blob: ce32cf741b250939de562ab05bd598fb30f10986 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implement CPU time clocks for the POSIX clock interface.
4 */
5
6#include <linux/sched/signal.h>
7#include <linux/sched/cputime.h>
8#include <linux/posix-timers.h>
9#include <linux/errno.h>
10#include <linux/math64.h>
11#include <linux/uaccess.h>
12#include <linux/kernel_stat.h>
13#include <trace/events/timer.h>
14#include <linux/tick.h>
15#include <linux/workqueue.h>
16#include <linux/compat.h>
17#include <linux/sched/deadline.h>
18
19#include "posix-timers.h"
20
21static void posix_cpu_timer_rearm(struct k_itimer *timer);
22
23/*
24 * Called after updating RLIMIT_CPU to run cpu timer and update
25 * tsk->signal->cputime_expires expiration cache if necessary. Needs
26 * siglock protection since other code may update expiration cache as
27 * well.
28 */
29void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
30{
31 u64 nsecs = rlim_new * NSEC_PER_SEC;
32
33 spin_lock_irq(&task->sighand->siglock);
34 set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
35 spin_unlock_irq(&task->sighand->siglock);
36}
37
38static int check_clock(const clockid_t which_clock)
39{
40 int error = 0;
41 struct task_struct *p;
42 const pid_t pid = CPUCLOCK_PID(which_clock);
43
44 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
45 return -EINVAL;
46
47 if (pid == 0)
48 return 0;
49
50 rcu_read_lock();
51 p = find_task_by_vpid(pid);
52 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
53 same_thread_group(p, current) : has_group_leader_pid(p))) {
54 error = -EINVAL;
55 }
56 rcu_read_unlock();
57
58 return error;
59}
60
61/*
62 * Update expiry time from increment, and increase overrun count,
63 * given the current clock sample.
64 */
65static void bump_cpu_timer(struct k_itimer *timer, u64 now)
66{
67 int i;
68 u64 delta, incr;
69
70 if (timer->it.cpu.incr == 0)
71 return;
72
73 if (now < timer->it.cpu.expires)
74 return;
75
76 incr = timer->it.cpu.incr;
77 delta = now + incr - timer->it.cpu.expires;
78
79 /* Don't use (incr*2 < delta), incr*2 might overflow. */
80 for (i = 0; incr < delta - incr; i++)
81 incr = incr << 1;
82
83 for (; i >= 0; incr >>= 1, i--) {
84 if (delta < incr)
85 continue;
86
87 timer->it.cpu.expires += incr;
88 timer->it_overrun += 1LL << i;
89 delta -= incr;
90 }
91}
92
93/**
94 * task_cputime_zero - Check a task_cputime struct for all zero fields.
95 *
96 * @cputime: The struct to compare.
97 *
98 * Checks @cputime to see if all fields are zero. Returns true if all fields
99 * are zero, false if any field is nonzero.
100 */
101static inline int task_cputime_zero(const struct task_cputime *cputime)
102{
103 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
104 return 1;
105 return 0;
106}
107
108static inline u64 prof_ticks(struct task_struct *p)
109{
110 u64 utime, stime;
111
112 task_cputime(p, &utime, &stime);
113
114 return utime + stime;
115}
116static inline u64 virt_ticks(struct task_struct *p)
117{
118 u64 utime, stime;
119
120 task_cputime(p, &utime, &stime);
121
122 return utime;
123}
124
125static int
126posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
127{
128 int error = check_clock(which_clock);
129 if (!error) {
130 tp->tv_sec = 0;
131 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
132 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
133 /*
134 * If sched_clock is using a cycle counter, we
135 * don't have any idea of its true resolution
136 * exported, but it is much more than 1s/HZ.
137 */
138 tp->tv_nsec = 1;
139 }
140 }
141 return error;
142}
143
144static int
145posix_cpu_clock_set(const clockid_t which_clock, const struct timespec64 *tp)
146{
147 /*
148 * You can never reset a CPU clock, but we check for other errors
149 * in the call before failing with EPERM.
150 */
151 int error = check_clock(which_clock);
152 if (error == 0) {
153 error = -EPERM;
154 }
155 return error;
156}
157
158
159/*
160 * Sample a per-thread clock for the given task.
161 */
162static int cpu_clock_sample(const clockid_t which_clock,
163 struct task_struct *p, u64 *sample)
164{
165 switch (CPUCLOCK_WHICH(which_clock)) {
166 default:
167 return -EINVAL;
168 case CPUCLOCK_PROF:
169 *sample = prof_ticks(p);
170 break;
171 case CPUCLOCK_VIRT:
172 *sample = virt_ticks(p);
173 break;
174 case CPUCLOCK_SCHED:
175 *sample = task_sched_runtime(p);
176 break;
177 }
178 return 0;
179}
180
181/*
182 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
183 * to avoid race conditions with concurrent updates to cputime.
184 */
185static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
186{
187 u64 curr_cputime;
188retry:
189 curr_cputime = atomic64_read(cputime);
190 if (sum_cputime > curr_cputime) {
191 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
192 goto retry;
193 }
194}
195
196static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
197{
198 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
199 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
200 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
201}
202
203/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
204static inline void sample_cputime_atomic(struct task_cputime *times,
205 struct task_cputime_atomic *atomic_times)
206{
207 times->utime = atomic64_read(&atomic_times->utime);
208 times->stime = atomic64_read(&atomic_times->stime);
209 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
210}
211
212void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
213{
214 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
215 struct task_cputime sum;
216
217 /* Check if cputimer isn't running. This is accessed without locking. */
218 if (!READ_ONCE(cputimer->running)) {
219 /*
220 * The POSIX timer interface allows for absolute time expiry
221 * values through the TIMER_ABSTIME flag, therefore we have
222 * to synchronize the timer to the clock every time we start it.
