blob: a0570213170d8a015166120ecebf105720996328 [file] [log] [blame]
David Brazdil0f672f62019-12-10 10:32:29 +00001// SPDX-License-Identifier: GPL-2.0
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00002/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00006 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/ioport.h>
17#include <linux/irq.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/platform_device.h>
22#include <linux/pm_domain.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27
28struct sh_cmt_device;
29
30/*
31 * The CMT comes in 5 different identified flavours, depending not only on the
32 * SoC but also on the particular instance. The following table lists the main
33 * characteristics of those flavours.
34 *
35 * 16B 32B 32B-F 48B R-Car Gen2
36 * -----------------------------------------------------------------------------
37 * Channels 2 1/4 1 6 2/8
38 * Control Width 16 16 16 16 32
39 * Counter Width 16 32 32 32/48 32/48
40 * Shared Start/Stop Y Y Y Y N
41 *
42 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43 * located in the channel registers block. All other versions have a shared
44 * start/stop register located in the global space.
45 *
46 * Channels are indexed from 0 to N-1 in the documentation. The channel index
47 * infers the start/stop bit position in the control register and the channel
48 * registers block address. Some CMT instances have a subset of channels
49 * available, in which case the index in the documentation doesn't match the
50 * "real" index as implemented in hardware. This is for instance the case with
51 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52 * in the documentation but using start/stop bit 5 and having its registers
53 * block at 0x60.
54 *
55 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
56 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
57 */
58
59enum sh_cmt_model {
60 SH_CMT_16BIT,
61 SH_CMT_32BIT,
62 SH_CMT_48BIT,
63 SH_CMT0_RCAR_GEN2,
64 SH_CMT1_RCAR_GEN2,
65};
66
67struct sh_cmt_info {
68 enum sh_cmt_model model;
69
70 unsigned int channels_mask;
71
72 unsigned long width; /* 16 or 32 bit version of hardware block */
David Brazdil0f672f62019-12-10 10:32:29 +000073 u32 overflow_bit;
74 u32 clear_bits;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000075
76 /* callbacks for CMSTR and CMCSR access */
David Brazdil0f672f62019-12-10 10:32:29 +000077 u32 (*read_control)(void __iomem *base, unsigned long offs);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000078 void (*write_control)(void __iomem *base, unsigned long offs,
David Brazdil0f672f62019-12-10 10:32:29 +000079 u32 value);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000080
81 /* callbacks for CMCNT and CMCOR access */
David Brazdil0f672f62019-12-10 10:32:29 +000082 u32 (*read_count)(void __iomem *base, unsigned long offs);
83 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000084};
85
86struct sh_cmt_channel {
87 struct sh_cmt_device *cmt;
88
89 unsigned int index; /* Index in the documentation */
90 unsigned int hwidx; /* Real hardware index */
91
92 void __iomem *iostart;
93 void __iomem *ioctrl;
94
95 unsigned int timer_bit;
96 unsigned long flags;
David Brazdil0f672f62019-12-10 10:32:29 +000097 u32 match_value;
98 u32 next_match_value;
99 u32 max_match_value;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000100 raw_spinlock_t lock;
101 struct clock_event_device ced;
102 struct clocksource cs;
David Brazdil0f672f62019-12-10 10:32:29 +0000103 u64 total_cycles;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000104 bool cs_enabled;
105};
106
107struct sh_cmt_device {
108 struct platform_device *pdev;
109
110 const struct sh_cmt_info *info;
111
112 void __iomem *mapbase;
113 struct clk *clk;
114 unsigned long rate;
115
116 raw_spinlock_t lock; /* Protect the shared start/stop register */
117
118 struct sh_cmt_channel *channels;
119 unsigned int num_channels;
120 unsigned int hw_channels;
