Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * kernel/locking/mutex.c |
| 3 | * |
| 4 | * Mutexes: blocking mutual exclusion locks |
| 5 | * |
| 6 | * Started by Ingo Molnar: |
| 7 | * |
| 8 | * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> |
| 9 | * |
| 10 | * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and |
| 11 | * David Howells for suggestions and improvements. |
| 12 | * |
| 13 | * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline |
| 14 | * from the -rt tree, where it was originally implemented for rtmutexes |
| 15 | * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale |
| 16 | * and Sven Dietrich. |
| 17 | * |
| 18 | * Also see Documentation/locking/mutex-design.txt. |
| 19 | */ |
| 20 | #include <linux/mutex.h> |
| 21 | #include <linux/ww_mutex.h> |
| 22 | #include <linux/sched/signal.h> |
| 23 | #include <linux/sched/rt.h> |
| 24 | #include <linux/sched/wake_q.h> |
| 25 | #include <linux/sched/debug.h> |
| 26 | #include <linux/export.h> |
| 27 | #include <linux/spinlock.h> |
| 28 | #include <linux/interrupt.h> |
| 29 | #include <linux/debug_locks.h> |
| 30 | #include <linux/osq_lock.h> |
| 31 | |
| 32 | #ifdef CONFIG_DEBUG_MUTEXES |
| 33 | # include "mutex-debug.h" |
| 34 | #else |
| 35 | # include "mutex.h" |
| 36 | #endif |
| 37 | |
| 38 | void |
| 39 | __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) |
| 40 | { |
| 41 | atomic_long_set(&lock->owner, 0); |
| 42 | spin_lock_init(&lock->wait_lock); |
| 43 | INIT_LIST_HEAD(&lock->wait_list); |
| 44 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
| 45 | osq_lock_init(&lock->osq); |
| 46 | #endif |
| 47 | |
| 48 | debug_mutex_init(lock, name, key); |
| 49 | } |
| 50 | EXPORT_SYMBOL(__mutex_init); |
| 51 | |
| 52 | /* |
| 53 | * @owner: contains: 'struct task_struct *' to the current lock owner, |
| 54 | * NULL means not owned. Since task_struct pointers are aligned at |
| 55 | * at least L1_CACHE_BYTES, we have low bits to store extra state. |
| 56 | * |
| 57 | * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. |
| 58 | * Bit1 indicates unlock needs to hand the lock to the top-waiter |
| 59 | * Bit2 indicates handoff has been done and we're waiting for pickup. |
| 60 | */ |
| 61 | #define MUTEX_FLAG_WAITERS 0x01 |
| 62 | #define MUTEX_FLAG_HANDOFF 0x02 |
| 63 | #define MUTEX_FLAG_PICKUP 0x04 |
| 64 | |
| 65 | #define MUTEX_FLAGS 0x07 |
| 66 | |
| 67 | static inline struct task_struct *__owner_task(unsigned long owner) |
| 68 | { |
| 69 | return (struct task_struct *)(owner & ~MUTEX_FLAGS); |
| 70 | } |
| 71 | |
| 72 | static inline unsigned long __owner_flags(unsigned long owner) |
| 73 | { |
| 74 | return owner & MUTEX_FLAGS; |
| 75 | } |
| 76 | |
| 77 | /* |
| 78 | * Trylock variant that retuns the owning task on failure. |
| 79 | */ |
| 80 | static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) |
| 81 | { |
| 82 | unsigned long owner, curr = (unsigned long)current; |
| 83 | |
| 84 | owner = atomic_long_read(&lock->owner); |
| 85 | for (;;) { /* must loop, can race against a flag */ |
| 86 | unsigned long old, flags = __owner_flags(owner); |
| 87 | unsigned long task = owner & ~MUTEX_FLAGS; |
| 88 | |
| 89 | if (task) { |
| 90 | if (likely(task != curr)) |
| 91 | break; |
| 92 | |
| 93 | if (likely(!(flags & MUTEX_FLAG_PICKUP))) |
| 94 | break; |
| 95 | |
| 96 | flags &= ~MUTEX_FLAG_PICKUP; |
| 97 | } else { |
| 98 | #ifdef CONFIG_DEBUG_MUTEXES |
| 99 | DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP); |
| 100 | #endif |
| 101 | } |
| 102 | |
| 103 | /* |
| 104 | * We set the HANDOFF bit, we must make sure it doesn't live |
| 105 | * past the point where we acquire it. This would be possible |
| 106 | * if we (accidentally) set the bit on an unlocked mutex. |
| 107 | */ |
| 108 | flags &= ~MUTEX_FLAG_HANDOFF; |
