Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * linux/net/sunrpc/svc_xprt.c |
| 3 | * |
| 4 | * Author: Tom Tucker <tom@opengridcomputing.com> |
| 5 | */ |
| 6 | |
| 7 | #include <linux/sched.h> |
| 8 | #include <linux/errno.h> |
| 9 | #include <linux/freezer.h> |
| 10 | #include <linux/kthread.h> |
| 11 | #include <linux/slab.h> |
| 12 | #include <net/sock.h> |
| 13 | #include <linux/sunrpc/addr.h> |
| 14 | #include <linux/sunrpc/stats.h> |
| 15 | #include <linux/sunrpc/svc_xprt.h> |
| 16 | #include <linux/sunrpc/svcsock.h> |
| 17 | #include <linux/sunrpc/xprt.h> |
| 18 | #include <linux/module.h> |
| 19 | #include <linux/netdevice.h> |
| 20 | #include <trace/events/sunrpc.h> |
| 21 | |
| 22 | #define RPCDBG_FACILITY RPCDBG_SVCXPRT |
| 23 | |
| 24 | static unsigned int svc_rpc_per_connection_limit __read_mostly; |
| 25 | module_param(svc_rpc_per_connection_limit, uint, 0644); |
| 26 | |
| 27 | |
| 28 | static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt); |
| 29 | static int svc_deferred_recv(struct svc_rqst *rqstp); |
| 30 | static struct cache_deferred_req *svc_defer(struct cache_req *req); |
| 31 | static void svc_age_temp_xprts(struct timer_list *t); |
| 32 | static void svc_delete_xprt(struct svc_xprt *xprt); |
| 33 | |
| 34 | /* apparently the "standard" is that clients close |
| 35 | * idle connections after 5 minutes, servers after |
| 36 | * 6 minutes |
| 37 | * http://www.connectathon.org/talks96/nfstcp.pdf |
| 38 | */ |
| 39 | static int svc_conn_age_period = 6*60; |
| 40 | |
| 41 | /* List of registered transport classes */ |
| 42 | static DEFINE_SPINLOCK(svc_xprt_class_lock); |
| 43 | static LIST_HEAD(svc_xprt_class_list); |
| 44 | |
| 45 | /* SMP locking strategy: |
| 46 | * |
| 47 | * svc_pool->sp_lock protects most of the fields of that pool. |
| 48 | * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt. |
| 49 | * when both need to be taken (rare), svc_serv->sv_lock is first. |
| 50 | * The "service mutex" protects svc_serv->sv_nrthread. |
| 51 | * svc_sock->sk_lock protects the svc_sock->sk_deferred list |
| 52 | * and the ->sk_info_authunix cache. |
| 53 | * |
| 54 | * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being |
| 55 | * enqueued multiply. During normal transport processing this bit |
| 56 | * is set by svc_xprt_enqueue and cleared by svc_xprt_received. |
| 57 | * Providers should not manipulate this bit directly. |
| 58 | * |
| 59 | * Some flags can be set to certain values at any time |
| 60 | * providing that certain rules are followed: |
| 61 | * |
| 62 | * XPT_CONN, XPT_DATA: |
| 63 | * - Can be set or cleared at any time. |
| 64 | * - After a set, svc_xprt_enqueue must be called to enqueue |
| 65 | * the transport for processing. |
| 66 | * - After a clear, the transport must be read/accepted. |
| 67 | * If this succeeds, it must be set again. |
| 68 | * XPT_CLOSE: |
| 69 | * - Can set at any time. It is never cleared. |
| 70 | * XPT_DEAD: |
| 71 | * - Can only be set while XPT_BUSY is held which ensures |
| 72 | * that no other thread will be using the transport or will |
| 73 | * try to set XPT_DEAD. |
| 74 | */ |
| 75 | int svc_reg_xprt_class(struct svc_xprt_class *xcl) |
| 76 | { |
| 77 | struct svc_xprt_class *cl; |
| 78 | int res = -EEXIST; |
| 79 | |
| 80 | dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name); |
| 81 | |
| 82 | INIT_LIST_HEAD(&xcl->xcl_list); |
| 83 | spin_lock(&svc_xprt_class_lock); |
| 84 | /* Make sure there isn't already a class with the same name */ |
| 85 | list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) { |
| 86 | if (strcmp(xcl->xcl_name, cl->xcl_name) == 0) |
| 87 | goto out; |
| 88 | } |
| 89 | list_add_tail(&xcl->xcl_list, &svc_xprt_class_list); |
| 90 | res = 0; |
| 91 | out: |
| 92 | spin_unlock(&svc_xprt_class_lock); |
| 93 | return res; |
| 94 | } |
| 95 | EXPORT_SYMBOL_GPL(svc_reg_xprt_class); |
| 96 | |
| 97 | void svc_unreg_xprt_class(struct svc_xprt_class *xcl) |
| 98 | { |
| 99 | dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name); |
| 100 | spin_lock(&svc_xprt_class_lock); |
| 101 | list_del_init(&xcl->xcl_list); |
| 102 | spin_unlock(&svc_xprt_class_lock); |
| 103 | } |
| 104 | EXPORT_SYMBOL_GPL(svc_unreg_xprt_class); |
| 105 | |
| 106 | /* |
| 107 | * Format the transport list for printing |
| 108 | */ |
| 109 | int svc_print_xprts(char *buf, int maxlen) |
| 110 | { |
| 111 | struct svc_xprt_class *xcl; |
| 112 | char tmpstr[80]; |
| 113 | int len = 0; |
| 114 | buf[0] = '\0'; |
| 115 | |
| 116 | spin_lock(&svc_xprt_class_lock); |
| 117 | list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { |
| 118 | int slen; |
| 119 | |
| 120 | sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload); |
| 121 | slen = strlen(tmpstr); |
| 122 | if (len + slen > maxlen) |
| 123 | break; |
| 124 | len += slen; |
| 125 | strcat(buf, tmpstr); |
| 126 | } |
| 127 | spin_unlock(&svc_xprt_class_lock); |
| 128 | |
| 129 | return len; |
| 130 | } |
| 131 | |
| 132 | static void svc_xprt_free(struct kref *kref) |
| 133 | { |
| 134 | struct svc_xprt *xprt = |
| 135 | container_of(kref, struct svc_xprt, xpt_ref); |
| 136 | struct module *owner = xprt->xpt_class->xcl_owner; |
| 137 | if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags)) |
| 138 | svcauth_unix_info_release(xprt); |
| 139 | put_net(xprt->xpt_net); |
| 140 | /* See comment on corresponding get in xs_setup_bc_tcp(): */ |
| 141 | if (xprt->xpt_bc_xprt) |
| 142 | xprt_put(xprt->xpt_bc_xprt); |
| 143 | if (xprt->xpt_bc_xps) |
| 144 | xprt_switch_put(xprt->xpt_bc_xps); |
| 145 | xprt->xpt_ops->xpo_free(xprt); |
| 146 | module_put(owner); |
| 147 | } |
| 148 | |
| 149 | void svc_xprt_put(struct svc_xprt *xprt) |
| 150 | { |
| 151 | kref_put(&xprt->xpt_ref, svc_xprt_free); |
| 152 | } |
| 153 | EXPORT_SYMBOL_GPL(svc_xprt_put); |
| 154 | |
| 155 | /* |
| 156 | * Called by transport drivers to initialize the transport independent |
| 157 | * portion of the transport instance. |
| 158 | */ |
| 159 | void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl, |
| 160 | struct svc_xprt *xprt, struct svc_serv *serv) |
| 161 | { |
| 162 | memset(xprt, 0, sizeof(*xprt)); |
| 163 | xprt->xpt_class = xcl; |
| 164 | xprt->xpt_ops = xcl->xcl_ops; |
| 165 | kref_init(&xprt->xpt_ref); |
| 166 | xprt->xpt_server = serv; |
| 167 | INIT_LIST_HEAD(&xprt->xpt_list); |
