Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This file is subject to the terms and conditions of the GNU General Public |
| 3 | * License. See the file "COPYING" in the main directory of this archive |
| 4 | * for more details. |
| 5 | * |
| 6 | * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle |
| 7 | * Copyright (C) 1995, 1996 Paul M. Antoine |
| 8 | * Copyright (C) 1998 Ulf Carlsson |
| 9 | * Copyright (C) 1999 Silicon Graphics, Inc. |
| 10 | * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com |
| 11 | * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki |
| 12 | * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. |
| 13 | * Copyright (C) 2014, Imagination Technologies Ltd. |
| 14 | */ |
| 15 | #include <linux/bitops.h> |
| 16 | #include <linux/bug.h> |
| 17 | #include <linux/compiler.h> |
| 18 | #include <linux/context_tracking.h> |
| 19 | #include <linux/cpu_pm.h> |
| 20 | #include <linux/kexec.h> |
| 21 | #include <linux/init.h> |
| 22 | #include <linux/kernel.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/extable.h> |
| 25 | #include <linux/mm.h> |
| 26 | #include <linux/sched/mm.h> |
| 27 | #include <linux/sched/debug.h> |
| 28 | #include <linux/smp.h> |
| 29 | #include <linux/spinlock.h> |
| 30 | #include <linux/kallsyms.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 31 | #include <linux/memblock.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 32 | #include <linux/interrupt.h> |
| 33 | #include <linux/ptrace.h> |
| 34 | #include <linux/kgdb.h> |
| 35 | #include <linux/kdebug.h> |
| 36 | #include <linux/kprobes.h> |
| 37 | #include <linux/notifier.h> |
| 38 | #include <linux/kdb.h> |
| 39 | #include <linux/irq.h> |
| 40 | #include <linux/perf_event.h> |
| 41 | |
| 42 | #include <asm/addrspace.h> |
| 43 | #include <asm/bootinfo.h> |
| 44 | #include <asm/branch.h> |
| 45 | #include <asm/break.h> |
| 46 | #include <asm/cop2.h> |
| 47 | #include <asm/cpu.h> |
| 48 | #include <asm/cpu-type.h> |
| 49 | #include <asm/dsp.h> |
| 50 | #include <asm/fpu.h> |
| 51 | #include <asm/fpu_emulator.h> |
| 52 | #include <asm/idle.h> |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 53 | #include <asm/isa-rev.h> |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 54 | #include <asm/mips-cps.h> |
| 55 | #include <asm/mips-r2-to-r6-emul.h> |
| 56 | #include <asm/mipsregs.h> |
| 57 | #include <asm/mipsmtregs.h> |
| 58 | #include <asm/module.h> |
| 59 | #include <asm/msa.h> |
| 60 | #include <asm/pgtable.h> |
| 61 | #include <asm/ptrace.h> |
| 62 | #include <asm/sections.h> |
| 63 | #include <asm/siginfo.h> |
| 64 | #include <asm/tlbdebug.h> |
| 65 | #include <asm/traps.h> |
| 66 | #include <linux/uaccess.h> |
| 67 | #include <asm/watch.h> |
| 68 | #include <asm/mmu_context.h> |
| 69 | #include <asm/types.h> |
| 70 | #include <asm/stacktrace.h> |
| 71 | #include <asm/tlbex.h> |
| 72 | #include <asm/uasm.h> |
| 73 | |
| 74 | extern void check_wait(void); |
| 75 | extern asmlinkage void rollback_handle_int(void); |
| 76 | extern asmlinkage void handle_int(void); |
| 77 | extern asmlinkage void handle_adel(void); |
| 78 | extern asmlinkage void handle_ades(void); |
| 79 | extern asmlinkage void handle_ibe(void); |
| 80 | extern asmlinkage void handle_dbe(void); |
| 81 | extern asmlinkage void handle_sys(void); |
| 82 | extern asmlinkage void handle_bp(void); |
| 83 | extern asmlinkage void handle_ri(void); |
| 84 | extern asmlinkage void handle_ri_rdhwr_tlbp(void); |
| 85 | extern asmlinkage void handle_ri_rdhwr(void); |
| 86 | extern asmlinkage void handle_cpu(void); |
| 87 | extern asmlinkage void handle_ov(void); |
| 88 | extern asmlinkage void handle_tr(void); |
| 89 | extern asmlinkage void handle_msa_fpe(void); |
| 90 | extern asmlinkage void handle_fpe(void); |
| 91 | extern asmlinkage void handle_ftlb(void); |
| 92 | extern asmlinkage void handle_msa(void); |
| 93 | extern asmlinkage void handle_mdmx(void); |
| 94 | extern asmlinkage void handle_watch(void); |
| 95 | extern asmlinkage void handle_mt(void); |
| 96 | extern asmlinkage void handle_dsp(void); |
| 97 | extern asmlinkage void handle_mcheck(void); |
| 98 | extern asmlinkage void handle_reserved(void); |
| 99 | extern void tlb_do_page_fault_0(void); |
| 100 | |
| 101 | void (*board_be_init)(void); |
| 102 | int (*board_be_handler)(struct pt_regs *regs, int is_fixup); |
| 103 | void (*board_nmi_handler_setup)(void); |
| 104 | void (*board_ejtag_handler_setup)(void); |
| 105 | void (*board_bind_eic_interrupt)(int irq, int regset); |
| 106 | void (*board_ebase_setup)(void); |
| 107 | void(*board_cache_error_setup)(void); |
| 108 | |
| 109 | static void show_raw_backtrace(unsigned long reg29) |
| 110 | { |
| 111 | unsigned long *sp = (unsigned long *)(reg29 & ~3); |
| 112 | unsigned long addr; |
| 113 | |
| 114 | printk("Call Trace:"); |
| 115 | #ifdef CONFIG_KALLSYMS |
| 116 | printk("\n"); |
| 117 | #endif |
| 118 | while (!kstack_end(sp)) { |
| 119 | unsigned long __user *p = |
| 120 | (unsigned long __user *)(unsigned long)sp++; |
| 121 | if (__get_user(addr, p)) { |
| 122 | printk(" (Bad stack address)"); |
| 123 | break; |
| 124 | } |
| 125 | if (__kernel_text_address(addr)) |
| 126 | print_ip_sym(addr); |
| 127 | } |
| 128 | printk("\n"); |
| 129 | } |
| 130 | |
| 131 | #ifdef CONFIG_KALLSYMS |
| 132 | int raw_show_trace; |
| 133 | static int __init set_raw_show_trace(char *str) |
| 134 | { |
| 135 | raw_show_trace = 1; |
| 136 | return 1; |
| 137 | } |
| 138 | __setup("raw_show_trace", set_raw_show_trace); |
| 139 | #endif |
| 140 | |
| 141 | static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) |
| 142 | { |
| 143 | unsigned long sp = regs->regs[29]; |
| 144 | unsigned long ra = regs->regs[31]; |
| 145 | unsigned long pc = regs->cp0_epc; |
| 146 | |
| 147 | if (!task) |
| 148 | task = current; |
| 149 | |
| 150 | if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { |
| 151 | show_raw_backtrace(sp); |
| 152 | return; |
| 153 | } |
| 154 | printk("Call Trace:\n"); |
| 155 | do { |
| 156 | print_ip_sym(pc); |
| 157 | pc = unwind_stack(task, &sp, pc, &ra); |
| 158 | } while (pc); |
| 159 | pr_cont("\n"); |
| 160 | } |
| 161 | |
| 162 | /* |
| 163 | * This routine abuses get_user()/put_user() to reference pointers |
| 164 | * with at least a bit of error checking ... |
| 165 | */ |
| 166 | static void show_stacktrace(struct task_struct *task, |
| 167 | const struct pt_regs *regs) |
| 168 | { |
| 169 | const int field = 2 * sizeof(unsigned long); |
| 170 | long stackdata; |
| 171 | int i; |
| 172 | unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; |
| 173 | |
| 174 | printk("Stack :"); |
| 175 | i = 0; |
| 176 | while ((unsigned long) sp & (PAGE_SIZE - 1)) { |
| 177 | if (i && ((i % (64 / field)) == 0)) { |
| 178 | pr_cont("\n"); |
| 179 | printk(" "); |
| 180 | } |
| 181 | if (i > 39) { |
| 182 | pr_cont(" ..."); |
| 183 | break; |
| 184 | } |
| 185 | |
| 186 | if (__get_user(stackdata, sp++)) { |
| 187 | pr_cont(" (Bad stack address)"); |
| 188 | break; |
| 189 | } |
| 190 | |
| 191 | pr_cont(" %0*lx", field, stackdata); |
| 192 | i++; |
| 193 | } |
| 194 | pr_cont("\n"); |
| 195 | show_backtrace(task, regs); |
| 196 | } |
| 197 | |
| 198 | void show_stack(struct task_struct *task, unsigned long *sp) |
| 199 | { |
| 200 | struct pt_regs regs; |
| 201 | mm_segment_t old_fs = get_fs(); |
| 202 | |
| 203 | regs.cp0_status = KSU_KERNEL; |
| 204 | if (sp) { |
| 205 | regs.regs[29] = (unsigned long)sp; |
| 206 | regs.regs[31] = 0; |
| 207 | regs.cp0_epc = 0; |
| 208 | } else { |
| 209 | if (task && task != current) { |
| 210 | regs.regs[29] = task->thread.reg29; |
| 211 | regs.regs[31] = 0; |
| 212 | regs.cp0_epc = task->thread.reg31; |
| 213 | #ifdef CONFIG_KGDB_KDB |
| 214 | } else if (atomic_read(&kgdb_active) != -1 && |
| 215 | kdb_current_regs) { |
| 216 | memcpy(®s, kdb_current_regs, sizeof(regs)); |
| 217 | #endif /* CONFIG_KGDB_KDB */ |
| 218 | } else { |
| 219 | prepare_frametrace(®s); |
| 220 | } |
| 221 | } |
| 222 | /* |
| 223 | * show_stack() deals exclusively with kernel mode, so be sure to access |
| 224 | * the stack in the kernel (not user) address space. |
| 225 | */ |
| 226 | set_fs(KERNEL_DS); |
| 227 | show_stacktrace(task, ®s); |
| 228 | set_fs(old_fs); |
| 229 | } |
| 230 | |
| 231 | static void show_code(unsigned int __user *pc) |
| 232 | { |
| 233 | long i; |
| 234 | unsigned short __user *pc16 = NULL; |
| 235 | |
| 236 | printk("Code:"); |
| 237 | |
| 238 | if ((unsigned long)pc & 1) |
| 239 | pc16 = (unsigned short __user *)((unsigned long)pc & ~1); |
| 240 | for(i = -3 ; i < 6 ; i++) { |
| 241 | unsigned int insn; |
| 242 | if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { |
| 243 | pr_cont(" (Bad address in epc)\n"); |
| 244 | break; |
| 245 | } |
| 246 | pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); |
| 247 | } |
| 248 | pr_cont("\n"); |
| 249 | } |
| 250 | |
| 251 | static void __show_regs(const struct pt_regs *regs) |
| 252 | { |
| 253 | const int field = 2 * sizeof(unsigned long); |
| 254 | unsigned int cause = regs->cp0_cause; |
| 255 | unsigned int exccode; |
| 256 | int i; |
| 257 | |
| 258 | show_regs_print_info(KERN_DEFAULT); |
| 259 | |
| 260 | /* |
| 261 | * Saved main processor registers |
| 262 | */ |
| 263 | for (i = 0; i < 32; ) { |
| 264 | if ((i % 4) == 0) |
| 265 | printk("$%2d :", i); |
| 266 | if (i == 0) |
| 267 | pr_cont(" %0*lx", field, 0UL); |
| 268 | else if (i == 26 || i == 27) |
| 269 | pr_cont(" %*s", field, ""); |
| 270 | else |
| 271 | pr_cont(" %0*lx", field, regs->regs[i]); |
| 272 | |
| 273 | i++; |
| 274 | if ((i % 4) == 0) |
| 275 | pr_cont("\n"); |
| 276 | } |
| 277 | |
| 278 | #ifdef CONFIG_CPU_HAS_SMARTMIPS |
| 279 | printk("Acx : %0*lx\n", field, regs->acx); |
| 280 | #endif |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 281 | if (MIPS_ISA_REV < 6) { |
| 282 | printk("Hi : %0*lx\n", field, regs->hi); |
| 283 | printk("Lo : %0*lx\n", field, regs->lo); |
| 284 | } |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 285 | |
| 286 | /* |
| 287 | * Saved cp0 registers |
| 288 | */ |
| 289 | printk("epc : %0*lx %pS\n", field, regs->cp0_epc, |
| 290 | (void *) regs->cp0_epc); |
| 291 | printk("ra : %0*lx %pS\n", field, regs->regs[31], |
| 292 | (void *) regs->regs[31]); |
| 293 | |
| 294 | printk("Status: %08x ", (uint32_t) regs->cp0_status); |
| 295 | |
| 296 | if (cpu_has_3kex) { |
| 297 | if (regs->cp0_status & ST0_KUO) |
| 298 | pr_cont("KUo "); |
| 299 | if (regs->cp0_status & ST0_IEO) |
| 300 | pr_cont("IEo "); |
| 301 | if (regs->cp0_status & ST0_KUP) |
| 302 | pr_cont("KUp "); |
| 303 | if (regs->cp0_status & ST0_IEP) |
| 304 | pr_cont("IEp "); |
| 305 | if (regs->cp0_status & ST0_KUC) |
| 306 | pr_cont("KUc "); |
| 307 | if (regs->cp0_status & ST0_IEC) |
| 308 | pr_cont("IEc "); |
| 309 | } else if (cpu_has_4kex) { |
| 310 | if (regs->cp0_status & ST0_KX) |
| 311 | pr_cont("KX "); |
| 312 | if (regs->cp0_status & ST0_SX) |
| 313 | pr_cont("SX "); |
| 314 | if (regs->cp0_status & ST0_UX) |
| 315 | pr_cont("UX "); |
| 316 | switch (regs->cp0_status & ST0_KSU) { |
| 317 | case KSU_USER: |
| 318 | pr_cont("USER "); |