223 */
224 thread_group_cputime(tsk, &sum);
225 update_gt_cputime(&cputimer->cputime_atomic, &sum);
226
227 /*
228 * We're setting cputimer->running without a lock. Ensure
229 * this only gets written to in one operation. We set
230 * running after update_gt_cputime() as a small optimization,
231 * but barriers are not required because update_gt_cputime()
232 * can handle concurrent updates.
233 */
234 WRITE_ONCE(cputimer->running, true);
235 }
236 sample_cputime_atomic(times, &cputimer->cputime_atomic);
237}
238
239/*
240 * Sample a process (thread group) clock for the given group_leader task.
241 * Must be called with task sighand lock held for safe while_each_thread()
242 * traversal.
243 */
244static int cpu_clock_sample_group(const clockid_t which_clock,
245 struct task_struct *p,
246 u64 *sample)
247{
248 struct task_cputime cputime;
249
250 switch (CPUCLOCK_WHICH(which_clock)) {
251 default:
252 return -EINVAL;
253 case CPUCLOCK_PROF:
254 thread_group_cputime(p, &cputime);
255 *sample = cputime.utime + cputime.stime;
256 break;
257 case CPUCLOCK_VIRT:
258 thread_group_cputime(p, &cputime);
259 *sample = cputime.utime;
260 break;
261 case CPUCLOCK_SCHED:
262 thread_group_cputime(p, &cputime);
263 *sample = cputime.sum_exec_runtime;
264 break;
265 }
266 return 0;
267}
268
269static int posix_cpu_clock_get_task(struct task_struct *tsk,
270 const clockid_t which_clock,
271 struct timespec64 *tp)
272{
273 int err = -EINVAL;
274 u64 rtn;
275
276 if (CPUCLOCK_PERTHREAD(which_clock)) {
277 if (same_thread_group(tsk, current))
278 err = cpu_clock_sample(which_clock, tsk, &rtn);
279 } else {
280 if (tsk == current || thread_group_leader(tsk))
281 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
282 }
283
284 if (!err)
285 *tp = ns_to_timespec64(rtn);
286
287 return err;
288}
289
290
291static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec64 *tp)
292{
293 const pid_t pid = CPUCLOCK_PID(which_clock);
294 int err = -EINVAL;
295
296 if (pid == 0) {
297 /*
298 * Special case constant value for our own clocks.
299 * We don't have to do any lookup to find ourselves.
300 */
301 err = posix_cpu_clock_get_task(current, which_clock, tp);
302 } else {
303 /*
304 * Find the given PID, and validate that the caller
305 * should be able to see it.
306 */
307 struct task_struct *p;
308 rcu_read_lock();
309 p = find_task_by_vpid(pid);
310 if (p)
311 err = posix_cpu_clock_get_task(p, which_clock, tp);
312 rcu_read_unlock();
313 }
314
315 return err;
316}
317
318/*
319 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
320 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
321 * new timer already all-zeros initialized.
322 */
323static int posix_cpu_timer_create(struct k_itimer *new_timer)
324{
325 int ret = 0;
326 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
327 struct task_struct *p;
328
329 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
330 return -EINVAL;
331
332 new_timer->kclock = &clock_posix_cpu;
333
334 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
335
336 rcu_read_lock();
337 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
338 if (pid == 0) {
339 p = current;
340 } else {
341 p = find_task_by_vpid(pid);
342 if (p && !same_thread_group(p, current))
343 p = NULL;
344 }
345 } else {
346 if (pid == 0) {
347 p = current->group_leader;
348 } else {
349 p = find_task_by_vpid(pid);
350 if (p && !has_group_leader_pid(p))
351 p = NULL;
352 }
353 }
354 new_timer->it.cpu.task = p;
355 if (p) {
356 get_task_struct(p);
357 } else {
358 ret = -EINVAL;
359 }
360 rcu_read_unlock();
361
362 return ret;
363}
364
365/*
366 * Clean up a CPU-clock timer that is about to be destroyed.
367 * This is called from timer deletion with the timer already locked.
368 * If we return TIMER_RETRY, it's necessary to release the timer's lock
369 * and try again. (This happens when the timer is in the middle of firing.)
370 */
371static int posix_cpu_timer_del(struct k_itimer *timer)
372{
373 int ret = 0;
374 unsigned long flags;
375 struct sighand_struct *sighand;
376 struct task_struct *p = timer->it.cpu.task;
377
378 WARN_ON_ONCE(p == NULL);
379
380 /*
381 * Protect against sighand release/switch in exit/exec and process/
382 * thread timer list entry concurrent read/writes.
383 */
384 sighand = lock_task_sighand(p, &flags);
385 if (unlikely(sighand == NULL)) {
386 /*
387 * We raced with the reaping of the task.
388 * The deletion should have cleared us off the list.