| 168 | INIT_LIST_HEAD(&xprt->xpt_ready); |
| 169 | INIT_LIST_HEAD(&xprt->xpt_deferred); |
| 170 | INIT_LIST_HEAD(&xprt->xpt_users); |
| 171 | mutex_init(&xprt->xpt_mutex); |
| 172 | spin_lock_init(&xprt->xpt_lock); |
| 173 | set_bit(XPT_BUSY, &xprt->xpt_flags); |
| 174 | rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending"); |
| 175 | xprt->xpt_net = get_net(net); |
| 176 | strcpy(xprt->xpt_remotebuf, "uninitialized"); |
| 177 | } |
| 178 | EXPORT_SYMBOL_GPL(svc_xprt_init); |
| 179 | |
| 180 | static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl, |
| 181 | struct svc_serv *serv, |
| 182 | struct net *net, |
| 183 | const int family, |
| 184 | const unsigned short port, |
| 185 | int flags) |
| 186 | { |
| 187 | struct sockaddr_in sin = { |
| 188 | .sin_family = AF_INET, |
| 189 | .sin_addr.s_addr = htonl(INADDR_ANY), |
| 190 | .sin_port = htons(port), |
| 191 | }; |
| 192 | #if IS_ENABLED(CONFIG_IPV6) |
| 193 | struct sockaddr_in6 sin6 = { |
| 194 | .sin6_family = AF_INET6, |
| 195 | .sin6_addr = IN6ADDR_ANY_INIT, |
| 196 | .sin6_port = htons(port), |
| 197 | }; |
| 198 | #endif |
| 199 | struct sockaddr *sap; |
| 200 | size_t len; |
| 201 | |
| 202 | switch (family) { |
| 203 | case PF_INET: |
| 204 | sap = (struct sockaddr *)&sin; |
| 205 | len = sizeof(sin); |
| 206 | break; |
| 207 | #if IS_ENABLED(CONFIG_IPV6) |
| 208 | case PF_INET6: |
| 209 | sap = (struct sockaddr *)&sin6; |
| 210 | len = sizeof(sin6); |
| 211 | break; |
| 212 | #endif |
| 213 | default: |
| 214 | return ERR_PTR(-EAFNOSUPPORT); |
| 215 | } |
| 216 | |
| 217 | return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags); |
| 218 | } |
| 219 | |
| 220 | /* |
| 221 | * svc_xprt_received conditionally queues the transport for processing |
| 222 | * by another thread. The caller must hold the XPT_BUSY bit and must |
| 223 | * not thereafter touch transport data. |
| 224 | * |
| 225 | * Note: XPT_DATA only gets cleared when a read-attempt finds no (or |
| 226 | * insufficient) data. |
| 227 | */ |
| 228 | static void svc_xprt_received(struct svc_xprt *xprt) |
| 229 | { |
| 230 | if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) { |
| 231 | WARN_ONCE(1, "xprt=0x%p already busy!", xprt); |
| 232 | return; |
| 233 | } |
| 234 | |
| 235 | /* As soon as we clear busy, the xprt could be closed and |
| 236 | * 'put', so we need a reference to call svc_enqueue_xprt with: |
| 237 | */ |
| 238 | svc_xprt_get(xprt); |
| 239 | smp_mb__before_atomic(); |
| 240 | clear_bit(XPT_BUSY, &xprt->xpt_flags); |
| 241 | xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); |
| 242 | svc_xprt_put(xprt); |
| 243 | } |
| 244 | |
| 245 | void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new) |
| 246 | { |
| 247 | clear_bit(XPT_TEMP, &new->xpt_flags); |
| 248 | spin_lock_bh(&serv->sv_lock); |
| 249 | list_add(&new->xpt_list, &serv->sv_permsocks); |
| 250 | spin_unlock_bh(&serv->sv_lock); |
| 251 | svc_xprt_received(new); |
| 252 | } |
| 253 | |
| 254 | static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name, |
| 255 | struct net *net, const int family, |
| 256 | const unsigned short port, int flags) |
| 257 | { |
| 258 | struct svc_xprt_class *xcl; |
| 259 | |
| 260 | spin_lock(&svc_xprt_class_lock); |
| 261 | list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) { |
| 262 | struct svc_xprt *newxprt; |
| 263 | unsigned short newport; |
| 264 | |
| 265 | if (strcmp(xprt_name, xcl->xcl_name)) |
| 266 | continue; |
| 267 | |
| 268 | if (!try_module_get(xcl->xcl_owner)) |
| 269 | goto err; |
| 270 | |
| 271 | spin_unlock(&svc_xprt_class_lock); |
| 272 | newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags); |
| 273 | if (IS_ERR(newxprt)) { |
| 274 | module_put(xcl->xcl_owner); |
| 275 | return PTR_ERR(newxprt); |
| 276 | } |
| 277 | svc_add_new_perm_xprt(serv, newxprt); |
| 278 | newport = svc_xprt_local_port(newxprt); |
| 279 | return newport; |
| 280 | } |
| 281 | err: |
| 282 | spin_unlock(&svc_xprt_class_lock); |
| 283 | /* This errno is exposed to user space. Provide a reasonable |
| 284 | * perror msg for a bad transport. */ |
| 285 | return -EPROTONOSUPPORT; |
| 286 | } |
| 287 | |
| 288 | int svc_create_xprt(struct svc_serv *serv, const char *xprt_name, |
| 289 | struct net *net, const int family, |
| 290 | const unsigned short port, int flags) |
| 291 | { |
| 292 | int err; |
| 293 | |
| 294 | dprintk("svc: creating transport %s[%d]\n", xprt_name, port); |
| 295 | err = _svc_create_xprt(serv, xprt_name, net, family, port, flags); |
| 296 | if (err == -EPROTONOSUPPORT) { |
| 297 | request_module("svc%s", xprt_name); |
| 298 | err = _svc_create_xprt(serv, xprt_name, net, family, port, flags); |
| 299 | } |
| 300 | if (err) |
| 301 | dprintk("svc: transport %s not found, err %d\n", |
| 302 | xprt_name, err); |
| 303 | return err; |
| 304 | } |
| 305 | EXPORT_SYMBOL_GPL(svc_create_xprt); |
| 306 | |
| 307 | /* |
| 308 | * Copy the local and remote xprt addresses to the rqstp structure |
| 309 | */ |
| 310 | void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt) |
| 311 | { |
| 312 | memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen); |
| 313 | rqstp->rq_addrlen = xprt->xpt_remotelen; |
| 314 | |
| 315 | /* |
| 316 | * Destination address in request is needed for binding the |
| 317 | * source address in RPC replies/callbacks later. |
| 318 | */ |
| 319 | memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen); |
| 320 | rqstp->rq_daddrlen = xprt->xpt_locallen; |
| 321 | } |
| 322 | EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs); |
| 323 | |
| 324 | /** |
| 325 | * svc_print_addr - Format rq_addr field for printing |
| 326 | * @rqstp: svc_rqst struct containing address to print |
| 327 | * @buf: target buffer for formatted address |
| 328 | * @len: length of target buffer |
| 329 | * |
| 330 | */ |
| 331 | char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len) |
| 332 | { |
| 333 | return __svc_print_addr(svc_addr(rqstp), buf, len); |
| 334 | } |
| 335 | EXPORT_SYMBOL_GPL(svc_print_addr); |
| 336 | |
| 337 | static bool svc_xprt_slots_in_range(struct svc_xprt *xprt) |
| 338 | { |
| 339 | unsigned int limit = svc_rpc_per_connection_limit; |
| 340 | int nrqsts = atomic_read(&xprt->xpt_nr_rqsts); |
| 341 | |
| 342 | return limit == 0 || (nrqsts >= 0 && nrqsts < limit); |
| 343 | } |
| 344 | |