| 109 | |
| 110 | old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); |
| 111 | if (old == owner) |
| 112 | return NULL; |
| 113 | |
| 114 | owner = old; |
| 115 | } |
| 116 | |
| 117 | return __owner_task(owner); |
| 118 | } |
| 119 | |
| 120 | /* |
| 121 | * Actual trylock that will work on any unlocked state. |
| 122 | */ |
| 123 | static inline bool __mutex_trylock(struct mutex *lock) |
| 124 | { |
| 125 | return !__mutex_trylock_or_owner(lock); |
| 126 | } |
| 127 | |
| 128 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
| 129 | /* |
| 130 | * Lockdep annotations are contained to the slow paths for simplicity. |
| 131 | * There is nothing that would stop spreading the lockdep annotations outwards |
| 132 | * except more code. |
| 133 | */ |
| 134 | |
| 135 | /* |
| 136 | * Optimistic trylock that only works in the uncontended case. Make sure to |
| 137 | * follow with a __mutex_trylock() before failing. |
| 138 | */ |
| 139 | static __always_inline bool __mutex_trylock_fast(struct mutex *lock) |
| 140 | { |
| 141 | unsigned long curr = (unsigned long)current; |
| 142 | unsigned long zero = 0UL; |
| 143 | |
| 144 | if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) |
| 145 | return true; |
| 146 | |
| 147 | return false; |
| 148 | } |
| 149 | |
| 150 | static __always_inline bool __mutex_unlock_fast(struct mutex *lock) |
| 151 | { |
| 152 | unsigned long curr = (unsigned long)current; |
| 153 | |
| 154 | if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) |
| 155 | return true; |
| 156 | |
| 157 | return false; |
| 158 | } |
| 159 | #endif |
| 160 | |
| 161 | static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) |
| 162 | { |
| 163 | atomic_long_or(flag, &lock->owner); |
| 164 | } |
| 165 | |
| 166 | static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) |
| 167 | { |
| 168 | atomic_long_andnot(flag, &lock->owner); |
| 169 | } |
| 170 | |
| 171 | static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) |
| 172 | { |
| 173 | return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; |
| 174 | } |
| 175 | |
| 176 | /* |
| 177 | * Add @waiter to a given location in the lock wait_list and set the |
| 178 | * FLAG_WAITERS flag if it's the first waiter. |
| 179 | */ |
| 180 | static void __sched |
| 181 | __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter, |
| 182 | struct list_head *list) |
| 183 | { |
| 184 | debug_mutex_add_waiter(lock, waiter, current); |
| 185 | |
| 186 | list_add_tail(&waiter->list, list); |
| 187 | if (__mutex_waiter_is_first(lock, waiter)) |
| 188 | __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); |
| 189 | } |
| 190 | |
| 191 | /* |
| 192 | * Give up ownership to a specific task, when @task = NULL, this is equivalent |
| 193 | * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves |
| 194 | * WAITERS. Provides RELEASE semantics like a regular unlock, the |
| 195 | * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. |
| 196 | */ |
| 197 | static void __mutex_handoff(struct mutex *lock, struct task_struct *task) |
| 198 | { |
| 199 | unsigned long owner = atomic_long_read(&lock->owner); |
| 200 | |
| 201 | for (;;) { |
| 202 | unsigned long old, new; |
| 203 | |
| 204 | #ifdef CONFIG_DEBUG_MUTEXES |
| 205 | DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); |
| 206 | DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); |
| 207 | #endif |
| 208 | |
| 209 | new = (owner & MUTEX_FLAG_WAITERS); |
| 210 | new |= (unsigned long)task; |
| 211 | if (task) |
| 212 | new |= MUTEX_FLAG_PICKUP; |
| 213 | |
| 214 | old = atomic_long_cmpxchg_release(&lock->owner, owner, new); |
| 215 | if (old == owner) |
| 216 | break; |
| 217 | |
| 218 | owner = old; |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
| 223 | /* |