389 */
390 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
391 } else {
392 if (timer->it.cpu.firing)
393 ret = TIMER_RETRY;
394 else
395 list_del(&timer->it.cpu.entry);
396
397 unlock_task_sighand(p, &flags);
398 }
399
400 if (!ret)
401 put_task_struct(p);
402
403 return ret;
404}
405
406static void cleanup_timers_list(struct list_head *head)
407{
408 struct cpu_timer_list *timer, *next;
409
410 list_for_each_entry_safe(timer, next, head, entry)
411 list_del_init(&timer->entry);
412}
413
414/*
415 * Clean out CPU timers still ticking when a thread exited. The task
416 * pointer is cleared, and the expiry time is replaced with the residual
417 * time for later timer_gettime calls to return.
418 * This must be called with the siglock held.
419 */
420static void cleanup_timers(struct list_head *head)
421{
422 cleanup_timers_list(head);
423 cleanup_timers_list(++head);
424 cleanup_timers_list(++head);
425}
426
427/*
428 * These are both called with the siglock held, when the current thread
429 * is being reaped. When the final (leader) thread in the group is reaped,
430 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
431 */
432void posix_cpu_timers_exit(struct task_struct *tsk)
433{
434 cleanup_timers(tsk->cpu_timers);
435}
436void posix_cpu_timers_exit_group(struct task_struct *tsk)
437{
438 cleanup_timers(tsk->signal->cpu_timers);
439}
440
441static inline int expires_gt(u64 expires, u64 new_exp)
442{
443 return expires == 0 || expires > new_exp;
444}
445
446/*
447 * Insert the timer on the appropriate list before any timers that
448 * expire later. This must be called with the sighand lock held.
449 */
450static void arm_timer(struct k_itimer *timer)
451{
452 struct task_struct *p = timer->it.cpu.task;
453 struct list_head *head, *listpos;
454 struct task_cputime *cputime_expires;
455 struct cpu_timer_list *const nt = &timer->it.cpu;
456 struct cpu_timer_list *next;
457
458 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
459 head = p->cpu_timers;
460 cputime_expires = &p->cputime_expires;
461 } else {
462 head = p->signal->cpu_timers;
463 cputime_expires = &p->signal->cputime_expires;
464 }
465 head += CPUCLOCK_WHICH(timer->it_clock);
466
467 listpos = head;
468 list_for_each_entry(next, head, entry) {
469 if (nt->expires < next->expires)
470 break;
471 listpos = &next->entry;
472 }
473 list_add(&nt->entry, listpos);
474
475 if (listpos == head) {
476 u64 exp = nt->expires;
477
478 /*
479 * We are the new earliest-expiring POSIX 1.b timer, hence
480 * need to update expiration cache. Take into account that
481 * for process timers we share expiration cache with itimers
482 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
483 */
484
485 switch (CPUCLOCK_WHICH(timer->it_clock)) {
486 case CPUCLOCK_PROF:
487 if (expires_gt(cputime_expires->prof_exp, exp))
488 cputime_expires->prof_exp = exp;
489 break;
490 case CPUCLOCK_VIRT:
491 if (expires_gt(cputime_expires->virt_exp, exp))
492 cputime_expires->virt_exp = exp;
493 break;
494 case CPUCLOCK_SCHED:
495 if (expires_gt(cputime_expires->sched_exp, exp))
496 cputime_expires->sched_exp = exp;
497 break;
498 }
499 if (CPUCLOCK_PERTHREAD(timer->it_clock))
500 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
501 else
502 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
503 }
504}
505
506/*
507 * The timer is locked, fire it and arrange for its reload.
508 */
509static void cpu_timer_fire(struct k_itimer *timer)
510{
511 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
512 /*
513 * User don't want any signal.
514 */
515 timer->it.cpu.expires = 0;
516 } else if (unlikely(timer->sigq == NULL)) {
517 /*
518 * This a special case for clock_nanosleep,
519 * not a normal timer from sys_timer_create.
520 */
521 wake_up_process(timer->it_process);
522 timer->it.cpu.expires = 0;
523 } else if (timer->it.cpu.incr == 0) {
524 /*
525 * One-shot timer. Clear it as soon as it's fired.
526 */
527 posix_timer_event(timer, 0);
528 timer->it.cpu.expires = 0;
529 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
530 /*
531 * The signal did not get queued because the signal
532 * was ignored, so we won't get any callback to
533 * reload the timer. But we need to keep it
534 * ticking in case the signal is deliverable next time.
535 */
536 posix_cpu_timer_rearm(timer);
537 ++timer->it_requeue_pending;
538 }
539}
540
541/*
542 * Sample a process (thread group) timer for the given group_leader task.
543 * Must be called with task sighand lock held for safe while_each_thread()
544 * traversal.
545 */
546static int cpu_timer_sample_group(const clockid_t which_clock,
547 struct task_struct *p, u64 *sample)
548{
549 struct task_cputime cputime;
550
551 thread_group_cputimer(p, &cputime);
552 switch (CPUCLOCK_WHICH(which_clock)) {
553 default:
554 return -EINVAL;
555 case CPUCLOCK_PROF:
556 *sample = cputime.utime + cputime.stime;
557 break;
558 case CPUCLOCK_VIRT:
559 *sample = cputime.utime;
560 break;
561 case CPUCLOCK_SCHED:
562 *sample = cputime.sum_exec_runtime;
563 break;
564 }
565 return 0;
566}
567
568/*
569 * Guts of sys_timer_settime for CPU timers.