| 345 | static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt) |
| 346 | { |
| 347 | if (!test_bit(RQ_DATA, &rqstp->rq_flags)) { |
| 348 | if (!svc_xprt_slots_in_range(xprt)) |
| 349 | return false; |
| 350 | atomic_inc(&xprt->xpt_nr_rqsts); |
| 351 | set_bit(RQ_DATA, &rqstp->rq_flags); |
| 352 | } |
| 353 | return true; |
| 354 | } |
| 355 | |
| 356 | static void svc_xprt_release_slot(struct svc_rqst *rqstp) |
| 357 | { |
| 358 | struct svc_xprt *xprt = rqstp->rq_xprt; |
| 359 | if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) { |
| 360 | atomic_dec(&xprt->xpt_nr_rqsts); |
| 361 | svc_xprt_enqueue(xprt); |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt) |
| 366 | { |
| 367 | if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE))) |
| 368 | return true; |
| 369 | if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) { |
| 370 | if (xprt->xpt_ops->xpo_has_wspace(xprt) && |
| 371 | svc_xprt_slots_in_range(xprt)) |
| 372 | return true; |
| 373 | trace_svc_xprt_no_write_space(xprt); |
| 374 | return false; |
| 375 | } |
| 376 | return false; |
| 377 | } |
| 378 | |
| 379 | void svc_xprt_do_enqueue(struct svc_xprt *xprt) |
| 380 | { |
| 381 | struct svc_pool *pool; |
| 382 | struct svc_rqst *rqstp = NULL; |
| 383 | int cpu; |
| 384 | |
| 385 | if (!svc_xprt_has_something_to_do(xprt)) |
| 386 | return; |
| 387 | |
| 388 | /* Mark transport as busy. It will remain in this state until |
| 389 | * the provider calls svc_xprt_received. We update XPT_BUSY |
| 390 | * atomically because it also guards against trying to enqueue |
| 391 | * the transport twice. |
| 392 | */ |
| 393 | if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) |
| 394 | return; |
| 395 | |
| 396 | cpu = get_cpu(); |
| 397 | pool = svc_pool_for_cpu(xprt->xpt_server, cpu); |
| 398 | |
| 399 | atomic_long_inc(&pool->sp_stats.packets); |
| 400 | |
| 401 | spin_lock_bh(&pool->sp_lock); |
| 402 | list_add_tail(&xprt->xpt_ready, &pool->sp_sockets); |
| 403 | pool->sp_stats.sockets_queued++; |
| 404 | spin_unlock_bh(&pool->sp_lock); |
| 405 | |
| 406 | /* find a thread for this xprt */ |
| 407 | rcu_read_lock(); |
| 408 | list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { |
| 409 | if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags)) |
| 410 | continue; |
| 411 | atomic_long_inc(&pool->sp_stats.threads_woken); |
| 412 | rqstp->rq_qtime = ktime_get(); |
| 413 | wake_up_process(rqstp->rq_task); |
| 414 | goto out_unlock; |
| 415 | } |
| 416 | set_bit(SP_CONGESTED, &pool->sp_flags); |
| 417 | rqstp = NULL; |
| 418 | out_unlock: |
| 419 | rcu_read_unlock(); |
| 420 | put_cpu(); |
| 421 | trace_svc_xprt_do_enqueue(xprt, rqstp); |
| 422 | } |
| 423 | EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue); |
| 424 | |
| 425 | /* |
| 426 | * Queue up a transport with data pending. If there are idle nfsd |
| 427 | * processes, wake 'em up. |
| 428 | * |
| 429 | */ |
| 430 | void svc_xprt_enqueue(struct svc_xprt *xprt) |
| 431 | { |
| 432 | if (test_bit(XPT_BUSY, &xprt->xpt_flags)) |
| 433 | return; |
| 434 | xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt); |
| 435 | } |
| 436 | EXPORT_SYMBOL_GPL(svc_xprt_enqueue); |
| 437 | |
| 438 | /* |
| 439 | * Dequeue the first transport, if there is one. |
| 440 | */ |
| 441 | static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) |
| 442 | { |
| 443 | struct svc_xprt *xprt = NULL; |
| 444 | |
| 445 | if (list_empty(&pool->sp_sockets)) |
| 446 | goto out; |
| 447 | |
| 448 | spin_lock_bh(&pool->sp_lock); |
| 449 | if (likely(!list_empty(&pool->sp_sockets))) { |
| 450 | xprt = list_first_entry(&pool->sp_sockets, |
| 451 | struct svc_xprt, xpt_ready); |
| 452 | list_del_init(&xprt->xpt_ready); |
| 453 | svc_xprt_get(xprt); |
| 454 | } |
| 455 | spin_unlock_bh(&pool->sp_lock); |
| 456 | out: |
| 457 | return xprt; |
| 458 | } |
| 459 | |
| 460 | /** |
| 461 | * svc_reserve - change the space reserved for the reply to a request. |
| 462 | * @rqstp: The request in question |
| 463 | * @space: new max space to reserve |
| 464 | * |
| 465 | * Each request reserves some space on the output queue of the transport |
| 466 | * to make sure the reply fits. This function reduces that reserved |
| 467 | * space to be the amount of space used already, plus @space. |
| 468 | * |
| 469 | */ |
| 470 | void svc_reserve(struct svc_rqst *rqstp, int space) |
| 471 | { |
| 472 | space += rqstp->rq_res.head[0].iov_len; |
| 473 | |
| 474 | if (space < rqstp->rq_reserved) { |
| 475 | struct svc_xprt *xprt = rqstp->rq_xprt; |
| 476 | atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved); |
| 477 | rqstp->rq_reserved = space; |
| 478 | |
| 479 | svc_xprt_enqueue(xprt); |
| 480 | } |
| 481 | } |
| 482 | EXPORT_SYMBOL_GPL(svc_reserve); |
| 483 | |
| 484 | static void svc_xprt_release(struct svc_rqst *rqstp) |
| 485 | { |
| 486 | struct svc_xprt *xprt = rqstp->rq_xprt; |
| 487 | |
| 488 | xprt->xpt_ops->xpo_release_rqst(rqstp); |
| 489 | |
| 490 | kfree(rqstp->rq_deferred); |
| 491 | rqstp->rq_deferred = NULL; |
| 492 | |
| 493 | svc_free_res_pages(rqstp); |
| 494 | rqstp->rq_res.page_len = 0; |
| 495 | rqstp->rq_res.page_base = 0; |
| 496 | |
| 497 | /* Reset response buffer and release |
| 498 | * the reservation. |
| 499 | * But first, check that enough space was reserved |
| 500 | * for the reply, otherwise we have a bug! |
| 501 | */ |
| 502 | if ((rqstp->rq_res.len) > rqstp->rq_reserved) |
| 503 | printk(KERN_ERR "RPC request reserved %d but used %d\n", |
| 504 | rqstp->rq_reserved, |
| 505 | rqstp->rq_res.len); |
| 506 | |
| 507 | rqstp->rq_res.head[0].iov_len = 0; |
| 508 | svc_reserve(rqstp, 0); |
| 509 | svc_xprt_release_slot(rqstp); |
| 510 | rqstp->rq_xprt = NULL; |
| 511 | svc_xprt_put(xprt); |
| 512 | } |
| 513 | |
| 514 | /* |
| 515 | * Some svc_serv's will have occasional work to do, even when a xprt is not |
| 516 | * waiting to be serviced. This function is there to "kick" a task in one of |
| 517 | * those services so that it can wake up and do that work. Note that we only |
| 518 | * bother with pool 0 as we don't need to wake up more than one thread for |
| 519 | * this purpose. |
| 520 | */ |
| 521 | void svc_wake_up(struct svc_serv *serv) |
| 522 | { |
| 523 | struct svc_rqst *rqstp; |
| 524 | struct svc_pool *pool; |
| 525 | |
| 526 | pool = &serv->sv_pools[0]; |
| 527 | |
