 shared_count = fobj->shared_count;
235 else
236 shared_count = 0;
237 fence_excl = rcu_dereference(resv->fence_excl);
238 if (read_seqcount_retry(&resv->seq, seq)) {
239 rcu_read_unlock();
240 goto retry;
241 }
242
243 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
244 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
245 __poll_t pevents = EPOLLIN;
246
247 if (shared_count == 0)
248 pevents |= EPOLLOUT;
249
250 spin_lock_irq(&dmabuf->poll.lock);
251 if (dcb->active) {
252 dcb->active |= pevents;
253 events &= ~pevents;
254 } else
255 dcb->active = pevents;
256 spin_unlock_irq(&dmabuf->poll.lock);
257
258 if (events & pevents) {
259 if (!dma_fence_get_rcu(fence_excl)) {
260 /* force a recheck */
261 events &= ~pevents;
262 dma_buf_poll_cb(NULL, &dcb->cb);
263 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
264 dma_buf_poll_cb)) {
265 events &= ~pevents;
266 dma_fence_put(fence_excl);
267 } else {
268 /*
269 * No callback queued, wake up any additional
270 * waiters.
271 */
272 dma_fence_put(fence_excl);
273 dma_buf_poll_cb(NULL, &dcb->cb);
274 }
275 }
276 }
277
278 if ((events & EPOLLOUT) && shared_count > 0) {
279 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
280 int i;
281
282 /* Only queue a new callback if no event has fired yet */
283 spin_lock_irq(&dmabuf->poll.lock);
284 if (dcb->active)
285 events &= ~EPOLLOUT;
286 else
287 dcb->active = EPOLLOUT;
288 spin_unlock_irq(&dmabuf->poll.lock);
289
290 if (!(events & EPOLLOUT))
291 goto out;
292
293 for (i = 0; i < shared_count; ++i) {
294 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
295
296 if (!dma_fence_get_rcu(fence)) {
297 /*
298 * fence refcount dropped to zero, this means
299 * that fobj has been freed
300 *
301 * call dma_buf_poll_cb and force a recheck!
302 */
303 events &= ~EPOLLOUT;
304 dma_buf_poll_cb(NULL, &dcb->cb);
305 break;
306 }
307 if (!dma_fence_add_callback(fence, &dcb->cb,
308 dma_buf_poll_cb)) {
309 dma_fence_put(fence);
310 events &= ~EPOLLOUT;
311 break;
312 }
313 dma_fence_put(fence);
314 }
315
316 /* No callback queued, wake up any additional waiters. */
317 if (i == shared_count)
318 dma_buf_poll_cb(NULL, &dcb->cb);
319 }
320
321out:
322 rcu_read_unlock();
323 return events;
324}
325
David Brazdil0f672f62019-12-10 10:32:29 +0000326/**
327 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
328 * The name of the dma-buf buffer can only be set when the dma-buf is not
329 * attached to any devices. It could theoritically support changing the
330 * name of the dma-buf if the same piece of memory is used for multiple
331 * purpose between different devices.
332 *
333 * @dmabuf [in] dmabuf buffer that will be renamed.
334 * @buf: [in] A piece of userspace memory that contains the name of
335 * the dma-buf.
336 *
337 * Returns 0 on success. If the dma-buf buffer is already attached to
338 * devices, return -EBUSY.