121
122 bool has_clockevent;
123 bool has_clocksource;
124};
125
126#define SH_CMT16_CMCSR_CMF (1 << 7)
127#define SH_CMT16_CMCSR_CMIE (1 << 6)
128#define SH_CMT16_CMCSR_CKS8 (0 << 0)
129#define SH_CMT16_CMCSR_CKS32 (1 << 0)
130#define SH_CMT16_CMCSR_CKS128 (2 << 0)
131#define SH_CMT16_CMCSR_CKS512 (3 << 0)
132#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
133
134#define SH_CMT32_CMCSR_CMF (1 << 15)
135#define SH_CMT32_CMCSR_OVF (1 << 14)
136#define SH_CMT32_CMCSR_WRFLG (1 << 13)
137#define SH_CMT32_CMCSR_STTF (1 << 12)
138#define SH_CMT32_CMCSR_STPF (1 << 11)
139#define SH_CMT32_CMCSR_SSIE (1 << 10)
140#define SH_CMT32_CMCSR_CMS (1 << 9)
141#define SH_CMT32_CMCSR_CMM (1 << 8)
142#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
143#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
144#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
145#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
146#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
147#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
148#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
149#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
150#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
151#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
152#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
153
David Brazdil0f672f62019-12-10 10:32:29 +0000154static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000155{
156 return ioread16(base + (offs << 1));
157}
158
David Brazdil0f672f62019-12-10 10:32:29 +0000159static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000160{
161 return ioread32(base + (offs << 2));
162}
163
David Brazdil0f672f62019-12-10 10:32:29 +0000164static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000165{
166 iowrite16(value, base + (offs << 1));
167}
168
David Brazdil0f672f62019-12-10 10:32:29 +0000169static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000170{
171 iowrite32(value, base + (offs << 2));
172}
173
174static const struct sh_cmt_info sh_cmt_info[] = {
175 [SH_CMT_16BIT] = {
176 .model = SH_CMT_16BIT,
177 .width = 16,
178 .overflow_bit = SH_CMT16_CMCSR_CMF,
179 .clear_bits = ~SH_CMT16_CMCSR_CMF,
180 .read_control = sh_cmt_read16,
181 .write_control = sh_cmt_write16,
182 .read_count = sh_cmt_read16,
183 .write_count = sh_cmt_write16,
184 },
185 [SH_CMT_32BIT] = {
186 .model = SH_CMT_32BIT,
187 .width = 32,
188 .overflow_bit = SH_CMT32_CMCSR_CMF,
189 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
190 .read_control = sh_cmt_read16,
191 .write_control = sh_cmt_write16,
192 .read_count = sh_cmt_read32,
193 .write_count = sh_cmt_write32,
194 },
195 [SH_CMT_48BIT] = {
196 .model = SH_CMT_48BIT,
197 .channels_mask = 0x3f,
198 .width = 32,
199 .overflow_bit = SH_CMT32_CMCSR_CMF,
200 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
201 .read_control = sh_cmt_read32,
202 .write_control = sh_cmt_write32,
203 .read_count = sh_cmt_read32,
204 .write_count = sh_cmt_write32,
205 },
206 [SH_CMT0_RCAR_GEN2] = {
207 .model = SH_CMT0_RCAR_GEN2,
208 .channels_mask = 0x60,
209 .width = 32,
210 .overflow_bit = SH_CMT32_CMCSR_CMF,
211 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212 .read_control = sh_cmt_read32,
213 .write_control = sh_cmt_write32,
214 .read_count = sh_cmt_read32,
215 .write_count = sh_cmt_write32,
216 },
217 [SH_CMT1_RCAR_GEN2] = {
218 .model = SH_CMT1_RCAR_GEN2,
219 .channels_mask = 0xff,
220 .width = 32,
221 .overflow_bit = SH_CMT32_CMCSR_CMF,
222 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
223 .read_control = sh_cmt_read32,
224 .write_control = sh_cmt_write32,
225 .read_count = sh_cmt_read32,
226 .write_count = sh_cmt_write32,
227 },
228};
229
230#define CMCSR 0 /* channel register */
231#define CMCNT 1 /* channel register */
232#define CMCOR 2 /* channel register */
233
David Brazdil0f672f62019-12-10 10:32:29 +0000234static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000235{
