Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * printk_safe.c - Safe printk for printk-deadlock-prone contexts |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or |
| 5 | * modify it under the terms of the GNU General Public License |
| 6 | * as published by the Free Software Foundation; either version 2 |
| 7 | * of the License, or (at your option) any later version. |
| 8 | * |
| 9 | * This program is distributed in the hope that it will be useful, |
| 10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 12 | * GNU General Public License for more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License |
| 15 | * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| 16 | */ |
| 17 | |
| 18 | #include <linux/preempt.h> |
| 19 | #include <linux/spinlock.h> |
| 20 | #include <linux/debug_locks.h> |
| 21 | #include <linux/smp.h> |
| 22 | #include <linux/cpumask.h> |
| 23 | #include <linux/irq_work.h> |
| 24 | #include <linux/printk.h> |
| 25 | |
| 26 | #include "internal.h" |
| 27 | |
| 28 | /* |
| 29 | * printk() could not take logbuf_lock in NMI context. Instead, |
| 30 | * it uses an alternative implementation that temporary stores |
| 31 | * the strings into a per-CPU buffer. The content of the buffer |
| 32 | * is later flushed into the main ring buffer via IRQ work. |
| 33 | * |
| 34 | * The alternative implementation is chosen transparently |
| 35 | * by examinig current printk() context mask stored in @printk_context |
| 36 | * per-CPU variable. |
| 37 | * |
| 38 | * The implementation allows to flush the strings also from another CPU. |
| 39 | * There are situations when we want to make sure that all buffers |
| 40 | * were handled or when IRQs are blocked. |
| 41 | */ |
| 42 | static int printk_safe_irq_ready __read_mostly; |
| 43 | |
| 44 | #define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \ |
| 45 | sizeof(atomic_t) - \ |
| 46 | sizeof(atomic_t) - \ |
| 47 | sizeof(struct irq_work)) |
| 48 | |
| 49 | struct printk_safe_seq_buf { |
| 50 | atomic_t len; /* length of written data */ |
| 51 | atomic_t message_lost; |
| 52 | struct irq_work work; /* IRQ work that flushes the buffer */ |
| 53 | unsigned char buffer[SAFE_LOG_BUF_LEN]; |
| 54 | }; |
| 55 | |
| 56 | static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq); |
| 57 | static DEFINE_PER_CPU(int, printk_context); |
| 58 | |
| 59 | #ifdef CONFIG_PRINTK_NMI |
| 60 | static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq); |
| 61 | #endif |
| 62 | |
| 63 | /* Get flushed in a more safe context. */ |
| 64 | static void queue_flush_work(struct printk_safe_seq_buf *s) |
| 65 | { |
| 66 | if (printk_safe_irq_ready) |
| 67 | irq_work_queue(&s->work); |
| 68 | } |
| 69 | |
| 70 | /* |
| 71 | * Add a message to per-CPU context-dependent buffer. NMI and printk-safe |
| 72 | * have dedicated buffers, because otherwise printk-safe preempted by |
| 73 | * NMI-printk would have overwritten the NMI messages. |
| 74 | * |
| 75 | * The messages are flushed from irq work (or from panic()), possibly, |
| 76 | * from other CPU, concurrently with printk_safe_log_store(). Should this |
| 77 | * happen, printk_safe_log_store() will notice the buffer->len mismatch |
| 78 | * and repeat the write. |
| 79 | */ |
| 80 | static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s, |
| 81 | const char *fmt, va_list args) |
| 82 | { |
| 83 | int add; |
| 84 | size_t len; |
| 85 | va_list ap; |
| 86 | |
| 87 | again: |
| 88 | len = atomic_read(&s->len); |
| 89 | |
| 90 | /* The trailing '\0' is not counted into len. */ |
| 91 | if (len >= sizeof(s->buffer) - 1) { |
| 92 | atomic_inc(&s->message_lost); |
| 93 | queue_flush_work(s); |
| 94 | return 0; |
| 95 | } |
| 96 | |
| 97 | /* |