339 *
340 */
341static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
342{
343 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
344 long ret = 0;
345
346 if (IS_ERR(name))
347 return PTR_ERR(name);
348
349 mutex_lock(&dmabuf->lock);
350 if (!list_empty(&dmabuf->attachments)) {
351 ret = -EBUSY;
352 kfree(name);
353 goto out_unlock;
354 }
Olivier Deprez0e641232021-09-23 10:07:05 +0200355 spin_lock(&dmabuf->name_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000356 kfree(dmabuf->name);
357 dmabuf->name = name;
Olivier Deprez0e641232021-09-23 10:07:05 +0200358 spin_unlock(&dmabuf->name_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000359
360out_unlock:
361 mutex_unlock(&dmabuf->lock);
362 return ret;
363}
364
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000365static long dma_buf_ioctl(struct file *file,
366 unsigned int cmd, unsigned long arg)
367{
368 struct dma_buf *dmabuf;
369 struct dma_buf_sync sync;
370 enum dma_data_direction direction;
371 int ret;
372
373 dmabuf = file->private_data;
374
375 switch (cmd) {
376 case DMA_BUF_IOCTL_SYNC:
377 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
378 return -EFAULT;
379
380 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
381 return -EINVAL;
382
383 switch (sync.flags & DMA_BUF_SYNC_RW) {
384 case DMA_BUF_SYNC_READ:
385 direction = DMA_FROM_DEVICE;
386 break;
387 case DMA_BUF_SYNC_WRITE:
388 direction = DMA_TO_DEVICE;
389 break;
390 case DMA_BUF_SYNC_RW:
391 direction = DMA_BIDIRECTIONAL;
392 break;
393 default:
394 return -EINVAL;
395 }
396
397 if (sync.flags & DMA_BUF_SYNC_END)
398 ret = dma_buf_end_cpu_access(dmabuf, direction);
399 else
400 ret = dma_buf_begin_cpu_access(dmabuf, direction);
401
402 return ret;
David Brazdil0f672f62019-12-10 10:32:29 +0000403
Olivier Deprez0e641232021-09-23 10:07:05 +0200404 case DMA_BUF_SET_NAME_A:
405 case DMA_BUF_SET_NAME_B:
David Brazdil0f672f62019-12-10 10:32:29 +0000406 return dma_buf_set_name(dmabuf, (const char __user *)arg);
407
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000408 default:
409 return -ENOTTY;
410 }
411}
412
David Brazdil0f672f62019-12-10 10:32:29 +0000413static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
414{
415 struct dma_buf *dmabuf = file->private_data;
416
417 seq_printf(m, "size:\t%zu\n", dmabuf->size);
418 /* Don't count the temporary reference taken inside procfs seq_show */
419 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
420 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
Olivier Deprez0e641232021-09-23 10:07:05 +0200421 spin_lock(&dmabuf->name_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000422 if (dmabuf->name)
423 seq_printf(m, "name:\t%s\n", dmabuf->name);
Olivier Deprez0e641232021-09-23 10:07:05 +0200424 spin_unlock(&dmabuf->name_lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000425}
426
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000427static const struct file_operations dma_buf_fops = {
Olivier Deprez0e641232021-09-23 10:07:05 +0200428 .release = dma_buf_file_release,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000429 .mmap = dma_buf_mmap_internal,
430 .llseek = dma_buf_llseek,
431 .poll = dma_buf_poll,
432 .unlocked_ioctl = dma_buf_ioctl,
433#ifdef CONFIG_COMPAT
434 .compat_ioctl = dma_buf_ioctl,
435#endif
David Brazdil0f672f62019-12-10 10:32:29 +0000436 .show_fdinfo = dma_buf_show_fdinfo,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000437};
438
439/*
440 * is_dma_buf_file - Check if struct file* is associated with dma_buf
441 */
442static inline int is_dma_buf_file(struct file *file)
443{
444 return file->f_op == &dma_buf_fops;
445}
446
David Brazdil0f672f62019-12-10 10:32:29 +0000447static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
448{
449 struct file *file;
450 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
451
452 if (IS_ERR(inode))
453 return ERR_CAST(inode);
454
455 inode->i_size = dmabuf->size;
456 inode_set_bytes(inode, dmabuf->size);
457
458 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
459 flags, &dma_buf_fops);
460 if (IS_ERR(file))
461 goto err_alloc_file;
462 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
463 file->private_data = dmabuf;
464 file->f_path.dentry->d_fsdata = dmabuf;
465
466 return file;
467
468err_alloc_file:
469 iput(inode);
470 return file;
471}
472
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000473/**
474 * DOC: dma buf device access
475 *
476 * For device DMA access to a shared DMA buffer the usual sequence of operations
477 * is fairly simple:
478 *
479 * 1. The exporter defines his exporter instance using
480 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
481 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
482 * as a file descriptor by calling dma_buf_fd().
483 *
484 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
485 * to share with: First the filedescriptor is converted to a &dma_buf using
486 * dma_buf_get(). Then the buffer is attached to the device using
487 * dma_buf_attach().
488 *
489 * Up to this stage the exporter is still free to migrate or reallocate the
490 * backing storage.
491 *
492 * 3. Once the buffer is attached to all devices userspace can initiate DMA
493 * access to the shared buffer. In the kernel this is done by calling
494 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
495 *
496 * 4. Once a driver is done with a shared buffer it needs to call
497 * dma_buf_detach() (after cleaning up any mappings) and then release the
498 * reference acquired with dma_buf_get by calling dma_buf_put().
499 *
500 * For the detailed semantics exporters are expected to implement see
501 * &dma_buf_ops.
502 */
503
504/**
505 * dma_buf_export - Creates a new dma_buf, and associates an anon file
506 * with this buffer, so it can be exported.
507 * Also connect the allocator specific data and ops to the buffer.
508 * Additionally, provide a name string for exporter; useful in debugging.