| 224 | * We split the mutex lock/unlock logic into separate fastpath and |
| 225 | * slowpath functions, to reduce the register pressure on the fastpath. |
| 226 | * We also put the fastpath first in the kernel image, to make sure the |
| 227 | * branch is predicted by the CPU as default-untaken. |
| 228 | */ |
| 229 | static void __sched __mutex_lock_slowpath(struct mutex *lock); |
| 230 | |
| 231 | /** |
| 232 | * mutex_lock - acquire the mutex |
| 233 | * @lock: the mutex to be acquired |
| 234 | * |
| 235 | * Lock the mutex exclusively for this task. If the mutex is not |
| 236 | * available right now, it will sleep until it can get it. |
| 237 | * |
| 238 | * The mutex must later on be released by the same task that |
| 239 | * acquired it. Recursive locking is not allowed. The task |
| 240 | * may not exit without first unlocking the mutex. Also, kernel |
| 241 | * memory where the mutex resides must not be freed with |
| 242 | * the mutex still locked. The mutex must first be initialized |
| 243 | * (or statically defined) before it can be locked. memset()-ing |
| 244 | * the mutex to 0 is not allowed. |
| 245 | * |
| 246 | * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging |
| 247 | * checks that will enforce the restrictions and will also do |
| 248 | * deadlock debugging) |
| 249 | * |
| 250 | * This function is similar to (but not equivalent to) down(). |
| 251 | */ |
| 252 | void __sched mutex_lock(struct mutex *lock) |
| 253 | { |
| 254 | might_sleep(); |
| 255 | |
| 256 | if (!__mutex_trylock_fast(lock)) |
| 257 | __mutex_lock_slowpath(lock); |
| 258 | } |
| 259 | EXPORT_SYMBOL(mutex_lock); |
| 260 | #endif |
| 261 | |
| 262 | /* |
| 263 | * Wait-Die: |
| 264 | * The newer transactions are killed when: |
| 265 | * It (the new transaction) makes a request for a lock being held |
| 266 | * by an older transaction. |
| 267 | * |
| 268 | * Wound-Wait: |
| 269 | * The newer transactions are wounded when: |
| 270 | * An older transaction makes a request for a lock being held by |
| 271 | * the newer transaction. |
| 272 | */ |
| 273 | |
| 274 | /* |
| 275 | * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired |
| 276 | * it. |
| 277 | */ |
| 278 | static __always_inline void |
| 279 | ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) |
| 280 | { |
| 281 | #ifdef CONFIG_DEBUG_MUTEXES |
| 282 | /* |
| 283 | * If this WARN_ON triggers, you used ww_mutex_lock to acquire, |
| 284 | * but released with a normal mutex_unlock in this call. |
| 285 | * |
| 286 | * This should never happen, always use ww_mutex_unlock. |
| 287 | */ |
| 288 | DEBUG_LOCKS_WARN_ON(ww->ctx); |
| 289 | |
| 290 | /* |
| 291 | * Not quite done after calling ww_acquire_done() ? |
| 292 | */ |
| 293 | DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); |
| 294 | |
| 295 | if (ww_ctx->contending_lock) { |
| 296 | /* |
| 297 | * After -EDEADLK you tried to |
| 298 | * acquire a different ww_mutex? Bad! |
| 299 | */ |
| 300 | DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); |
| 301 | |
| 302 | /* |
| 303 | * You called ww_mutex_lock after receiving -EDEADLK, |
| 304 | * but 'forgot' to unlock everything else first? |
| 305 | */ |
| 306 | DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); |
| 307 | ww_ctx->contending_lock = NULL; |
| 308 | } |
| 309 | |
| 310 | /* |
| 311 | * Naughty, using a different class will lead to undefined behavior! |
| 312 | */ |
| 313 | DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); |
| 314 | #endif |
| 315 | ww_ctx->acquired++; |
| 316 | ww->ctx = ww_ctx; |
| 317 | } |
| 318 | |
| 319 | /* |
| 320 | * Determine if context @a is 'after' context @b. IOW, @a is a younger |
| 321 | * transaction than @b and depending on algorithm either needs to wait for |
| 322 | * @b or die. |
| 323 | */ |