570 * This is called with the timer locked and interrupts disabled.
571 * If we return TIMER_RETRY, it's necessary to release the timer's lock
572 * and try again. (This happens when the timer is in the middle of firing.)
573 */
574static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
575 struct itimerspec64 *new, struct itimerspec64 *old)
576{
577 unsigned long flags;
578 struct sighand_struct *sighand;
579 struct task_struct *p = timer->it.cpu.task;
580 u64 old_expires, new_expires, old_incr, val;
581 int ret;
582
583 WARN_ON_ONCE(p == NULL);
584
585 /*
586 * Use the to_ktime conversion because that clamps the maximum
587 * value to KTIME_MAX and avoid multiplication overflows.
588 */
589 new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
590
591 /*
592 * Protect against sighand release/switch in exit/exec and p->cpu_timers
593 * and p->signal->cpu_timers read/write in arm_timer()
594 */
595 sighand = lock_task_sighand(p, &flags);
596 /*
597 * If p has just been reaped, we can no
598 * longer get any information about it at all.
599 */
600 if (unlikely(sighand == NULL)) {
601 return -ESRCH;
602 }
603
604 /*
605 * Disarm any old timer after extracting its expiry time.
606 */
607
608 ret = 0;
609 old_incr = timer->it.cpu.incr;
610 old_expires = timer->it.cpu.expires;
611 if (unlikely(timer->it.cpu.firing)) {
612 timer->it.cpu.firing = -1;
613 ret = TIMER_RETRY;
614 } else
615 list_del_init(&timer->it.cpu.entry);
616
617 /*
618 * We need to sample the current value to convert the new
619 * value from to relative and absolute, and to convert the
620 * old value from absolute to relative. To set a process
621 * timer, we need a sample to balance the thread expiry
622 * times (in arm_timer). With an absolute time, we must
623 * check if it's already passed. In short, we need a sample.
624 */
625 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
626 cpu_clock_sample(timer->it_clock, p, &val);
627 } else {
628 cpu_timer_sample_group(timer->it_clock, p, &val);
629 }
630
631 if (old) {
632 if (old_expires == 0) {
633 old->it_value.tv_sec = 0;
634 old->it_value.tv_nsec = 0;
635 } else {
636 /*
637 * Update the timer in case it has
638 * overrun already. If it has,
639 * we'll report it as having overrun
640 * and with the next reloaded timer
641 * already ticking, though we are
642 * swallowing that pending
643 * notification here to install the
644 * new setting.
645 */
646 bump_cpu_timer(timer, val);
647 if (val < timer->it.cpu.expires) {
648 old_expires = timer->it.cpu.expires - val;
649 old->it_value = ns_to_timespec64(old_expires);
650 } else {
651 old->it_value.tv_nsec = 1;
652 old->it_value.tv_sec = 0;
653 }
654 }
655 }
656
657 if (unlikely(ret)) {
658 /*
659 * We are colliding with the timer actually firing.
660 * Punt after filling in the timer's old value, and
661 * disable this firing since we are already reporting
662 * it as an overrun (thanks to bump_cpu_timer above).
663 */
664 unlock_task_sighand(p, &flags);
665 goto out;
666 }
667
668 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
669 new_expires += val;
670 }
671
672 /*
673 * Install the new expiry time (or zero).
674 * For a timer with no notification action, we don't actually
675 * arm the timer (we'll just fake it for timer_gettime).
676 */
677 timer->it.cpu.expires = new_expires;
678 if (new_expires != 0 && val < new_expires) {
679 arm_timer(timer);
680 }
681
682 unlock_task_sighand(p, &flags);
683 /*
684 * Install the new reload setting, and
685 * set up the signal and overrun bookkeeping.
686 */
687 timer->it.cpu.incr = timespec64_to_ns(&new->it_interval);
688
689 /*
690 * This acts as a modification timestamp for the timer,
691 * so any automatic reload attempt will punt on seeing
692 * that we have reset the timer manually.
693 */
694 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
695 ~REQUEUE_PENDING;
696 timer->it_overrun_last = 0;
697 timer->it_overrun = -1;
698
699 if (new_expires != 0 && !(val < new_expires)) {
700 /*
701 * The designated time already passed, so we notify
702 * immediately, even if the thread never runs to
703 * accumulate more time on this clock.
704 */
705 cpu_timer_fire(timer);
706 }
707
708 ret = 0;
709 out:
710 if (old)
711 old->it_interval = ns_to_timespec64(old_incr);
712
713 return ret;
714}
715
716static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
717{
718 u64 now;
719 struct task_struct *p = timer->it.cpu.task;
720
721 WARN_ON_ONCE(p == NULL);
722
723 /*
724 * Easy part: convert the reload time.
725 */
726 itp->it_interval = ns_to_timespec64(timer->it.cpu.incr);
727
728 if (!timer->it.cpu.expires)
729 return;
730
731 /*
732 * Sample the clock to take the difference with the expiry time.
733 */
734 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
735 cpu_clock_sample(timer->it_clock, p, &now);
736 } else {
737 struct sighand_struct *sighand;
738 unsigned long flags;
739
740 /*
741 * Protect against sighand release/switch in exit/exec and
742 * also make timer sampling safe if it ends up calling
743 * thread_group_cputime().
744 */
745 sighand = lock_task_sighand(p, &flags);
746 if (unlikely(sighand == NULL)) {
747 /*
748 * The process has been reaped.