236 if (ch->iostart)
237 return ch->cmt->info->read_control(ch->iostart, 0);
238 else
239 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
240}
241
David Brazdil0f672f62019-12-10 10:32:29 +0000242static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000243{
244 if (ch->iostart)
245 ch->cmt->info->write_control(ch->iostart, 0, value);
246 else
247 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
248}
249
David Brazdil0f672f62019-12-10 10:32:29 +0000250static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000251{
252 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
253}
254
David Brazdil0f672f62019-12-10 10:32:29 +0000255static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000256{
257 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
258}
259
David Brazdil0f672f62019-12-10 10:32:29 +0000260static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000261{
262 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
263}
264
David Brazdil0f672f62019-12-10 10:32:29 +0000265static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000266{
267 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
268}
269
David Brazdil0f672f62019-12-10 10:32:29 +0000270static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000271{
272 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
273}
274
David Brazdil0f672f62019-12-10 10:32:29 +0000275static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000276{
David Brazdil0f672f62019-12-10 10:32:29 +0000277 u32 v1, v2, v3;
278 u32 o1, o2;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000279
280 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
281
282 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
283 do {
284 o2 = o1;
285 v1 = sh_cmt_read_cmcnt(ch);
286 v2 = sh_cmt_read_cmcnt(ch);
287 v3 = sh_cmt_read_cmcnt(ch);
288 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
290 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
291
292 *has_wrapped = o1;
293 return v2;
294}
295
296static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
297{
David Brazdil0f672f62019-12-10 10:32:29 +0000298 unsigned long flags;
299 u32 value;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000300
301 /* start stop register shared by multiple timer channels */
302 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
303 value = sh_cmt_read_cmstr(ch);
304
305 if (start)
306 value |= 1 << ch->timer_bit;
307 else
308 value &= ~(1 << ch->timer_bit);
309
310 sh_cmt_write_cmstr(ch, value);
311 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
312}
313
314static int sh_cmt_enable(struct sh_cmt_channel *ch)
315{
316 int k, ret;
317
318 pm_runtime_get_sync(&ch->cmt->pdev->dev);
319 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
320
321 /* enable clock */
322 ret = clk_enable(ch->cmt->clk);
323 if (ret) {
324 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
325 ch->index);
326 goto err0;
327 }
328
329 /* make sure channel is disabled */
330 sh_cmt_start_stop_ch(ch, 0);
331
332 /* configure channel, periodic mode and maximum timeout */
333 if (ch->cmt->info->width == 16) {
334 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
335 SH_CMT16_CMCSR_CKS512);
336 } else {
337 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
338 SH_CMT32_CMCSR_CMTOUT_IE |
339 SH_CMT32_CMCSR_CMR_IRQ |
340 SH_CMT32_CMCSR_CKS_RCLK8);
341 }
342
343 sh_cmt_write_cmcor(ch, 0xffffffff);
344 sh_cmt_write_cmcnt(ch, 0);
345
346 /*
347 * According to the sh73a0 user's manual, as CMCNT can be operated
348 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
349 * modifying CMCNT register; two RCLK cycles are necessary before
350 * this register is either read or any modification of the value
351 * it holds is reflected in the LSI's actual operation.
352 *
353 * While at it, we're supposed to clear out the CMCNT as of this
354 * moment, so make sure it's processed properly here. This will
355 * take RCLKx2 at maximum.