| 324 | static inline bool __sched |
| 325 | __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) |
| 326 | { |
| 327 | |
| 328 | return (signed long)(a->stamp - b->stamp) > 0; |
| 329 | } |
| 330 | |
| 331 | /* |
| 332 | * Wait-Die; wake a younger waiter context (when locks held) such that it can |
| 333 | * die. |
| 334 | * |
| 335 | * Among waiters with context, only the first one can have other locks acquired |
| 336 | * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and |
| 337 | * __ww_mutex_check_kill() wake any but the earliest context. |
| 338 | */ |
| 339 | static bool __sched |
| 340 | __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter, |
| 341 | struct ww_acquire_ctx *ww_ctx) |
| 342 | { |
| 343 | if (!ww_ctx->is_wait_die) |
| 344 | return false; |
| 345 | |
| 346 | if (waiter->ww_ctx->acquired > 0 && |
| 347 | __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) { |
| 348 | debug_mutex_wake_waiter(lock, waiter); |
| 349 | wake_up_process(waiter->task); |
| 350 | } |
| 351 | |
| 352 | return true; |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Wound-Wait; wound a younger @hold_ctx if it holds the lock. |
| 357 | * |
| 358 | * Wound the lock holder if there are waiters with older transactions than |
| 359 | * the lock holders. Even if multiple waiters may wound the lock holder, |
| 360 | * it's sufficient that only one does. |
| 361 | */ |
| 362 | static bool __ww_mutex_wound(struct mutex *lock, |
| 363 | struct ww_acquire_ctx *ww_ctx, |
| 364 | struct ww_acquire_ctx *hold_ctx) |
| 365 | { |
| 366 | struct task_struct *owner = __mutex_owner(lock); |
| 367 | |
| 368 | lockdep_assert_held(&lock->wait_lock); |
| 369 | |
| 370 | /* |
| 371 | * Possible through __ww_mutex_add_waiter() when we race with |
| 372 | * ww_mutex_set_context_fastpath(). In that case we'll get here again |
| 373 | * through __ww_mutex_check_waiters(). |
| 374 | */ |
| 375 | if (!hold_ctx) |
| 376 | return false; |
| 377 | |
| 378 | /* |
| 379 | * Can have !owner because of __mutex_unlock_slowpath(), but if owner, |
| 380 | * it cannot go away because we'll have FLAG_WAITERS set and hold |
| 381 | * wait_lock. |
| 382 | */ |
| 383 | if (!owner) |
| 384 | return false; |
| 385 | |
| 386 | if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) { |
| 387 | hold_ctx->wounded = 1; |
| 388 | |
| 389 | /* |
| 390 | * wake_up_process() paired with set_current_state() |
| 391 | * inserts sufficient barriers to make sure @owner either sees |
| 392 | * it's wounded in __ww_mutex_check_kill() or has a |
| 393 | * wakeup pending to re-read the wounded state. |
| 394 | */ |
| 395 | if (owner != current) |
| 396 | wake_up_process(owner); |
| 397 | |
| 398 | return true; |
| 399 | } |
| 400 | |
| 401 | return false; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * We just acquired @lock under @ww_ctx, if there are later contexts waiting |
| 406 | * behind us on the wait-list, check if they need to die, or wound us. |
| 407 | * |
| 408 | * See __ww_mutex_add_waiter() for the list-order construction; basically the |
| 409 | * list is ordered by stamp, smallest (oldest) first. |
| 410 | * |
| 411 | * This relies on never mixing wait-die/wound-wait on the same wait-list; |
| 412 | * which is currently ensured by that being a ww_class property. |
| 413 | * |
| 414 | * The current task must not be on the wait list. |
| 415 | */ |
| 416 | static void __sched |
| 417 | __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) |
| 418 | { |
| 419 | struct mutex_waiter *cur; |
| 420 | |
| 421 | lockdep_assert_held(&lock->wait_lock); |
| 422 | |
| 423 | list_for_each_entry(cur, &lock->wait_list, list) { |
| 424 | if (!cur->ww_ctx) |
| 425 | continue; |
| 426 | |
| 427 | if (__ww_mutex_die(lock, cur, ww_ctx) || |
| 428 | __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) |