749 * We can't even collect a sample any more.
750 * Call the timer disarmed, nothing else to do.
751 */
752 timer->it.cpu.expires = 0;
753 return;
754 } else {
755 cpu_timer_sample_group(timer->it_clock, p, &now);
756 unlock_task_sighand(p, &flags);
757 }
758 }
759
760 if (now < timer->it.cpu.expires) {
761 itp->it_value = ns_to_timespec64(timer->it.cpu.expires - now);
762 } else {
763 /*
764 * The timer should have expired already, but the firing
765 * hasn't taken place yet. Say it's just about to expire.
766 */
767 itp->it_value.tv_nsec = 1;
768 itp->it_value.tv_sec = 0;
769 }
770}
771
772static unsigned long long
773check_timers_list(struct list_head *timers,
774 struct list_head *firing,
775 unsigned long long curr)
776{
777 int maxfire = 20;
778
779 while (!list_empty(timers)) {
780 struct cpu_timer_list *t;
781
782 t = list_first_entry(timers, struct cpu_timer_list, entry);
783
784 if (!--maxfire || curr < t->expires)
785 return t->expires;
786
787 t->firing = 1;
788 list_move_tail(&t->entry, firing);
789 }
790
791 return 0;
792}
793
794static inline void check_dl_overrun(struct task_struct *tsk)
795{
796 if (tsk->dl.dl_overrun) {
797 tsk->dl.dl_overrun = 0;
798 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
799 }
800}
801
802/*
803 * Check for any per-thread CPU timers that have fired and move them off
804 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
805 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
806 */
807static void check_thread_timers(struct task_struct *tsk,
808 struct list_head *firing)
809{
810 struct list_head *timers = tsk->cpu_timers;
811 struct task_cputime *tsk_expires = &tsk->cputime_expires;
812 u64 expires;
813 unsigned long soft;
814
815 if (dl_task(tsk))
816 check_dl_overrun(tsk);
817
818 /*
819 * If cputime_expires is zero, then there are no active
820 * per thread CPU timers.
821 */
822 if (task_cputime_zero(&tsk->cputime_expires))
823 return;
824
825 expires = check_timers_list(timers, firing, prof_ticks(tsk));
826 tsk_expires->prof_exp = expires;
827
828 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
829 tsk_expires->virt_exp = expires;
830
831 tsk_expires->sched_exp = check_timers_list(++timers, firing,
832 tsk->se.sum_exec_runtime);
833
834 /*
835 * Check for the special case thread timers.
836 */
837 soft = task_rlimit(tsk, RLIMIT_RTTIME);
838 if (soft != RLIM_INFINITY) {
839 unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
840
841 if (hard != RLIM_INFINITY &&
842 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
843 /*
844 * At the hard limit, we just die.
845 * No need to calculate anything else now.
846 */
847 if (print_fatal_signals) {
848 pr_info("CPU Watchdog Timeout (hard): %s[%d]\n",
849 tsk->comm, task_pid_nr(tsk));
850 }
851 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
852 return;
853 }
854 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
855 /*
856 * At the soft limit, send a SIGXCPU every second.
857 */
858 if (soft < hard) {
859 soft += USEC_PER_SEC;
860 tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur =
861 soft;
862 }
863 if (print_fatal_signals) {
864 pr_info("RT Watchdog Timeout (soft): %s[%d]\n",
865 tsk->comm, task_pid_nr(tsk));
866 }
867 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
868 }
869 }
870 if (task_cputime_zero(tsk_expires))
871 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
872}
873
874static inline void stop_process_timers(struct signal_struct *sig)
875{
876 struct thread_group_cputimer *cputimer = &sig->cputimer;
877
878 /* Turn off cputimer->running. This is done without locking. */
879 WRITE_ONCE(cputimer->running, false);
880 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
881}
882
883static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
884 u64 *expires, u64 cur_time, int signo)
885{
886 if (!it->expires)
887 return;
888
889 if (cur_time >= it->expires) {
890 if (it->incr)
891 it->expires += it->incr;
892 else
893 it->expires = 0;
894
895 trace_itimer_expire(signo == SIGPROF ?
896 ITIMER_PROF : ITIMER_VIRTUAL,
897 task_tgid(tsk), cur_time);
898 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
899 }
900
901 if (it->expires && (!*expires || it->expires < *expires))
902 *expires = it->expires;
903}
904
905/*
906 * Check for any per-thread CPU timers that have fired and move them
907 * off the tsk->*_timers list onto the firing list. Per-thread timers
908 * have already been taken off.
909 */
910static void check_process_timers(struct task_struct *tsk,
911 struct list_head *firing)
912{
913 struct signal_struct *const sig = tsk->signal;
914 u64 utime, ptime, virt_expires, prof_expires;
915 u64 sum_sched_runtime, sched_expires;
916 struct list_head *timers = sig->cpu_timers;
917 struct task_cputime cputime;
918 unsigned long soft;
919
920 if (dl_task(tsk))
921 check_dl_overrun(tsk);
922
923 /*
924 * If cputimer is not running, then there are no active
925 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
926 */
927 if (!READ_ONCE(tsk->signal->cputimer.running))
928 return;
929
930 /*
931 * Signify that a thread is checking for process timers.
932 * Write access to this field is protected by the sighand lock.
933 */
934 sig->cputimer.checking_timer = true;
935
936 /*
937 * Collect the current process totals.