356 */
357 for (k = 0; k < 100; k++) {
358 if (!sh_cmt_read_cmcnt(ch))
359 break;
360 udelay(1);
361 }
362
363 if (sh_cmt_read_cmcnt(ch)) {
364 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
365 ch->index);
366 ret = -ETIMEDOUT;
367 goto err1;
368 }
369
370 /* enable channel */
371 sh_cmt_start_stop_ch(ch, 1);
372 return 0;
373 err1:
374 /* stop clock */
375 clk_disable(ch->cmt->clk);
376
377 err0:
378 return ret;
379}
380
381static void sh_cmt_disable(struct sh_cmt_channel *ch)
382{
383 /* disable channel */
384 sh_cmt_start_stop_ch(ch, 0);
385
386 /* disable interrupts in CMT block */
387 sh_cmt_write_cmcsr(ch, 0);
388
389 /* stop clock */
390 clk_disable(ch->cmt->clk);
391
392 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
393 pm_runtime_put(&ch->cmt->pdev->dev);
394}
395
396/* private flags */
397#define FLAG_CLOCKEVENT (1 << 0)
398#define FLAG_CLOCKSOURCE (1 << 1)
399#define FLAG_REPROGRAM (1 << 2)
400#define FLAG_SKIPEVENT (1 << 3)
401#define FLAG_IRQCONTEXT (1 << 4)
402
403static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
404 int absolute)
405{
David Brazdil0f672f62019-12-10 10:32:29 +0000406 u32 value = ch->next_match_value;
407 u32 new_match;
408 u32 delay = 0;
409 u32 now = 0;
410 u32 has_wrapped;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000411
412 now = sh_cmt_get_counter(ch, &has_wrapped);
413 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
414
415 if (has_wrapped) {
416 /* we're competing with the interrupt handler.
417 * -> let the interrupt handler reprogram the timer.
418 * -> interrupt number two handles the event.
419 */
420 ch->flags |= FLAG_SKIPEVENT;
421 return;
422 }
423
424 if (absolute)
425 now = 0;
426
427 do {
428 /* reprogram the timer hardware,
429 * but don't save the new match value yet.
430 */
431 new_match = now + value + delay;
432 if (new_match > ch->max_match_value)
433 new_match = ch->max_match_value;
434
435 sh_cmt_write_cmcor(ch, new_match);
436
437 now = sh_cmt_get_counter(ch, &has_wrapped);
438 if (has_wrapped && (new_match > ch->match_value)) {
439 /* we are changing to a greater match value,
440 * so this wrap must be caused by the counter
441 * matching the old value.
442 * -> first interrupt reprograms the timer.
443 * -> interrupt number two handles the event.
444 */
445 ch->flags |= FLAG_SKIPEVENT;
446 break;
447 }
448
449 if (has_wrapped) {
450 /* we are changing to a smaller match value,
451 * so the wrap must be caused by the counter
452 * matching the new value.
453 * -> save programmed match value.
454 * -> let isr handle the event.
455 */
456 ch->match_value = new_match;
457 break;
458 }
459
460 /* be safe: verify hardware settings */
461 if (now < new_match) {
462 /* timer value is below match value, all good.
463 * this makes sure we won't miss any match events.
464 * -> save programmed match value.
465 * -> let isr handle the event.
466 */
467 ch->match_value = new_match;
468 break;
469 }
470
471 /* the counter has reached a value greater
472 * than our new match value. and since the
473 * has_wrapped flag isn't set we must have
474 * programmed a too close event.
475 * -> increase delay and retry.
476 */
477 if (delay)
478 delay <<= 1;
479 else
480 delay = 1;
481
482 if (!delay)
483 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
484 ch->index);
485
486 } while (delay);
487}
488
489static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
490{
491 if (delta > ch->max_match_value)
492 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
493 ch->index);
494
495 ch->next_match_value = delta;
496 sh_cmt_clock_event_program_verify(ch, 0);
497}
498
499static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
500{
501 unsigned long flags;
502
503 raw_spin_lock_irqsave(&ch->lock, flags);
504 __sh_cmt_set_next(ch, delta);
505 raw_spin_unlock_irqrestore(&ch->lock, flags);
506}
507
508static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
509{
510 struct sh_cmt_channel *ch = dev_id;
511
512 /* clear flags */
513 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
514 ch->cmt->info->clear_bits);
515
516 /* update clock source counter to begin with if enabled
517 * the wrap flag should be cleared by the timer specific
518 * isr before we end up here.