| 429 | break; |
| 430 | } |
| 431 | } |
| 432 | |
| 433 | /* |
| 434 | * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx |
| 435 | * and wake up any waiters so they can recheck. |
| 436 | */ |
| 437 | static __always_inline void |
| 438 | ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| 439 | { |
| 440 | ww_mutex_lock_acquired(lock, ctx); |
| 441 | |
| 442 | /* |
| 443 | * The lock->ctx update should be visible on all cores before |
| 444 | * the WAITERS check is done, otherwise contended waiters might be |
| 445 | * missed. The contended waiters will either see ww_ctx == NULL |
| 446 | * and keep spinning, or it will acquire wait_lock, add itself |
| 447 | * to waiter list and sleep. |
| 448 | */ |
| 449 | smp_mb(); /* See comments above and below. */ |
| 450 | |
| 451 | /* |
| 452 | * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS |
| 453 | * MB MB |
| 454 | * [R] MUTEX_FLAG_WAITERS [R] ww->ctx |
| 455 | * |
| 456 | * The memory barrier above pairs with the memory barrier in |
| 457 | * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx |
| 458 | * and/or !empty list. |
| 459 | */ |
| 460 | if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) |
| 461 | return; |
| 462 | |
| 463 | /* |
| 464 | * Uh oh, we raced in fastpath, check if any of the waiters need to |
| 465 | * die or wound us. |
| 466 | */ |
| 467 | spin_lock(&lock->base.wait_lock); |
| 468 | __ww_mutex_check_waiters(&lock->base, ctx); |
| 469 | spin_unlock(&lock->base.wait_lock); |
| 470 | } |
| 471 | |
| 472 | #ifdef CONFIG_MUTEX_SPIN_ON_OWNER |
| 473 | |
| 474 | static inline |
| 475 | bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, |
| 476 | struct mutex_waiter *waiter) |
| 477 | { |
| 478 | struct ww_mutex *ww; |
| 479 | |
| 480 | ww = container_of(lock, struct ww_mutex, base); |
| 481 | |
| 482 | /* |
| 483 | * If ww->ctx is set the contents are undefined, only |
| 484 | * by acquiring wait_lock there is a guarantee that |
| 485 | * they are not invalid when reading. |
| 486 | * |
| 487 | * As such, when deadlock detection needs to be |
| 488 | * performed the optimistic spinning cannot be done. |
| 489 | * |
| 490 | * Check this in every inner iteration because we may |
| 491 | * be racing against another thread's ww_mutex_lock. |
| 492 | */ |
| 493 | if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) |
| 494 | return false; |
| 495 | |
| 496 | /* |
| 497 | * If we aren't on the wait list yet, cancel the spin |
| 498 | * if there are waiters. We want to avoid stealing the |
| 499 | * lock from a waiter with an earlier stamp, since the |
| 500 | * other thread may already own a lock that we also |
| 501 | * need. |
| 502 | */ |
| 503 | if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) |
| 504 | return false; |
| 505 | |
| 506 | /* |
| 507 | * Similarly, stop spinning if we are no longer the |
| 508 | * first waiter. |
| 509 | */ |
| 510 | if (waiter && !__mutex_waiter_is_first(lock, waiter)) |
| 511 | return false; |
| 512 | |
| 513 | return true; |
| 514 | } |
| 515 | |
| 516 | /* |
| 517 | * Look out! "owner" is an entirely speculative pointer access and not |
| 518 | * reliable. |
| 519 | * |
| 520 | * "noinline" so that this function shows up on perf profiles. |
| 521 | */ |
| 522 | static noinline |
| 523 | bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, |
| 524 | struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) |
| 525 | { |
| 526 | bool ret = true; |
| 527 | |
| 528 | rcu_read_lock(); |
| 529 | while (__mutex_owner(lock) == owner) { |
| 530 | /* |
| 531 | * Ensure we emit the owner->on_cpu, dereference _after_ |
| 532 | * checking lock->owner still matches owner. If that fails, |
| 533 | * owner might point to freed memory. If it still matches, |