| 528 | rcu_read_lock(); |
| 529 | list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) { |
| 530 | /* skip any that aren't queued */ |
| 531 | if (test_bit(RQ_BUSY, &rqstp->rq_flags)) |
| 532 | continue; |
| 533 | rcu_read_unlock(); |
| 534 | wake_up_process(rqstp->rq_task); |
| 535 | trace_svc_wake_up(rqstp->rq_task->pid); |
| 536 | return; |
| 537 | } |
| 538 | rcu_read_unlock(); |
| 539 | |
| 540 | /* No free entries available */ |
| 541 | set_bit(SP_TASK_PENDING, &pool->sp_flags); |
| 542 | smp_wmb(); |
| 543 | trace_svc_wake_up(0); |
| 544 | } |
| 545 | EXPORT_SYMBOL_GPL(svc_wake_up); |
| 546 | |
| 547 | int svc_port_is_privileged(struct sockaddr *sin) |
| 548 | { |
| 549 | switch (sin->sa_family) { |
| 550 | case AF_INET: |
| 551 | return ntohs(((struct sockaddr_in *)sin)->sin_port) |
| 552 | < PROT_SOCK; |
| 553 | case AF_INET6: |
| 554 | return ntohs(((struct sockaddr_in6 *)sin)->sin6_port) |
| 555 | < PROT_SOCK; |
| 556 | default: |
| 557 | return 0; |
| 558 | } |
| 559 | } |
| 560 | |
| 561 | /* |
| 562 | * Make sure that we don't have too many active connections. If we have, |
| 563 | * something must be dropped. It's not clear what will happen if we allow |
| 564 | * "too many" connections, but when dealing with network-facing software, |
| 565 | * we have to code defensively. Here we do that by imposing hard limits. |
| 566 | * |
| 567 | * There's no point in trying to do random drop here for DoS |
| 568 | * prevention. The NFS clients does 1 reconnect in 15 seconds. An |
| 569 | * attacker can easily beat that. |
| 570 | * |
| 571 | * The only somewhat efficient mechanism would be if drop old |
| 572 | * connections from the same IP first. But right now we don't even |
| 573 | * record the client IP in svc_sock. |
| 574 | * |
| 575 | * single-threaded services that expect a lot of clients will probably |
| 576 | * need to set sv_maxconn to override the default value which is based |
| 577 | * on the number of threads |
| 578 | */ |
| 579 | static void svc_check_conn_limits(struct svc_serv *serv) |
| 580 | { |
| 581 | unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn : |
| 582 | (serv->sv_nrthreads+3) * 20; |
| 583 | |
| 584 | if (serv->sv_tmpcnt > limit) { |
| 585 | struct svc_xprt *xprt = NULL; |
| 586 | spin_lock_bh(&serv->sv_lock); |
| 587 | if (!list_empty(&serv->sv_tempsocks)) { |
| 588 | /* Try to help the admin */ |
| 589 | net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n", |
| 590 | serv->sv_name, serv->sv_maxconn ? |
| 591 | "max number of connections" : |
| 592 | "number of threads"); |
| 593 | /* |
| 594 | * Always select the oldest connection. It's not fair, |
| 595 | * but so is life |
| 596 | */ |
| 597 | xprt = list_entry(serv->sv_tempsocks.prev, |
| 598 | struct svc_xprt, |
| 599 | xpt_list); |
| 600 | set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| 601 | svc_xprt_get(xprt); |
| 602 | } |
| 603 | spin_unlock_bh(&serv->sv_lock); |
| 604 | |
| 605 | if (xprt) { |
| 606 | svc_xprt_enqueue(xprt); |
| 607 | svc_xprt_put(xprt); |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | static int svc_alloc_arg(struct svc_rqst *rqstp) |
| 613 | { |
| 614 | struct svc_serv *serv = rqstp->rq_server; |
| 615 | struct xdr_buf *arg; |
| 616 | int pages; |
| 617 | int i; |
| 618 | |
| 619 | /* now allocate needed pages. If we get a failure, sleep briefly */ |
| 620 | pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT; |
| 621 | if (pages > RPCSVC_MAXPAGES) { |
| 622 | pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n", |
| 623 | pages, RPCSVC_MAXPAGES); |
| 624 | /* use as many pages as possible */ |
| 625 | pages = RPCSVC_MAXPAGES; |
| 626 | } |
| 627 | for (i = 0; i < pages ; i++) |
| 628 | while (rqstp->rq_pages[i] == NULL) { |
| 629 | struct page *p = alloc_page(GFP_KERNEL); |
| 630 | if (!p) { |
| 631 | set_current_state(TASK_INTERRUPTIBLE); |
| 632 | if (signalled() || kthread_should_stop()) { |
| 633 | set_current_state(TASK_RUNNING); |
| 634 | return -EINTR; |
| 635 | } |
| 636 | schedule_timeout(msecs_to_jiffies(500)); |
| 637 | } |
| 638 | rqstp->rq_pages[i] = p; |
| 639 | } |
| 640 | rqstp->rq_page_end = &rqstp->rq_pages[i]; |
| 641 | rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */ |
| 642 | |
| 643 | /* Make arg->head point to first page and arg->pages point to rest */ |
| 644 | arg = &rqstp->rq_arg; |
| 645 | arg->head[0].iov_base = page_address(rqstp->rq_pages[0]); |
| 646 | arg->head[0].iov_len = PAGE_SIZE; |
| 647 | arg->pages = rqstp->rq_pages + 1; |
| 648 | arg->page_base = 0; |
| 649 | /* save at least one page for response */ |
| 650 | arg->page_len = (pages-2)*PAGE_SIZE; |
| 651 | arg->len = (pages-1)*PAGE_SIZE; |
| 652 | arg->tail[0].iov_len = 0; |
| 653 | return 0; |
| 654 | } |
| 655 | |
| 656 | static bool |
| 657 | rqst_should_sleep(struct svc_rqst *rqstp) |
| 658 | { |
| 659 | struct svc_pool *pool = rqstp->rq_pool; |
| 660 | |
| 661 | /* did someone call svc_wake_up? */ |
| 662 | if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags)) |
| 663 | return false; |
| 664 | |
| 665 | /* was a socket queued? */ |
| 666 | if (!list_empty(&pool->sp_sockets)) |
| 667 | return false; |
| 668 | |
| 669 | /* are we shutting down? */ |
| 670 | if (signalled() || kthread_should_stop()) |
| 671 | return false; |
| 672 | |
| 673 | /* are we freezing? */ |
| 674 | if (freezing(current)) |
| 675 | return false; |
| 676 | |
| 677 | return true; |
| 678 | } |
| 679 | |
| 680 | static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout) |
| 681 | { |
| 682 | struct svc_pool *pool = rqstp->rq_pool; |
| 683 | long time_left = 0; |
| 684 | |
| 685 | /* rq_xprt should be clear on entry */ |
| 686 | WARN_ON_ONCE(rqstp->rq_xprt); |
| 687 | |
| 688 | rqstp->rq_xprt = svc_xprt_dequeue(pool); |
| 689 | if (rqstp->rq_xprt) |
| 690 | goto out_found; |
| 691 | |
| 692 | /* |
| 693 | * We have to be able to interrupt this wait |
| 694 | * to bring down the daemons ... |
| 695 | */ |
| 696 | set_current_state(TASK_INTERRUPTIBLE); |
| 697 | smp_mb__before_atomic(); |
| 698 | clear_bit(SP_CONGESTED, &pool->sp_flags); |
| 699 | clear_bit(RQ_BUSY, &rqstp->rq_flags); |
| 700 | smp_mb__after_atomic(); |
| 701 | |
| 702 | if (likely(rqst_should_sleep(rqstp))) |
| 703 | time_left = schedule_timeout(timeout); |
| 704 | else |
| 705 | __set_current_state(TASK_RUNNING); |