| 319 | break; |
| 320 | case KSU_SUPERVISOR: |
| 321 | pr_cont("SUPERVISOR "); |
| 322 | break; |
| 323 | case KSU_KERNEL: |
| 324 | pr_cont("KERNEL "); |
| 325 | break; |
| 326 | default: |
| 327 | pr_cont("BAD_MODE "); |
| 328 | break; |
| 329 | } |
| 330 | if (regs->cp0_status & ST0_ERL) |
| 331 | pr_cont("ERL "); |
| 332 | if (regs->cp0_status & ST0_EXL) |
| 333 | pr_cont("EXL "); |
| 334 | if (regs->cp0_status & ST0_IE) |
| 335 | pr_cont("IE "); |
| 336 | } |
| 337 | pr_cont("\n"); |
| 338 | |
| 339 | exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; |
| 340 | printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); |
| 341 | |
| 342 | if (1 <= exccode && exccode <= 5) |
| 343 | printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); |
| 344 | |
| 345 | printk("PrId : %08x (%s)\n", read_c0_prid(), |
| 346 | cpu_name_string()); |
| 347 | } |
| 348 | |
| 349 | /* |
| 350 | * FIXME: really the generic show_regs should take a const pointer argument. |
| 351 | */ |
| 352 | void show_regs(struct pt_regs *regs) |
| 353 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 354 | __show_regs(regs); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 355 | dump_stack(); |
| 356 | } |
| 357 | |
| 358 | void show_registers(struct pt_regs *regs) |
| 359 | { |
| 360 | const int field = 2 * sizeof(unsigned long); |
| 361 | mm_segment_t old_fs = get_fs(); |
| 362 | |
| 363 | __show_regs(regs); |
| 364 | print_modules(); |
| 365 | printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", |
| 366 | current->comm, current->pid, current_thread_info(), current, |
| 367 | field, current_thread_info()->tp_value); |
| 368 | if (cpu_has_userlocal) { |
| 369 | unsigned long tls; |
| 370 | |
| 371 | tls = read_c0_userlocal(); |
| 372 | if (tls != current_thread_info()->tp_value) |
| 373 | printk("*HwTLS: %0*lx\n", field, tls); |
| 374 | } |
| 375 | |
| 376 | if (!user_mode(regs)) |
| 377 | /* Necessary for getting the correct stack content */ |
| 378 | set_fs(KERNEL_DS); |
| 379 | show_stacktrace(current, regs); |
| 380 | show_code((unsigned int __user *) regs->cp0_epc); |
| 381 | printk("\n"); |
| 382 | set_fs(old_fs); |
| 383 | } |
| 384 | |
| 385 | static DEFINE_RAW_SPINLOCK(die_lock); |
| 386 | |
| 387 | void __noreturn die(const char *str, struct pt_regs *regs) |
| 388 | { |
| 389 | static int die_counter; |
| 390 | int sig = SIGSEGV; |
| 391 | |
| 392 | oops_enter(); |
| 393 | |
| 394 | if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, |
| 395 | SIGSEGV) == NOTIFY_STOP) |
| 396 | sig = 0; |
| 397 | |
| 398 | console_verbose(); |
| 399 | raw_spin_lock_irq(&die_lock); |
| 400 | bust_spinlocks(1); |
| 401 | |
| 402 | printk("%s[#%d]:\n", str, ++die_counter); |
| 403 | show_registers(regs); |
| 404 | add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); |
| 405 | raw_spin_unlock_irq(&die_lock); |
| 406 | |
| 407 | oops_exit(); |
| 408 | |
| 409 | if (in_interrupt()) |
| 410 | panic("Fatal exception in interrupt"); |
| 411 | |
| 412 | if (panic_on_oops) |
| 413 | panic("Fatal exception"); |
| 414 | |
| 415 | if (regs && kexec_should_crash(current)) |
| 416 | crash_kexec(regs); |
| 417 | |
| 418 | do_exit(sig); |
| 419 | } |
| 420 | |
| 421 | extern struct exception_table_entry __start___dbe_table[]; |
| 422 | extern struct exception_table_entry __stop___dbe_table[]; |
| 423 | |
| 424 | __asm__( |
| 425 | " .section __dbe_table, \"a\"\n" |
| 426 | " .previous \n"); |
| 427 | |
| 428 | /* Given an address, look for it in the exception tables. */ |
| 429 | static const struct exception_table_entry *search_dbe_tables(unsigned long addr) |
| 430 | { |
| 431 | const struct exception_table_entry *e; |
| 432 | |
| 433 | e = search_extable(__start___dbe_table, |
| 434 | __stop___dbe_table - __start___dbe_table, addr); |
| 435 | if (!e) |
| 436 | e = search_module_dbetables(addr); |
| 437 | return e; |
| 438 | } |
| 439 | |
| 440 | asmlinkage void do_be(struct pt_regs *regs) |
| 441 | { |
| 442 | const int field = 2 * sizeof(unsigned long); |
| 443 | const struct exception_table_entry *fixup = NULL; |
| 444 | int data = regs->cp0_cause & 4; |
| 445 | int action = MIPS_BE_FATAL; |
| 446 | enum ctx_state prev_state; |
| 447 | |
| 448 | prev_state = exception_enter(); |
| 449 | /* XXX For now. Fixme, this searches the wrong table ... */ |
| 450 | if (data && !user_mode(regs)) |
| 451 | fixup = search_dbe_tables(exception_epc(regs)); |
| 452 | |
| 453 | if (fixup) |
| 454 | action = MIPS_BE_FIXUP; |
| 455 | |
| 456 | if (board_be_handler) |
| 457 | action = board_be_handler(regs, fixup != NULL); |
| 458 | else |
| 459 | mips_cm_error_report(); |
| 460 | |
| 461 | switch (action) { |
| 462 | case MIPS_BE_DISCARD: |
| 463 | goto out; |
| 464 | case MIPS_BE_FIXUP: |
| 465 | if (fixup) { |
| 466 | regs->cp0_epc = fixup->nextinsn; |
| 467 | goto out; |
| 468 | } |
| 469 | break; |
| 470 | default: |
| 471 | break; |
| 472 | } |
| 473 | |
| 474 | /* |
| 475 | * Assume it would be too dangerous to continue ... |
| 476 | */ |
| 477 | printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", |
| 478 | data ? "Data" : "Instruction", |
| 479 | field, regs->cp0_epc, field, regs->regs[31]); |
| 480 | if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, |
| 481 | SIGBUS) == NOTIFY_STOP) |
| 482 | goto out; |
| 483 | |
| 484 | die_if_kernel("Oops", regs); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 485 | force_sig(SIGBUS); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 486 | |
| 487 | out: |
| 488 | exception_exit(prev_state); |
| 489 | } |
| 490 | |
| 491 | /* |
| 492 | * ll/sc, rdhwr, sync emulation |
| 493 | */ |
| 494 | |
| 495 | #define OPCODE 0xfc000000 |
| 496 | #define BASE 0x03e00000 |
| 497 | #define RT 0x001f0000 |
| 498 | #define OFFSET 0x0000ffff |
| 499 | #define LL 0xc0000000 |
| 500 | #define SC 0xe0000000 |
| 501 | #define SPEC0 0x00000000 |
| 502 | #define SPEC3 0x7c000000 |
| 503 | #define RD 0x0000f800 |
| 504 | #define FUNC 0x0000003f |
| 505 | #define SYNC 0x0000000f |
| 506 | #define RDHWR 0x0000003b |
| 507 | |
| 508 | /* microMIPS definitions */ |
| 509 | #define MM_POOL32A_FUNC 0xfc00ffff |
| 510 | #define MM_RDHWR 0x00006b3c |
| 511 | #define MM_RS 0x001f0000 |
| 512 | #define MM_RT 0x03e00000 |
| 513 | |
| 514 | /* |
| 515 | * The ll_bit is cleared by r*_switch.S |
| 516 | */ |
| 517 | |
| 518 | unsigned int ll_bit; |
| 519 | struct task_struct *ll_task; |
| 520 | |
| 521 | static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) |
| 522 | { |
| 523 | unsigned long value, __user *vaddr; |
| 524 | long offset; |
| 525 | |
| 526 | /* |
| 527 | * analyse the ll instruction that just caused a ri exception |
| 528 | * and put the referenced address to addr. |
| 529 | */ |
| 530 | |
| 531 | /* sign extend offset */ |
| 532 | offset = opcode & OFFSET; |
| 533 | offset <<= 16; |
| 534 | offset >>= 16; |
| 535 | |
| 536 | vaddr = (unsigned long __user *) |
| 537 | ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); |
| 538 | |
| 539 | if ((unsigned long)vaddr & 3) |
| 540 | return SIGBUS; |
| 541 | if (get_user(value, vaddr)) |
| 542 | return SIGSEGV; |
| 543 | |
| 544 | preempt_disable(); |
| 545 | |
| 546 | if (ll_task == NULL || ll_task == current) { |
| 547 | ll_bit = 1; |
| 548 | } else { |
| 549 | ll_bit = 0; |
| 550 | } |
| 551 | ll_task = current; |
| 552 | |
| 553 | preempt_enable(); |
| 554 | |
| 555 | regs->regs[(opcode & RT) >> 16] = value; |
| 556 | |
| 557 | return 0; |
| 558 | } |
| 559 | |
| 560 | static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) |
| 561 | { |
| 562 | unsigned long __user *vaddr; |
| 563 | unsigned long reg; |
| 564 | long offset; |
| 565 | |
| 566 | /* |
| 567 | * analyse the sc instruction that just caused a ri exception |
| 568 | * and put the referenced address to addr. |
| 569 | */ |
| 570 | |
| 571 | /* sign extend offset */ |
| 572 | offset = opcode & OFFSET; |
| 573 | offset <<= 16; |
| 574 | offset >>= 16; |
| 575 | |
| 576 | vaddr = (unsigned long __user *) |
| 577 | ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); |
| 578 | reg = (opcode & RT) >> 16; |
| 579 | |
| 580 | if ((unsigned long)vaddr & 3) |
| 581 | return SIGBUS; |
| 582 | |
| 583 | preempt_disable(); |
| 584 | |
| 585 | if (ll_bit == 0 || ll_task != current) { |
| 586 | regs->regs[reg] = 0; |
| 587 | preempt_enable(); |
| 588 | return 0; |
| 589 | } |
| 590 | |
| 591 | preempt_enable(); |
| 592 | |
| 593 | if (put_user(regs->regs[reg], vaddr)) |
| 594 | return SIGSEGV; |
| 595 | |
| 596 | regs->regs[reg] = 1; |
| 597 | |
| 598 | return 0; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both |
| 603 | * opcodes are supposed to result in coprocessor unusable exceptions if |
| 604 | * executed on ll/sc-less processors. That's the theory. In practice a |
| 605 | * few processors such as NEC's VR4100 throw reserved instruction exceptions |
| 606 | * instead, so we're doing the emulation thing in both exception handlers. |
| 607 | */ |
| 608 | static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) |
| 609 | { |
| 610 | if ((opcode & OPCODE) == LL) { |
| 611 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 612 | 1, regs, 0); |
| 613 | return simulate_ll(regs, opcode); |
| 614 | } |
| 615 | if ((opcode & OPCODE) == SC) { |
| 616 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 617 | 1, regs, 0); |
| 618 | return simulate_sc(regs, opcode); |
| 619 | } |
| 620 | |
| 621 | return -1; /* Must be something else ... */ |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | * Simulate trapping 'rdhwr' instructions to provide user accessible |
| 626 | * registers not implemented in hardware. |
| 627 | */ |
| 628 | static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) |
| 629 | { |
| 630 | struct thread_info *ti = task_thread_info(current); |
| 631 | |
| 632 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 633 | 1, regs, 0); |
| 634 | switch (rd) { |
| 635 | case MIPS_HWR_CPUNUM: /* CPU number */ |
| 636 | regs->regs[rt] = smp_processor_id(); |
| 637 | return 0; |
| 638 | case MIPS_HWR_SYNCISTEP: /* SYNCI length */ |
| 639 | regs->regs[rt] = min(current_cpu_data.dcache.linesz, |
| 640 | current_cpu_data.icache.linesz); |
| 641 | return 0; |
| 642 | case MIPS_HWR_CC: /* Read count register */ |
| 643 | regs->regs[rt] = read_c0_count(); |
| 644 | return 0; |
| 645 | case MIPS_HWR_CCRES: /* Count register resolution */ |
| 646 | switch (current_cpu_type()) { |
| 647 | case CPU_20KC: |
| 648 | case CPU_25KF: |
| 649 | regs->regs[rt] = 1; |
| 650 | break; |
| 651 | default: |
| 652 | regs->regs[rt] = 2; |
| 653 | } |
| 654 | return 0; |
| 655 | case MIPS_HWR_ULR: /* Read UserLocal register */ |
| 656 | regs->regs[rt] = ti->tp_value; |
| 657 | return 0; |
| 658 | default: |
| 659 | return -1; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) |
| 664 | { |
| 665 | if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { |
| 666 | int rd = (opcode & RD) >> 11; |
| 667 | int rt = (opcode & RT) >> 16; |
| 668 | |
| 669 | simulate_rdhwr(regs, rd, rt); |
| 670 | return 0; |
| 671 | } |
| 672 | |
| 673 | /* Not ours. */ |
| 674 | return -1; |
| 675 | } |
