Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * This program is free software; you can redistribute it and/or modify |
| 3 | * it under the terms of the GNU General Public License version 2 as |
| 4 | * published by the Free Software Foundation. |
| 5 | * |
| 6 | * This program is distributed in the hope that it will be useful, |
| 7 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 8 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 9 | * GNU General Public License for more details. |
| 10 | * |
| 11 | * You should have received a copy of the GNU General Public License |
| 12 | * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/irqchip/arm-gic-v3.h> |
| 16 | #include <linux/kvm.h> |
| 17 | #include <linux/kvm_host.h> |
| 18 | #include <kvm/arm_vgic.h> |
| 19 | #include <asm/kvm_hyp.h> |
| 20 | #include <asm/kvm_mmu.h> |
| 21 | #include <asm/kvm_asm.h> |
| 22 | |
| 23 | #include "vgic.h" |
| 24 | |
| 25 | static bool group0_trap; |
| 26 | static bool group1_trap; |
| 27 | static bool common_trap; |
| 28 | static bool gicv4_enable; |
| 29 | |
| 30 | void vgic_v3_set_underflow(struct kvm_vcpu *vcpu) |
| 31 | { |
| 32 | struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3; |
| 33 | |
| 34 | cpuif->vgic_hcr |= ICH_HCR_UIE; |
| 35 | } |
| 36 | |
| 37 | static bool lr_signals_eoi_mi(u64 lr_val) |
| 38 | { |
| 39 | return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) && |
| 40 | !(lr_val & ICH_LR_HW); |
| 41 | } |
| 42 | |
| 43 | void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu) |
| 44 | { |
| 45 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 46 | struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3; |
| 47 | u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| 48 | int lr; |
| 49 | |
| 50 | DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); |
| 51 | |
| 52 | cpuif->vgic_hcr &= ~ICH_HCR_UIE; |
| 53 | |
| 54 | for (lr = 0; lr < vgic_cpu->used_lrs; lr++) { |
| 55 | u64 val = cpuif->vgic_lr[lr]; |
| 56 | u32 intid, cpuid; |
| 57 | struct vgic_irq *irq; |
| 58 | bool is_v2_sgi = false; |
| 59 | |
| 60 | cpuid = val & GICH_LR_PHYSID_CPUID; |
| 61 | cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT; |
| 62 | |
| 63 | if (model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| 64 | intid = val & ICH_LR_VIRTUAL_ID_MASK; |
| 65 | } else { |
| 66 | intid = val & GICH_LR_VIRTUALID; |
| 67 | is_v2_sgi = vgic_irq_is_sgi(intid); |
| 68 | } |
| 69 | |
| 70 | /* Notify fds when the guest EOI'ed a level-triggered IRQ */ |
| 71 | if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid)) |
| 72 | kvm_notify_acked_irq(vcpu->kvm, 0, |
| 73 | intid - VGIC_NR_PRIVATE_IRQS); |
| 74 | |
| 75 | irq = vgic_get_irq(vcpu->kvm, vcpu, intid); |
| 76 | if (!irq) /* An LPI could have been unmapped. */ |
| 77 | continue; |
| 78 | |
| 79 | spin_lock(&irq->irq_lock); |
| 80 | |
| 81 | /* Always preserve the active bit */ |
| 82 | irq->active = !!(val & ICH_LR_ACTIVE_BIT); |
| 83 | |
| 84 | if (irq->active && is_v2_sgi) |
| 85 | irq->active_source = cpuid; |
| 86 | |
| 87 | /* Edge is the only case where we preserve the pending bit */ |
| 88 | if (irq->config == VGIC_CONFIG_EDGE && |
| 89 | (val & ICH_LR_PENDING_BIT)) { |
| 90 | irq->pending_latch = true; |
| 91 | |
| 92 | if (is_v2_sgi) |
| 93 | irq->source |= (1 << cpuid); |
| 94 | } |
| 95 | |
| 96 | /* |
| 97 | * Clear soft pending state when level irqs have been acked. |
| 98 | */ |
| 99 | if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE)) |
| 100 | irq->pending_latch = false; |
| 101 | |
| 102 | /* |
| 103 | * Level-triggered mapped IRQs are special because we only |
| 104 | * observe rising edges as input to the VGIC. |
| 105 | * |
| 106 | * If the guest never acked the interrupt we have to sample |
| 107 | * the physical line and set the line level, because the |
| 108 | * device state could have changed or we simply need to |
| 109 | * process the still pending interrupt later. |
| 110 | * |