| 706 | |
| 707 | try_to_freeze(); |
| 708 | |
| 709 | set_bit(RQ_BUSY, &rqstp->rq_flags); |
| 710 | smp_mb__after_atomic(); |
| 711 | rqstp->rq_xprt = svc_xprt_dequeue(pool); |
| 712 | if (rqstp->rq_xprt) |
| 713 | goto out_found; |
| 714 | |
| 715 | if (!time_left) |
| 716 | atomic_long_inc(&pool->sp_stats.threads_timedout); |
| 717 | |
| 718 | if (signalled() || kthread_should_stop()) |
| 719 | return ERR_PTR(-EINTR); |
| 720 | return ERR_PTR(-EAGAIN); |
| 721 | out_found: |
| 722 | /* Normally we will wait up to 5 seconds for any required |
| 723 | * cache information to be provided. |
| 724 | */ |
| 725 | if (!test_bit(SP_CONGESTED, &pool->sp_flags)) |
| 726 | rqstp->rq_chandle.thread_wait = 5*HZ; |
| 727 | else |
| 728 | rqstp->rq_chandle.thread_wait = 1*HZ; |
| 729 | trace_svc_xprt_dequeue(rqstp); |
| 730 | return rqstp->rq_xprt; |
| 731 | } |
| 732 | |
| 733 | static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt) |
| 734 | { |
| 735 | spin_lock_bh(&serv->sv_lock); |
| 736 | set_bit(XPT_TEMP, &newxpt->xpt_flags); |
| 737 | list_add(&newxpt->xpt_list, &serv->sv_tempsocks); |
| 738 | serv->sv_tmpcnt++; |
| 739 | if (serv->sv_temptimer.function == NULL) { |
| 740 | /* setup timer to age temp transports */ |
| 741 | serv->sv_temptimer.function = svc_age_temp_xprts; |
| 742 | mod_timer(&serv->sv_temptimer, |
| 743 | jiffies + svc_conn_age_period * HZ); |
| 744 | } |
| 745 | spin_unlock_bh(&serv->sv_lock); |
| 746 | svc_xprt_received(newxpt); |
| 747 | } |
| 748 | |
| 749 | static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt) |
| 750 | { |
| 751 | struct svc_serv *serv = rqstp->rq_server; |
| 752 | int len = 0; |
| 753 | |
| 754 | if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) { |
| 755 | dprintk("svc_recv: found XPT_CLOSE\n"); |
| 756 | if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags)) |
| 757 | xprt->xpt_ops->xpo_kill_temp_xprt(xprt); |
| 758 | svc_delete_xprt(xprt); |
| 759 | /* Leave XPT_BUSY set on the dead xprt: */ |
| 760 | goto out; |
| 761 | } |
| 762 | if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) { |
| 763 | struct svc_xprt *newxpt; |
| 764 | /* |
| 765 | * We know this module_get will succeed because the |
| 766 | * listener holds a reference too |
| 767 | */ |
| 768 | __module_get(xprt->xpt_class->xcl_owner); |
| 769 | svc_check_conn_limits(xprt->xpt_server); |
| 770 | newxpt = xprt->xpt_ops->xpo_accept(xprt); |
| 771 | if (newxpt) |
| 772 | svc_add_new_temp_xprt(serv, newxpt); |
| 773 | else |
| 774 | module_put(xprt->xpt_class->xcl_owner); |
| 775 | } else if (svc_xprt_reserve_slot(rqstp, xprt)) { |
| 776 | /* XPT_DATA|XPT_DEFERRED case: */ |
| 777 | dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n", |
| 778 | rqstp, rqstp->rq_pool->sp_id, xprt, |
| 779 | kref_read(&xprt->xpt_ref)); |
| 780 | rqstp->rq_deferred = svc_deferred_dequeue(xprt); |
| 781 | if (rqstp->rq_deferred) |
| 782 | len = svc_deferred_recv(rqstp); |
| 783 | else |
| 784 | len = xprt->xpt_ops->xpo_recvfrom(rqstp); |
| 785 | rqstp->rq_stime = ktime_get(); |
| 786 | rqstp->rq_reserved = serv->sv_max_mesg; |
| 787 | atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved); |
| 788 | } |
| 789 | /* clear XPT_BUSY: */ |
| 790 | svc_xprt_received(xprt); |
| 791 | out: |
| 792 | trace_svc_handle_xprt(xprt, len); |
| 793 | return len; |
| 794 | } |
| 795 | |
| 796 | /* |
| 797 | * Receive the next request on any transport. This code is carefully |
| 798 | * organised not to touch any cachelines in the shared svc_serv |
| 799 | * structure, only cachelines in the local svc_pool. |
| 800 | */ |
| 801 | int svc_recv(struct svc_rqst *rqstp, long timeout) |
| 802 | { |
| 803 | struct svc_xprt *xprt = NULL; |
| 804 | struct svc_serv *serv = rqstp->rq_server; |
| 805 | int len, err; |
| 806 | |
| 807 | dprintk("svc: server %p waiting for data (to = %ld)\n", |
| 808 | rqstp, timeout); |
| 809 | |
| 810 | if (rqstp->rq_xprt) |
| 811 | printk(KERN_ERR |
| 812 | "svc_recv: service %p, transport not NULL!\n", |
| 813 | rqstp); |
| 814 | |
| 815 | err = svc_alloc_arg(rqstp); |
| 816 | if (err) |
| 817 | goto out; |
| 818 | |
| 819 | try_to_freeze(); |
| 820 | cond_resched(); |
| 821 | err = -EINTR; |
| 822 | if (signalled() || kthread_should_stop()) |
| 823 | goto out; |
| 824 | |
| 825 | xprt = svc_get_next_xprt(rqstp, timeout); |
| 826 | if (IS_ERR(xprt)) { |
| 827 | err = PTR_ERR(xprt); |
| 828 | goto out; |
| 829 | } |
| 830 | |
| 831 | len = svc_handle_xprt(rqstp, xprt); |
| 832 | |
| 833 | /* No data, incomplete (TCP) read, or accept() */ |
| 834 | err = -EAGAIN; |
| 835 | if (len <= 0) |
| 836 | goto out_release; |
| 837 | |
| 838 | clear_bit(XPT_OLD, &xprt->xpt_flags); |
| 839 | |
| 840 | xprt->xpt_ops->xpo_secure_port(rqstp); |
| 841 | rqstp->rq_chandle.defer = svc_defer; |
| 842 | rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]); |
| 843 | |
| 844 | if (serv->sv_stats) |
| 845 | serv->sv_stats->netcnt++; |
| 846 | trace_svc_recv(rqstp, len); |
| 847 | return len; |
| 848 | out_release: |
| 849 | rqstp->rq_res.len = 0; |
| 850 | svc_xprt_release(rqstp); |
| 851 | out: |
| 852 | return err; |
| 853 | } |
| 854 | EXPORT_SYMBOL_GPL(svc_recv); |
| 855 | |
| 856 | /* |
| 857 | * Drop request |
| 858 | */ |
| 859 | void svc_drop(struct svc_rqst *rqstp) |
| 860 | { |
| 861 | trace_svc_drop(rqstp); |
| 862 | dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt); |
| 863 | svc_xprt_release(rqstp); |
| 864 | } |
| 865 | EXPORT_SYMBOL_GPL(svc_drop); |
| 866 | |
| 867 | /* |
| 868 | * Return reply to client. |
| 869 | */ |
| 870 | int svc_send(struct svc_rqst *rqstp) |
| 871 | { |
| 872 | struct svc_xprt *xprt; |
| 873 | int len = -EFAULT; |
| 874 | struct xdr_buf *xb; |
| 875 | |
| 876 | xprt = rqstp->rq_xprt; |
| 877 | if (!xprt) |
| 878 | goto out; |
| 879 | |
| 880 | /* release the receive skb before sending the reply */ |
| 881 | xprt->xpt_ops->xpo_release_rqst(rqstp); |
| 882 | |
| 883 | /* calculate over-all length */ |
| 884 | xb = &rqstp->rq_res; |
| 885 | xb->len = xb->head[0].iov_len + |
| 886 | xb->page_len + |
| 887 | xb->tail[0].iov_len; |
| 888 | |
| 889 | /* Grab mutex to serialize outgoing data. */ |
| 890 | mutex_lock(&xprt->xpt_mutex); |
| 891 | trace_svc_stats_latency(rqstp); |
| 892 | if (test_bit(XPT_DEAD, &xprt->xpt_flags) |
| 893 | || test_bit(XPT_CLOSE, &xprt->xpt_flags)) |