| 676 | |
| 677 | static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode) |
| 678 | { |
| 679 | if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { |
| 680 | int rd = (opcode & MM_RS) >> 16; |
| 681 | int rt = (opcode & MM_RT) >> 21; |
| 682 | simulate_rdhwr(regs, rd, rt); |
| 683 | return 0; |
| 684 | } |
| 685 | |
| 686 | /* Not ours. */ |
| 687 | return -1; |
| 688 | } |
| 689 | |
| 690 | static int simulate_sync(struct pt_regs *regs, unsigned int opcode) |
| 691 | { |
| 692 | if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { |
| 693 | perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, |
| 694 | 1, regs, 0); |
| 695 | return 0; |
| 696 | } |
| 697 | |
| 698 | return -1; /* Must be something else ... */ |
| 699 | } |
| 700 | |
| 701 | asmlinkage void do_ov(struct pt_regs *regs) |
| 702 | { |
| 703 | enum ctx_state prev_state; |
| 704 | |
| 705 | prev_state = exception_enter(); |
| 706 | die_if_kernel("Integer overflow", regs); |
| 707 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 708 | force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 709 | exception_exit(prev_state); |
| 710 | } |
| 711 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 712 | #ifdef CONFIG_MIPS_FP_SUPPORT |
| 713 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 714 | /* |
| 715 | * Send SIGFPE according to FCSR Cause bits, which must have already |
| 716 | * been masked against Enable bits. This is impotant as Inexact can |
| 717 | * happen together with Overflow or Underflow, and `ptrace' can set |
| 718 | * any bits. |
| 719 | */ |
| 720 | void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, |
| 721 | struct task_struct *tsk) |
| 722 | { |
| 723 | int si_code = FPE_FLTUNK; |
| 724 | |
| 725 | if (fcr31 & FPU_CSR_INV_X) |
| 726 | si_code = FPE_FLTINV; |
| 727 | else if (fcr31 & FPU_CSR_DIV_X) |
| 728 | si_code = FPE_FLTDIV; |
| 729 | else if (fcr31 & FPU_CSR_OVF_X) |
| 730 | si_code = FPE_FLTOVF; |
| 731 | else if (fcr31 & FPU_CSR_UDF_X) |
| 732 | si_code = FPE_FLTUND; |
| 733 | else if (fcr31 & FPU_CSR_INE_X) |
| 734 | si_code = FPE_FLTRES; |
| 735 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 736 | force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 737 | } |
| 738 | |
| 739 | int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) |
| 740 | { |
| 741 | int si_code; |
| 742 | struct vm_area_struct *vma; |
| 743 | |
| 744 | switch (sig) { |
| 745 | case 0: |
| 746 | return 0; |
| 747 | |
| 748 | case SIGFPE: |
| 749 | force_fcr31_sig(fcr31, fault_addr, current); |
| 750 | return 1; |
| 751 | |
| 752 | case SIGBUS: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 753 | force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 754 | return 1; |
| 755 | |
| 756 | case SIGSEGV: |
| 757 | down_read(¤t->mm->mmap_sem); |
| 758 | vma = find_vma(current->mm, (unsigned long)fault_addr); |
| 759 | if (vma && (vma->vm_start <= (unsigned long)fault_addr)) |
| 760 | si_code = SEGV_ACCERR; |
| 761 | else |
| 762 | si_code = SEGV_MAPERR; |
| 763 | up_read(¤t->mm->mmap_sem); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 764 | force_sig_fault(SIGSEGV, si_code, fault_addr); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 765 | return 1; |
| 766 | |
| 767 | default: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 768 | force_sig(sig); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 769 | return 1; |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | static int simulate_fp(struct pt_regs *regs, unsigned int opcode, |
| 774 | unsigned long old_epc, unsigned long old_ra) |
| 775 | { |
| 776 | union mips_instruction inst = { .word = opcode }; |
| 777 | void __user *fault_addr; |
| 778 | unsigned long fcr31; |
| 779 | int sig; |
| 780 | |
| 781 | /* If it's obviously not an FP instruction, skip it */ |
| 782 | switch (inst.i_format.opcode) { |
| 783 | case cop1_op: |
| 784 | case cop1x_op: |
| 785 | case lwc1_op: |
| 786 | case ldc1_op: |
| 787 | case swc1_op: |
| 788 | case sdc1_op: |
| 789 | break; |
| 790 | |
| 791 | default: |
| 792 | return -1; |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * do_ri skipped over the instruction via compute_return_epc, undo |
| 797 | * that for the FPU emulator. |
| 798 | */ |
| 799 | regs->cp0_epc = old_epc; |
| 800 | regs->regs[31] = old_ra; |
| 801 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 802 | /* Run the emulator */ |
| 803 | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, |
| 804 | &fault_addr); |
| 805 | |
| 806 | /* |
| 807 | * We can't allow the emulated instruction to leave any |
| 808 | * enabled Cause bits set in $fcr31. |
| 809 | */ |
| 810 | fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); |
| 811 | current->thread.fpu.fcr31 &= ~fcr31; |
| 812 | |
| 813 | /* Restore the hardware register state */ |
| 814 | own_fpu(1); |
| 815 | |
| 816 | /* Send a signal if required. */ |
| 817 | process_fpemu_return(sig, fault_addr, fcr31); |
| 818 | |
| 819 | return 0; |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * XXX Delayed fp exceptions when doing a lazy ctx switch XXX |
| 824 | */ |
| 825 | asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) |
| 826 | { |
| 827 | enum ctx_state prev_state; |
| 828 | void __user *fault_addr; |
| 829 | int sig; |
| 830 | |
| 831 | prev_state = exception_enter(); |
| 832 | if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, |
| 833 | SIGFPE) == NOTIFY_STOP) |
| 834 | goto out; |
| 835 | |
| 836 | /* Clear FCSR.Cause before enabling interrupts */ |
| 837 | write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); |
| 838 | local_irq_enable(); |
| 839 | |
| 840 | die_if_kernel("FP exception in kernel code", regs); |
| 841 | |
| 842 | if (fcr31 & FPU_CSR_UNI_X) { |
| 843 | /* |
| 844 | * Unimplemented operation exception. If we've got the full |
| 845 | * software emulator on-board, let's use it... |
| 846 | * |
| 847 | * Force FPU to dump state into task/thread context. We're |
| 848 | * moving a lot of data here for what is probably a single |
| 849 | * instruction, but the alternative is to pre-decode the FP |
| 850 | * register operands before invoking the emulator, which seems |
| 851 | * a bit extreme for what should be an infrequent event. |
| 852 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 853 | |
| 854 | /* Run the emulator */ |
| 855 | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, |
| 856 | &fault_addr); |
| 857 | |
| 858 | /* |
| 859 | * We can't allow the emulated instruction to leave any |
| 860 | * enabled Cause bits set in $fcr31. |
| 861 | */ |
| 862 | fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); |
| 863 | current->thread.fpu.fcr31 &= ~fcr31; |
| 864 | |
| 865 | /* Restore the hardware register state */ |
| 866 | own_fpu(1); /* Using the FPU again. */ |
| 867 | } else { |
| 868 | sig = SIGFPE; |
| 869 | fault_addr = (void __user *) regs->cp0_epc; |
| 870 | } |
| 871 | |
| 872 | /* Send a signal if required. */ |
| 873 | process_fpemu_return(sig, fault_addr, fcr31); |
| 874 | |
| 875 | out: |
| 876 | exception_exit(prev_state); |
| 877 | } |
| 878 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 879 | /* |
| 880 | * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've |
| 881 | * emulated more than some threshold number of instructions, force migration to |
| 882 | * a "CPU" that has FP support. |
| 883 | */ |
| 884 | static void mt_ase_fp_affinity(void) |
| 885 | { |
| 886 | #ifdef CONFIG_MIPS_MT_FPAFF |
| 887 | if (mt_fpemul_threshold > 0 && |
| 888 | ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { |
| 889 | /* |
| 890 | * If there's no FPU present, or if the application has already |
| 891 | * restricted the allowed set to exclude any CPUs with FPUs, |
| 892 | * we'll skip the procedure. |
| 893 | */ |
| 894 | if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) { |
| 895 | cpumask_t tmask; |
| 896 | |
| 897 | current->thread.user_cpus_allowed |
| 898 | = current->cpus_mask; |
| 899 | cpumask_and(&tmask, ¤t->cpus_mask, |
| 900 | &mt_fpu_cpumask); |
| 901 | set_cpus_allowed_ptr(current, &tmask); |
| 902 | set_thread_flag(TIF_FPUBOUND); |
| 903 | } |
| 904 | } |
| 905 | #endif /* CONFIG_MIPS_MT_FPAFF */ |
| 906 | } |
| 907 | |
| 908 | #else /* !CONFIG_MIPS_FP_SUPPORT */ |
| 909 | |
| 910 | static int simulate_fp(struct pt_regs *regs, unsigned int opcode, |
| 911 | unsigned long old_epc, unsigned long old_ra) |
| 912 | { |
| 913 | return -1; |
| 914 | } |
| 915 | |
| 916 | #endif /* !CONFIG_MIPS_FP_SUPPORT */ |
| 917 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 918 | void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code, |
| 919 | const char *str) |
| 920 | { |
| 921 | char b[40]; |
| 922 | |
| 923 | #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP |
| 924 | if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, |
| 925 | SIGTRAP) == NOTIFY_STOP) |
| 926 | return; |
| 927 | #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ |
| 928 | |
| 929 | if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, |
| 930 | SIGTRAP) == NOTIFY_STOP) |
| 931 | return; |
| 932 | |
| 933 | /* |
| 934 | * A short test says that IRIX 5.3 sends SIGTRAP for all trap |
| 935 | * insns, even for trap and break codes that indicate arithmetic |
| 936 | * failures. Weird ... |
| 937 | * But should we continue the brokenness??? --macro |
| 938 | */ |
| 939 | switch (code) { |
| 940 | case BRK_OVERFLOW: |
| 941 | case BRK_DIVZERO: |
| 942 | scnprintf(b, sizeof(b), "%s instruction in kernel code", str); |
| 943 | die_if_kernel(b, regs); |
| 944 | force_sig_fault(SIGFPE, |
| 945 | code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF, |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 946 | (void __user *) regs->cp0_epc); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 947 | break; |
| 948 | case BRK_BUG: |
| 949 | die_if_kernel("Kernel bug detected", regs); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 950 | force_sig(SIGTRAP); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 951 | break; |
| 952 | case BRK_MEMU: |
| 953 | /* |
| 954 | * This breakpoint code is used by the FPU emulator to retake |
| 955 | * control of the CPU after executing the instruction from the |
| 956 | * delay slot of an emulated branch. |
| 957 | * |
| 958 | * Terminate if exception was recognized as a delay slot return |
| 959 | * otherwise handle as normal. |
| 960 | */ |
| 961 | if (do_dsemulret(regs)) |
| 962 | return; |
| 963 | |
| 964 | die_if_kernel("Math emu break/trap", regs); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 965 | force_sig(SIGTRAP); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 966 | break; |
| 967 | default: |
| 968 | scnprintf(b, sizeof(b), "%s instruction in kernel code", str); |
| 969 | die_if_kernel(b, regs); |
| 970 | if (si_code) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 971 | force_sig_fault(SIGTRAP, si_code, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 972 | } else { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 973 | force_sig(SIGTRAP); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 974 | } |
| 975 | } |