938 */
939 thread_group_cputimer(tsk, &cputime);
940 utime = cputime.utime;
941 ptime = utime + cputime.stime;
942 sum_sched_runtime = cputime.sum_exec_runtime;
943
944 prof_expires = check_timers_list(timers, firing, ptime);
945 virt_expires = check_timers_list(++timers, firing, utime);
946 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
947
948 /*
949 * Check for the special case process timers.
950 */
951 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
952 SIGPROF);
953 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
954 SIGVTALRM);
955 soft = task_rlimit(tsk, RLIMIT_CPU);
956 if (soft != RLIM_INFINITY) {
957 unsigned long psecs = div_u64(ptime, NSEC_PER_SEC);
958 unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
959 u64 x;
960 if (psecs >= hard) {
961 /*
962 * At the hard limit, we just die.
963 * No need to calculate anything else now.
964 */
965 if (print_fatal_signals) {
966 pr_info("RT Watchdog Timeout (hard): %s[%d]\n",
967 tsk->comm, task_pid_nr(tsk));
968 }
969 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
970 return;
971 }
972 if (psecs >= soft) {
973 /*
974 * At the soft limit, send a SIGXCPU every second.
975 */
976 if (print_fatal_signals) {
977 pr_info("CPU Watchdog Timeout (soft): %s[%d]\n",
978 tsk->comm, task_pid_nr(tsk));
979 }
980 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
981 if (soft < hard) {
982 soft++;
983 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
984 }
985 }
986 x = soft * NSEC_PER_SEC;
987 if (!prof_expires || x < prof_expires)
988 prof_expires = x;
989 }
990
991 sig->cputime_expires.prof_exp = prof_expires;
992 sig->cputime_expires.virt_exp = virt_expires;
993 sig->cputime_expires.sched_exp = sched_expires;
994 if (task_cputime_zero(&sig->cputime_expires))
995 stop_process_timers(sig);
996
997 sig->cputimer.checking_timer = false;
998}
999
1000/*
1001 * This is called from the signal code (via posixtimer_rearm)
1002 * when the last timer signal was delivered and we have to reload the timer.
1003 */
1004static void posix_cpu_timer_rearm(struct k_itimer *timer)
1005{
1006 struct sighand_struct *sighand;
1007 unsigned long flags;
1008 struct task_struct *p = timer->it.cpu.task;
1009 u64 now;
1010
1011 WARN_ON_ONCE(p == NULL);
1012
1013 /*
1014 * Fetch the current sample and update the timer's expiry time.
1015 */
1016 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1017 cpu_clock_sample(timer->it_clock, p, &now);
1018 bump_cpu_timer(timer, now);
1019 if (unlikely(p->exit_state))
1020 return;
1021
1022 /* Protect timer list r/w in arm_timer() */
1023 sighand = lock_task_sighand(p, &flags);
1024 if (!sighand)
1025 return;
1026 } else {
1027 /*
1028 * Protect arm_timer() and timer sampling in case of call to
1029 * thread_group_cputime().
1030 */
1031 sighand = lock_task_sighand(p, &flags);
1032 if (unlikely(sighand == NULL)) {
1033 /*
1034 * The process has been reaped.
1035 * We can't even collect a sample any more.
1036 */
1037 timer->it.cpu.expires = 0;
1038 return;
1039 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1040 /* If the process is dying, no need to rearm */
1041 goto unlock;
1042 }
1043 cpu_timer_sample_group(timer->it_clock, p, &now);
1044 bump_cpu_timer(timer, now);
1045 /* Leave the sighand locked for the call below. */
1046 }
1047
1048 /*
1049 * Now re-arm for the new expiry time.
1050 */
1051 arm_timer(timer);
1052unlock:
1053 unlock_task_sighand(p, &flags);
1054}
1055
1056/**
1057 * task_cputime_expired - Compare two task_cputime entities.
1058 *
1059 * @sample: The task_cputime structure to be checked for expiration.
1060 * @expires: Expiration times, against which @sample will be checked.
1061 *
1062 * Checks @sample against @expires to see if any field of @sample has expired.
1063 * Returns true if any field of the former is greater than the corresponding
1064 * field of the latter if the latter field is set. Otherwise returns false.
1065 */
1066static inline int task_cputime_expired(const struct task_cputime *sample,
1067 const struct task_cputime *expires)
1068{
1069 if (expires->utime && sample->utime >= expires->utime)
1070 return 1;
1071 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1072 return 1;
1073 if (expires->sum_exec_runtime != 0 &&
1074 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1075 return 1;
1076 return 0;
1077}
1078
1079/**
1080 * fastpath_timer_check - POSIX CPU timers fast path.
1081 *
1082 * @tsk: The task (thread) being checked.
1083 *
1084 * Check the task and thread group timers. If both are zero (there are no
1085 * timers set) return false. Otherwise snapshot the task and thread group
1086 * timers and compare them with the corresponding expiration times. Return
1087 * true if a timer has expired, else return false.
1088 */
1089static inline int fastpath_timer_check(struct task_struct *tsk)
1090{
1091 struct signal_struct *sig;
1092
1093 if (!task_cputime_zero(&tsk->cputime_expires)) {
1094 struct task_cputime task_sample;
1095
1096 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1097 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1098 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1099 return 1;
1100 }
1101
1102 sig = tsk->signal;
1103 /*
1104 * Check if thread group timers expired when the cputimer is
1105 * running and no other thread in the group is already checking
1106 * for thread group cputimers. These fields are read without the
1107 * sighand lock. However, this is fine because this is meant to
1108 * be a fastpath heuristic to determine whether we should try to
1109 * acquire the sighand lock to check/handle timers.