| 894 | len = -ENOTCONN; |
| 895 | else |
| 896 | len = xprt->xpt_ops->xpo_sendto(rqstp); |
| 897 | mutex_unlock(&xprt->xpt_mutex); |
| 898 | rpc_wake_up(&xprt->xpt_bc_pending); |
| 899 | trace_svc_send(rqstp, len); |
| 900 | svc_xprt_release(rqstp); |
| 901 | |
| 902 | if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN) |
| 903 | len = 0; |
| 904 | out: |
| 905 | return len; |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * Timer function to close old temporary transports, using |
| 910 | * a mark-and-sweep algorithm. |
| 911 | */ |
| 912 | static void svc_age_temp_xprts(struct timer_list *t) |
| 913 | { |
| 914 | struct svc_serv *serv = from_timer(serv, t, sv_temptimer); |
| 915 | struct svc_xprt *xprt; |
| 916 | struct list_head *le, *next; |
| 917 | |
| 918 | dprintk("svc_age_temp_xprts\n"); |
| 919 | |
| 920 | if (!spin_trylock_bh(&serv->sv_lock)) { |
| 921 | /* busy, try again 1 sec later */ |
| 922 | dprintk("svc_age_temp_xprts: busy\n"); |
| 923 | mod_timer(&serv->sv_temptimer, jiffies + HZ); |
| 924 | return; |
| 925 | } |
| 926 | |
| 927 | list_for_each_safe(le, next, &serv->sv_tempsocks) { |
| 928 | xprt = list_entry(le, struct svc_xprt, xpt_list); |
| 929 | |
| 930 | /* First time through, just mark it OLD. Second time |
| 931 | * through, close it. */ |
| 932 | if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags)) |
| 933 | continue; |
| 934 | if (kref_read(&xprt->xpt_ref) > 1 || |
| 935 | test_bit(XPT_BUSY, &xprt->xpt_flags)) |
| 936 | continue; |
| 937 | list_del_init(le); |
| 938 | set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| 939 | dprintk("queuing xprt %p for closing\n", xprt); |
| 940 | |
| 941 | /* a thread will dequeue and close it soon */ |
| 942 | svc_xprt_enqueue(xprt); |
| 943 | } |
| 944 | spin_unlock_bh(&serv->sv_lock); |
| 945 | |
| 946 | mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ); |
| 947 | } |
| 948 | |
| 949 | /* Close temporary transports whose xpt_local matches server_addr immediately |
| 950 | * instead of waiting for them to be picked up by the timer. |
| 951 | * |
| 952 | * This is meant to be called from a notifier_block that runs when an ip |
| 953 | * address is deleted. |
| 954 | */ |
| 955 | void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr) |
| 956 | { |
| 957 | struct svc_xprt *xprt; |
| 958 | struct list_head *le, *next; |
| 959 | LIST_HEAD(to_be_closed); |
| 960 | |
| 961 | spin_lock_bh(&serv->sv_lock); |
| 962 | list_for_each_safe(le, next, &serv->sv_tempsocks) { |
| 963 | xprt = list_entry(le, struct svc_xprt, xpt_list); |
| 964 | if (rpc_cmp_addr(server_addr, (struct sockaddr *) |
| 965 | &xprt->xpt_local)) { |
| 966 | dprintk("svc_age_temp_xprts_now: found %p\n", xprt); |
| 967 | list_move(le, &to_be_closed); |
| 968 | } |
| 969 | } |
| 970 | spin_unlock_bh(&serv->sv_lock); |
| 971 | |
| 972 | while (!list_empty(&to_be_closed)) { |
| 973 | le = to_be_closed.next; |
| 974 | list_del_init(le); |
| 975 | xprt = list_entry(le, struct svc_xprt, xpt_list); |
| 976 | set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| 977 | set_bit(XPT_KILL_TEMP, &xprt->xpt_flags); |
| 978 | dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n", |
| 979 | xprt); |
| 980 | svc_xprt_enqueue(xprt); |
| 981 | } |
| 982 | } |
| 983 | EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now); |
| 984 | |
| 985 | static void call_xpt_users(struct svc_xprt *xprt) |
| 986 | { |
| 987 | struct svc_xpt_user *u; |
| 988 | |
| 989 | spin_lock(&xprt->xpt_lock); |
| 990 | while (!list_empty(&xprt->xpt_users)) { |
| 991 | u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list); |
| 992 | list_del_init(&u->list); |
| 993 | u->callback(u); |
| 994 | } |
| 995 | spin_unlock(&xprt->xpt_lock); |
| 996 | } |
| 997 | |
| 998 | /* |
| 999 | * Remove a dead transport |
| 1000 | */ |
| 1001 | static void svc_delete_xprt(struct svc_xprt *xprt) |
| 1002 | { |
| 1003 | struct svc_serv *serv = xprt->xpt_server; |
| 1004 | struct svc_deferred_req *dr; |
| 1005 | |
| 1006 | /* Only do this once */ |
| 1007 | if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags)) |
| 1008 | BUG(); |
| 1009 | |
| 1010 | dprintk("svc: svc_delete_xprt(%p)\n", xprt); |
| 1011 | xprt->xpt_ops->xpo_detach(xprt); |
| 1012 | |
| 1013 | spin_lock_bh(&serv->sv_lock); |
| 1014 | list_del_init(&xprt->xpt_list); |
| 1015 | WARN_ON_ONCE(!list_empty(&xprt->xpt_ready)); |
| 1016 | if (test_bit(XPT_TEMP, &xprt->xpt_flags)) |
| 1017 | serv->sv_tmpcnt--; |
| 1018 | spin_unlock_bh(&serv->sv_lock); |
| 1019 | |
| 1020 | while ((dr = svc_deferred_dequeue(xprt)) != NULL) |
| 1021 | kfree(dr); |
| 1022 | |
| 1023 | call_xpt_users(xprt); |
| 1024 | svc_xprt_put(xprt); |
| 1025 | } |
| 1026 | |
| 1027 | void svc_close_xprt(struct svc_xprt *xprt) |
| 1028 | { |
| 1029 | set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| 1030 | if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags)) |
| 1031 | /* someone else will have to effect the close */ |
| 1032 | return; |
| 1033 | /* |
| 1034 | * We expect svc_close_xprt() to work even when no threads are |
| 1035 | * running (e.g., while configuring the server before starting |
| 1036 | * any threads), so if the transport isn't busy, we delete |
| 1037 | * it ourself: |
| 1038 | */ |
| 1039 | svc_delete_xprt(xprt); |
| 1040 | } |
| 1041 | EXPORT_SYMBOL_GPL(svc_close_xprt); |
| 1042 | |
| 1043 | static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net) |
| 1044 | { |
| 1045 | struct svc_xprt *xprt; |
| 1046 | int ret = 0; |
| 1047 | |
| 1048 | spin_lock(&serv->sv_lock); |
| 1049 | list_for_each_entry(xprt, xprt_list, xpt_list) { |
| 1050 | if (xprt->xpt_net != net) |
| 1051 | continue; |
| 1052 | ret++; |
| 1053 | set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| 1054 | svc_xprt_enqueue(xprt); |
| 1055 | } |
| 1056 | spin_unlock(&serv->sv_lock); |
| 1057 | return ret; |
| 1058 | } |
| 1059 | |
| 1060 | static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net) |
| 1061 | { |
| 1062 | struct svc_pool *pool; |
| 1063 | struct svc_xprt *xprt; |
| 1064 | struct svc_xprt *tmp; |
| 1065 | int i; |
| 1066 | |
| 1067 | for (i = 0; i < serv->sv_nrpools; i++) { |
| 1068 | pool = &serv->sv_pools[i]; |
| 1069 | |
| 1070 | spin_lock_bh(&pool->sp_lock); |
| 1071 | list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) { |