| 111 | * If this causes us to lower the level, we have to also clear |
| 112 | * the physical active state, since we will otherwise never be |
| 113 | * told when the interrupt becomes asserted again. |
| 114 | */ |
| 115 | if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) { |
| 116 | irq->line_level = vgic_get_phys_line_level(irq); |
| 117 | |
| 118 | if (!irq->line_level) |
| 119 | vgic_irq_set_phys_active(irq, false); |
| 120 | } |
| 121 | |
| 122 | spin_unlock(&irq->irq_lock); |
| 123 | vgic_put_irq(vcpu->kvm, irq); |
| 124 | } |
| 125 | |
| 126 | vgic_cpu->used_lrs = 0; |
| 127 | } |
| 128 | |
| 129 | /* Requires the irq to be locked already */ |
| 130 | void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) |
| 131 | { |
| 132 | u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| 133 | u64 val = irq->intid; |
| 134 | bool allow_pending = true, is_v2_sgi; |
| 135 | |
| 136 | is_v2_sgi = (vgic_irq_is_sgi(irq->intid) && |
| 137 | model == KVM_DEV_TYPE_ARM_VGIC_V2); |
| 138 | |
| 139 | if (irq->active) { |
| 140 | val |= ICH_LR_ACTIVE_BIT; |
| 141 | if (is_v2_sgi) |
| 142 | val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT; |
| 143 | if (vgic_irq_is_multi_sgi(irq)) { |
| 144 | allow_pending = false; |
| 145 | val |= ICH_LR_EOI; |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | if (irq->hw) { |
| 150 | val |= ICH_LR_HW; |
| 151 | val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT; |
| 152 | /* |
| 153 | * Never set pending+active on a HW interrupt, as the |
| 154 | * pending state is kept at the physical distributor |
| 155 | * level. |
| 156 | */ |
| 157 | if (irq->active) |
| 158 | allow_pending = false; |
| 159 | } else { |
| 160 | if (irq->config == VGIC_CONFIG_LEVEL) { |
| 161 | val |= ICH_LR_EOI; |
| 162 | |
| 163 | /* |
| 164 | * Software resampling doesn't work very well |
| 165 | * if we allow P+A, so let's not do that. |
| 166 | */ |
| 167 | if (irq->active) |
| 168 | allow_pending = false; |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | if (allow_pending && irq_is_pending(irq)) { |
| 173 | val |= ICH_LR_PENDING_BIT; |
| 174 | |
| 175 | if (irq->config == VGIC_CONFIG_EDGE) |
| 176 | irq->pending_latch = false; |
| 177 | |
| 178 | if (vgic_irq_is_sgi(irq->intid) && |
| 179 | model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| 180 | u32 src = ffs(irq->source); |
| 181 | |
| 182 | BUG_ON(!src); |
| 183 | val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT; |
| 184 | irq->source &= ~(1 << (src - 1)); |
| 185 | if (irq->source) { |
| 186 | irq->pending_latch = true; |
| 187 | val |= ICH_LR_EOI; |
| 188 | } |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /* |
| 193 | * Level-triggered mapped IRQs are special because we only observe |
| 194 | * rising edges as input to the VGIC. We therefore lower the line |
| 195 | * level here, so that we can take new virtual IRQs. See |
| 196 | * vgic_v3_fold_lr_state for more info. |
| 197 | */ |
| 198 | if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) |
| 199 | irq->line_level = false; |
| 200 | |
| 201 | if (irq->group) |
| 202 | val |= ICH_LR_GROUP; |
| 203 | |
| 204 | val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT; |
| 205 | |
| 206 | vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val; |
| 207 | } |
| 208 | |
| 209 | void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr) |
| 210 | { |
| 211 | vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0; |
| 212 | } |
| 213 | |
| 214 | void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| 215 | { |
| 216 | struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| 217 | u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| 218 | u32 vmcr; |
| 219 | |
| 220 | if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| 221 | vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) & |
| 222 | ICH_VMCR_ACK_CTL_MASK; |
| 223 | vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) & |
| 224 | ICH_VMCR_FIQ_EN_MASK; |
| 225 | } else { |
| 226 | /* |