519 */
520 if (ch->flags & FLAG_CLOCKSOURCE)
521 ch->total_cycles += ch->match_value + 1;
522
523 if (!(ch->flags & FLAG_REPROGRAM))
524 ch->next_match_value = ch->max_match_value;
525
526 ch->flags |= FLAG_IRQCONTEXT;
527
528 if (ch->flags & FLAG_CLOCKEVENT) {
529 if (!(ch->flags & FLAG_SKIPEVENT)) {
530 if (clockevent_state_oneshot(&ch->ced)) {
531 ch->next_match_value = ch->max_match_value;
532 ch->flags |= FLAG_REPROGRAM;
533 }
534
535 ch->ced.event_handler(&ch->ced);
536 }
537 }
538
539 ch->flags &= ~FLAG_SKIPEVENT;
540
541 if (ch->flags & FLAG_REPROGRAM) {
542 ch->flags &= ~FLAG_REPROGRAM;
543 sh_cmt_clock_event_program_verify(ch, 1);
544
545 if (ch->flags & FLAG_CLOCKEVENT)
546 if ((clockevent_state_shutdown(&ch->ced))
547 || (ch->match_value == ch->next_match_value))
548 ch->flags &= ~FLAG_REPROGRAM;
549 }
550
551 ch->flags &= ~FLAG_IRQCONTEXT;
552
553 return IRQ_HANDLED;
554}
555
556static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
557{
558 int ret = 0;
559 unsigned long flags;
560
561 raw_spin_lock_irqsave(&ch->lock, flags);
562
563 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
564 ret = sh_cmt_enable(ch);
565
566 if (ret)
567 goto out;
568 ch->flags |= flag;
569
570 /* setup timeout if no clockevent */
Olivier Deprez0e641232021-09-23 10:07:05 +0200571 if (ch->cmt->num_channels == 1 &&
572 flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000573 __sh_cmt_set_next(ch, ch->max_match_value);
574 out:
575 raw_spin_unlock_irqrestore(&ch->lock, flags);
576
577 return ret;
578}
579
580static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
581{
582 unsigned long flags;
583 unsigned long f;
584
585 raw_spin_lock_irqsave(&ch->lock, flags);
586
587 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
588 ch->flags &= ~flag;
589
590 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
591 sh_cmt_disable(ch);
592
593 /* adjust the timeout to maximum if only clocksource left */
594 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
595 __sh_cmt_set_next(ch, ch->max_match_value);
596
597 raw_spin_unlock_irqrestore(&ch->lock, flags);
598}
599
600static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
601{
602 return container_of(cs, struct sh_cmt_channel, cs);
603}
604
605static u64 sh_cmt_clocksource_read(struct clocksource *cs)
606{
607 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
David Brazdil0f672f62019-12-10 10:32:29 +0000608 u32 has_wrapped;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000609
Olivier Deprez0e641232021-09-23 10:07:05 +0200610 if (ch->cmt->num_channels == 1) {
611 unsigned long flags;
612 u64 value;
613 u32 raw;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000614
Olivier Deprez0e641232021-09-23 10:07:05 +0200615 raw_spin_lock_irqsave(&ch->lock, flags);
616 value = ch->total_cycles;
617 raw = sh_cmt_get_counter(ch, &has_wrapped);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000618
Olivier Deprez0e641232021-09-23 10:07:05 +0200619 if (unlikely(has_wrapped))
620 raw += ch->match_value + 1;
621 raw_spin_unlock_irqrestore(&ch->lock, flags);
622
623 return value + raw;
624 }
625
626 return sh_cmt_get_counter(ch, &has_wrapped);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000627}
628
629static int sh_cmt_clocksource_enable(struct clocksource *cs)
630{
631 int ret;
632 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
633
634 WARN_ON(ch->cs_enabled);
635
636 ch->total_cycles = 0;
637
638 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
639 if (!ret)
640 ch->cs_enabled = true;
641
642 return ret;
643}
644
645static void sh_cmt_clocksource_disable(struct clocksource *cs)
646{
647 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
648
649 WARN_ON(!ch->cs_enabled);
650
651 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
652 ch->cs_enabled = false;
653}
654
655static void sh_cmt_clocksource_suspend(struct clocksource *cs)
656{
657 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
658
659 if (!ch->cs_enabled)
660 return;
661
662 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
663 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
664}
665
666static void sh_cmt_clocksource_resume(struct clocksource *cs)
667{
668 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
669
670 if (!ch->cs_enabled)
671 return;
672
673 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
674 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
675}
676
677static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
678 const char *name)
679{
680 struct clocksource *cs = &ch->cs;
681
682 cs->name = name;
683 cs->rating = 125;
684 cs->read = sh_cmt_clocksource_read;
685 cs->enable = sh_cmt_clocksource_enable;
686 cs->disable = sh_cmt_clocksource_disable;
687 cs->suspend = sh_cmt_clocksource_suspend;
688 cs->resume = sh_cmt_clocksource_resume;
Olivier Deprez0e641232021-09-23 10:07:05 +0200689 cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000690 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
