blob: 41200706e6da1fa22b6561cdb743a0580a76186f [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * TSC frequency enumeration via MSR
4 *
5 * Copyright (C) 2013, 2018 Intel Corporation
6 * Author: Bin Gao <bin.gao@intel.com>
7 */
8
9#include <linux/kernel.h>
10
11#include <asm/apic.h>
12#include <asm/cpu_device_id.h>
13#include <asm/intel-family.h>
14#include <asm/msr.h>
15#include <asm/param.h>
16#include <asm/tsc.h>
17
Olivier Deprez0e641232021-09-23 10:07:05 +020018#define MAX_NUM_FREQS 16 /* 4 bits to select the frequency */
19
20/*
21 * The frequency numbers in the SDM are e.g. 83.3 MHz, which does not contain a
22 * lot of accuracy which leads to clock drift. As far as we know Bay Trail SoCs
23 * use a 25 MHz crystal and Cherry Trail uses a 19.2 MHz crystal, the crystal
24 * is the source clk for a root PLL which outputs 1600 and 100 MHz. It is
25 * unclear if the root PLL outputs are used directly by the CPU clock PLL or
26 * if there is another PLL in between.
27 * This does not matter though, we can model the chain of PLLs as a single PLL
28 * with a quotient equal to the quotients of all PLLs in the chain multiplied.
29 * So we can create a simplified model of the CPU clock setup using a reference
30 * clock of 100 MHz plus a quotient which gets us as close to the frequency
31 * from the SDM as possible.
32 * For the 83.3 MHz example from above this would give us 100 MHz * 5 / 6 =
33 * 83 and 1/3 MHz, which matches exactly what has been measured on actual hw.
34 */
35#define TSC_REFERENCE_KHZ 100000
36
37struct muldiv {
38 u32 multiplier;
39 u32 divider;
40};
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000041
42/*
43 * If MSR_PERF_STAT[31] is set, the maximum resolved bus ratio can be
44 * read in MSR_PLATFORM_ID[12:8], otherwise in MSR_PERF_STAT[44:40].
45 * Unfortunately some Intel Atom SoCs aren't quite compliant to this,
46 * so we need manually differentiate SoC families. This is what the
Olivier Deprez0e641232021-09-23 10:07:05 +020047 * field use_msr_plat does.
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000048 */
49struct freq_desc {
Olivier Deprez0e641232021-09-23 10:07:05 +020050 bool use_msr_plat;
51 struct muldiv muldiv[MAX_NUM_FREQS];
52 /*
53 * Some CPU frequencies in the SDM do not map to known PLL freqs, in
54 * that case the muldiv array is empty and the freqs array is used.
55 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000056 u32 freqs[MAX_NUM_FREQS];
Olivier Deprez0e641232021-09-23 10:07:05 +020057 u32 mask;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000058};
59
60/*
61 * Penwell and Clovertrail use spread spectrum clock,
62 * so the freq number is not exactly the same as reported
63 * by MSR based on SDM.