| 227 | * When emulating GICv3 on GICv3 with SRE=1 on the |
| 228 | * VFIQEn bit is RES1 and the VAckCtl bit is RES0. |
| 229 | */ |
| 230 | vmcr = ICH_VMCR_FIQ_EN_MASK; |
| 231 | } |
| 232 | |
| 233 | vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK; |
| 234 | vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK; |
| 235 | vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK; |
| 236 | vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK; |
| 237 | vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK; |
| 238 | vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK; |
| 239 | vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK; |
| 240 | |
| 241 | cpu_if->vgic_vmcr = vmcr; |
| 242 | } |
| 243 | |
| 244 | void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp) |
| 245 | { |
| 246 | struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| 247 | u32 model = vcpu->kvm->arch.vgic.vgic_model; |
| 248 | u32 vmcr; |
| 249 | |
| 250 | vmcr = cpu_if->vgic_vmcr; |
| 251 | |
| 252 | if (model == KVM_DEV_TYPE_ARM_VGIC_V2) { |
| 253 | vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >> |
| 254 | ICH_VMCR_ACK_CTL_SHIFT; |
| 255 | vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >> |
| 256 | ICH_VMCR_FIQ_EN_SHIFT; |
| 257 | } else { |
| 258 | /* |
| 259 | * When emulating GICv3 on GICv3 with SRE=1 on the |
| 260 | * VFIQEn bit is RES1 and the VAckCtl bit is RES0. |
| 261 | */ |
| 262 | vmcrp->fiqen = 1; |
| 263 | vmcrp->ackctl = 0; |
| 264 | } |
| 265 | |
| 266 | vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT; |
| 267 | vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT; |
| 268 | vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT; |
| 269 | vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT; |
| 270 | vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT; |
| 271 | vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT; |
| 272 | vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT; |
| 273 | } |
| 274 | |
| 275 | #define INITIAL_PENDBASER_VALUE \ |
| 276 | (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \ |
| 277 | GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \ |
| 278 | GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable)) |
| 279 | |
| 280 | void vgic_v3_enable(struct kvm_vcpu *vcpu) |
| 281 | { |
| 282 | struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3; |
| 283 | |
| 284 | /* |
| 285 | * By forcing VMCR to zero, the GIC will restore the binary |
| 286 | * points to their reset values. Anything else resets to zero |
| 287 | * anyway. |
| 288 | */ |
| 289 | vgic_v3->vgic_vmcr = 0; |
| 290 | |
| 291 | /* |
| 292 | * If we are emulating a GICv3, we do it in an non-GICv2-compatible |
| 293 | * way, so we force SRE to 1 to demonstrate this to the guest. |
| 294 | * Also, we don't support any form of IRQ/FIQ bypass. |
| 295 | * This goes with the spec allowing the value to be RAO/WI. |
| 296 | */ |
| 297 | if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) { |
| 298 | vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB | |
| 299 | ICC_SRE_EL1_DFB | |
| 300 | ICC_SRE_EL1_SRE); |
| 301 | vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE; |
| 302 | } else { |
| 303 | vgic_v3->vgic_sre = 0; |
| 304 | } |
| 305 | |
| 306 | vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 & |
| 307 | ICH_VTR_ID_BITS_MASK) >> |
| 308 | ICH_VTR_ID_BITS_SHIFT; |
| 309 | vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 & |
| 310 | ICH_VTR_PRI_BITS_MASK) >> |
| 311 | ICH_VTR_PRI_BITS_SHIFT) + 1; |
| 312 | |
| 313 | /* Get the show on the road... */ |
| 314 | vgic_v3->vgic_hcr = ICH_HCR_EN; |
| 315 | if (group0_trap) |
| 316 | vgic_v3->vgic_hcr |= ICH_HCR_TALL0; |
| 317 | if (group1_trap) |
| 318 | vgic_v3->vgic_hcr |= ICH_HCR_TALL1; |
| 319 | if (common_trap) |
| 320 | vgic_v3->vgic_hcr |= ICH_HCR_TC; |
| 321 | } |
| 322 | |
| 323 | int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq) |
| 324 | { |
| 325 | struct kvm_vcpu *vcpu; |