691
692 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
693 ch->index);
694
695 clocksource_register_hz(cs, ch->cmt->rate);
696 return 0;
697}
698
699static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
700{
701 return container_of(ced, struct sh_cmt_channel, ced);
702}
703
704static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
705{
706 sh_cmt_start(ch, FLAG_CLOCKEVENT);
707
708 if (periodic)
709 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
710 else
711 sh_cmt_set_next(ch, ch->max_match_value);
712}
713
714static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
715{
716 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
717
718 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
719 return 0;
720}
721
722static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
723 int periodic)
724{
725 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
726
727 /* deal with old setting first */
728 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
729 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
730
731 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
732 ch->index, periodic ? "periodic" : "oneshot");
733 sh_cmt_clock_event_start(ch, periodic);
734 return 0;
735}
736
737static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
738{
739 return sh_cmt_clock_event_set_state(ced, 0);
740}
741
742static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
743{
744 return sh_cmt_clock_event_set_state(ced, 1);
745}
746
747static int sh_cmt_clock_event_next(unsigned long delta,
748 struct clock_event_device *ced)
749{
750 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
751
752 BUG_ON(!clockevent_state_oneshot(ced));
753 if (likely(ch->flags & FLAG_IRQCONTEXT))
754 ch->next_match_value = delta - 1;
755 else
756 sh_cmt_set_next(ch, delta - 1);
757
758 return 0;
759}
760
761static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
762{
763 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
764
765 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
766 clk_unprepare(ch->cmt->clk);
767}
768
769static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
770{
771 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
772
773 clk_prepare(ch->cmt->clk);
774 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
775}
776
777static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
778 const char *name)
779{
780 struct clock_event_device *ced = &ch->ced;
781 int irq;
782 int ret;
783
784 irq = platform_get_irq(ch->cmt->pdev, ch->index);
David Brazdil0f672f62019-12-10 10:32:29 +0000785 if (irq < 0)
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000786 return irq;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000787
788 ret = request_irq(irq, sh_cmt_interrupt,
789 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
790 dev_name(&ch->cmt->pdev->dev), ch);
791 if (ret) {
792 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
793 ch->index, irq);
794 return ret;
795 }
796
797 ced->name = name;
798 ced->features = CLOCK_EVT_FEAT_PERIODIC;
799 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
800 ced->rating = 125;
801 ced->cpumask = cpu_possible_mask;
802 ced->set_next_event = sh_cmt_clock_event_next;
803 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
804 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
805 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
806 ced->suspend = sh_cmt_clock_event_suspend;
807 ced->resume = sh_cmt_clock_event_resume;
808
809 /* TODO: calculate good shift from rate and counter bit width */
810 ced->shift = 32;
811 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
812 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
813 ced->max_delta_ticks = ch->max_match_value;
814 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
815 ced->min_delta_ticks = 0x1f;
816
817 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
818 ch->index);
819 clockevents_register_device(ced);
820
821 return 0;
822}
823
824static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
825 bool clockevent, bool clocksource)
826{
827 int ret;
828
829 if (clockevent) {
830 ch->cmt->has_clockevent = true;
831 ret = sh_cmt_register_clockevent(ch, name);
832 if (ret < 0)
833 return ret;
834 }
835
836 if (clocksource) {
837 ch->cmt->has_clocksource = true;
838 sh_cmt_register_clocksource(ch, name);
839 }
840
841 return 0;
842}
843
844static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
845 unsigned int hwidx, bool clockevent,
846 bool clocksource, struct sh_cmt_device *cmt)
847{
848 int ret;
849
850 /* Skip unused channels. */
851 if (!clockevent && !clocksource)
852 return 0;
853
854 ch->cmt = cmt;
855 ch->index = index;
856 ch->hwidx = hwidx;
857 ch->timer_bit = hwidx;
858
859 /*
860 * Compute the address of the channel control register block. For the
861 * timers with a per-channel start/stop register, compute its address
862 * as well.