509 *
510 * @exp_info: [in] holds all the export related information provided
511 * by the exporter. see &struct dma_buf_export_info
512 * for further details.
513 *
514 * Returns, on success, a newly created dma_buf object, which wraps the
515 * supplied private data and operations for dma_buf_ops. On either missing
516 * ops, or error in allocating struct dma_buf, will return negative error.
517 *
518 * For most cases the easiest way to create @exp_info is through the
519 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
520 */
521struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
522{
523 struct dma_buf *dmabuf;
David Brazdil0f672f62019-12-10 10:32:29 +0000524 struct dma_resv *resv = exp_info->resv;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000525 struct file *file;
526 size_t alloc_size = sizeof(struct dma_buf);
527 int ret;
528
529 if (!exp_info->resv)
David Brazdil0f672f62019-12-10 10:32:29 +0000530 alloc_size += sizeof(struct dma_resv);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000531 else
532 /* prevent &dma_buf[1] == dma_buf->resv */
533 alloc_size += 1;
534
535 if (WARN_ON(!exp_info->priv
536 || !exp_info->ops
537 || !exp_info->ops->map_dma_buf
538 || !exp_info->ops->unmap_dma_buf
David Brazdil0f672f62019-12-10 10:32:29 +0000539 || !exp_info->ops->release)) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000540 return ERR_PTR(-EINVAL);
541 }
542
543 if (!try_module_get(exp_info->owner))
544 return ERR_PTR(-ENOENT);
545
546 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
547 if (!dmabuf) {
548 ret = -ENOMEM;
549 goto err_module;
550 }
551
552 dmabuf->priv = exp_info->priv;
553 dmabuf->ops = exp_info->ops;
554 dmabuf->size = exp_info->size;
555 dmabuf->exp_name = exp_info->exp_name;
556 dmabuf->owner = exp_info->owner;
Olivier Deprez0e641232021-09-23 10:07:05 +0200557 spin_lock_init(&dmabuf->name_lock);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000558 init_waitqueue_head(&dmabuf->poll);
559 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
560 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
561
562 if (!resv) {
David Brazdil0f672f62019-12-10 10:32:29 +0000563 resv = (struct dma_resv *)&dmabuf[1];
564 dma_resv_init(resv);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000565 }
566 dmabuf->resv = resv;
567
David Brazdil0f672f62019-12-10 10:32:29 +0000568 file = dma_buf_getfile(dmabuf, exp_info->flags);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000569 if (IS_ERR(file)) {
570 ret = PTR_ERR(file);
571 goto err_dmabuf;
572 }
573
574 file->f_mode |= FMODE_LSEEK;
575 dmabuf->file = file;
576
577 mutex_init(&dmabuf->lock);
578 INIT_LIST_HEAD(&dmabuf->attachments);
579
580 mutex_lock(&db_list.lock);
581 list_add(&dmabuf->list_node, &db_list.head);
582 mutex_unlock(&db_list.lock);
583
584 return dmabuf;
585
586err_dmabuf:
587 kfree(dmabuf);
588err_module:
589 module_put(exp_info->owner);
590 return ERR_PTR(ret);
591}
592EXPORT_SYMBOL_GPL(dma_buf_export);
593
594/**
595 * dma_buf_fd - returns a file descriptor for the given dma_buf
596 * @dmabuf: [in] pointer to dma_buf for which fd is required.
597 * @flags: [in] flags to give to fd
598 *
599 * On success, returns an associated 'fd'. Else, returns error.
600 */
601int dma_buf_fd(struct dma_buf *dmabuf, int flags)
602{
603 int fd;
604
605 if (!dmabuf || !dmabuf->file)
606 return -EINVAL;
607
608 fd = get_unused_fd_flags(flags);
609 if (fd < 0)
610 return fd;
611
612 fd_install(fd, dmabuf->file);
613
614 return fd;
615}
616EXPORT_SYMBOL_GPL(dma_buf_fd);
617
618/**
619 * dma_buf_get - returns the dma_buf structure related to an fd
620 * @fd: [in] fd associated with the dma_buf to be returned
621 *
622 * On success, returns the dma_buf structure associated with an fd; uses
623 * file's refcounting done by fget to increase refcount. returns ERR_PTR
624 * otherwise.
625 */
626struct dma_buf *dma_buf_get(int fd)
627{
628 struct file *file;
629
630 file = fget(fd);
631
632 if (!file)
633 return ERR_PTR(-EBADF);
634
635 if (!is_dma_buf_file(file)) {
636 fput(file);
637 return ERR_PTR(-EINVAL);
638 }
639
640 return file->private_data;
641}
642EXPORT_SYMBOL_GPL(dma_buf_get);
643
644/**
645 * dma_buf_put - decreases refcount of the buffer
646 * @dmabuf: [in] buffer to reduce refcount of
647 *
648 * Uses file's refcounting done implicitly by fput().