64 */
65static const struct freq_desc freq_desc_pnw = {
Olivier Deprez0e641232021-09-23 10:07:05 +020066 .use_msr_plat = false,
67 .freqs = { 0, 0, 0, 0, 0, 99840, 0, 83200 },
68 .mask = 0x07,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000069};
70
71static const struct freq_desc freq_desc_clv = {
Olivier Deprez0e641232021-09-23 10:07:05 +020072 .use_msr_plat = false,
73 .freqs = { 0, 133200, 0, 0, 0, 99840, 0, 83200 },
74 .mask = 0x07,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000075};
76
Olivier Deprez0e641232021-09-23 10:07:05 +020077/*
78 * Bay Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
79 * 000: 100 * 5 / 6 = 83.3333 MHz
80 * 001: 100 * 1 / 1 = 100.0000 MHz
81 * 010: 100 * 4 / 3 = 133.3333 MHz
82 * 011: 100 * 7 / 6 = 116.6667 MHz
83 * 100: 100 * 4 / 5 = 80.0000 MHz
84 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000085static const struct freq_desc freq_desc_byt = {
Olivier Deprez0e641232021-09-23 10:07:05 +020086 .use_msr_plat = true,
87 .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
88 { 4, 5 } },
89 .mask = 0x07,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +000090};
91
Olivier Deprez0e641232021-09-23 10:07:05 +020092/*
93 * Cherry Trail SDM MSR_FSB_FREQ frequencies simplified PLL model:
94 * 0000: 100 * 5 / 6 = 83.3333 MHz
95 * 0001: 100 * 1 / 1 = 100.0000 MHz
96 * 0010: 100 * 4 / 3 = 133.3333 MHz
97 * 0011: 100 * 7 / 6 = 116.6667 MHz
98 * 0100: 100 * 4 / 5 = 80.0000 MHz
99 * 0101: 100 * 14 / 15 = 93.3333 MHz
100 * 0110: 100 * 9 / 10 = 90.0000 MHz
101 * 0111: 100 * 8 / 9 = 88.8889 MHz
102 * 1000: 100 * 7 / 8 = 87.5000 MHz
103 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000104static const struct freq_desc freq_desc_cht = {
Olivier Deprez0e641232021-09-23 10:07:05 +0200105 .use_msr_plat = true,
106 .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 7, 6 },
107 { 4, 5 }, { 14, 15 }, { 9, 10 }, { 8, 9 },
108 { 7, 8 } },
109 .mask = 0x0f,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000110};
111
Olivier Deprez0e641232021-09-23 10:07:05 +0200112/*
113 * Merriefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
114 * 0001: 100 * 1 / 1 = 100.0000 MHz
115 * 0010: 100 * 4 / 3 = 133.3333 MHz
116 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000117static const struct freq_desc freq_desc_tng = {
Olivier Deprez0e641232021-09-23 10:07:05 +0200118 .use_msr_plat = true,
119 .muldiv = { { 0, 0 }, { 1, 1 }, { 4, 3 } },
120 .mask = 0x07,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000121};
122
Olivier Deprez0e641232021-09-23 10:07:05 +0200123/*
124 * Moorefield SDM MSR_FSB_FREQ frequencies simplified PLL model:
125 * 0000: 100 * 5 / 6 = 83.3333 MHz
126 * 0001: 100 * 1 / 1 = 100.0000 MHz
127 * 0010: 100 * 4 / 3 = 133.3333 MHz
128 * 0011: 100 * 1 / 1 = 100.0000 MHz
129 */
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000130static const struct freq_desc freq_desc_ann = {
Olivier Deprez0e641232021-09-23 10:07:05 +0200131 .use_msr_plat = true,
132 .muldiv = { { 5, 6 }, { 1, 1 }, { 4, 3 }, { 1, 1 } },
133 .mask = 0x0f,
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000134};
135
Olivier Deprez0e641232021-09-23 10:07:05 +0200136/*
137 * 24 MHz crystal? : 24 * 13 / 4 = 78 MHz
138 * Frequency step for Lightning Mountain SoC is fixed to 78 MHz,
139 * so all the frequency entries are 78000.
140 */
David Brazdil0f672f62019-12-10 10:32:29 +0000141static const struct freq_desc freq_desc_lgm = {
Olivier Deprez0e641232021-09-23 10:07:05 +0200142 .use_msr_plat = true,
143 .freqs = { 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000,
144 78000, 78000, 78000, 78000, 78000, 78000, 78000, 78000 },
145 .mask = 0x0f,
David Brazdil0f672f62019-12-10 10:32:29 +0000146};
147
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000148static const struct x86_cpu_id tsc_msr_cpu_ids[] = {
David Brazdil0f672f62019-12-10 10:32:29 +0000149 INTEL_CPU_FAM6(ATOM_SALTWELL_MID, freq_desc_pnw),
150 INTEL_CPU_FAM6(ATOM_SALTWELL_TABLET, freq_desc_clv),
151 INTEL_CPU_FAM6(ATOM_SILVERMONT, freq_desc_byt),
152 INTEL_CPU_FAM6(ATOM_SILVERMONT_MID, freq_desc_tng),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000153 INTEL_CPU_FAM6(ATOM_AIRMONT, freq_desc_cht),
David Brazdil0f672f62019-12-10 10:32:29 +0000154 INTEL_CPU_FAM6(ATOM_AIRMONT_MID, freq_desc_ann),
155 INTEL_CPU_FAM6(ATOM_AIRMONT_NP, freq_desc_lgm),
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000156 {}
157};
158
159/*
160 * MSR-based CPU/TSC frequency discovery for certain CPUs.