| 534 | * the rcu_read_lock() ensures the memory stays valid. |
| 535 | */ |
| 536 | barrier(); |
| 537 | |
| 538 | /* |
| 539 | * Use vcpu_is_preempted to detect lock holder preemption issue. |
| 540 | */ |
| 541 | if (!owner->on_cpu || need_resched() || |
| 542 | vcpu_is_preempted(task_cpu(owner))) { |
| 543 | ret = false; |
| 544 | break; |
| 545 | } |
| 546 | |
| 547 | if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { |
| 548 | ret = false; |
| 549 | break; |
| 550 | } |
| 551 | |
| 552 | cpu_relax(); |
| 553 | } |
| 554 | rcu_read_unlock(); |
| 555 | |
| 556 | return ret; |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * Initial check for entering the mutex spinning loop |
| 561 | */ |
| 562 | static inline int mutex_can_spin_on_owner(struct mutex *lock) |
| 563 | { |
| 564 | struct task_struct *owner; |
| 565 | int retval = 1; |
| 566 | |
| 567 | if (need_resched()) |
| 568 | return 0; |
| 569 | |
| 570 | rcu_read_lock(); |
| 571 | owner = __mutex_owner(lock); |
| 572 | |
| 573 | /* |
| 574 | * As lock holder preemption issue, we both skip spinning if task is not |
| 575 | * on cpu or its cpu is preempted |
| 576 | */ |
| 577 | if (owner) |
| 578 | retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); |
| 579 | rcu_read_unlock(); |
| 580 | |
| 581 | /* |
| 582 | * If lock->owner is not set, the mutex has been released. Return true |
| 583 | * such that we'll trylock in the spin path, which is a faster option |
| 584 | * than the blocking slow path. |
| 585 | */ |
| 586 | return retval; |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * Optimistic spinning. |
| 591 | * |
| 592 | * We try to spin for acquisition when we find that the lock owner |
| 593 | * is currently running on a (different) CPU and while we don't |
| 594 | * need to reschedule. The rationale is that if the lock owner is |
| 595 | * running, it is likely to release the lock soon. |
| 596 | * |
| 597 | * The mutex spinners are queued up using MCS lock so that only one |
| 598 | * spinner can compete for the mutex. However, if mutex spinning isn't |
| 599 | * going to happen, there is no point in going through the lock/unlock |
| 600 | * overhead. |
| 601 | * |
| 602 | * Returns true when the lock was taken, otherwise false, indicating |
| 603 | * that we need to jump to the slowpath and sleep. |
| 604 | * |
| 605 | * The waiter flag is set to true if the spinner is a waiter in the wait |
| 606 | * queue. The waiter-spinner will spin on the lock directly and concurrently |
| 607 | * with the spinner at the head of the OSQ, if present, until the owner is |
| 608 | * changed to itself. |
| 609 | */ |
| 610 | static __always_inline bool |
| 611 | mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, |
| 612 | const bool use_ww_ctx, struct mutex_waiter *waiter) |
| 613 | { |
| 614 | if (!waiter) { |
| 615 | /* |
| 616 | * The purpose of the mutex_can_spin_on_owner() function is |
| 617 | * to eliminate the overhead of osq_lock() and osq_unlock() |
| 618 | * in case spinning isn't possible. As a waiter-spinner |
| 619 | * is not going to take OSQ lock anyway, there is no need |
| 620 | * to call mutex_can_spin_on_owner(). |
| 621 | */ |
| 622 | if (!mutex_can_spin_on_owner(lock)) |
| 623 | goto fail; |
| 624 | |
| 625 | /* |
| 626 | * In order to avoid a stampede of mutex spinners trying to |
| 627 | * acquire the mutex all at once, the spinners need to take a |
| 628 | * MCS (queued) lock first before spinning on the owner field. |
| 629 | */ |
| 630 | if (!osq_lock(&lock->osq)) |
| 631 | goto fail; |
| 632 | } |
| 633 | |
| 634 | for (;;) { |
| 635 | struct task_struct *owner; |
| 636 | |
| 637 | /* Try to acquire the mutex... */ |
| 638 | owner = __mutex_trylock_or_owner(lock); |
| 639 | if (!owner) |
| 640 | break; |
| 641 | |
| 642 | /* |