649 *
650 * If, as a result of this call, the refcount becomes 0, the 'release' file
651 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
652 * in turn, and frees the memory allocated for dmabuf when exported.
653 */
654void dma_buf_put(struct dma_buf *dmabuf)
655{
656 if (WARN_ON(!dmabuf || !dmabuf->file))
657 return;
658
659 fput(dmabuf->file);
660}
661EXPORT_SYMBOL_GPL(dma_buf_put);
662
663/**
664 * dma_buf_attach - Add the device to dma_buf's attachments list; optionally,
665 * calls attach() of dma_buf_ops to allow device-specific attach functionality
666 * @dmabuf: [in] buffer to attach device to.
667 * @dev: [in] device to be attached.
668 *
669 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
670 * must be cleaned up by calling dma_buf_detach().
671 *
672 * Returns:
673 *
674 * A pointer to newly created &dma_buf_attachment on success, or a negative
675 * error code wrapped into a pointer on failure.
676 *
677 * Note that this can fail if the backing storage of @dmabuf is in a place not
678 * accessible to @dev, and cannot be moved to a more suitable place. This is
679 * indicated with the error code -EBUSY.
680 */
681struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
682 struct device *dev)
683{
684 struct dma_buf_attachment *attach;
685 int ret;
686
687 if (WARN_ON(!dmabuf || !dev))
688 return ERR_PTR(-EINVAL);
689
690 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
691 if (!attach)
692 return ERR_PTR(-ENOMEM);
693
694 attach->dev = dev;
695 attach->dmabuf = dmabuf;
696
697 mutex_lock(&dmabuf->lock);
698
699 if (dmabuf->ops->attach) {
700 ret = dmabuf->ops->attach(dmabuf, attach);
701 if (ret)
702 goto err_attach;
703 }
704 list_add(&attach->node, &dmabuf->attachments);
705
706 mutex_unlock(&dmabuf->lock);
David Brazdil0f672f62019-12-10 10:32:29 +0000707
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000708 return attach;
709
710err_attach:
711 kfree(attach);
712 mutex_unlock(&dmabuf->lock);
713 return ERR_PTR(ret);
714}
715EXPORT_SYMBOL_GPL(dma_buf_attach);
716
717/**
718 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
719 * optionally calls detach() of dma_buf_ops for device-specific detach
720 * @dmabuf: [in] buffer to detach from.
721 * @attach: [in] attachment to be detached; is free'd after this call.
722 *
723 * Clean up a device attachment obtained by calling dma_buf_attach().
724 */
725void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
726{
727 if (WARN_ON(!dmabuf || !attach))
728 return;
729
David Brazdil0f672f62019-12-10 10:32:29 +0000730 if (attach->sgt)
731 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
732
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000733 mutex_lock(&dmabuf->lock);
734 list_del(&attach->node);
735 if (dmabuf->ops->detach)
736 dmabuf->ops->detach(dmabuf, attach);
737
738 mutex_unlock(&dmabuf->lock);
739 kfree(attach);
740}
741EXPORT_SYMBOL_GPL(dma_buf_detach);
742
743/**
744 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
745 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
746 * dma_buf_ops.
747 * @attach: [in] attachment whose scatterlist is to be returned
748 * @direction: [in] direction of DMA transfer
749 *
750 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
751 * on error. May return -EINTR if it is interrupted by a signal.
752 *
753 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
754 * the underlying backing storage is pinned for as long as a mapping exists,
755 * therefore users/importers should not hold onto a mapping for undue amounts of
756 * time.
757 */
758struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
759 enum dma_data_direction direction)
760{
761 struct sg_table *sg_table;
762
763 might_sleep();
764
765 if (WARN_ON(!attach || !attach->dmabuf))
766 return ERR_PTR(-EINVAL);
767
David Brazdil0f672f62019-12-10 10:32:29 +0000768 if (attach->sgt) {
769 /*
770 * Two mappings with different directions for the same
771 * attachment are not allowed.
772 */
773 if (attach->dir != direction &&
774 attach->dir != DMA_BIDIRECTIONAL)
775 return ERR_PTR(-EBUSY);
776
777 return attach->sgt;
778 }
779
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000780 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
781 if (!sg_table)
782 sg_table = ERR_PTR(-ENOMEM);
783
David Brazdil0f672f62019-12-10 10:32:29 +0000784 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
785 attach->sgt = sg_table;
786 attach->dir = direction;
787 }
788
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000789 return sg_table;
790}
791EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
792
793/**
794 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
795 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
796 * dma_buf_ops.