| 976 | } |
| 977 | |
| 978 | asmlinkage void do_bp(struct pt_regs *regs) |
| 979 | { |
| 980 | unsigned long epc = msk_isa16_mode(exception_epc(regs)); |
| 981 | unsigned int opcode, bcode; |
| 982 | enum ctx_state prev_state; |
| 983 | mm_segment_t seg; |
| 984 | |
| 985 | seg = get_fs(); |
| 986 | if (!user_mode(regs)) |
| 987 | set_fs(KERNEL_DS); |
| 988 | |
| 989 | prev_state = exception_enter(); |
| 990 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| 991 | if (get_isa16_mode(regs->cp0_epc)) { |
| 992 | u16 instr[2]; |
| 993 | |
| 994 | if (__get_user(instr[0], (u16 __user *)epc)) |
| 995 | goto out_sigsegv; |
| 996 | |
| 997 | if (!cpu_has_mmips) { |
| 998 | /* MIPS16e mode */ |
| 999 | bcode = (instr[0] >> 5) & 0x3f; |
| 1000 | } else if (mm_insn_16bit(instr[0])) { |
| 1001 | /* 16-bit microMIPS BREAK */ |
| 1002 | bcode = instr[0] & 0xf; |
| 1003 | } else { |
| 1004 | /* 32-bit microMIPS BREAK */ |
| 1005 | if (__get_user(instr[1], (u16 __user *)(epc + 2))) |
| 1006 | goto out_sigsegv; |
| 1007 | opcode = (instr[0] << 16) | instr[1]; |
| 1008 | bcode = (opcode >> 6) & ((1 << 20) - 1); |
| 1009 | } |
| 1010 | } else { |
| 1011 | if (__get_user(opcode, (unsigned int __user *)epc)) |
| 1012 | goto out_sigsegv; |
| 1013 | bcode = (opcode >> 6) & ((1 << 20) - 1); |
| 1014 | } |
| 1015 | |
| 1016 | /* |
| 1017 | * There is the ancient bug in the MIPS assemblers that the break |
| 1018 | * code starts left to bit 16 instead to bit 6 in the opcode. |
| 1019 | * Gas is bug-compatible, but not always, grrr... |
| 1020 | * We handle both cases with a simple heuristics. --macro |
| 1021 | */ |
| 1022 | if (bcode >= (1 << 10)) |
| 1023 | bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); |
| 1024 | |
| 1025 | /* |
| 1026 | * notify the kprobe handlers, if instruction is likely to |
| 1027 | * pertain to them. |
| 1028 | */ |
| 1029 | switch (bcode) { |
| 1030 | case BRK_UPROBE: |
| 1031 | if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, |
| 1032 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| 1033 | goto out; |
| 1034 | else |
| 1035 | break; |
| 1036 | case BRK_UPROBE_XOL: |
| 1037 | if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, |
| 1038 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| 1039 | goto out; |
| 1040 | else |
| 1041 | break; |
| 1042 | case BRK_KPROBE_BP: |
| 1043 | if (notify_die(DIE_BREAK, "debug", regs, bcode, |
| 1044 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| 1045 | goto out; |
| 1046 | else |
| 1047 | break; |
| 1048 | case BRK_KPROBE_SSTEPBP: |
| 1049 | if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, |
| 1050 | current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) |
| 1051 | goto out; |
| 1052 | else |
| 1053 | break; |
| 1054 | default: |
| 1055 | break; |
| 1056 | } |
| 1057 | |
| 1058 | do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break"); |
| 1059 | |
| 1060 | out: |
| 1061 | set_fs(seg); |
| 1062 | exception_exit(prev_state); |
| 1063 | return; |
| 1064 | |
| 1065 | out_sigsegv: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1066 | force_sig(SIGSEGV); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1067 | goto out; |
| 1068 | } |
| 1069 | |
| 1070 | asmlinkage void do_tr(struct pt_regs *regs) |
| 1071 | { |
| 1072 | u32 opcode, tcode = 0; |
| 1073 | enum ctx_state prev_state; |
| 1074 | u16 instr[2]; |
| 1075 | mm_segment_t seg; |
| 1076 | unsigned long epc = msk_isa16_mode(exception_epc(regs)); |
| 1077 | |
| 1078 | seg = get_fs(); |
| 1079 | if (!user_mode(regs)) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1080 | set_fs(KERNEL_DS); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1081 | |
| 1082 | prev_state = exception_enter(); |
| 1083 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| 1084 | if (get_isa16_mode(regs->cp0_epc)) { |
| 1085 | if (__get_user(instr[0], (u16 __user *)(epc + 0)) || |
| 1086 | __get_user(instr[1], (u16 __user *)(epc + 2))) |
| 1087 | goto out_sigsegv; |
| 1088 | opcode = (instr[0] << 16) | instr[1]; |
| 1089 | /* Immediate versions don't provide a code. */ |
| 1090 | if (!(opcode & OPCODE)) |
| 1091 | tcode = (opcode >> 12) & ((1 << 4) - 1); |
| 1092 | } else { |
| 1093 | if (__get_user(opcode, (u32 __user *)epc)) |
| 1094 | goto out_sigsegv; |
| 1095 | /* Immediate versions don't provide a code. */ |
| 1096 | if (!(opcode & OPCODE)) |
| 1097 | tcode = (opcode >> 6) & ((1 << 10) - 1); |
| 1098 | } |
| 1099 | |
| 1100 | do_trap_or_bp(regs, tcode, 0, "Trap"); |
| 1101 | |
| 1102 | out: |
| 1103 | set_fs(seg); |
| 1104 | exception_exit(prev_state); |
| 1105 | return; |
| 1106 | |
| 1107 | out_sigsegv: |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1108 | force_sig(SIGSEGV); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1109 | goto out; |
| 1110 | } |
| 1111 | |
| 1112 | asmlinkage void do_ri(struct pt_regs *regs) |
| 1113 | { |
| 1114 | unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); |
| 1115 | unsigned long old_epc = regs->cp0_epc; |
| 1116 | unsigned long old31 = regs->regs[31]; |
| 1117 | enum ctx_state prev_state; |
| 1118 | unsigned int opcode = 0; |
| 1119 | int status = -1; |
| 1120 | |
| 1121 | /* |
| 1122 | * Avoid any kernel code. Just emulate the R2 instruction |
| 1123 | * as quickly as possible. |
| 1124 | */ |
| 1125 | if (mipsr2_emulation && cpu_has_mips_r6 && |
| 1126 | likely(user_mode(regs)) && |
| 1127 | likely(get_user(opcode, epc) >= 0)) { |
| 1128 | unsigned long fcr31 = 0; |
| 1129 | |
| 1130 | status = mipsr2_decoder(regs, opcode, &fcr31); |
| 1131 | switch (status) { |
| 1132 | case 0: |
| 1133 | case SIGEMT: |
| 1134 | return; |
| 1135 | case SIGILL: |
| 1136 | goto no_r2_instr; |
| 1137 | default: |
| 1138 | process_fpemu_return(status, |
| 1139 | ¤t->thread.cp0_baduaddr, |
| 1140 | fcr31); |
| 1141 | return; |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | no_r2_instr: |
| 1146 | |
| 1147 | prev_state = exception_enter(); |
| 1148 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| 1149 | |
| 1150 | if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, |
| 1151 | SIGILL) == NOTIFY_STOP) |
| 1152 | goto out; |
| 1153 | |
| 1154 | die_if_kernel("Reserved instruction in kernel code", regs); |
| 1155 | |
| 1156 | if (unlikely(compute_return_epc(regs) < 0)) |
| 1157 | goto out; |
| 1158 | |
| 1159 | if (!get_isa16_mode(regs->cp0_epc)) { |
| 1160 | if (unlikely(get_user(opcode, epc) < 0)) |
| 1161 | status = SIGSEGV; |
| 1162 | |
| 1163 | if (!cpu_has_llsc && status < 0) |
| 1164 | status = simulate_llsc(regs, opcode); |
| 1165 | |
| 1166 | if (status < 0) |
| 1167 | status = simulate_rdhwr_normal(regs, opcode); |
| 1168 | |
| 1169 | if (status < 0) |
| 1170 | status = simulate_sync(regs, opcode); |
| 1171 | |
| 1172 | if (status < 0) |
| 1173 | status = simulate_fp(regs, opcode, old_epc, old31); |
| 1174 | } else if (cpu_has_mmips) { |
| 1175 | unsigned short mmop[2] = { 0 }; |
| 1176 | |
| 1177 | if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0)) |
| 1178 | status = SIGSEGV; |
| 1179 | if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0)) |
| 1180 | status = SIGSEGV; |
| 1181 | opcode = mmop[0]; |
| 1182 | opcode = (opcode << 16) | mmop[1]; |
| 1183 | |
| 1184 | if (status < 0) |
| 1185 | status = simulate_rdhwr_mm(regs, opcode); |
| 1186 | } |
| 1187 | |
| 1188 | if (status < 0) |
| 1189 | status = SIGILL; |
| 1190 | |
| 1191 | if (unlikely(status > 0)) { |
| 1192 | regs->cp0_epc = old_epc; /* Undo skip-over. */ |
| 1193 | regs->regs[31] = old31; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1194 | force_sig(status); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1195 | } |
| 1196 | |
| 1197 | out: |
| 1198 | exception_exit(prev_state); |
| 1199 | } |
| 1200 | |
| 1201 | /* |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1202 | * No lock; only written during early bootup by CPU 0. |
| 1203 | */ |
| 1204 | static RAW_NOTIFIER_HEAD(cu2_chain); |
| 1205 | |
| 1206 | int __ref register_cu2_notifier(struct notifier_block *nb) |
| 1207 | { |
| 1208 | return raw_notifier_chain_register(&cu2_chain, nb); |
| 1209 | } |
| 1210 | |
| 1211 | int cu2_notifier_call_chain(unsigned long val, void *v) |
| 1212 | { |
| 1213 | return raw_notifier_call_chain(&cu2_chain, val, v); |
| 1214 | } |
| 1215 | |
| 1216 | static int default_cu2_call(struct notifier_block *nfb, unsigned long action, |
| 1217 | void *data) |
| 1218 | { |
| 1219 | struct pt_regs *regs = data; |
| 1220 | |
| 1221 | die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " |
| 1222 | "instruction", regs); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1223 | force_sig(SIGILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1224 | |
| 1225 | return NOTIFY_OK; |
| 1226 | } |
| 1227 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1228 | #ifdef CONFIG_MIPS_FP_SUPPORT |
| 1229 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1230 | static int enable_restore_fp_context(int msa) |
| 1231 | { |
| 1232 | int err, was_fpu_owner, prior_msa; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1233 | bool first_fp; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1234 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1235 | /* Initialize context if it hasn't been used already */ |
| 1236 | first_fp = init_fp_ctx(current); |
| 1237 | |
| 1238 | if (first_fp) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1239 | preempt_disable(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1240 | err = own_fpu_inatomic(1); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1241 | if (msa && !err) { |
| 1242 | enable_msa(); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 1243 | /* |
| 1244 | * with MSA enabled, userspace can see MSACSR |
| 1245 | * and MSA regs, but the values in them are from |
| 1246 | * other task before current task, restore them |
| 1247 | * from saved fp/msa context |
| 1248 | */ |
| 1249 | write_msa_csr(current->thread.fpu.msacsr); |
| 1250 | /* |
| 1251 | * own_fpu_inatomic(1) just restore low 64bit, |
| 1252 | * fix the high 64bit |
| 1253 | */ |
| 1254 | init_msa_upper(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1255 | set_thread_flag(TIF_USEDMSA); |
| 1256 | set_thread_flag(TIF_MSA_CTX_LIVE); |
| 1257 | } |
| 1258 | preempt_enable(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1259 | return err; |
| 1260 | } |
| 1261 | |
| 1262 | /* |
| 1263 | * This task has formerly used the FP context. |
| 1264 | * |
| 1265 | * If this thread has no live MSA vector context then we can simply |
| 1266 | * restore the scalar FP context. If it has live MSA vector context |
| 1267 | * (that is, it has or may have used MSA since last performing a |
| 1268 | * function call) then we'll need to restore the vector context. This |
| 1269 | * applies even if we're currently only executing a scalar FP |
| 1270 | * instruction. This is because if we were to later execute an MSA |
| 1271 | * instruction then we'd either have to: |
| 1272 | * |
| 1273 | * - Restore the vector context & clobber any registers modified by |
| 1274 | * scalar FP instructions between now & then. |
| 1275 | * |
| 1276 | * or |