| 643 | * There's an owner, wait for it to either |
| 644 | * release the lock or go to sleep. |
| 645 | */ |
| 646 | if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) |
| 647 | goto fail_unlock; |
| 648 | |
| 649 | /* |
| 650 | * The cpu_relax() call is a compiler barrier which forces |
| 651 | * everything in this loop to be re-loaded. We don't need |
| 652 | * memory barriers as we'll eventually observe the right |
| 653 | * values at the cost of a few extra spins. |
| 654 | */ |
| 655 | cpu_relax(); |
| 656 | } |
| 657 | |
| 658 | if (!waiter) |
| 659 | osq_unlock(&lock->osq); |
| 660 | |
| 661 | return true; |
| 662 | |
| 663 | |
| 664 | fail_unlock: |
| 665 | if (!waiter) |
| 666 | osq_unlock(&lock->osq); |
| 667 | |
| 668 | fail: |
| 669 | /* |
| 670 | * If we fell out of the spin path because of need_resched(), |
| 671 | * reschedule now, before we try-lock the mutex. This avoids getting |
| 672 | * scheduled out right after we obtained the mutex. |
| 673 | */ |
| 674 | if (need_resched()) { |
| 675 | /* |
| 676 | * We _should_ have TASK_RUNNING here, but just in case |
| 677 | * we do not, make it so, otherwise we might get stuck. |
| 678 | */ |
| 679 | __set_current_state(TASK_RUNNING); |
| 680 | schedule_preempt_disabled(); |
| 681 | } |
| 682 | |
| 683 | return false; |
| 684 | } |
| 685 | #else |
| 686 | static __always_inline bool |
| 687 | mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, |
| 688 | const bool use_ww_ctx, struct mutex_waiter *waiter) |
| 689 | { |
| 690 | return false; |
| 691 | } |
| 692 | #endif |
| 693 | |
| 694 | static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); |
| 695 | |
| 696 | /** |
| 697 | * mutex_unlock - release the mutex |
| 698 | * @lock: the mutex to be released |
| 699 | * |
| 700 | * Unlock a mutex that has been locked by this task previously. |
| 701 | * |
| 702 | * This function must not be used in interrupt context. Unlocking |
| 703 | * of a not locked mutex is not allowed. |
| 704 | * |
| 705 | * This function is similar to (but not equivalent to) up(). |
| 706 | */ |
| 707 | void __sched mutex_unlock(struct mutex *lock) |
| 708 | { |
| 709 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
| 710 | if (__mutex_unlock_fast(lock)) |
| 711 | return; |
| 712 | #endif |
| 713 | __mutex_unlock_slowpath(lock, _RET_IP_); |
| 714 | } |
| 715 | EXPORT_SYMBOL(mutex_unlock); |
| 716 | |
| 717 | /** |
| 718 | * ww_mutex_unlock - release the w/w mutex |
| 719 | * @lock: the mutex to be released |
| 720 | * |
| 721 | * Unlock a mutex that has been locked by this task previously with any of the |
| 722 | * ww_mutex_lock* functions (with or without an acquire context). It is |
| 723 | * forbidden to release the locks after releasing the acquire context. |
| 724 | * |
| 725 | * This function must not be used in interrupt context. Unlocking |
| 726 | * of a unlocked mutex is not allowed. |
| 727 | */ |
| 728 | void __sched ww_mutex_unlock(struct ww_mutex *lock) |
| 729 | { |
| 730 | /* |
| 731 | * The unlocking fastpath is the 0->1 transition from 'locked' |
| 732 | * into 'unlocked' state: |
| 733 | */ |
| 734 | if (lock->ctx) { |
| 735 | #ifdef CONFIG_DEBUG_MUTEXES |
| 736 | DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); |
| 737 | #endif |
| 738 | if (lock->ctx->acquired > 0) |
| 739 | lock->ctx->acquired--; |
| 740 | lock->ctx = NULL; |
| 741 | } |
| 742 | |
| 743 | mutex_unlock(&lock->base); |
| 744 | } |
| 745 | EXPORT_SYMBOL(ww_mutex_unlock); |
| 746 | |
| 747 | |
| 748 | static __always_inline int __sched |
| 749 | __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) |
| 750 | { |
| 751 | if (ww_ctx->acquired > 0) { |
| 752 | #ifdef CONFIG_DEBUG_MUTEXES |
| 753 | struct ww_mutex *ww; |
| 754 | |
| 755 | ww = container_of(lock, struct ww_mutex, base); |