| 326 | int byte_offset, bit_nr; |
| 327 | gpa_t pendbase, ptr; |
| 328 | bool status; |
| 329 | u8 val; |
| 330 | int ret; |
| 331 | unsigned long flags; |
| 332 | |
| 333 | retry: |
| 334 | vcpu = irq->target_vcpu; |
| 335 | if (!vcpu) |
| 336 | return 0; |
| 337 | |
| 338 | pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); |
| 339 | |
| 340 | byte_offset = irq->intid / BITS_PER_BYTE; |
| 341 | bit_nr = irq->intid % BITS_PER_BYTE; |
| 342 | ptr = pendbase + byte_offset; |
| 343 | |
| 344 | ret = kvm_read_guest_lock(kvm, ptr, &val, 1); |
| 345 | if (ret) |
| 346 | return ret; |
| 347 | |
| 348 | status = val & (1 << bit_nr); |
| 349 | |
| 350 | spin_lock_irqsave(&irq->irq_lock, flags); |
| 351 | if (irq->target_vcpu != vcpu) { |
| 352 | spin_unlock_irqrestore(&irq->irq_lock, flags); |
| 353 | goto retry; |
| 354 | } |
| 355 | irq->pending_latch = status; |
| 356 | vgic_queue_irq_unlock(vcpu->kvm, irq, flags); |
| 357 | |
| 358 | if (status) { |
| 359 | /* clear consumed data */ |
| 360 | val &= ~(1 << bit_nr); |
| 361 | ret = kvm_write_guest(kvm, ptr, &val, 1); |
| 362 | if (ret) |
| 363 | return ret; |
| 364 | } |
| 365 | return 0; |
| 366 | } |
| 367 | |
| 368 | /** |
| 369 | * vgic_its_save_pending_tables - Save the pending tables into guest RAM |
| 370 | * kvm lock and all vcpu lock must be held |
| 371 | */ |
| 372 | int vgic_v3_save_pending_tables(struct kvm *kvm) |
| 373 | { |
| 374 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 375 | int last_byte_offset = -1; |
| 376 | struct vgic_irq *irq; |
| 377 | int ret; |
| 378 | u8 val; |
| 379 | |
| 380 | list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { |
| 381 | int byte_offset, bit_nr; |
| 382 | struct kvm_vcpu *vcpu; |
| 383 | gpa_t pendbase, ptr; |
| 384 | bool stored; |
| 385 | |
| 386 | vcpu = irq->target_vcpu; |
| 387 | if (!vcpu) |
| 388 | continue; |
| 389 | |
| 390 | pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); |
| 391 | |
| 392 | byte_offset = irq->intid / BITS_PER_BYTE; |
| 393 | bit_nr = irq->intid % BITS_PER_BYTE; |
| 394 | ptr = pendbase + byte_offset; |
| 395 | |
| 396 | if (byte_offset != last_byte_offset) { |
| 397 | ret = kvm_read_guest_lock(kvm, ptr, &val, 1); |
| 398 | if (ret) |
| 399 | return ret; |
| 400 | last_byte_offset = byte_offset; |
| 401 | } |
| 402 | |
| 403 | stored = val & (1U << bit_nr); |
| 404 | if (stored == irq->pending_latch) |
| 405 | continue; |
| 406 | |
| 407 | if (irq->pending_latch) |
| 408 | val |= 1 << bit_nr; |
| 409 | else |
| 410 | val &= ~(1 << bit_nr); |
| 411 | |
| 412 | ret = kvm_write_guest(kvm, ptr, &val, 1); |
| 413 | if (ret) |
| 414 | return ret; |
| 415 | } |
| 416 | return 0; |
| 417 | } |
| 418 | |
| 419 | /** |
| 420 | * vgic_v3_rdist_overlap - check if a region overlaps with any |
| 421 | * existing redistributor region |
| 422 | * |
| 423 | * @kvm: kvm handle |
| 424 | * @base: base of the region |
| 425 | * @size: size of region |
| 426 | * |
| 427 | * Return: true if there is an overlap |
| 428 | */ |
| 429 | bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size) |
| 430 | { |
| 431 | struct vgic_dist *d = &kvm->arch.vgic; |
| 432 | struct vgic_redist_region *rdreg; |
| 433 | |
| 434 | list_for_each_entry(rdreg, &d->rd_regions, list) { |
| 435 | if ((base + size > rdreg->base) && |
| 436 | (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg))) |
| 437 | return true; |
| 438 | } |
| 439 | return false; |
| 440 | } |
| 441 | |
| 442 | /* |
| 443 | * Check for overlapping regions and for regions crossing the end of memory |
| 444 | * for base addresses which have already been set. |
| 445 | */ |
| 446 | bool vgic_v3_check_base(struct kvm *kvm) |
| 447 | { |
| 448 | struct vgic_dist *d = &kvm->arch.vgic; |
| 449 | struct vgic_redist_region *rdreg; |
| 450 | |
| 451 | if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) && |
| 452 | d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base) |
| 453 | return false; |
| 454 | |