| 1277 | * |
| 1278 | * - Not restore the vector context & lose the most significant bits |
| 1279 | * of all vector registers. |
| 1280 | * |
| 1281 | * Neither of those options is acceptable. We cannot restore the least |
| 1282 | * significant bits of the registers now & only restore the most |
| 1283 | * significant bits later because the most significant bits of any |
| 1284 | * vector registers whose aliased FP register is modified now will have |
| 1285 | * been zeroed. We'd have no way to know that when restoring the vector |
| 1286 | * context & thus may load an outdated value for the most significant |
| 1287 | * bits of a vector register. |
| 1288 | */ |
| 1289 | if (!msa && !thread_msa_context_live()) |
| 1290 | return own_fpu(1); |
| 1291 | |
| 1292 | /* |
| 1293 | * This task is using or has previously used MSA. Thus we require |
| 1294 | * that Status.FR == 1. |
| 1295 | */ |
| 1296 | preempt_disable(); |
| 1297 | was_fpu_owner = is_fpu_owner(); |
| 1298 | err = own_fpu_inatomic(0); |
| 1299 | if (err) |
| 1300 | goto out; |
| 1301 | |
| 1302 | enable_msa(); |
| 1303 | write_msa_csr(current->thread.fpu.msacsr); |
| 1304 | set_thread_flag(TIF_USEDMSA); |
| 1305 | |
| 1306 | /* |
| 1307 | * If this is the first time that the task is using MSA and it has |
| 1308 | * previously used scalar FP in this time slice then we already nave |
| 1309 | * FP context which we shouldn't clobber. We do however need to clear |
| 1310 | * the upper 64b of each vector register so that this task has no |
| 1311 | * opportunity to see data left behind by another. |
| 1312 | */ |
| 1313 | prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); |
| 1314 | if (!prior_msa && was_fpu_owner) { |
| 1315 | init_msa_upper(); |
| 1316 | |
| 1317 | goto out; |
| 1318 | } |
| 1319 | |
| 1320 | if (!prior_msa) { |
| 1321 | /* |
| 1322 | * Restore the least significant 64b of each vector register |
| 1323 | * from the existing scalar FP context. |
| 1324 | */ |
| 1325 | _restore_fp(current); |
| 1326 | |
| 1327 | /* |
| 1328 | * The task has not formerly used MSA, so clear the upper 64b |
| 1329 | * of each vector register such that it cannot see data left |
| 1330 | * behind by another task. |
| 1331 | */ |
| 1332 | init_msa_upper(); |
| 1333 | } else { |
| 1334 | /* We need to restore the vector context. */ |
| 1335 | restore_msa(current); |
| 1336 | |
| 1337 | /* Restore the scalar FP control & status register */ |
| 1338 | if (!was_fpu_owner) |
| 1339 | write_32bit_cp1_register(CP1_STATUS, |
| 1340 | current->thread.fpu.fcr31); |
| 1341 | } |
| 1342 | |
| 1343 | out: |
| 1344 | preempt_enable(); |
| 1345 | |
| 1346 | return 0; |
| 1347 | } |
| 1348 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1349 | #else /* !CONFIG_MIPS_FP_SUPPORT */ |
| 1350 | |
| 1351 | static int enable_restore_fp_context(int msa) |
| 1352 | { |
| 1353 | return SIGILL; |
| 1354 | } |
| 1355 | |
| 1356 | #endif /* CONFIG_MIPS_FP_SUPPORT */ |
| 1357 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1358 | asmlinkage void do_cpu(struct pt_regs *regs) |
| 1359 | { |
| 1360 | enum ctx_state prev_state; |
| 1361 | unsigned int __user *epc; |
| 1362 | unsigned long old_epc, old31; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1363 | unsigned int opcode; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1364 | unsigned int cpid; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1365 | int status; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1366 | |
| 1367 | prev_state = exception_enter(); |
| 1368 | cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; |
| 1369 | |
| 1370 | if (cpid != 2) |
| 1371 | die_if_kernel("do_cpu invoked from kernel context!", regs); |
| 1372 | |
| 1373 | switch (cpid) { |
| 1374 | case 0: |
| 1375 | epc = (unsigned int __user *)exception_epc(regs); |
| 1376 | old_epc = regs->cp0_epc; |
| 1377 | old31 = regs->regs[31]; |
| 1378 | opcode = 0; |
| 1379 | status = -1; |
| 1380 | |
| 1381 | if (unlikely(compute_return_epc(regs) < 0)) |
| 1382 | break; |
| 1383 | |
| 1384 | if (!get_isa16_mode(regs->cp0_epc)) { |
| 1385 | if (unlikely(get_user(opcode, epc) < 0)) |
| 1386 | status = SIGSEGV; |
| 1387 | |
| 1388 | if (!cpu_has_llsc && status < 0) |
| 1389 | status = simulate_llsc(regs, opcode); |
| 1390 | } |
| 1391 | |
| 1392 | if (status < 0) |
| 1393 | status = SIGILL; |
| 1394 | |
| 1395 | if (unlikely(status > 0)) { |
| 1396 | regs->cp0_epc = old_epc; /* Undo skip-over. */ |
| 1397 | regs->regs[31] = old31; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1398 | force_sig(status); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1399 | } |
| 1400 | |
| 1401 | break; |
| 1402 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1403 | #ifdef CONFIG_MIPS_FP_SUPPORT |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1404 | case 3: |
| 1405 | /* |
| 1406 | * The COP3 opcode space and consequently the CP0.Status.CU3 |
| 1407 | * bit and the CP0.Cause.CE=3 encoding have been removed as |
| 1408 | * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs |
| 1409 | * up the space has been reused for COP1X instructions, that |
| 1410 | * are enabled by the CP0.Status.CU1 bit and consequently |
| 1411 | * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable |
| 1412 | * exceptions. Some FPU-less processors that implement one |
| 1413 | * of these ISAs however use this code erroneously for COP1X |
| 1414 | * instructions. Therefore we redirect this trap to the FP |
| 1415 | * emulator too. |
| 1416 | */ |
| 1417 | if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1418 | force_sig(SIGILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1419 | break; |
| 1420 | } |
| 1421 | /* Fall through. */ |
| 1422 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1423 | case 1: { |
| 1424 | void __user *fault_addr; |
| 1425 | unsigned long fcr31; |
| 1426 | int err, sig; |
| 1427 | |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1428 | err = enable_restore_fp_context(0); |
| 1429 | |
| 1430 | if (raw_cpu_has_fpu && !err) |
| 1431 | break; |
| 1432 | |
| 1433 | sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, |
| 1434 | &fault_addr); |
| 1435 | |
| 1436 | /* |
| 1437 | * We can't allow the emulated instruction to leave |
| 1438 | * any enabled Cause bits set in $fcr31. |
| 1439 | */ |
| 1440 | fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); |
| 1441 | current->thread.fpu.fcr31 &= ~fcr31; |
| 1442 | |
| 1443 | /* Send a signal if required. */ |
| 1444 | if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) |
| 1445 | mt_ase_fp_affinity(); |
| 1446 | |
| 1447 | break; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1448 | } |
| 1449 | #else /* CONFIG_MIPS_FP_SUPPORT */ |
| 1450 | case 1: |
| 1451 | case 3: |
| 1452 | force_sig(SIGILL); |
| 1453 | break; |
| 1454 | #endif /* CONFIG_MIPS_FP_SUPPORT */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1455 | |
| 1456 | case 2: |
| 1457 | raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); |
| 1458 | break; |
| 1459 | } |
| 1460 | |
| 1461 | exception_exit(prev_state); |
| 1462 | } |
| 1463 | |
| 1464 | asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) |
| 1465 | { |
| 1466 | enum ctx_state prev_state; |
| 1467 | |
| 1468 | prev_state = exception_enter(); |
| 1469 | current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; |
| 1470 | if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, |
| 1471 | current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) |
| 1472 | goto out; |
| 1473 | |
| 1474 | /* Clear MSACSR.Cause before enabling interrupts */ |
| 1475 | write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); |
| 1476 | local_irq_enable(); |
| 1477 | |
| 1478 | die_if_kernel("do_msa_fpe invoked from kernel context!", regs); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1479 | force_sig(SIGFPE); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1480 | out: |
| 1481 | exception_exit(prev_state); |
| 1482 | } |
| 1483 | |
| 1484 | asmlinkage void do_msa(struct pt_regs *regs) |
| 1485 | { |
| 1486 | enum ctx_state prev_state; |
| 1487 | int err; |
| 1488 | |
| 1489 | prev_state = exception_enter(); |
| 1490 | |
| 1491 | if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1492 | force_sig(SIGILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1493 | goto out; |
| 1494 | } |
| 1495 | |
| 1496 | die_if_kernel("do_msa invoked from kernel context!", regs); |
| 1497 | |
| 1498 | err = enable_restore_fp_context(1); |
| 1499 | if (err) |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1500 | force_sig(SIGILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1501 | out: |
| 1502 | exception_exit(prev_state); |
| 1503 | } |
| 1504 | |
| 1505 | asmlinkage void do_mdmx(struct pt_regs *regs) |
| 1506 | { |
| 1507 | enum ctx_state prev_state; |
| 1508 | |
| 1509 | prev_state = exception_enter(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1510 | force_sig(SIGILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1511 | exception_exit(prev_state); |
| 1512 | } |
| 1513 | |
| 1514 | /* |
| 1515 | * Called with interrupts disabled. |
| 1516 | */ |
| 1517 | asmlinkage void do_watch(struct pt_regs *regs) |
| 1518 | { |
| 1519 | enum ctx_state prev_state; |
| 1520 | |
| 1521 | prev_state = exception_enter(); |
| 1522 | /* |
| 1523 | * Clear WP (bit 22) bit of cause register so we don't loop |
| 1524 | * forever. |
| 1525 | */ |
| 1526 | clear_c0_cause(CAUSEF_WP); |
| 1527 | |
| 1528 | /* |
| 1529 | * If the current thread has the watch registers loaded, save |
| 1530 | * their values and send SIGTRAP. Otherwise another thread |
| 1531 | * left the registers set, clear them and continue. |
| 1532 | */ |
| 1533 | if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { |
| 1534 | mips_read_watch_registers(); |
| 1535 | local_irq_enable(); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1536 | force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1537 | } else { |
| 1538 | mips_clear_watch_registers(); |
| 1539 | local_irq_enable(); |
| 1540 | } |
| 1541 | exception_exit(prev_state); |
| 1542 | } |
| 1543 | |
| 1544 | asmlinkage void do_mcheck(struct pt_regs *regs) |
| 1545 | { |
| 1546 | int multi_match = regs->cp0_status & ST0_TS; |
| 1547 | enum ctx_state prev_state; |
| 1548 | mm_segment_t old_fs = get_fs(); |
| 1549 | |
| 1550 | prev_state = exception_enter(); |
| 1551 | show_regs(regs); |
| 1552 | |
| 1553 | if (multi_match) { |
| 1554 | dump_tlb_regs(); |
| 1555 | pr_info("\n"); |
| 1556 | dump_tlb_all(); |
| 1557 | } |
| 1558 | |
| 1559 | if (!user_mode(regs)) |
| 1560 | set_fs(KERNEL_DS); |
| 1561 | |
| 1562 | show_code((unsigned int __user *) regs->cp0_epc); |
| 1563 | |
| 1564 | set_fs(old_fs); |
| 1565 | |
| 1566 | /* |
| 1567 | * Some chips may have other causes of machine check (e.g. SB1 |
| 1568 | * graduation timer) |
| 1569 | */ |
| 1570 | panic("Caught Machine Check exception - %scaused by multiple " |
| 1571 | "matching entries in the TLB.", |
| 1572 | (multi_match) ? "" : "not "); |
| 1573 | } |
| 1574 | |
| 1575 | asmlinkage void do_mt(struct pt_regs *regs) |
| 1576 | { |
| 1577 | int subcode; |