797 * @attach: [in] attachment to unmap buffer from
798 * @sg_table: [in] scatterlist info of the buffer to unmap
799 * @direction: [in] direction of DMA transfer
800 *
801 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
802 */
803void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
804 struct sg_table *sg_table,
805 enum dma_data_direction direction)
806{
807 might_sleep();
808
809 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
810 return;
811
David Brazdil0f672f62019-12-10 10:32:29 +0000812 if (attach->sgt == sg_table)
813 return;
814
815 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000816}
817EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
818
819/**
820 * DOC: cpu access
821 *
822 * There are mutliple reasons for supporting CPU access to a dma buffer object:
823 *
824 * - Fallback operations in the kernel, for example when a device is connected
825 * over USB and the kernel needs to shuffle the data around first before
826 * sending it away. Cache coherency is handled by braketing any transactions
827 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
828 * access.
829 *
830 * To support dma_buf objects residing in highmem cpu access is page-based
831 * using an api similar to kmap. Accessing a dma_buf is done in aligned chunks
832 * of PAGE_SIZE size. Before accessing a chunk it needs to be mapped, which
833 * returns a pointer in kernel virtual address space. Afterwards the chunk
834 * needs to be unmapped again. There is no limit on how often a given chunk
835 * can be mapped and unmapped, i.e. the importer does not need to call
836 * begin_cpu_access again before mapping the same chunk again.
837 *
838 * Interfaces::
839 * void \*dma_buf_kmap(struct dma_buf \*, unsigned long);
840 * void dma_buf_kunmap(struct dma_buf \*, unsigned long, void \*);
841 *
842 * Implementing the functions is optional for exporters and for importers all
843 * the restrictions of using kmap apply.
844 *
845 * dma_buf kmap calls outside of the range specified in begin_cpu_access are
846 * undefined. If the range is not PAGE_SIZE aligned, kmap needs to succeed on
847 * the partial chunks at the beginning and end but may return stale or bogus
848 * data outside of the range (in these partial chunks).
849 *
850 * For some cases the overhead of kmap can be too high, a vmap interface
851 * is introduced. This interface should be used very carefully, as vmalloc
852 * space is a limited resources on many architectures.
853 *
854 * Interfaces::
855 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
856 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
857 *
858 * The vmap call can fail if there is no vmap support in the exporter, or if
859 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
860 * that the dma-buf layer keeps a reference count for all vmap access and
861 * calls down into the exporter's vmap function only when no vmapping exists,
862 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
863 * provided by taking the dma_buf->lock mutex.
864 *
865 * - For full compatibility on the importer side with existing userspace
866 * interfaces, which might already support mmap'ing buffers. This is needed in
867 * many processing pipelines (e.g. feeding a software rendered image into a
868 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
869 * framework already supported this and for DMA buffer file descriptors to
870 * replace ION buffers mmap support was needed.
871 *
872 * There is no special interfaces, userspace simply calls mmap on the dma-buf
873 * fd. But like for CPU access there's a need to braket the actual access,
874 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
875 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
876 * be restarted.
877 *
878 * Some systems might need some sort of cache coherency management e.g. when
879 * CPU and GPU domains are being accessed through dma-buf at the same time.
880 * To circumvent this problem there are begin/end coherency markers, that
881 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
882 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
883 * sequence would be used like following:
884 *
885 * - mmap dma-buf fd
886 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
887 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
888 * want (with the new data being consumed by say the GPU or the scanout
889 * device)
890 * - munmap once you don't need the buffer any more
891 *
892 * For correctness and optimal performance, it is always required to use
893 * SYNC_START and SYNC_END before and after, respectively, when accessing the
894 * mapped address. Userspace cannot rely on coherent access, even when there
895 * are systems where it just works without calling these ioctls.
896 *
897 * - And as a CPU fallback in userspace processing pipelines.
898 *
899 * Similar to the motivation for kernel cpu access it is again important that
900 * the userspace code of a given importing subsystem can use the same
901 * interfaces with a imported dma-buf buffer object as with a native buffer
902 * object. This is especially important for drm where the userspace part of
903 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
904 * use a different way to mmap a buffer rather invasive.