1110 *
1111 * In the worst case scenario, if 'running' or 'checking_timer' gets
1112 * set but the current thread doesn't see the change yet, we'll wait
1113 * until the next thread in the group gets a scheduler interrupt to
1114 * handle the timer. This isn't an issue in practice because these
1115 * types of delays with signals actually getting sent are expected.
1116 */
1117 if (READ_ONCE(sig->cputimer.running) &&
1118 !READ_ONCE(sig->cputimer.checking_timer)) {
1119 struct task_cputime group_sample;
1120
1121 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1122
1123 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1124 return 1;
1125 }
1126
1127 if (dl_task(tsk) && tsk->dl.dl_overrun)
1128 return 1;
1129
1130 return 0;
1131}
1132
1133/*
1134 * This is called from the timer interrupt handler. The irq handler has
1135 * already updated our counts. We need to check if any timers fire now.
1136 * Interrupts are disabled.
1137 */
1138void run_posix_cpu_timers(struct task_struct *tsk)
1139{
1140 LIST_HEAD(firing);
1141 struct k_itimer *timer, *next;
1142 unsigned long flags;
1143
1144 lockdep_assert_irqs_disabled();
1145
1146 /*
1147 * The fast path checks that there are no expired thread or thread
1148 * group timers. If that's so, just return.
1149 */
1150 if (!fastpath_timer_check(tsk))
1151 return;
1152
1153 if (!lock_task_sighand(tsk, &flags))
1154 return;
1155 /*
1156 * Here we take off tsk->signal->cpu_timers[N] and
1157 * tsk->cpu_timers[N] all the timers that are firing, and
1158 * put them on the firing list.
1159 */
1160 check_thread_timers(tsk, &firing);
1161
1162 check_process_timers(tsk, &firing);
1163
1164 /*
1165 * We must release these locks before taking any timer's lock.
1166 * There is a potential race with timer deletion here, as the
1167 * siglock now protects our private firing list. We have set
1168 * the firing flag in each timer, so that a deletion attempt
1169 * that gets the timer lock before we do will give it up and
1170 * spin until we've taken care of that timer below.
1171 */
1172 unlock_task_sighand(tsk, &flags);
1173
1174 /*
1175 * Now that all the timers on our list have the firing flag,
1176 * no one will touch their list entries but us. We'll take
1177 * each timer's lock before clearing its firing flag, so no
1178 * timer call will interfere.
1179 */
1180 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1181 int cpu_firing;
1182
1183 spin_lock(&timer->it_lock);
1184 list_del_init(&timer->it.cpu.entry);
1185 cpu_firing = timer->it.cpu.firing;
1186 timer->it.cpu.firing = 0;
1187 /*
1188 * The firing flag is -1 if we collided with a reset
1189 * of the timer, which already reported this
1190 * almost-firing as an overrun. So don't generate an event.
1191 */
1192 if (likely(cpu_firing >= 0))
1193 cpu_timer_fire(timer);
1194 spin_unlock(&timer->it_lock);
1195 }
1196}
1197
1198/*
1199 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1200 * The tsk->sighand->siglock must be held by the caller.
1201 */
1202void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1203 u64 *newval, u64 *oldval)
1204{
1205 u64 now;
1206 int ret;
1207
1208 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1209 ret = cpu_timer_sample_group(clock_idx, tsk, &now);
1210
1211 if (oldval && ret != -EINVAL) {
1212 /*
1213 * We are setting itimer. The *oldval is absolute and we update
1214 * it to be relative, *newval argument is relative and we update
1215 * it to be absolute.
1216 */
1217 if (*oldval) {
1218 if (*oldval <= now) {
1219 /* Just about to fire. */
1220 *oldval = TICK_NSEC;
1221 } else {
1222 *oldval -= now;
1223 }
1224 }
1225
1226 if (!*newval)
1227 return;
1228 *newval += now;
1229 }
1230
1231 /*
1232 * Update expiration cache if we are the earliest timer, or eventually
1233 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1234 */
1235 switch (clock_idx) {
1236 case CPUCLOCK_PROF:
1237 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1238 tsk->signal->cputime_expires.prof_exp = *newval;
1239 break;
1240 case CPUCLOCK_VIRT:
1241 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1242 tsk->signal->cputime_expires.virt_exp = *newval;
1243 break;
1244 }
1245
1246 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1247}
1248
1249static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1250 const struct timespec64 *rqtp)
1251{
1252 struct itimerspec64 it;
1253 struct k_itimer timer;
1254 u64 expires;
1255 int error;
1256
1257 /*
1258 * Set up a temporary timer and then wait for it to go off.
1259 */
1260 memset(&timer, 0, sizeof timer);
1261 spin_lock_init(&timer.it_lock);
1262 timer.it_clock = which_clock;
1263 timer.it_overrun = -1;
1264 error = posix_cpu_timer_create(&timer);
1265 timer.it_process = current;
1266 if (!error) {
1267 static struct itimerspec64 zero_it;
1268 struct restart_block *restart;
1269
1270 memset(&it, 0, sizeof(it));
1271 it.it_value = *rqtp;
1272
1273 spin_lock_irq(&timer.it_lock);
1274 error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1275 if (error) {
1276 spin_unlock_irq(&timer.it_lock);
1277 return error;
1278 }
1279
1280 while (!signal_pending(current)) {
1281 if (timer.it.cpu.expires == 0) {
1282 /*
1283 * Our timer fired and was reset, below
1284 * deletion can not fail.