| 1578 | |
| 1579 | subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) |
| 1580 | >> VPECONTROL_EXCPT_SHIFT; |
| 1581 | switch (subcode) { |
| 1582 | case 0: |
| 1583 | printk(KERN_DEBUG "Thread Underflow\n"); |
| 1584 | break; |
| 1585 | case 1: |
| 1586 | printk(KERN_DEBUG "Thread Overflow\n"); |
| 1587 | break; |
| 1588 | case 2: |
| 1589 | printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); |
| 1590 | break; |
| 1591 | case 3: |
| 1592 | printk(KERN_DEBUG "Gating Storage Exception\n"); |
| 1593 | break; |
| 1594 | case 4: |
| 1595 | printk(KERN_DEBUG "YIELD Scheduler Exception\n"); |
| 1596 | break; |
| 1597 | case 5: |
| 1598 | printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); |
| 1599 | break; |
| 1600 | default: |
| 1601 | printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", |
| 1602 | subcode); |
| 1603 | break; |
| 1604 | } |
| 1605 | die_if_kernel("MIPS MT Thread exception in kernel", regs); |
| 1606 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1607 | force_sig(SIGILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1608 | } |
| 1609 | |
| 1610 | |
| 1611 | asmlinkage void do_dsp(struct pt_regs *regs) |
| 1612 | { |
| 1613 | if (cpu_has_dsp) |
| 1614 | panic("Unexpected DSP exception"); |
| 1615 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 1616 | force_sig(SIGILL); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1617 | } |
| 1618 | |
| 1619 | asmlinkage void do_reserved(struct pt_regs *regs) |
| 1620 | { |
| 1621 | /* |
| 1622 | * Game over - no way to handle this if it ever occurs. Most probably |
| 1623 | * caused by a new unknown cpu type or after another deadly |
| 1624 | * hard/software error. |
| 1625 | */ |
| 1626 | show_regs(regs); |
| 1627 | panic("Caught reserved exception %ld - should not happen.", |
| 1628 | (regs->cp0_cause & 0x7f) >> 2); |
| 1629 | } |
| 1630 | |
| 1631 | static int __initdata l1parity = 1; |
| 1632 | static int __init nol1parity(char *s) |
| 1633 | { |
| 1634 | l1parity = 0; |
| 1635 | return 1; |
| 1636 | } |
| 1637 | __setup("nol1par", nol1parity); |
| 1638 | static int __initdata l2parity = 1; |
| 1639 | static int __init nol2parity(char *s) |
| 1640 | { |
| 1641 | l2parity = 0; |
| 1642 | return 1; |
| 1643 | } |
| 1644 | __setup("nol2par", nol2parity); |
| 1645 | |
| 1646 | /* |
| 1647 | * Some MIPS CPUs can enable/disable for cache parity detection, but do |
| 1648 | * it different ways. |
| 1649 | */ |
| 1650 | static inline void parity_protection_init(void) |
| 1651 | { |
| 1652 | #define ERRCTL_PE 0x80000000 |
| 1653 | #define ERRCTL_L2P 0x00800000 |
| 1654 | |
| 1655 | if (mips_cm_revision() >= CM_REV_CM3) { |
| 1656 | ulong gcr_ectl, cp0_ectl; |
| 1657 | |
| 1658 | /* |
| 1659 | * With CM3 systems we need to ensure that the L1 & L2 |
| 1660 | * parity enables are set to the same value, since this |
| 1661 | * is presumed by the hardware engineers. |
| 1662 | * |
| 1663 | * If the user disabled either of L1 or L2 ECC checking, |
| 1664 | * disable both. |
| 1665 | */ |
| 1666 | l1parity &= l2parity; |
| 1667 | l2parity &= l1parity; |
| 1668 | |
| 1669 | /* Probe L1 ECC support */ |
| 1670 | cp0_ectl = read_c0_ecc(); |
| 1671 | write_c0_ecc(cp0_ectl | ERRCTL_PE); |
| 1672 | back_to_back_c0_hazard(); |
| 1673 | cp0_ectl = read_c0_ecc(); |
| 1674 | |
| 1675 | /* Probe L2 ECC support */ |
| 1676 | gcr_ectl = read_gcr_err_control(); |
| 1677 | |
| 1678 | if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) || |
| 1679 | !(cp0_ectl & ERRCTL_PE)) { |
| 1680 | /* |
| 1681 | * One of L1 or L2 ECC checking isn't supported, |
| 1682 | * so we cannot enable either. |
| 1683 | */ |
| 1684 | l1parity = l2parity = 0; |
| 1685 | } |
| 1686 | |
| 1687 | /* Configure L1 ECC checking */ |
| 1688 | if (l1parity) |
| 1689 | cp0_ectl |= ERRCTL_PE; |
| 1690 | else |
| 1691 | cp0_ectl &= ~ERRCTL_PE; |
| 1692 | write_c0_ecc(cp0_ectl); |
| 1693 | back_to_back_c0_hazard(); |
| 1694 | WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity); |
| 1695 | |
| 1696 | /* Configure L2 ECC checking */ |
| 1697 | if (l2parity) |
| 1698 | gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN; |
| 1699 | else |
| 1700 | gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN; |
| 1701 | write_gcr_err_control(gcr_ectl); |
| 1702 | gcr_ectl = read_gcr_err_control(); |
| 1703 | gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN; |
| 1704 | WARN_ON(!!gcr_ectl != l2parity); |
| 1705 | |
| 1706 | pr_info("Cache parity protection %sabled\n", |
| 1707 | l1parity ? "en" : "dis"); |
| 1708 | return; |
| 1709 | } |
| 1710 | |
| 1711 | switch (current_cpu_type()) { |
| 1712 | case CPU_24K: |
| 1713 | case CPU_34K: |
| 1714 | case CPU_74K: |
| 1715 | case CPU_1004K: |
| 1716 | case CPU_1074K: |
| 1717 | case CPU_INTERAPTIV: |
| 1718 | case CPU_PROAPTIV: |
| 1719 | case CPU_P5600: |
| 1720 | case CPU_QEMU_GENERIC: |
| 1721 | case CPU_P6600: |
| 1722 | { |
| 1723 | unsigned long errctl; |
| 1724 | unsigned int l1parity_present, l2parity_present; |
| 1725 | |
| 1726 | errctl = read_c0_ecc(); |
| 1727 | errctl &= ~(ERRCTL_PE|ERRCTL_L2P); |
| 1728 | |
| 1729 | /* probe L1 parity support */ |
| 1730 | write_c0_ecc(errctl | ERRCTL_PE); |
| 1731 | back_to_back_c0_hazard(); |
| 1732 | l1parity_present = (read_c0_ecc() & ERRCTL_PE); |
| 1733 | |
| 1734 | /* probe L2 parity support */ |
| 1735 | write_c0_ecc(errctl|ERRCTL_L2P); |
| 1736 | back_to_back_c0_hazard(); |
| 1737 | l2parity_present = (read_c0_ecc() & ERRCTL_L2P); |
| 1738 | |
| 1739 | if (l1parity_present && l2parity_present) { |
| 1740 | if (l1parity) |
| 1741 | errctl |= ERRCTL_PE; |
| 1742 | if (l1parity ^ l2parity) |
| 1743 | errctl |= ERRCTL_L2P; |
| 1744 | } else if (l1parity_present) { |
| 1745 | if (l1parity) |
| 1746 | errctl |= ERRCTL_PE; |
| 1747 | } else if (l2parity_present) { |
| 1748 | if (l2parity) |
| 1749 | errctl |= ERRCTL_L2P; |
| 1750 | } else { |
| 1751 | /* No parity available */ |
| 1752 | } |
| 1753 | |
| 1754 | printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); |
| 1755 | |
| 1756 | write_c0_ecc(errctl); |
| 1757 | back_to_back_c0_hazard(); |
| 1758 | errctl = read_c0_ecc(); |
| 1759 | printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); |
| 1760 | |
| 1761 | if (l1parity_present) |
| 1762 | printk(KERN_INFO "Cache parity protection %sabled\n", |
| 1763 | (errctl & ERRCTL_PE) ? "en" : "dis"); |
| 1764 | |
| 1765 | if (l2parity_present) { |
| 1766 | if (l1parity_present && l1parity) |
| 1767 | errctl ^= ERRCTL_L2P; |
| 1768 | printk(KERN_INFO "L2 cache parity protection %sabled\n", |
| 1769 | (errctl & ERRCTL_L2P) ? "en" : "dis"); |
| 1770 | } |
| 1771 | } |
| 1772 | break; |
| 1773 | |
| 1774 | case CPU_5KC: |
| 1775 | case CPU_5KE: |
| 1776 | case CPU_LOONGSON1: |
| 1777 | write_c0_ecc(0x80000000); |
| 1778 | back_to_back_c0_hazard(); |
| 1779 | /* Set the PE bit (bit 31) in the c0_errctl register. */ |
| 1780 | printk(KERN_INFO "Cache parity protection %sabled\n", |
| 1781 | (read_c0_ecc() & 0x80000000) ? "en" : "dis"); |
| 1782 | break; |
| 1783 | case CPU_20KC: |
| 1784 | case CPU_25KF: |
| 1785 | /* Clear the DE bit (bit 16) in the c0_status register. */ |
| 1786 | printk(KERN_INFO "Enable cache parity protection for " |
| 1787 | "MIPS 20KC/25KF CPUs.\n"); |
| 1788 | clear_c0_status(ST0_DE); |
| 1789 | break; |
| 1790 | default: |
| 1791 | break; |
| 1792 | } |
| 1793 | } |
| 1794 | |
| 1795 | asmlinkage void cache_parity_error(void) |
| 1796 | { |
| 1797 | const int field = 2 * sizeof(unsigned long); |
| 1798 | unsigned int reg_val; |
| 1799 | |
| 1800 | /* For the moment, report the problem and hang. */ |
| 1801 | printk("Cache error exception:\n"); |
| 1802 | printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); |
| 1803 | reg_val = read_c0_cacheerr(); |
| 1804 | printk("c0_cacheerr == %08x\n", reg_val); |
| 1805 | |
| 1806 | printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", |
| 1807 | reg_val & (1<<30) ? "secondary" : "primary", |
| 1808 | reg_val & (1<<31) ? "data" : "insn"); |
| 1809 | if ((cpu_has_mips_r2_r6) && |
| 1810 | ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { |
| 1811 | pr_err("Error bits: %s%s%s%s%s%s%s%s\n", |
| 1812 | reg_val & (1<<29) ? "ED " : "", |
| 1813 | reg_val & (1<<28) ? "ET " : "", |
| 1814 | reg_val & (1<<27) ? "ES " : "", |
| 1815 | reg_val & (1<<26) ? "EE " : "", |
| 1816 | reg_val & (1<<25) ? "EB " : "", |
| 1817 | reg_val & (1<<24) ? "EI " : "", |
| 1818 | reg_val & (1<<23) ? "E1 " : "", |
| 1819 | reg_val & (1<<22) ? "E0 " : ""); |
| 1820 | } else { |
| 1821 | pr_err("Error bits: %s%s%s%s%s%s%s\n", |
| 1822 | reg_val & (1<<29) ? "ED " : "", |
| 1823 | reg_val & (1<<28) ? "ET " : "", |
| 1824 | reg_val & (1<<26) ? "EE " : "", |
| 1825 | reg_val & (1<<25) ? "EB " : "", |
| 1826 | reg_val & (1<<24) ? "EI " : "", |
| 1827 | reg_val & (1<<23) ? "E1 " : "", |
| 1828 | reg_val & (1<<22) ? "E0 " : ""); |
| 1829 | } |
| 1830 | printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); |
| 1831 | |
| 1832 | #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) |
| 1833 | if (reg_val & (1<<22)) |
| 1834 | printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); |
| 1835 | |
| 1836 | if (reg_val & (1<<23)) |
| 1837 | printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); |
| 1838 | #endif |
| 1839 | |
| 1840 | panic("Can't handle the cache error!"); |
| 1841 | } |
| 1842 | |
| 1843 | asmlinkage void do_ftlb(void) |
| 1844 | { |
| 1845 | const int field = 2 * sizeof(unsigned long); |
| 1846 | unsigned int reg_val; |
| 1847 | |
| 1848 | /* For the moment, report the problem and hang. */ |
| 1849 | if ((cpu_has_mips_r2_r6) && |
| 1850 | (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) || |
| 1851 | ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) { |
| 1852 | pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", |
| 1853 | read_c0_ecc()); |
| 1854 | pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); |
| 1855 | reg_val = read_c0_cacheerr(); |
| 1856 | pr_err("c0_cacheerr == %08x\n", reg_val); |
| 1857 | |
| 1858 | if ((reg_val & 0xc0000000) == 0xc0000000) { |
| 1859 | pr_err("Decoded c0_cacheerr: FTLB parity error\n"); |
| 1860 | } else { |
| 1861 | pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", |
| 1862 | reg_val & (1<<30) ? "secondary" : "primary", |
| 1863 | reg_val & (1<<31) ? "data" : "insn"); |
| 1864 | } |
| 1865 | } else { |
| 1866 | pr_err("FTLB error exception\n"); |
| 1867 | } |
| 1868 | /* Just print the cacheerr bits for now */ |
| 1869 | cache_parity_error(); |
| 1870 | } |
| 1871 | |
| 1872 | /* |
| 1873 | * SDBBP EJTAG debug exception handler. |
| 1874 | * We skip the instruction and return to the next instruction. |
| 1875 | */ |
| 1876 | void ejtag_exception_handler(struct pt_regs *regs) |
| 1877 | { |
| 1878 | const int field = 2 * sizeof(unsigned long); |
| 1879 | unsigned long depc, old_epc, old_ra; |
| 1880 | unsigned int debug; |
| 1881 | |
| 1882 | printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); |
| 1883 | depc = read_c0_depc(); |
| 1884 | debug = read_c0_debug(); |
| 1885 | printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); |