| 98 | * Make sure that all old data have been read before the buffer |
| 99 | * was reset. This is not needed when we just append data. |
| 100 | */ |
| 101 | if (!len) |
| 102 | smp_rmb(); |
| 103 | |
| 104 | va_copy(ap, args); |
| 105 | add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap); |
| 106 | va_end(ap); |
| 107 | if (!add) |
| 108 | return 0; |
| 109 | |
| 110 | /* |
| 111 | * Do it once again if the buffer has been flushed in the meantime. |
| 112 | * Note that atomic_cmpxchg() is an implicit memory barrier that |
| 113 | * makes sure that the data were written before updating s->len. |
| 114 | */ |
| 115 | if (atomic_cmpxchg(&s->len, len, len + add) != len) |
| 116 | goto again; |
| 117 | |
| 118 | queue_flush_work(s); |
| 119 | return add; |
| 120 | } |
| 121 | |
| 122 | static inline void printk_safe_flush_line(const char *text, int len) |
| 123 | { |
| 124 | /* |
| 125 | * Avoid any console drivers calls from here, because we may be |
| 126 | * in NMI or printk_safe context (when in panic). The messages |
| 127 | * must go only into the ring buffer at this stage. Consoles will |
| 128 | * get explicitly called later when a crashdump is not generated. |
| 129 | */ |
| 130 | printk_deferred("%.*s", len, text); |
| 131 | } |
| 132 | |
| 133 | /* printk part of the temporary buffer line by line */ |
| 134 | static int printk_safe_flush_buffer(const char *start, size_t len) |
| 135 | { |
| 136 | const char *c, *end; |
| 137 | bool header; |
| 138 | |
| 139 | c = start; |
| 140 | end = start + len; |
| 141 | header = true; |
| 142 | |
| 143 | /* Print line by line. */ |
| 144 | while (c < end) { |
| 145 | if (*c == '\n') { |
| 146 | printk_safe_flush_line(start, c - start + 1); |
| 147 | start = ++c; |
| 148 | header = true; |
| 149 | continue; |
| 150 | } |
| 151 | |
| 152 | /* Handle continuous lines or missing new line. */ |
| 153 | if ((c + 1 < end) && printk_get_level(c)) { |
| 154 | if (header) { |
| 155 | c = printk_skip_level(c); |
| 156 | continue; |
| 157 | } |
| 158 | |
| 159 | printk_safe_flush_line(start, c - start); |
| 160 | start = c++; |
| 161 | header = true; |
| 162 | continue; |
| 163 | } |
| 164 | |
| 165 | header = false; |
| 166 | c++; |
| 167 | } |
| 168 | |
| 169 | /* Check if there was a partial line. Ignore pure header. */ |
| 170 | if (start < end && !header) { |
| 171 | static const char newline[] = KERN_CONT "\n"; |
| 172 | |
| 173 | printk_safe_flush_line(start, end - start); |
| 174 | printk_safe_flush_line(newline, strlen(newline)); |
| 175 | } |
| 176 | |
| 177 | return len; |
| 178 | } |
| 179 | |
| 180 | static void report_message_lost(struct printk_safe_seq_buf *s) |
| 181 | { |
| 182 | int lost = atomic_xchg(&s->message_lost, 0); |
| 183 | |
| 184 | if (lost) |
| 185 | printk_deferred("Lost %d message(s)!\n", lost); |
| 186 | } |
| 187 | |
| 188 | /* |
| 189 | * Flush data from the associated per-CPU buffer. The function |
| 190 | * can be called either via IRQ work or independently. |
| 191 | */ |
| 192 | static void __printk_safe_flush(struct irq_work *work) |
| 193 | { |
| 194 | static raw_spinlock_t read_lock = |
| 195 | __RAW_SPIN_LOCK_INITIALIZER(read_lock); |
| 196 | struct printk_safe_seq_buf *s = |
| 197 | container_of(work, struct printk_safe_seq_buf, work); |
| 198 | unsigned long flags; |
| 199 | size_t len; |
| 200 | int i; |
| 201 | |
| 202 | /* |
| 203 | * The lock has two functions. First, one reader has to flush all |
| 204 | * available message to make the lockless synchronization with |
| 205 | * writers easier. Second, we do not want to mix messages from |
| 206 | * different CPUs. This is especially important when printing |
| 207 | * a backtrace. |
| 208 | */ |
| 209 | raw_spin_lock_irqsave(&read_lock, flags); |