1285 */
1286 posix_cpu_timer_del(&timer);
1287 spin_unlock_irq(&timer.it_lock);
1288 return 0;
1289 }
1290
1291 /*
1292 * Block until cpu_timer_fire (or a signal) wakes us.
1293 */
1294 __set_current_state(TASK_INTERRUPTIBLE);
1295 spin_unlock_irq(&timer.it_lock);
1296 schedule();
1297 spin_lock_irq(&timer.it_lock);
1298 }
1299
1300 /*
1301 * We were interrupted by a signal.
1302 */
1303 expires = timer.it.cpu.expires;
1304 error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1305 if (!error) {
1306 /*
1307 * Timer is now unarmed, deletion can not fail.
1308 */
1309 posix_cpu_timer_del(&timer);
1310 }
1311 spin_unlock_irq(&timer.it_lock);
1312
1313 while (error == TIMER_RETRY) {
1314 /*
1315 * We need to handle case when timer was or is in the
1316 * middle of firing. In other cases we already freed
1317 * resources.
1318 */
1319 spin_lock_irq(&timer.it_lock);
1320 error = posix_cpu_timer_del(&timer);
1321 spin_unlock_irq(&timer.it_lock);
1322 }
1323
1324 if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1325 /*
1326 * It actually did fire already.
1327 */
1328 return 0;
1329 }
1330
1331 error = -ERESTART_RESTARTBLOCK;
1332 /*
1333 * Report back to the user the time still remaining.
1334 */
1335 restart = &current->restart_block;
1336 restart->nanosleep.expires = expires;
1337 if (restart->nanosleep.type != TT_NONE)
1338 error = nanosleep_copyout(restart, &it.it_value);
1339 }
1340
1341 return error;
1342}
1343
1344static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1345
1346static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1347 const struct timespec64 *rqtp)
1348{
1349 struct restart_block *restart_block = &current->restart_block;
1350 int error;
1351
1352 /*
1353 * Diagnose required errors first.
1354 */
1355 if (CPUCLOCK_PERTHREAD(which_clock) &&
1356 (CPUCLOCK_PID(which_clock) == 0 ||
1357 CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1358 return -EINVAL;
1359
1360 error = do_cpu_nanosleep(which_clock, flags, rqtp);
1361
1362 if (error == -ERESTART_RESTARTBLOCK) {
1363
1364 if (flags & TIMER_ABSTIME)
1365 return -ERESTARTNOHAND;
1366
1367 restart_block->fn = posix_cpu_nsleep_restart;
1368 restart_block->nanosleep.clockid = which_clock;
1369 }
1370 return error;
1371}
1372
1373static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1374{
1375 clockid_t which_clock = restart_block->nanosleep.clockid;
1376 struct timespec64 t;
1377
1378 t = ns_to_timespec64(restart_block->nanosleep.expires);
1379
1380 return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1381}
1382
1383#define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1384#define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1385
1386static int process_cpu_clock_getres(const clockid_t which_clock,
1387 struct timespec64 *tp)
1388{
1389 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1390}
1391static int process_cpu_clock_get(const clockid_t which_clock,
1392 struct timespec64 *tp)
1393{
1394 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1395}
1396static int process_cpu_timer_create(struct k_itimer *timer)
1397{
1398 timer->it_clock = PROCESS_CLOCK;
1399 return posix_cpu_timer_create(timer);
1400}
1401static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1402 const struct timespec64 *rqtp)
1403{
1404 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1405}
1406static int thread_cpu_clock_getres(const clockid_t which_clock,
1407 struct timespec64 *tp)
1408{
1409 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1410}
1411static int thread_cpu_clock_get(const clockid_t which_clock,
1412 struct timespec64 *tp)
1413{
1414 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1415}
1416static int thread_cpu_timer_create(struct k_itimer *timer)
1417{
1418 timer->it_clock = THREAD_CLOCK;
1419 return posix_cpu_timer_create(timer);
1420}
1421
1422const struct k_clock clock_posix_cpu = {
1423 .clock_getres = posix_cpu_clock_getres,
1424 .clock_set = posix_cpu_clock_set,
1425 .clock_get = posix_cpu_clock_get,
1426 .timer_create = posix_cpu_timer_create,
1427 .nsleep = posix_cpu_nsleep,
1428 .timer_set = posix_cpu_timer_set,
1429 .timer_del = posix_cpu_timer_del,
1430 .timer_get = posix_cpu_timer_get,
1431 .timer_rearm = posix_cpu_timer_rearm,
1432};
1433
1434const struct k_clock clock_process = {
1435 .clock_getres = process_cpu_clock_getres,
1436 .clock_get = process_cpu_clock_get,
1437 .timer_create = process_cpu_timer_create,
1438 .nsleep = process_cpu_nsleep,
1439};
1440
1441const struct k_clock clock_thread = {
1442 .clock_getres = thread_cpu_clock_getres,
1443 .clock_get = thread_cpu_clock_get,
1444 .timer_create = thread_cpu_timer_create,
1445};