| 1072 | if (xprt->xpt_net != net) |
| 1073 | continue; |
| 1074 | list_del_init(&xprt->xpt_ready); |
| 1075 | spin_unlock_bh(&pool->sp_lock); |
| 1076 | return xprt; |
| 1077 | } |
| 1078 | spin_unlock_bh(&pool->sp_lock); |
| 1079 | } |
| 1080 | return NULL; |
| 1081 | } |
| 1082 | |
| 1083 | static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net) |
| 1084 | { |
| 1085 | struct svc_xprt *xprt; |
| 1086 | |
| 1087 | while ((xprt = svc_dequeue_net(serv, net))) { |
| 1088 | set_bit(XPT_CLOSE, &xprt->xpt_flags); |
| 1089 | svc_delete_xprt(xprt); |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | /* |
| 1094 | * Server threads may still be running (especially in the case where the |
| 1095 | * service is still running in other network namespaces). |
| 1096 | * |
| 1097 | * So we shut down sockets the same way we would on a running server, by |
| 1098 | * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do |
| 1099 | * the close. In the case there are no such other threads, |
| 1100 | * threads running, svc_clean_up_xprts() does a simple version of a |
| 1101 | * server's main event loop, and in the case where there are other |
| 1102 | * threads, we may need to wait a little while and then check again to |
| 1103 | * see if they're done. |
| 1104 | */ |
| 1105 | void svc_close_net(struct svc_serv *serv, struct net *net) |
| 1106 | { |
| 1107 | int delay = 0; |
| 1108 | |
| 1109 | while (svc_close_list(serv, &serv->sv_permsocks, net) + |
| 1110 | svc_close_list(serv, &serv->sv_tempsocks, net)) { |
| 1111 | |
| 1112 | svc_clean_up_xprts(serv, net); |
| 1113 | msleep(delay++); |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | /* |
| 1118 | * Handle defer and revisit of requests |
| 1119 | */ |
| 1120 | |
| 1121 | static void svc_revisit(struct cache_deferred_req *dreq, int too_many) |
| 1122 | { |
| 1123 | struct svc_deferred_req *dr = |
| 1124 | container_of(dreq, struct svc_deferred_req, handle); |
| 1125 | struct svc_xprt *xprt = dr->xprt; |
| 1126 | |
| 1127 | spin_lock(&xprt->xpt_lock); |
| 1128 | set_bit(XPT_DEFERRED, &xprt->xpt_flags); |
| 1129 | if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) { |
| 1130 | spin_unlock(&xprt->xpt_lock); |
| 1131 | dprintk("revisit canceled\n"); |
| 1132 | svc_xprt_put(xprt); |
| 1133 | trace_svc_drop_deferred(dr); |
| 1134 | kfree(dr); |
| 1135 | return; |
| 1136 | } |
| 1137 | dprintk("revisit queued\n"); |
| 1138 | dr->xprt = NULL; |
| 1139 | list_add(&dr->handle.recent, &xprt->xpt_deferred); |
| 1140 | spin_unlock(&xprt->xpt_lock); |
| 1141 | svc_xprt_enqueue(xprt); |
| 1142 | svc_xprt_put(xprt); |
| 1143 | } |
| 1144 | |
| 1145 | /* |
| 1146 | * Save the request off for later processing. The request buffer looks |
| 1147 | * like this: |
| 1148 | * |
| 1149 | * <xprt-header><rpc-header><rpc-pagelist><rpc-tail> |
| 1150 | * |
| 1151 | * This code can only handle requests that consist of an xprt-header |
| 1152 | * and rpc-header. |
| 1153 | */ |
| 1154 | static struct cache_deferred_req *svc_defer(struct cache_req *req) |
| 1155 | { |
| 1156 | struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle); |
| 1157 | struct svc_deferred_req *dr; |
| 1158 | |
| 1159 | if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags)) |
| 1160 | return NULL; /* if more than a page, give up FIXME */ |
| 1161 | if (rqstp->rq_deferred) { |
| 1162 | dr = rqstp->rq_deferred; |
| 1163 | rqstp->rq_deferred = NULL; |
| 1164 | } else { |
| 1165 | size_t skip; |
| 1166 | size_t size; |
| 1167 | /* FIXME maybe discard if size too large */ |
| 1168 | size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len; |
| 1169 | dr = kmalloc(size, GFP_KERNEL); |
| 1170 | if (dr == NULL) |
| 1171 | return NULL; |
| 1172 | |
| 1173 | dr->handle.owner = rqstp->rq_server; |
| 1174 | dr->prot = rqstp->rq_prot; |
| 1175 | memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen); |
| 1176 | dr->addrlen = rqstp->rq_addrlen; |
| 1177 | dr->daddr = rqstp->rq_daddr; |
| 1178 | dr->argslen = rqstp->rq_arg.len >> 2; |
| 1179 | dr->xprt_hlen = rqstp->rq_xprt_hlen; |
| 1180 | |
| 1181 | /* back up head to the start of the buffer and copy */ |
| 1182 | skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len; |
| 1183 | memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip, |
| 1184 | dr->argslen << 2); |
| 1185 | } |
| 1186 | svc_xprt_get(rqstp->rq_xprt); |
| 1187 | dr->xprt = rqstp->rq_xprt; |
| 1188 | set_bit(RQ_DROPME, &rqstp->rq_flags); |
| 1189 | |
| 1190 | dr->handle.revisit = svc_revisit; |
| 1191 | trace_svc_defer(rqstp); |
| 1192 | return &dr->handle; |
| 1193 | } |
| 1194 | |
| 1195 | /* |
| 1196 | * recv data from a deferred request into an active one |
| 1197 | */ |
| 1198 | static int svc_deferred_recv(struct svc_rqst *rqstp) |
| 1199 | { |
| 1200 | struct svc_deferred_req *dr = rqstp->rq_deferred; |
| 1201 | |
| 1202 | /* setup iov_base past transport header */ |
| 1203 | rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2); |
| 1204 | /* The iov_len does not include the transport header bytes */ |
| 1205 | rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen; |
| 1206 | rqstp->rq_arg.page_len = 0; |
| 1207 | /* The rq_arg.len includes the transport header bytes */ |
| 1208 | rqstp->rq_arg.len = dr->argslen<<2; |
| 1209 | rqstp->rq_prot = dr->prot; |
| 1210 | memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen); |
| 1211 | rqstp->rq_addrlen = dr->addrlen; |
| 1212 | /* Save off transport header len in case we get deferred again */ |
| 1213 | rqstp->rq_xprt_hlen = dr->xprt_hlen; |
| 1214 | rqstp->rq_daddr = dr->daddr; |
| 1215 | rqstp->rq_respages = rqstp->rq_pages; |
| 1216 | return (dr->argslen<<2) - dr->xprt_hlen; |
| 1217 | } |
| 1218 | |
| 1219 | |
| 1220 | static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt) |
| 1221 | { |
| 1222 | struct svc_deferred_req *dr = NULL; |
| 1223 | |
| 1224 | if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags)) |
| 1225 | return NULL; |
| 1226 | spin_lock(&xprt->xpt_lock); |
| 1227 | if (!list_empty(&xprt->xpt_deferred)) { |
| 1228 | dr = list_entry(xprt->xpt_deferred.next, |
| 1229 | struct svc_deferred_req, |
| 1230 | handle.recent); |
| 1231 | list_del_init(&dr->handle.recent); |
| 1232 | trace_svc_revisit_deferred(dr); |
| 1233 | } else |
| 1234 | clear_bit(XPT_DEFERRED, &xprt->xpt_flags); |
| 1235 | spin_unlock(&xprt->xpt_lock); |