161 *
David Brazdil0f672f62019-12-10 10:32:29 +0000162 * Set global "lapic_timer_period" to bus_clock_cycles/jiffy
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000163 * Return processor base frequency in KHz, or 0 on failure.
164 */
165unsigned long cpu_khz_from_msr(void)
166{
Olivier Deprez0e641232021-09-23 10:07:05 +0200167 u32 lo, hi, ratio, freq, tscref;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000168 const struct freq_desc *freq_desc;
169 const struct x86_cpu_id *id;
Olivier Deprez0e641232021-09-23 10:07:05 +0200170 const struct muldiv *md;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000171 unsigned long res;
Olivier Deprez0e641232021-09-23 10:07:05 +0200172 int index;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000173
174 id = x86_match_cpu(tsc_msr_cpu_ids);
175 if (!id)
176 return 0;
177
178 freq_desc = (struct freq_desc *)id->driver_data;
Olivier Deprez0e641232021-09-23 10:07:05 +0200179 if (freq_desc->use_msr_plat) {
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000180 rdmsr(MSR_PLATFORM_INFO, lo, hi);
181 ratio = (lo >> 8) & 0xff;
182 } else {
183 rdmsr(MSR_IA32_PERF_STATUS, lo, hi);
184 ratio = (hi >> 8) & 0x1f;
185 }
186
187 /* Get FSB FREQ ID */
188 rdmsr(MSR_FSB_FREQ, lo, hi);
Olivier Deprez0e641232021-09-23 10:07:05 +0200189 index = lo & freq_desc->mask;
190 md = &freq_desc->muldiv[index];
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000191
Olivier Deprez0e641232021-09-23 10:07:05 +0200192 /*
193 * Note this also catches cases where the index points to an unpopulated
194 * part of muldiv, in that case the else will set freq and res to 0.
195 */
196 if (md->divider) {
197 tscref = TSC_REFERENCE_KHZ * md->multiplier;
198 freq = DIV_ROUND_CLOSEST(tscref, md->divider);
199 /*
200 * Multiplying by ratio before the division has better
201 * accuracy than just calculating freq * ratio.
202 */
203 res = DIV_ROUND_CLOSEST(tscref * ratio, md->divider);
204 } else {
205 freq = freq_desc->freqs[index];
206 res = freq * ratio;
207 }
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000208
Olivier Deprez0e641232021-09-23 10:07:05 +0200209 if (freq == 0)
210 pr_err("Error MSR_FSB_FREQ index %d is unknown\n", index);
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000211
212#ifdef CONFIG_X86_LOCAL_APIC
David Brazdil0f672f62019-12-10 10:32:29 +0000213 lapic_timer_period = (freq * 1000) / HZ;
Andrew Scullb4b6d4a2019-01-02 15:54:55 +0000214#endif
215
216 /*
217 * TSC frequency determined by MSR is always considered "known"
218 * because it is reported by HW.
219 * Another fact is that on MSR capable platforms, PIT/HPET is
220 * generally not available so calibration won't work at all.
221 */
222 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
223
224 /*
225 * Unfortunately there is no way for hardware to tell whether the
226 * TSC is reliable. We were told by silicon design team that TSC
227 * on Atom SoCs are always "reliable". TSC is also the only
228 * reliable clocksource on these SoCs (HPET is either not present
229 * or not functional) so mark TSC reliable which removes the
230 * requirement for a watchdog clocksource.
231 */
232 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
233
234 return res;
235}