905 *
906 * The assumption in the current dma-buf interfaces is that redirecting the
907 * initial mmap is all that's needed. A survey of some of the existing
908 * subsystems shows that no driver seems to do any nefarious thing like
909 * syncing up with outstanding asynchronous processing on the device or
910 * allocating special resources at fault time. So hopefully this is good
911 * enough, since adding interfaces to intercept pagefaults and allow pte
912 * shootdowns would increase the complexity quite a bit.
913 *
914 * Interface::
915 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
916 * unsigned long);
917 *
918 * If the importing subsystem simply provides a special-purpose mmap call to
919 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
920 * equally achieve that for a dma-buf object.
921 */
922
923static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
924 enum dma_data_direction direction)
925{
926 bool write = (direction == DMA_BIDIRECTIONAL ||
927 direction == DMA_TO_DEVICE);
David Brazdil0f672f62019-12-10 10:32:29 +0000928 struct dma_resv *resv = dmabuf->resv;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000929 long ret;
930
931 /* Wait on any implicit rendering fences */
David Brazdil0f672f62019-12-10 10:32:29 +0000932 ret = dma_resv_wait_timeout_rcu(resv, write, true,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000933 MAX_SCHEDULE_TIMEOUT);
934 if (ret < 0)
935 return ret;
936
937 return 0;
938}
939
940/**
941 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
942 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
943 * preparations. Coherency is only guaranteed in the specified range for the
944 * specified access direction.
945 * @dmabuf: [in] buffer to prepare cpu access for.
946 * @direction: [in] length of range for cpu access.
947 *
948 * After the cpu access is complete the caller should call
949 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
950 * it guaranteed to be coherent with other DMA access.
951 *
952 * Can return negative error values, returns 0 on success.
953 */
954int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
955 enum dma_data_direction direction)
956{
957 int ret = 0;
958
959 if (WARN_ON(!dmabuf))
960 return -EINVAL;
961
962 if (dmabuf->ops->begin_cpu_access)
963 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
964
965 /* Ensure that all fences are waited upon - but we first allow
966 * the native handler the chance to do so more efficiently if it
967 * chooses. A double invocation here will be reasonably cheap no-op.
968 */
969 if (ret == 0)
970 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
971
972 return ret;
973}
974EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
975
976/**
977 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
978 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
979 * actions. Coherency is only guaranteed in the specified range for the
980 * specified access direction.
981 * @dmabuf: [in] buffer to complete cpu access for.
982 * @direction: [in] length of range for cpu access.
983 *
984 * This terminates CPU access started with dma_buf_begin_cpu_access().
985 *
986 * Can return negative error values, returns 0 on success.
987 */
988int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
989 enum dma_data_direction direction)
990{
991 int ret = 0;
992
993 WARN_ON(!dmabuf);
994
995 if (dmabuf->ops->end_cpu_access)
996 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
997
998 return ret;
999}
1000EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1001
1002/**
1003 * dma_buf_kmap - Map a page of the buffer object into kernel address space. The
1004 * same restrictions as for kmap and friends apply.
1005 * @dmabuf: [in] buffer to map page from.
1006 * @page_num: [in] page in PAGE_SIZE units to map.
1007 *
1008 * This call must always succeed, any necessary preparations that might fail
1009 * need to be done in begin_cpu_access.
1010 */
1011void *dma_buf_kmap(struct dma_buf *dmabuf, unsigned long page_num)
1012{
1013 WARN_ON(!dmabuf);
1014
1015 if (!dmabuf->ops->map)
1016 return NULL;
1017 return dmabuf->ops->map(dmabuf, page_num);
1018}
1019EXPORT_SYMBOL_GPL(dma_buf_kmap);
1020
1021/**
1022 * dma_buf_kunmap - Unmap a page obtained by dma_buf_kmap.
1023 * @dmabuf: [in] buffer to unmap page from.
1024 * @page_num: [in] page in PAGE_SIZE units to unmap.
1025 * @vaddr: [in] kernel space pointer obtained from dma_buf_kmap.
1026 *
1027 * This call must always succeed.
1028 */
1029void dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long page_num,
1030 void *vaddr)
1031{
1032 WARN_ON(!dmabuf);
1033
1034 if (dmabuf->ops->unmap)
1035 dmabuf->ops->unmap(dmabuf, page_num, vaddr);
1036}
1037EXPORT_SYMBOL_GPL(dma_buf_kunmap);
1038
1039
1040/**
1041 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1042 * @dmabuf: [in] buffer that should back the vma
1043 * @vma: [in] vma for the mmap
1044 * @pgoff: [in] offset in pages where this mmap should start within the
1045 * dma-buf buffer.
1046 *
1047 * This function adjusts the passed in vma so that it points at the file of the
1048 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1049 * checking on the size of the vma. Then it calls the exporters mmap function to
1050 * set up the mapping.