863 */
864 switch (cmt->info->model) {
865 case SH_CMT_16BIT:
866 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
867 break;
868 case SH_CMT_32BIT:
869 case SH_CMT_48BIT:
870 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
871 break;
872 case SH_CMT0_RCAR_GEN2:
873 case SH_CMT1_RCAR_GEN2:
874 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
875 ch->ioctrl = ch->iostart + 0x10;
876 ch->timer_bit = 0;
877 break;
878 }
879
880 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
881 ch->max_match_value = ~0;
882 else
883 ch->max_match_value = (1 << cmt->info->width) - 1;
884
885 ch->match_value = ch->max_match_value;
886 raw_spin_lock_init(&ch->lock);
887
888 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
889 clockevent, clocksource);
890 if (ret) {
891 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
892 ch->index);
893 return ret;
894 }
895 ch->cs_enabled = false;
896
897 return 0;
898}
899
900static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
901{
902 struct resource *mem;
903
904 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
905 if (!mem) {
906 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
907 return -ENXIO;
908 }
909
910 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
911 if (cmt->mapbase == NULL) {
912 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
913 return -ENXIO;
914 }
915
916 return 0;
917}
918
919static const struct platform_device_id sh_cmt_id_table[] = {
920 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
921 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
922 { }
923};
924MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
925
926static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
David Brazdil0f672f62019-12-10 10:32:29 +0000927 {
928 /* deprecated, preserved for backward compatibility */
929 .compatible = "renesas,cmt-48",
930 .data = &sh_cmt_info[SH_CMT_48BIT]
931 },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000932 {
933 /* deprecated, preserved for backward compatibility */
934 .compatible = "renesas,cmt-48-gen2",
935 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
936 },
David Brazdil0f672f62019-12-10 10:32:29 +0000937 {
938 .compatible = "renesas,r8a7740-cmt1",
939 .data = &sh_cmt_info[SH_CMT_48BIT]
940 },
941 {
942 .compatible = "renesas,sh73a0-cmt1",
943 .data = &sh_cmt_info[SH_CMT_48BIT]
944 },
945 {
946 .compatible = "renesas,rcar-gen2-cmt0",
947 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
948 },
949 {
950 .compatible = "renesas,rcar-gen2-cmt1",
951 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
952 },
953 {
954 .compatible = "renesas,rcar-gen3-cmt0",
955 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
956 },
957 {
958 .compatible = "renesas,rcar-gen3-cmt1",
959 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
960 },
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000961 { }
962};
963MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
964
965static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
966{
967 unsigned int mask;
968 unsigned int i;
969 int ret;
970
971 cmt->pdev = pdev;
972 raw_spin_lock_init(&cmt->lock);
973
974 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
975 cmt->info = of_device_get_match_data(&pdev->dev);
976 cmt->hw_channels = cmt->info->channels_mask;
977 } else if (pdev->dev.platform_data) {
978 struct sh_timer_config *cfg = pdev->dev.platform_data;
979 const struct platform_device_id *id = pdev->id_entry;
980
981 cmt->info = (const struct sh_cmt_info *)id->driver_data;
982 cmt->hw_channels = cfg->channels_mask;
983 } else {
984 dev_err(&cmt->pdev->dev, "missing platform data\n");
985 return -ENXIO;
986 }
987
988 /* Get hold of clock. */
989 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
990 if (IS_ERR(cmt->clk)) {
991 dev_err(&cmt->pdev->dev, "cannot get clock\n");
992 return PTR_ERR(cmt->clk);
993 }
994
995 ret = clk_prepare(cmt->clk);
996 if (ret < 0)
997 goto err_clk_put;
998
999 /* Determine clock rate. */
1000 ret = clk_enable(cmt->clk);
1001 if (ret < 0)
1002 goto err_clk_unprepare;
1003
1004 if (cmt->info->width == 16)
1005 cmt->rate = clk_get_rate(cmt->clk) / 512;
1006 else
1007 cmt->rate = clk_get_rate(cmt->clk) / 8;
1008
1009 clk_disable(cmt->clk);
1010
1011 /* Map the memory resource(s). */
1012 ret = sh_cmt_map_memory(cmt);
1013 if (ret < 0)
1014 goto err_clk_unprepare;
1015
1016 /* Allocate and setup the channels. */
1017 cmt->num_channels = hweight8(cmt->hw_channels);
1018 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1019 GFP_KERNEL);
1020 if (cmt->channels == NULL) {
1021 ret = -ENOMEM;
1022 goto err_unmap;
1023 }
1024
1025 /*
1026 * Use the first channel as a clock event device and the second channel
1027 * as a clock source. If only one channel is available use it for both.