| 210 | |
| 211 | i = 0; |
| 212 | more: |
| 213 | len = atomic_read(&s->len); |
| 214 | |
| 215 | /* |
| 216 | * This is just a paranoid check that nobody has manipulated |
| 217 | * the buffer an unexpected way. If we printed something then |
| 218 | * @len must only increase. Also it should never overflow the |
| 219 | * buffer size. |
| 220 | */ |
| 221 | if ((i && i >= len) || len > sizeof(s->buffer)) { |
| 222 | const char *msg = "printk_safe_flush: internal error\n"; |
| 223 | |
| 224 | printk_safe_flush_line(msg, strlen(msg)); |
| 225 | len = 0; |
| 226 | } |
| 227 | |
| 228 | if (!len) |
| 229 | goto out; /* Someone else has already flushed the buffer. */ |
| 230 | |
| 231 | /* Make sure that data has been written up to the @len */ |
| 232 | smp_rmb(); |
| 233 | i += printk_safe_flush_buffer(s->buffer + i, len - i); |
| 234 | |
| 235 | /* |
| 236 | * Check that nothing has got added in the meantime and truncate |
| 237 | * the buffer. Note that atomic_cmpxchg() is an implicit memory |
| 238 | * barrier that makes sure that the data were copied before |
| 239 | * updating s->len. |
| 240 | */ |
| 241 | if (atomic_cmpxchg(&s->len, len, 0) != len) |
| 242 | goto more; |
| 243 | |
| 244 | out: |
| 245 | report_message_lost(s); |
| 246 | raw_spin_unlock_irqrestore(&read_lock, flags); |
| 247 | } |
| 248 | |
| 249 | /** |
| 250 | * printk_safe_flush - flush all per-cpu nmi buffers. |
| 251 | * |
| 252 | * The buffers are flushed automatically via IRQ work. This function |
| 253 | * is useful only when someone wants to be sure that all buffers have |
| 254 | * been flushed at some point. |
| 255 | */ |
| 256 | void printk_safe_flush(void) |
| 257 | { |
| 258 | int cpu; |
| 259 | |
| 260 | for_each_possible_cpu(cpu) { |
| 261 | #ifdef CONFIG_PRINTK_NMI |
| 262 | __printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work); |
| 263 | #endif |
| 264 | __printk_safe_flush(&per_cpu(safe_print_seq, cpu).work); |
| 265 | } |
| 266 | } |
| 267 | |
| 268 | /** |
| 269 | * printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system |
| 270 | * goes down. |
| 271 | * |
| 272 | * Similar to printk_safe_flush() but it can be called even in NMI context when |
| 273 | * the system goes down. It does the best effort to get NMI messages into |
| 274 | * the main ring buffer. |
| 275 | * |
| 276 | * Note that it could try harder when there is only one CPU online. |
| 277 | */ |
| 278 | void printk_safe_flush_on_panic(void) |
| 279 | { |
| 280 | /* |
| 281 | * Make sure that we could access the main ring buffer. |
| 282 | * Do not risk a double release when more CPUs are up. |
| 283 | */ |
| 284 | if (raw_spin_is_locked(&logbuf_lock)) { |
| 285 | if (num_online_cpus() > 1) |
| 286 | return; |
| 287 | |
| 288 | debug_locks_off(); |
| 289 | raw_spin_lock_init(&logbuf_lock); |
| 290 | } |
| 291 | |
| 292 | printk_safe_flush(); |
| 293 | } |
| 294 | |
| 295 | #ifdef CONFIG_PRINTK_NMI |
| 296 | /* |
| 297 | * Safe printk() for NMI context. It uses a per-CPU buffer to |
| 298 | * store the message. NMIs are not nested, so there is always only |
| 299 | * one writer running. But the buffer might get flushed from another |
| 300 | * CPU, so we need to be careful. |
| 301 | */ |
| 302 | static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) |
| 303 | { |
| 304 | struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq); |
| 305 | |
| 306 | return printk_safe_log_store(s, fmt, args); |
| 307 | } |
| 308 | |
| 309 | void notrace printk_nmi_enter(void) |
| 310 | { |
| 311 | this_cpu_or(printk_context, PRINTK_NMI_CONTEXT_MASK); |
| 312 | } |
| 313 | |
| 314 | void notrace printk_nmi_exit(void) |
| 315 | { |