1051 *
1052 * Can return negative error values, returns 0 on success.
1053 */
1054int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1055 unsigned long pgoff)
1056{
1057 struct file *oldfile;
1058 int ret;
1059
1060 if (WARN_ON(!dmabuf || !vma))
1061 return -EINVAL;
1062
David Brazdil0f672f62019-12-10 10:32:29 +00001063 /* check if buffer supports mmap */
1064 if (!dmabuf->ops->mmap)
1065 return -EINVAL;
1066
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001067 /* check for offset overflow */
1068 if (pgoff + vma_pages(vma) < pgoff)
1069 return -EOVERFLOW;
1070
1071 /* check for overflowing the buffer's size */
1072 if (pgoff + vma_pages(vma) >
1073 dmabuf->size >> PAGE_SHIFT)
1074 return -EINVAL;
1075
1076 /* readjust the vma */
1077 get_file(dmabuf->file);
1078 oldfile = vma->vm_file;
1079 vma->vm_file = dmabuf->file;
1080 vma->vm_pgoff = pgoff;
1081
1082 ret = dmabuf->ops->mmap(dmabuf, vma);
1083 if (ret) {
1084 /* restore old parameters on failure */
1085 vma->vm_file = oldfile;
1086 fput(dmabuf->file);
1087 } else {
1088 if (oldfile)
1089 fput(oldfile);
1090 }
1091 return ret;
1092
1093}
1094EXPORT_SYMBOL_GPL(dma_buf_mmap);
1095
1096/**
1097 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1098 * address space. Same restrictions as for vmap and friends apply.
1099 * @dmabuf: [in] buffer to vmap
1100 *
1101 * This call may fail due to lack of virtual mapping address space.
1102 * These calls are optional in drivers. The intended use for them
1103 * is for mapping objects linear in kernel space for high use objects.
1104 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1105 *
1106 * Returns NULL on error.
1107 */
1108void *dma_buf_vmap(struct dma_buf *dmabuf)
1109{
1110 void *ptr;
1111
1112 if (WARN_ON(!dmabuf))
1113 return NULL;
1114
1115 if (!dmabuf->ops->vmap)
1116 return NULL;
1117
1118 mutex_lock(&dmabuf->lock);
1119 if (dmabuf->vmapping_counter) {
1120 dmabuf->vmapping_counter++;
1121 BUG_ON(!dmabuf->vmap_ptr);
1122 ptr = dmabuf->vmap_ptr;
1123 goto out_unlock;
1124 }
1125
1126 BUG_ON(dmabuf->vmap_ptr);
1127
1128 ptr = dmabuf->ops->vmap(dmabuf);
1129 if (WARN_ON_ONCE(IS_ERR(ptr)))
1130 ptr = NULL;
1131 if (!ptr)
1132 goto out_unlock;
1133
1134 dmabuf->vmap_ptr = ptr;
1135 dmabuf->vmapping_counter = 1;
1136
1137out_unlock:
1138 mutex_unlock(&dmabuf->lock);
1139 return ptr;
1140}
1141EXPORT_SYMBOL_GPL(dma_buf_vmap);
1142
1143/**
1144 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1145 * @dmabuf: [in] buffer to vunmap
1146 * @vaddr: [in] vmap to vunmap
1147 */
1148void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1149{
1150 if (WARN_ON(!dmabuf))
1151 return;
1152
1153 BUG_ON(!dmabuf->vmap_ptr);
1154 BUG_ON(dmabuf->vmapping_counter == 0);
1155 BUG_ON(dmabuf->vmap_ptr != vaddr);
1156
1157 mutex_lock(&dmabuf->lock);
1158 if (--dmabuf->vmapping_counter == 0) {
1159 if (dmabuf->ops->vunmap)
1160 dmabuf->ops->vunmap(dmabuf, vaddr);
1161 dmabuf->vmap_ptr = NULL;
1162 }
1163 mutex_unlock(&dmabuf->lock);
1164}
1165EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1166
1167#ifdef CONFIG_DEBUG_FS
1168static int dma_buf_debug_show(struct seq_file *s, void *unused)
1169{
1170 int ret;
1171 struct dma_buf *buf_obj;
1172 struct dma_buf_attachment *attach_obj;
David Brazdil0f672f62019-12-10 10:32:29 +00001173 struct dma_resv *robj;
1174 struct dma_resv_list *fobj;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001175 struct dma_fence *fence;
1176 unsigned seq;
1177 int count = 0, attach_count, shared_count, i;
1178 size_t size = 0;
1179
1180 ret = mutex_lock_interruptible(&db_list.lock);
1181
1182 if (ret)
1183 return ret;
1184
1185 seq_puts(s, "\nDma-buf Objects:\n");
David Brazdil0f672f62019-12-10 10:32:29 +00001186 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1187 "size", "flags", "mode", "count", "ino");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001188