1028 */
1029 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1030 unsigned int hwidx = ffs(mask) - 1;
1031 bool clocksource = i == 1 || cmt->num_channels == 1;
1032 bool clockevent = i == 0;
1033
1034 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1035 clockevent, clocksource, cmt);
1036 if (ret < 0)
1037 goto err_unmap;
1038
1039 mask &= ~(1 << hwidx);
1040 }
1041
1042 platform_set_drvdata(pdev, cmt);
1043
1044 return 0;
1045
1046err_unmap:
1047 kfree(cmt->channels);
1048 iounmap(cmt->mapbase);
1049err_clk_unprepare:
1050 clk_unprepare(cmt->clk);
1051err_clk_put:
1052 clk_put(cmt->clk);
1053 return ret;
1054}
1055
1056static int sh_cmt_probe(struct platform_device *pdev)
1057{
1058 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1059 int ret;
1060
1061 if (!is_early_platform_device(pdev)) {
1062 pm_runtime_set_active(&pdev->dev);
1063 pm_runtime_enable(&pdev->dev);
1064 }
1065
1066 if (cmt) {
1067 dev_info(&pdev->dev, "kept as earlytimer\n");
1068 goto out;
1069 }
1070
1071 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1072 if (cmt == NULL)
1073 return -ENOMEM;
1074
1075 ret = sh_cmt_setup(cmt, pdev);
1076 if (ret) {
1077 kfree(cmt);
1078 pm_runtime_idle(&pdev->dev);
1079 return ret;
1080 }
1081 if (is_early_platform_device(pdev))
1082 return 0;
1083
1084 out:
1085 if (cmt->has_clockevent || cmt->has_clocksource)
1086 pm_runtime_irq_safe(&pdev->dev);
1087 else
1088 pm_runtime_idle(&pdev->dev);
1089
1090 return 0;
1091}
1092
1093static int sh_cmt_remove(struct platform_device *pdev)
1094{
1095 return -EBUSY; /* cannot unregister clockevent and clocksource */
1096}
1097
1098static struct platform_driver sh_cmt_device_driver = {
1099 .probe = sh_cmt_probe,
1100 .remove = sh_cmt_remove,
1101 .driver = {
1102 .name = "sh_cmt",
1103 .of_match_table = of_match_ptr(sh_cmt_of_table),
1104 },
1105 .id_table = sh_cmt_id_table,
1106};
1107
1108static int __init sh_cmt_init(void)
1109{
1110 return platform_driver_register(&sh_cmt_device_driver);
1111}
1112
1113static void __exit sh_cmt_exit(void)
1114{
1115 platform_driver_unregister(&sh_cmt_device_driver);
1116}
1117
1118early_platform_init("earlytimer", &sh_cmt_device_driver);
1119subsys_initcall(sh_cmt_init);
1120module_exit(sh_cmt_exit);
1121
1122MODULE_AUTHOR("Magnus Damm");
1123MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1124MODULE_LICENSE("GPL v2");