| 316 | this_cpu_and(printk_context, ~PRINTK_NMI_CONTEXT_MASK); |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * Marks a code that might produce many messages in NMI context |
| 321 | * and the risk of losing them is more critical than eventual |
| 322 | * reordering. |
| 323 | * |
| 324 | * It has effect only when called in NMI context. Then printk() |
| 325 | * will try to store the messages into the main logbuf directly |
| 326 | * and use the per-CPU buffers only as a fallback when the lock |
| 327 | * is not available. |
| 328 | */ |
| 329 | void printk_nmi_direct_enter(void) |
| 330 | { |
| 331 | if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) |
| 332 | this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK); |
| 333 | } |
| 334 | |
| 335 | void printk_nmi_direct_exit(void) |
| 336 | { |
| 337 | this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK); |
| 338 | } |
| 339 | |
| 340 | #else |
| 341 | |
| 342 | static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args) |
| 343 | { |
| 344 | return 0; |
| 345 | } |
| 346 | |
| 347 | #endif /* CONFIG_PRINTK_NMI */ |
| 348 | |
| 349 | /* |
| 350 | * Lock-less printk(), to avoid deadlocks should the printk() recurse |
| 351 | * into itself. It uses a per-CPU buffer to store the message, just like |
| 352 | * NMI. |
| 353 | */ |
| 354 | static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args) |
| 355 | { |
| 356 | struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq); |
| 357 | |
| 358 | return printk_safe_log_store(s, fmt, args); |
| 359 | } |
| 360 | |
| 361 | /* Can be preempted by NMI. */ |
| 362 | void __printk_safe_enter(void) |
| 363 | { |
| 364 | this_cpu_inc(printk_context); |
| 365 | } |
| 366 | |
| 367 | /* Can be preempted by NMI. */ |
| 368 | void __printk_safe_exit(void) |
| 369 | { |
| 370 | this_cpu_dec(printk_context); |
| 371 | } |
| 372 | |
| 373 | __printf(1, 0) int vprintk_func(const char *fmt, va_list args) |
| 374 | { |
| 375 | /* |
| 376 | * Try to use the main logbuf even in NMI. But avoid calling console |
| 377 | * drivers that might have their own locks. |
| 378 | */ |
| 379 | if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK) && |
| 380 | raw_spin_trylock(&logbuf_lock)) { |
| 381 | int len; |
| 382 | |
| 383 | len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args); |
| 384 | raw_spin_unlock(&logbuf_lock); |
| 385 | defer_console_output(); |
| 386 | return len; |
| 387 | } |
| 388 | |
| 389 | /* Use extra buffer in NMI when logbuf_lock is taken or in safe mode. */ |
| 390 | if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK) |
| 391 | return vprintk_nmi(fmt, args); |
| 392 | |
| 393 | /* Use extra buffer to prevent a recursion deadlock in safe mode. */ |
| 394 | if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK) |
| 395 | return vprintk_safe(fmt, args); |
| 396 | |
| 397 | /* No obstacles. */ |
| 398 | return vprintk_default(fmt, args); |
| 399 | } |
| 400 | |
| 401 | void __init printk_safe_init(void) |
| 402 | { |
| 403 | int cpu; |
| 404 | |
| 405 | for_each_possible_cpu(cpu) { |
| 406 | struct printk_safe_seq_buf *s; |
| 407 | |
| 408 | s = &per_cpu(safe_print_seq, cpu); |
| 409 | init_irq_work(&s->work, __printk_safe_flush); |
| 410 | |
| 411 | #ifdef CONFIG_PRINTK_NMI |
| 412 | s = &per_cpu(nmi_print_seq, cpu); |
| 413 | init_irq_work(&s->work, __printk_safe_flush); |
| 414 | #endif |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * In the highly unlikely event that a NMI were to trigger at |
| 419 | * this moment. Make sure IRQ work is set up before this |
| 420 | * variable is set. |
| 421 | */ |
| 422 | barrier(); |
| 423 | printk_safe_irq_ready = 1; |
| 424 | |
| 425 | /* Flush pending messages that did not have scheduled IRQ works. */ |
| 426 | printk_safe_flush(); |
| 427 | } |