1189 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1190 ret = mutex_lock_interruptible(&buf_obj->lock);
1191
1192 if (ret) {
1193 seq_puts(s,
1194 "\tERROR locking buffer object: skipping\n");
1195 continue;
1196 }
1197
David Brazdil0f672f62019-12-10 10:32:29 +00001198 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001199 buf_obj->size,
1200 buf_obj->file->f_flags, buf_obj->file->f_mode,
1201 file_count(buf_obj->file),
David Brazdil0f672f62019-12-10 10:32:29 +00001202 buf_obj->exp_name,
1203 file_inode(buf_obj->file)->i_ino,
1204 buf_obj->name ?: "");
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001205
1206 robj = buf_obj->resv;
1207 while (true) {
1208 seq = read_seqcount_begin(&robj->seq);
1209 rcu_read_lock();
1210 fobj = rcu_dereference(robj->fence);
1211 shared_count = fobj ? fobj->shared_count : 0;
1212 fence = rcu_dereference(robj->fence_excl);
1213 if (!read_seqcount_retry(&robj->seq, seq))
1214 break;
1215 rcu_read_unlock();
1216 }
1217
1218 if (fence)
1219 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1220 fence->ops->get_driver_name(fence),
1221 fence->ops->get_timeline_name(fence),
1222 dma_fence_is_signaled(fence) ? "" : "un");
1223 for (i = 0; i < shared_count; i++) {
1224 fence = rcu_dereference(fobj->shared[i]);
1225 if (!dma_fence_get_rcu(fence))
1226 continue;
1227 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1228 fence->ops->get_driver_name(fence),
1229 fence->ops->get_timeline_name(fence),
1230 dma_fence_is_signaled(fence) ? "" : "un");
David Brazdil0f672f62019-12-10 10:32:29 +00001231 dma_fence_put(fence);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001232 }
1233 rcu_read_unlock();
1234
1235 seq_puts(s, "\tAttached Devices:\n");
1236 attach_count = 0;
1237
1238 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1239 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1240 attach_count++;
1241 }
1242
1243 seq_printf(s, "Total %d devices attached\n\n",
1244 attach_count);
1245
1246 count++;
1247 size += buf_obj->size;
1248 mutex_unlock(&buf_obj->lock);
1249 }
1250
1251 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1252
1253 mutex_unlock(&db_list.lock);
1254 return 0;
1255}
1256
David Brazdil0f672f62019-12-10 10:32:29 +00001257DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001258
1259static struct dentry *dma_buf_debugfs_dir;
1260
1261static int dma_buf_init_debugfs(void)
1262{
1263 struct dentry *d;
1264 int err = 0;
1265
1266 d = debugfs_create_dir("dma_buf", NULL);
1267 if (IS_ERR(d))
1268 return PTR_ERR(d);
1269
1270 dma_buf_debugfs_dir = d;
1271
1272 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1273 NULL, &dma_buf_debug_fops);
1274 if (IS_ERR(d)) {
1275 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1276 debugfs_remove_recursive(dma_buf_debugfs_dir);
1277 dma_buf_debugfs_dir = NULL;
1278 err = PTR_ERR(d);
1279 }
1280
1281 return err;
1282}
1283
1284static void dma_buf_uninit_debugfs(void)
1285{
1286 debugfs_remove_recursive(dma_buf_debugfs_dir);
1287}
1288#else
1289static inline int dma_buf_init_debugfs(void)
1290{
1291 return 0;
1292}
1293static inline void dma_buf_uninit_debugfs(void)
1294{
1295}
1296#endif
1297
1298static int __init dma_buf_init(void)
1299{
David Brazdil0f672f62019-12-10 10:32:29 +00001300 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1301 if (IS_ERR(dma_buf_mnt))
1302 return PTR_ERR(dma_buf_mnt);
1303
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001304 mutex_init(&db_list.lock);
1305 INIT_LIST_HEAD(&db_list.head);
1306 dma_buf_init_debugfs();
1307 return 0;
1308}
1309subsys_initcall(dma_buf_init);
1310
1311static void __exit dma_buf_deinit(void)
1312{
1313 dma_buf_uninit_debugfs();
David Brazdil0f672f62019-12-10 10:32:29 +00001314 kern_unmount(dma_buf_mnt);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001315}
1316__exitcall(dma_buf_deinit);