| 1886 | if (debug & 0x80000000) { |
| 1887 | /* |
| 1888 | * In branch delay slot. |
| 1889 | * We cheat a little bit here and use EPC to calculate the |
| 1890 | * debug return address (DEPC). EPC is restored after the |
| 1891 | * calculation. |
| 1892 | */ |
| 1893 | old_epc = regs->cp0_epc; |
| 1894 | old_ra = regs->regs[31]; |
| 1895 | regs->cp0_epc = depc; |
| 1896 | compute_return_epc(regs); |
| 1897 | depc = regs->cp0_epc; |
| 1898 | regs->cp0_epc = old_epc; |
| 1899 | regs->regs[31] = old_ra; |
| 1900 | } else |
| 1901 | depc += 4; |
| 1902 | write_c0_depc(depc); |
| 1903 | |
| 1904 | #if 0 |
| 1905 | printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); |
| 1906 | write_c0_debug(debug | 0x100); |
| 1907 | #endif |
| 1908 | } |
| 1909 | |
| 1910 | /* |
| 1911 | * NMI exception handler. |
| 1912 | * No lock; only written during early bootup by CPU 0. |
| 1913 | */ |
| 1914 | static RAW_NOTIFIER_HEAD(nmi_chain); |
| 1915 | |
| 1916 | int register_nmi_notifier(struct notifier_block *nb) |
| 1917 | { |
| 1918 | return raw_notifier_chain_register(&nmi_chain, nb); |
| 1919 | } |
| 1920 | |
| 1921 | void __noreturn nmi_exception_handler(struct pt_regs *regs) |
| 1922 | { |
| 1923 | char str[100]; |
| 1924 | |
| 1925 | nmi_enter(); |
| 1926 | raw_notifier_call_chain(&nmi_chain, 0, regs); |
| 1927 | bust_spinlocks(1); |
| 1928 | snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", |
| 1929 | smp_processor_id(), regs->cp0_epc); |
| 1930 | regs->cp0_epc = read_c0_errorepc(); |
| 1931 | die(str, regs); |
| 1932 | nmi_exit(); |
| 1933 | } |
| 1934 | |
| 1935 | #define VECTORSPACING 0x100 /* for EI/VI mode */ |
| 1936 | |
| 1937 | unsigned long ebase; |
| 1938 | EXPORT_SYMBOL_GPL(ebase); |
| 1939 | unsigned long exception_handlers[32]; |
| 1940 | unsigned long vi_handlers[64]; |
| 1941 | |
| 1942 | void __init *set_except_vector(int n, void *addr) |
| 1943 | { |
| 1944 | unsigned long handler = (unsigned long) addr; |
| 1945 | unsigned long old_handler; |
| 1946 | |
| 1947 | #ifdef CONFIG_CPU_MICROMIPS |
| 1948 | /* |
| 1949 | * Only the TLB handlers are cache aligned with an even |
| 1950 | * address. All other handlers are on an odd address and |
| 1951 | * require no modification. Otherwise, MIPS32 mode will |
| 1952 | * be entered when handling any TLB exceptions. That |
| 1953 | * would be bad...since we must stay in microMIPS mode. |
| 1954 | */ |
| 1955 | if (!(handler & 0x1)) |
| 1956 | handler |= 1; |
| 1957 | #endif |
| 1958 | old_handler = xchg(&exception_handlers[n], handler); |
| 1959 | |
| 1960 | if (n == 0 && cpu_has_divec) { |
| 1961 | #ifdef CONFIG_CPU_MICROMIPS |
| 1962 | unsigned long jump_mask = ~((1 << 27) - 1); |
| 1963 | #else |
| 1964 | unsigned long jump_mask = ~((1 << 28) - 1); |
| 1965 | #endif |
| 1966 | u32 *buf = (u32 *)(ebase + 0x200); |
| 1967 | unsigned int k0 = 26; |
| 1968 | if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { |
| 1969 | uasm_i_j(&buf, handler & ~jump_mask); |
| 1970 | uasm_i_nop(&buf); |
| 1971 | } else { |
| 1972 | UASM_i_LA(&buf, k0, handler); |
| 1973 | uasm_i_jr(&buf, k0); |
| 1974 | uasm_i_nop(&buf); |
| 1975 | } |
| 1976 | local_flush_icache_range(ebase + 0x200, (unsigned long)buf); |
| 1977 | } |
| 1978 | return (void *)old_handler; |
| 1979 | } |
| 1980 | |
| 1981 | static void do_default_vi(void) |
| 1982 | { |
| 1983 | show_regs(get_irq_regs()); |
| 1984 | panic("Caught unexpected vectored interrupt."); |
| 1985 | } |
| 1986 | |
| 1987 | static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) |
| 1988 | { |
| 1989 | unsigned long handler; |
| 1990 | unsigned long old_handler = vi_handlers[n]; |
| 1991 | int srssets = current_cpu_data.srsets; |
| 1992 | u16 *h; |
| 1993 | unsigned char *b; |
| 1994 | |
| 1995 | BUG_ON(!cpu_has_veic && !cpu_has_vint); |
| 1996 | |
| 1997 | if (addr == NULL) { |
| 1998 | handler = (unsigned long) do_default_vi; |
| 1999 | srs = 0; |
| 2000 | } else |
| 2001 | handler = (unsigned long) addr; |
| 2002 | vi_handlers[n] = handler; |
| 2003 | |
| 2004 | b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); |
| 2005 | |
| 2006 | if (srs >= srssets) |
| 2007 | panic("Shadow register set %d not supported", srs); |
| 2008 | |
| 2009 | if (cpu_has_veic) { |
| 2010 | if (board_bind_eic_interrupt) |
| 2011 | board_bind_eic_interrupt(n, srs); |
| 2012 | } else if (cpu_has_vint) { |
| 2013 | /* SRSMap is only defined if shadow sets are implemented */ |
| 2014 | if (srssets > 1) |
| 2015 | change_c0_srsmap(0xf << n*4, srs << n*4); |
| 2016 | } |
| 2017 | |
| 2018 | if (srs == 0) { |
| 2019 | /* |
| 2020 | * If no shadow set is selected then use the default handler |
| 2021 | * that does normal register saving and standard interrupt exit |
| 2022 | */ |
| 2023 | extern char except_vec_vi, except_vec_vi_lui; |
| 2024 | extern char except_vec_vi_ori, except_vec_vi_end; |
| 2025 | extern char rollback_except_vec_vi; |
| 2026 | char *vec_start = using_rollback_handler() ? |
| 2027 | &rollback_except_vec_vi : &except_vec_vi; |
| 2028 | #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) |
| 2029 | const int lui_offset = &except_vec_vi_lui - vec_start + 2; |
| 2030 | const int ori_offset = &except_vec_vi_ori - vec_start + 2; |
| 2031 | #else |
| 2032 | const int lui_offset = &except_vec_vi_lui - vec_start; |
| 2033 | const int ori_offset = &except_vec_vi_ori - vec_start; |
| 2034 | #endif |
| 2035 | const int handler_len = &except_vec_vi_end - vec_start; |
| 2036 | |
| 2037 | if (handler_len > VECTORSPACING) { |
| 2038 | /* |
| 2039 | * Sigh... panicing won't help as the console |
| 2040 | * is probably not configured :( |
| 2041 | */ |
| 2042 | panic("VECTORSPACING too small"); |
| 2043 | } |
| 2044 | |
| 2045 | set_handler(((unsigned long)b - ebase), vec_start, |
| 2046 | #ifdef CONFIG_CPU_MICROMIPS |
| 2047 | (handler_len - 1)); |
| 2048 | #else |
| 2049 | handler_len); |
| 2050 | #endif |
| 2051 | h = (u16 *)(b + lui_offset); |
| 2052 | *h = (handler >> 16) & 0xffff; |
| 2053 | h = (u16 *)(b + ori_offset); |
| 2054 | *h = (handler & 0xffff); |
| 2055 | local_flush_icache_range((unsigned long)b, |
| 2056 | (unsigned long)(b+handler_len)); |
| 2057 | } |
| 2058 | else { |
| 2059 | /* |
| 2060 | * In other cases jump directly to the interrupt handler. It |
| 2061 | * is the handler's responsibility to save registers if required |
| 2062 | * (eg hi/lo) and return from the exception using "eret". |
| 2063 | */ |
| 2064 | u32 insn; |
| 2065 | |
| 2066 | h = (u16 *)b; |
| 2067 | /* j handler */ |
| 2068 | #ifdef CONFIG_CPU_MICROMIPS |
| 2069 | insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); |
| 2070 | #else |
| 2071 | insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); |
| 2072 | #endif |
| 2073 | h[0] = (insn >> 16) & 0xffff; |
| 2074 | h[1] = insn & 0xffff; |
| 2075 | h[2] = 0; |
| 2076 | h[3] = 0; |
| 2077 | local_flush_icache_range((unsigned long)b, |
| 2078 | (unsigned long)(b+8)); |
| 2079 | } |
| 2080 | |
| 2081 | return (void *)old_handler; |
| 2082 | } |
| 2083 | |
| 2084 | void *set_vi_handler(int n, vi_handler_t addr) |
| 2085 | { |
| 2086 | return set_vi_srs_handler(n, addr, 0); |
| 2087 | } |
| 2088 | |
| 2089 | extern void tlb_init(void); |
| 2090 | |
| 2091 | /* |
| 2092 | * Timer interrupt |
| 2093 | */ |
| 2094 | int cp0_compare_irq; |
| 2095 | EXPORT_SYMBOL_GPL(cp0_compare_irq); |
| 2096 | int cp0_compare_irq_shift; |
| 2097 | |
| 2098 | /* |
| 2099 | * Performance counter IRQ or -1 if shared with timer |
| 2100 | */ |
| 2101 | int cp0_perfcount_irq; |
| 2102 | EXPORT_SYMBOL_GPL(cp0_perfcount_irq); |
| 2103 | |
| 2104 | /* |
| 2105 | * Fast debug channel IRQ or -1 if not present |
| 2106 | */ |
| 2107 | int cp0_fdc_irq; |
| 2108 | EXPORT_SYMBOL_GPL(cp0_fdc_irq); |
| 2109 | |
| 2110 | static int noulri; |
| 2111 | |
| 2112 | static int __init ulri_disable(char *s) |
| 2113 | { |
| 2114 | pr_info("Disabling ulri\n"); |
| 2115 | noulri = 1; |
| 2116 | |
| 2117 | return 1; |
| 2118 | } |
| 2119 | __setup("noulri", ulri_disable); |
| 2120 | |
| 2121 | /* configure STATUS register */ |
| 2122 | static void configure_status(void) |
| 2123 | { |
| 2124 | /* |
| 2125 | * Disable coprocessors and select 32-bit or 64-bit addressing |
| 2126 | * and the 16/32 or 32/32 FPR register model. Reset the BEV |
| 2127 | * flag that some firmware may have left set and the TS bit (for |
| 2128 | * IP27). Set XX for ISA IV code to work. |
| 2129 | */ |
| 2130 | unsigned int status_set = ST0_CU0; |
| 2131 | #ifdef CONFIG_64BIT |
| 2132 | status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; |
| 2133 | #endif |
| 2134 | if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) |
| 2135 | status_set |= ST0_XX; |
| 2136 | if (cpu_has_dsp) |
| 2137 | status_set |= ST0_MX; |
| 2138 | |
| 2139 | change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, |
| 2140 | status_set); |
Olivier Deprez | 0e64123 | 2021-09-23 10:07:05 +0200 | [diff] [blame^] | 2141 | back_to_back_c0_hazard(); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2142 | } |
| 2143 | |
| 2144 | unsigned int hwrena; |
| 2145 | EXPORT_SYMBOL_GPL(hwrena); |
| 2146 | |
| 2147 | /* configure HWRENA register */ |
| 2148 | static void configure_hwrena(void) |
| 2149 | { |
| 2150 | hwrena = cpu_hwrena_impl_bits; |
| 2151 | |
| 2152 | if (cpu_has_mips_r2_r6) |
| 2153 | hwrena |= MIPS_HWRENA_CPUNUM | |
| 2154 | MIPS_HWRENA_SYNCISTEP | |
| 2155 | MIPS_HWRENA_CC | |
| 2156 | MIPS_HWRENA_CCRES; |
| 2157 | |
| 2158 | if (!noulri && cpu_has_userlocal) |
| 2159 | hwrena |= MIPS_HWRENA_ULR; |
| 2160 | |
| 2161 | if (hwrena) |
| 2162 | write_c0_hwrena(hwrena); |
| 2163 | } |
| 2164 | |
| 2165 | static void configure_exception_vector(void) |
| 2166 | { |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2167 | if (cpu_has_mips_r2_r6) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2168 | unsigned long sr = set_c0_status(ST0_BEV); |
| 2169 | /* If available, use WG to set top bits of EBASE */ |
| 2170 | if (cpu_has_ebase_wg) { |
| 2171 | #ifdef CONFIG_64BIT |
| 2172 | write_c0_ebase_64(ebase | MIPS_EBASE_WG); |
| 2173 | #else |
| 2174 | write_c0_ebase(ebase | MIPS_EBASE_WG); |
| 2175 | #endif |
| 2176 | } |
| 2177 | write_c0_ebase(ebase); |
| 2178 | write_c0_status(sr); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2179 | } |
| 2180 | if (cpu_has_veic || cpu_has_vint) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2181 | /* Setting vector spacing enables EI/VI mode */ |
| 2182 | change_c0_intctl(0x3e0, VECTORSPACING); |
| 2183 | } |
| 2184 | if (cpu_has_divec) { |
| 2185 | if (cpu_has_mipsmt) { |
| 2186 | unsigned int vpflags = dvpe(); |
| 2187 | set_c0_cause(CAUSEF_IV); |
| 2188 | evpe(vpflags); |
| 2189 | } else |
| 2190 | set_c0_cause(CAUSEF_IV); |
| 2191 | } |
| 2192 | } |
| 2193 | |
| 2194 | void per_cpu_trap_init(bool is_boot_cpu) |
| 2195 | { |
| 2196 | unsigned int cpu = smp_processor_id(); |
| 2197 | |
| 2198 | configure_status(); |
| 2199 | configure_hwrena(); |
| 2200 | |
| 2201 | configure_exception_vector(); |
| 2202 | |
| 2203 | /* |
| 2204 | * Before R2 both interrupt numbers were fixed to 7, so on R2 only: |