| 1236 | return dr; |
| 1237 | } |
| 1238 | |
| 1239 | /** |
| 1240 | * svc_find_xprt - find an RPC transport instance |
| 1241 | * @serv: pointer to svc_serv to search |
| 1242 | * @xcl_name: C string containing transport's class name |
| 1243 | * @net: owner net pointer |
| 1244 | * @af: Address family of transport's local address |
| 1245 | * @port: transport's IP port number |
| 1246 | * |
| 1247 | * Return the transport instance pointer for the endpoint accepting |
| 1248 | * connections/peer traffic from the specified transport class, |
| 1249 | * address family and port. |
| 1250 | * |
| 1251 | * Specifying 0 for the address family or port is effectively a |
| 1252 | * wild-card, and will result in matching the first transport in the |
| 1253 | * service's list that has a matching class name. |
| 1254 | */ |
| 1255 | struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name, |
| 1256 | struct net *net, const sa_family_t af, |
| 1257 | const unsigned short port) |
| 1258 | { |
| 1259 | struct svc_xprt *xprt; |
| 1260 | struct svc_xprt *found = NULL; |
| 1261 | |
| 1262 | /* Sanity check the args */ |
| 1263 | if (serv == NULL || xcl_name == NULL) |
| 1264 | return found; |
| 1265 | |
| 1266 | spin_lock_bh(&serv->sv_lock); |
| 1267 | list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { |
| 1268 | if (xprt->xpt_net != net) |
| 1269 | continue; |
| 1270 | if (strcmp(xprt->xpt_class->xcl_name, xcl_name)) |
| 1271 | continue; |
| 1272 | if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family) |
| 1273 | continue; |
| 1274 | if (port != 0 && port != svc_xprt_local_port(xprt)) |
| 1275 | continue; |
| 1276 | found = xprt; |
| 1277 | svc_xprt_get(xprt); |
| 1278 | break; |
| 1279 | } |
| 1280 | spin_unlock_bh(&serv->sv_lock); |
| 1281 | return found; |
| 1282 | } |
| 1283 | EXPORT_SYMBOL_GPL(svc_find_xprt); |
| 1284 | |
| 1285 | static int svc_one_xprt_name(const struct svc_xprt *xprt, |
| 1286 | char *pos, int remaining) |
| 1287 | { |
| 1288 | int len; |
| 1289 | |
| 1290 | len = snprintf(pos, remaining, "%s %u\n", |
| 1291 | xprt->xpt_class->xcl_name, |
| 1292 | svc_xprt_local_port(xprt)); |
| 1293 | if (len >= remaining) |
| 1294 | return -ENAMETOOLONG; |
| 1295 | return len; |
| 1296 | } |
| 1297 | |
| 1298 | /** |
| 1299 | * svc_xprt_names - format a buffer with a list of transport names |
| 1300 | * @serv: pointer to an RPC service |
| 1301 | * @buf: pointer to a buffer to be filled in |
| 1302 | * @buflen: length of buffer to be filled in |
| 1303 | * |
| 1304 | * Fills in @buf with a string containing a list of transport names, |
| 1305 | * each name terminated with '\n'. |
| 1306 | * |
| 1307 | * Returns positive length of the filled-in string on success; otherwise |
| 1308 | * a negative errno value is returned if an error occurs. |
| 1309 | */ |
| 1310 | int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen) |
| 1311 | { |
| 1312 | struct svc_xprt *xprt; |
| 1313 | int len, totlen; |
| 1314 | char *pos; |
| 1315 | |
| 1316 | /* Sanity check args */ |
| 1317 | if (!serv) |
| 1318 | return 0; |
| 1319 | |
| 1320 | spin_lock_bh(&serv->sv_lock); |
| 1321 | |
| 1322 | pos = buf; |
| 1323 | totlen = 0; |
| 1324 | list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) { |
| 1325 | len = svc_one_xprt_name(xprt, pos, buflen - totlen); |
| 1326 | if (len < 0) { |
| 1327 | *buf = '\0'; |
| 1328 | totlen = len; |
| 1329 | } |
| 1330 | if (len <= 0) |
| 1331 | break; |
| 1332 | |
| 1333 | pos += len; |
| 1334 | totlen += len; |
| 1335 | } |
| 1336 | |
| 1337 | spin_unlock_bh(&serv->sv_lock); |
| 1338 | return totlen; |
| 1339 | } |
| 1340 | EXPORT_SYMBOL_GPL(svc_xprt_names); |
| 1341 | |
| 1342 | |
| 1343 | /*----------------------------------------------------------------------------*/ |
| 1344 | |
| 1345 | static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos) |
| 1346 | { |
| 1347 | unsigned int pidx = (unsigned int)*pos; |
| 1348 | struct svc_serv *serv = m->private; |
| 1349 | |
| 1350 | dprintk("svc_pool_stats_start, *pidx=%u\n", pidx); |
| 1351 | |
| 1352 | if (!pidx) |
| 1353 | return SEQ_START_TOKEN; |
| 1354 | return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]); |
| 1355 | } |
| 1356 | |
| 1357 | static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos) |
| 1358 | { |
| 1359 | struct svc_pool *pool = p; |
| 1360 | struct svc_serv *serv = m->private; |
| 1361 | |
| 1362 | dprintk("svc_pool_stats_next, *pos=%llu\n", *pos); |
| 1363 | |
| 1364 | if (p == SEQ_START_TOKEN) { |
| 1365 | pool = &serv->sv_pools[0]; |
| 1366 | } else { |
| 1367 | unsigned int pidx = (pool - &serv->sv_pools[0]); |
| 1368 | if (pidx < serv->sv_nrpools-1) |
| 1369 | pool = &serv->sv_pools[pidx+1]; |
| 1370 | else |
| 1371 | pool = NULL; |
| 1372 | } |
| 1373 | ++*pos; |
| 1374 | return pool; |
| 1375 | } |
| 1376 | |
| 1377 | static void svc_pool_stats_stop(struct seq_file *m, void *p) |
| 1378 | { |
| 1379 | } |
| 1380 | |
| 1381 | static int svc_pool_stats_show(struct seq_file *m, void *p) |
| 1382 | { |
| 1383 | struct svc_pool *pool = p; |
| 1384 | |
| 1385 | if (p == SEQ_START_TOKEN) { |
| 1386 | seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n"); |
| 1387 | return 0; |
| 1388 | } |
| 1389 | |
| 1390 | seq_printf(m, "%u %lu %lu %lu %lu\n", |
| 1391 | pool->sp_id, |
| 1392 | (unsigned long)atomic_long_read(&pool->sp_stats.packets), |
| 1393 | pool->sp_stats.sockets_queued, |
| 1394 | (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken), |
| 1395 | (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout)); |
| 1396 | |
| 1397 | return 0; |
| 1398 | } |
| 1399 | |
| 1400 | static const struct seq_operations svc_pool_stats_seq_ops = { |
| 1401 | .start = svc_pool_stats_start, |
| 1402 | .next = svc_pool_stats_next, |
| 1403 | .stop = svc_pool_stats_stop, |
| 1404 | .show = svc_pool_stats_show, |
| 1405 | }; |
| 1406 | |
| 1407 | int svc_pool_stats_open(struct svc_serv *serv, struct file *file) |
| 1408 | { |
| 1409 | int err; |
| 1410 | |
| 1411 | err = seq_open(file, &svc_pool_stats_seq_ops); |
| 1412 | if (!err) |
| 1413 | ((struct seq_file *) file->private_data)->private = serv; |
| 1414 | return err; |
| 1415 | } |
| 1416 | EXPORT_SYMBOL(svc_pool_stats_open); |
| 1417 | |
| 1418 | /*----------------------------------------------------------------------------*/ |