| 455 | list_for_each_entry(rdreg, &d->rd_regions, list) { |
| 456 | if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) < |
| 457 | rdreg->base) |
| 458 | return false; |
| 459 | } |
| 460 | |
| 461 | if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base)) |
| 462 | return true; |
| 463 | |
| 464 | return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base, |
| 465 | KVM_VGIC_V3_DIST_SIZE); |
| 466 | } |
| 467 | |
| 468 | /** |
| 469 | * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one |
| 470 | * which has free space to put a new rdist region. |
| 471 | * |
| 472 | * @rd_regions: redistributor region list head |
| 473 | * |
| 474 | * A redistributor regions maps n redistributors, n = region size / (2 x 64kB). |
| 475 | * Stride between redistributors is 0 and regions are filled in the index order. |
| 476 | * |
| 477 | * Return: the redist region handle, if any, that has space to map a new rdist |
| 478 | * region. |
| 479 | */ |
| 480 | struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions) |
| 481 | { |
| 482 | struct vgic_redist_region *rdreg; |
| 483 | |
| 484 | list_for_each_entry(rdreg, rd_regions, list) { |
| 485 | if (!vgic_v3_redist_region_full(rdreg)) |
| 486 | return rdreg; |
| 487 | } |
| 488 | return NULL; |
| 489 | } |
| 490 | |
| 491 | struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm, |
| 492 | u32 index) |
| 493 | { |
| 494 | struct list_head *rd_regions = &kvm->arch.vgic.rd_regions; |
| 495 | struct vgic_redist_region *rdreg; |
| 496 | |
| 497 | list_for_each_entry(rdreg, rd_regions, list) { |
| 498 | if (rdreg->index == index) |
| 499 | return rdreg; |
| 500 | } |
| 501 | return NULL; |
| 502 | } |
| 503 | |
| 504 | |
| 505 | int vgic_v3_map_resources(struct kvm *kvm) |
| 506 | { |
| 507 | struct vgic_dist *dist = &kvm->arch.vgic; |
| 508 | struct kvm_vcpu *vcpu; |
| 509 | int ret = 0; |
| 510 | int c; |
| 511 | |
| 512 | if (vgic_ready(kvm)) |
| 513 | goto out; |
| 514 | |
| 515 | kvm_for_each_vcpu(c, vcpu, kvm) { |
| 516 | struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; |
| 517 | |
| 518 | if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) { |
| 519 | kvm_debug("vcpu %d redistributor base not set\n", c); |
| 520 | ret = -ENXIO; |
| 521 | goto out; |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) { |
| 526 | kvm_err("Need to set vgic distributor addresses first\n"); |
| 527 | ret = -ENXIO; |
| 528 | goto out; |
| 529 | } |
| 530 | |
| 531 | if (!vgic_v3_check_base(kvm)) { |
| 532 | kvm_err("VGIC redist and dist frames overlap\n"); |
| 533 | ret = -EINVAL; |
| 534 | goto out; |
| 535 | } |
| 536 | |
| 537 | /* |
| 538 | * For a VGICv3 we require the userland to explicitly initialize |
| 539 | * the VGIC before we need to use it. |
| 540 | */ |
| 541 | if (!vgic_initialized(kvm)) { |
| 542 | ret = -EBUSY; |
| 543 | goto out; |
| 544 | } |
| 545 | |
| 546 | ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3); |
| 547 | if (ret) { |
| 548 | kvm_err("Unable to register VGICv3 dist MMIO regions\n"); |
| 549 | goto out; |
| 550 | } |
| 551 | |
| 552 | dist->ready = true; |
| 553 | |
| 554 | out: |
| 555 | return ret; |
| 556 | } |
| 557 | |
| 558 | DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap); |
| 559 | |
| 560 | static int __init early_group0_trap_cfg(char *buf) |
| 561 | { |
| 562 | return strtobool(buf, &group0_trap); |
| 563 | } |
| 564 | early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg); |
| 565 | |
| 566 | static int __init early_group1_trap_cfg(char *buf) |
| 567 | { |
| 568 | return strtobool(buf, &group1_trap); |
| 569 | } |
| 570 | early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg); |
| 571 | |
| 572 | static int __init early_common_trap_cfg(char *buf) |
| 573 | { |
| 574 | return strtobool(buf, &common_trap); |
| 575 | } |
| 576 | early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg); |
| 577 | |
| 578 | static int __init early_gicv4_enable(char *buf) |
| 579 | { |