| 2205 | * |
| 2206 | * o read IntCtl.IPTI to determine the timer interrupt |
| 2207 | * o read IntCtl.IPPCI to determine the performance counter interrupt |
| 2208 | * o read IntCtl.IPFDC to determine the fast debug channel interrupt |
| 2209 | */ |
| 2210 | if (cpu_has_mips_r2_r6) { |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2211 | cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; |
| 2212 | cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; |
| 2213 | cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; |
| 2214 | cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; |
| 2215 | if (!cp0_fdc_irq) |
| 2216 | cp0_fdc_irq = -1; |
| 2217 | |
| 2218 | } else { |
| 2219 | cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; |
| 2220 | cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; |
| 2221 | cp0_perfcount_irq = -1; |
| 2222 | cp0_fdc_irq = -1; |
| 2223 | } |
| 2224 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2225 | if (cpu_has_mmid) |
| 2226 | cpu_data[cpu].asid_cache = 0; |
| 2227 | else if (!cpu_data[cpu].asid_cache) |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2228 | cpu_data[cpu].asid_cache = asid_first_version(cpu); |
| 2229 | |
| 2230 | mmgrab(&init_mm); |
| 2231 | current->active_mm = &init_mm; |
| 2232 | BUG_ON(current->mm); |
| 2233 | enter_lazy_tlb(&init_mm, current); |
| 2234 | |
| 2235 | /* Boot CPU's cache setup in setup_arch(). */ |
| 2236 | if (!is_boot_cpu) |
| 2237 | cpu_cache_init(); |
| 2238 | tlb_init(); |
| 2239 | TLBMISS_HANDLER_SETUP(); |
| 2240 | } |
| 2241 | |
| 2242 | /* Install CPU exception handler */ |
| 2243 | void set_handler(unsigned long offset, void *addr, unsigned long size) |
| 2244 | { |
| 2245 | #ifdef CONFIG_CPU_MICROMIPS |
| 2246 | memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); |
| 2247 | #else |
| 2248 | memcpy((void *)(ebase + offset), addr, size); |
| 2249 | #endif |
| 2250 | local_flush_icache_range(ebase + offset, ebase + offset + size); |
| 2251 | } |
| 2252 | |
| 2253 | static const char panic_null_cerr[] = |
| 2254 | "Trying to set NULL cache error exception handler\n"; |
| 2255 | |
| 2256 | /* |
| 2257 | * Install uncached CPU exception handler. |
| 2258 | * This is suitable only for the cache error exception which is the only |
| 2259 | * exception handler that is being run uncached. |
| 2260 | */ |
| 2261 | void set_uncached_handler(unsigned long offset, void *addr, |
| 2262 | unsigned long size) |
| 2263 | { |
| 2264 | unsigned long uncached_ebase = CKSEG1ADDR(ebase); |
| 2265 | |
| 2266 | if (!addr) |
| 2267 | panic(panic_null_cerr); |
| 2268 | |
| 2269 | memcpy((void *)(uncached_ebase + offset), addr, size); |
| 2270 | } |
| 2271 | |
| 2272 | static int __initdata rdhwr_noopt; |
| 2273 | static int __init set_rdhwr_noopt(char *str) |
| 2274 | { |
| 2275 | rdhwr_noopt = 1; |
| 2276 | return 1; |
| 2277 | } |
| 2278 | |
| 2279 | __setup("rdhwr_noopt", set_rdhwr_noopt); |
| 2280 | |
| 2281 | void __init trap_init(void) |
| 2282 | { |
| 2283 | extern char except_vec3_generic; |
| 2284 | extern char except_vec4; |
| 2285 | extern char except_vec3_r4000; |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2286 | unsigned long i, vec_size; |
| 2287 | phys_addr_t ebase_pa; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2288 | |
| 2289 | check_wait(); |
| 2290 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2291 | if (!cpu_has_mips_r2_r6) { |
| 2292 | ebase = CAC_BASE; |
| 2293 | ebase_pa = virt_to_phys((void *)ebase); |
| 2294 | vec_size = 0x400; |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2295 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2296 | memblock_reserve(ebase_pa, vec_size); |
| 2297 | } else { |
| 2298 | if (cpu_has_veic || cpu_has_vint) |
| 2299 | vec_size = 0x200 + VECTORSPACING*64; |
| 2300 | else |
| 2301 | vec_size = PAGE_SIZE; |
| 2302 | |
| 2303 | ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size)); |
| 2304 | if (!ebase_pa) |
| 2305 | panic("%s: Failed to allocate %lu bytes align=0x%x\n", |
| 2306 | __func__, vec_size, 1 << fls(vec_size)); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2307 | |
| 2308 | /* |
| 2309 | * Try to ensure ebase resides in KSeg0 if possible. |
| 2310 | * |
| 2311 | * It shouldn't generally be in XKPhys on MIPS64 to avoid |
| 2312 | * hitting a poorly defined exception base for Cache Errors. |
| 2313 | * The allocation is likely to be in the low 512MB of physical, |
| 2314 | * in which case we should be able to convert to KSeg0. |
| 2315 | * |
| 2316 | * EVA is special though as it allows segments to be rearranged |
| 2317 | * and to become uncached during cache error handling. |
| 2318 | */ |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2319 | if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000)) |
| 2320 | ebase = CKSEG0ADDR(ebase_pa); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2321 | else |
| 2322 | ebase = (unsigned long)phys_to_virt(ebase_pa); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2323 | } |
| 2324 | |
| 2325 | if (cpu_has_mmips) { |
| 2326 | unsigned int config3 = read_c0_config3(); |
| 2327 | |
| 2328 | if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) |
| 2329 | write_c0_config3(config3 | MIPS_CONF3_ISA_OE); |
| 2330 | else |
| 2331 | write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); |
| 2332 | } |
| 2333 | |
| 2334 | if (board_ebase_setup) |
| 2335 | board_ebase_setup(); |
| 2336 | per_cpu_trap_init(true); |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2337 | memblock_set_bottom_up(false); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2338 | |
| 2339 | /* |
| 2340 | * Copy the generic exception handlers to their final destination. |
| 2341 | * This will be overridden later as suitable for a particular |
| 2342 | * configuration. |
| 2343 | */ |
| 2344 | set_handler(0x180, &except_vec3_generic, 0x80); |
| 2345 | |
| 2346 | /* |
| 2347 | * Setup default vectors |
| 2348 | */ |
| 2349 | for (i = 0; i <= 31; i++) |
| 2350 | set_except_vector(i, handle_reserved); |
| 2351 | |
| 2352 | /* |
| 2353 | * Copy the EJTAG debug exception vector handler code to it's final |
| 2354 | * destination. |
| 2355 | */ |
| 2356 | if (cpu_has_ejtag && board_ejtag_handler_setup) |
| 2357 | board_ejtag_handler_setup(); |
| 2358 | |
| 2359 | /* |
| 2360 | * Only some CPUs have the watch exceptions. |
| 2361 | */ |
| 2362 | if (cpu_has_watch) |
| 2363 | set_except_vector(EXCCODE_WATCH, handle_watch); |
| 2364 | |
| 2365 | /* |
| 2366 | * Initialise interrupt handlers |
| 2367 | */ |
| 2368 | if (cpu_has_veic || cpu_has_vint) { |
| 2369 | int nvec = cpu_has_veic ? 64 : 8; |
| 2370 | for (i = 0; i < nvec; i++) |
| 2371 | set_vi_handler(i, NULL); |
| 2372 | } |
| 2373 | else if (cpu_has_divec) |
| 2374 | set_handler(0x200, &except_vec4, 0x8); |
| 2375 | |
| 2376 | /* |
| 2377 | * Some CPUs can enable/disable for cache parity detection, but does |
| 2378 | * it different ways. |
| 2379 | */ |
| 2380 | parity_protection_init(); |
| 2381 | |
| 2382 | /* |
| 2383 | * The Data Bus Errors / Instruction Bus Errors are signaled |
| 2384 | * by external hardware. Therefore these two exceptions |
| 2385 | * may have board specific handlers. |
| 2386 | */ |
| 2387 | if (board_be_init) |
| 2388 | board_be_init(); |
| 2389 | |
| 2390 | set_except_vector(EXCCODE_INT, using_rollback_handler() ? |
| 2391 | rollback_handle_int : handle_int); |
| 2392 | set_except_vector(EXCCODE_MOD, handle_tlbm); |
| 2393 | set_except_vector(EXCCODE_TLBL, handle_tlbl); |
| 2394 | set_except_vector(EXCCODE_TLBS, handle_tlbs); |
| 2395 | |
| 2396 | set_except_vector(EXCCODE_ADEL, handle_adel); |
| 2397 | set_except_vector(EXCCODE_ADES, handle_ades); |
| 2398 | |
| 2399 | set_except_vector(EXCCODE_IBE, handle_ibe); |
| 2400 | set_except_vector(EXCCODE_DBE, handle_dbe); |
| 2401 | |
| 2402 | set_except_vector(EXCCODE_SYS, handle_sys); |
| 2403 | set_except_vector(EXCCODE_BP, handle_bp); |
| 2404 | |
| 2405 | if (rdhwr_noopt) |
| 2406 | set_except_vector(EXCCODE_RI, handle_ri); |
| 2407 | else { |
| 2408 | if (cpu_has_vtag_icache) |
| 2409 | set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); |
| 2410 | else if (current_cpu_type() == CPU_LOONGSON3) |
| 2411 | set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp); |
| 2412 | else |
| 2413 | set_except_vector(EXCCODE_RI, handle_ri_rdhwr); |
| 2414 | } |
| 2415 | |
| 2416 | set_except_vector(EXCCODE_CPU, handle_cpu); |
| 2417 | set_except_vector(EXCCODE_OV, handle_ov); |
| 2418 | set_except_vector(EXCCODE_TR, handle_tr); |
| 2419 | set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe); |
| 2420 | |
| 2421 | if (board_nmi_handler_setup) |
| 2422 | board_nmi_handler_setup(); |
| 2423 | |
| 2424 | if (cpu_has_fpu && !cpu_has_nofpuex) |
| 2425 | set_except_vector(EXCCODE_FPE, handle_fpe); |
| 2426 | |
| 2427 | set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb); |
| 2428 | |
| 2429 | if (cpu_has_rixiex) { |
| 2430 | set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0); |
| 2431 | set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0); |
| 2432 | } |
| 2433 | |
| 2434 | set_except_vector(EXCCODE_MSADIS, handle_msa); |
| 2435 | set_except_vector(EXCCODE_MDMX, handle_mdmx); |
| 2436 | |
| 2437 | if (cpu_has_mcheck) |
| 2438 | set_except_vector(EXCCODE_MCHECK, handle_mcheck); |
| 2439 | |
| 2440 | if (cpu_has_mipsmt) |
| 2441 | set_except_vector(EXCCODE_THREAD, handle_mt); |
| 2442 | |
| 2443 | set_except_vector(EXCCODE_DSPDIS, handle_dsp); |
| 2444 | |
| 2445 | if (board_cache_error_setup) |
| 2446 | board_cache_error_setup(); |
| 2447 | |
| 2448 | if (cpu_has_vce) |
| 2449 | /* Special exception: R4[04]00 uses also the divec space. */ |
| 2450 | set_handler(0x180, &except_vec3_r4000, 0x100); |
| 2451 | else if (cpu_has_4kex) |
| 2452 | set_handler(0x180, &except_vec3_generic, 0x80); |
| 2453 | else |
| 2454 | set_handler(0x080, &except_vec3_generic, 0x80); |
| 2455 | |
David Brazdil | 0f672f6 | 2019-12-10 10:32:29 +0000 | [diff] [blame] | 2456 | local_flush_icache_range(ebase, ebase + vec_size); |
Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 2457 | |
| 2458 | sort_extable(__start___dbe_table, __stop___dbe_table); |
| 2459 | |
| 2460 | cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ |
| 2461 | } |
| 2462 | |
| 2463 | static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, |
| 2464 | void *v) |
| 2465 | { |
| 2466 | switch (cmd) { |
| 2467 | case CPU_PM_ENTER_FAILED: |
| 2468 | case CPU_PM_EXIT: |
| 2469 | configure_status(); |
| 2470 | configure_hwrena(); |
| 2471 | configure_exception_vector(); |
| 2472 | |
| 2473 | /* Restore register with CPU number for TLB handlers */ |
| 2474 | TLBMISS_HANDLER_RESTORE(); |
| 2475 | |
| 2476 | break; |
| 2477 | } |
| 2478 | |
| 2479 | return NOTIFY_OK; |
| 2480 | } |
| 2481 | |
| 2482 | static struct notifier_block trap_pm_notifier_block = { |
| 2483 | .notifier_call = trap_pm_notifier, |
| 2484 | }; |
| 2485 | |
| 2486 | static int __init trap_pm_init(void) |
| 2487 | { |
| 2488 | return cpu_pm_register_notifier(&trap_pm_notifier_block); |
| 2489 | } |
| 2490 | arch_initcall(trap_pm_init); |