| 580 | return strtobool(buf, &gicv4_enable); |
| 581 | } |
| 582 | early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable); |
| 583 | |
| 584 | /** |
| 585 | * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT |
| 586 | * @node: pointer to the DT node |
| 587 | * |
| 588 | * Returns 0 if a GICv3 has been found, returns an error code otherwise |
| 589 | */ |
| 590 | int vgic_v3_probe(const struct gic_kvm_info *info) |
| 591 | { |
| 592 | u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2); |
| 593 | int ret; |
| 594 | |
| 595 | /* |
| 596 | * The ListRegs field is 5 bits, but there is a architectural |
| 597 | * maximum of 16 list registers. Just ignore bit 4... |
| 598 | */ |
| 599 | kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1; |
| 600 | kvm_vgic_global_state.can_emulate_gicv2 = false; |
| 601 | kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2; |
| 602 | |
| 603 | /* GICv4 support? */ |
| 604 | if (info->has_v4) { |
| 605 | kvm_vgic_global_state.has_gicv4 = gicv4_enable; |
| 606 | kvm_info("GICv4 support %sabled\n", |
| 607 | gicv4_enable ? "en" : "dis"); |
| 608 | } |
| 609 | |
| 610 | if (!info->vcpu.start) { |
| 611 | kvm_info("GICv3: no GICV resource entry\n"); |
| 612 | kvm_vgic_global_state.vcpu_base = 0; |
| 613 | } else if (!PAGE_ALIGNED(info->vcpu.start)) { |
| 614 | pr_warn("GICV physical address 0x%llx not page aligned\n", |
| 615 | (unsigned long long)info->vcpu.start); |
| 616 | kvm_vgic_global_state.vcpu_base = 0; |
| 617 | } else { |
| 618 | kvm_vgic_global_state.vcpu_base = info->vcpu.start; |
| 619 | kvm_vgic_global_state.can_emulate_gicv2 = true; |
| 620 | ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2); |
| 621 | if (ret) { |
| 622 | kvm_err("Cannot register GICv2 KVM device.\n"); |
| 623 | return ret; |
| 624 | } |
| 625 | kvm_info("vgic-v2@%llx\n", info->vcpu.start); |
| 626 | } |
| 627 | ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3); |
| 628 | if (ret) { |
| 629 | kvm_err("Cannot register GICv3 KVM device.\n"); |
| 630 | kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2); |
| 631 | return ret; |
| 632 | } |
| 633 | |
| 634 | if (kvm_vgic_global_state.vcpu_base == 0) |
| 635 | kvm_info("disabling GICv2 emulation\n"); |
| 636 | |
| 637 | #ifdef CONFIG_ARM64 |
| 638 | if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) { |
| 639 | group0_trap = true; |
| 640 | group1_trap = true; |
| 641 | } |
| 642 | #endif |
| 643 | |
| 644 | if (group0_trap || group1_trap || common_trap) { |
| 645 | kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n", |
| 646 | group0_trap ? "G0" : "", |
| 647 | group1_trap ? "G1" : "", |
| 648 | common_trap ? "C" : ""); |
| 649 | static_branch_enable(&vgic_v3_cpuif_trap); |
| 650 | } |
| 651 | |
| 652 | kvm_vgic_global_state.vctrl_base = NULL; |
| 653 | kvm_vgic_global_state.type = VGIC_V3; |
| 654 | kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS; |
| 655 | |
| 656 | return 0; |
| 657 | } |
| 658 | |
| 659 | void vgic_v3_load(struct kvm_vcpu *vcpu) |
| 660 | { |
| 661 | struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| 662 | |
| 663 | /* |
| 664 | * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen |
| 665 | * is dependent on ICC_SRE_EL1.SRE, and we have to perform the |
| 666 | * VMCR_EL2 save/restore in the world switch. |
| 667 | */ |
| 668 | if (likely(cpu_if->vgic_sre)) |
| 669 | kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr); |
| 670 | |
| 671 | kvm_call_hyp(__vgic_v3_restore_aprs, vcpu); |
| 672 | |
| 673 | if (has_vhe()) |
| 674 | __vgic_v3_activate_traps(vcpu); |
| 675 | } |
| 676 | |
| 677 | void vgic_v3_put(struct kvm_vcpu *vcpu) |
| 678 | { |
| 679 | struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3; |
| 680 | |
| 681 | if (likely(cpu_if->vgic_sre)) |
| 682 | cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr); |
| 683 | |
| 684 | kvm_call_hyp(__vgic_v3_save_aprs, vcpu); |
| 685 | |
| 686 | if (has_vhe()) |
| 687 | __vgic_v3_deactivate_traps(vcpu); |
| 688 | } |