| 756 | DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); |
| 757 | ww_ctx->contending_lock = ww; |
| 758 | #endif |
| 759 | return -EDEADLK; |
| 760 | } |
| 761 | |
| 762 | return 0; |
| 763 | } |
| 764 | |
| 765 | |
| 766 | /* |
| 767 | * Check the wound condition for the current lock acquire. |
| 768 | * |
| 769 | * Wound-Wait: If we're wounded, kill ourself. |
| 770 | * |
| 771 | * Wait-Die: If we're trying to acquire a lock already held by an older |
| 772 | * context, kill ourselves. |
| 773 | * |
| 774 | * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to |
| 775 | * look at waiters before us in the wait-list. |
| 776 | */ |
| 777 | static inline int __sched |
| 778 | __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter, |
| 779 | struct ww_acquire_ctx *ctx) |
| 780 | { |
| 781 | struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); |
| 782 | struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); |
| 783 | struct mutex_waiter *cur; |
| 784 | |
| 785 | if (ctx->acquired == 0) |
| 786 | return 0; |
| 787 | |
| 788 | if (!ctx->is_wait_die) { |
| 789 | if (ctx->wounded) |
| 790 | return __ww_mutex_kill(lock, ctx); |
| 791 | |
| 792 | return 0; |
| 793 | } |
| 794 | |
| 795 | if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) |
| 796 | return __ww_mutex_kill(lock, ctx); |
| 797 | |
| 798 | /* |
| 799 | * If there is a waiter in front of us that has a context, then its |
| 800 | * stamp is earlier than ours and we must kill ourself. |
| 801 | */ |
| 802 | cur = waiter; |
| 803 | list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { |
| 804 | if (!cur->ww_ctx) |
| 805 | continue; |
| 806 | |
| 807 | return __ww_mutex_kill(lock, ctx); |
| 808 | } |
| 809 | |
| 810 | return 0; |
| 811 | } |
| 812 | |
| 813 | /* |
| 814 | * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest |
| 815 | * first. Such that older contexts are preferred to acquire the lock over |
| 816 | * younger contexts. |
| 817 | * |
| 818 | * Waiters without context are interspersed in FIFO order. |
| 819 | * |
| 820 | * Furthermore, for Wait-Die kill ourself immediately when possible (there are |
| 821 | * older contexts already waiting) to avoid unnecessary waiting and for |
| 822 | * Wound-Wait ensure we wound the owning context when it is younger. |
| 823 | */ |
| 824 | static inline int __sched |
| 825 | __ww_mutex_add_waiter(struct mutex_waiter *waiter, |
| 826 | struct mutex *lock, |
| 827 | struct ww_acquire_ctx *ww_ctx) |
| 828 | { |
| 829 | struct mutex_waiter *cur; |
| 830 | struct list_head *pos; |
| 831 | bool is_wait_die; |
| 832 | |
| 833 | if (!ww_ctx) { |
| 834 | __mutex_add_waiter(lock, waiter, &lock->wait_list); |
| 835 | return 0; |
| 836 | } |
| 837 | |
| 838 | is_wait_die = ww_ctx->is_wait_die; |
| 839 | |
| 840 | /* |
| 841 | * Add the waiter before the first waiter with a higher stamp. |
| 842 | * Waiters without a context are skipped to avoid starving |
| 843 | * them. Wait-Die waiters may die here. Wound-Wait waiters |
| 844 | * never die here, but they are sorted in stamp order and |
| 845 | * may wound the lock holder. |
| 846 | */ |
| 847 | pos = &lock->wait_list; |
| 848 | list_for_each_entry_reverse(cur, &lock->wait_list, list) { |
| 849 | if (!cur->ww_ctx) |
| 850 | continue; |
| 851 | |
| 852 | if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { |
| 853 | /* |
| 854 | * Wait-Die: if we find an older context waiting, there |
| 855 | * is no point in queueing behind it, as we'd have to |
| 856 | * die the moment it would acquire the lock. |
| 857 | */ |
| 858 | if (is_wait_die) { |
| 859 | int ret = __ww_mutex_kill(lock, ww_ctx); |
| 860 | |
| 861 | if (ret) |
| 862 | return ret; |
| 863 | } |
| 864 | |
| 865 | break; |
| 866 | } |
| 867 | |
| 868 | pos = &cur->list; |
| 869 | |
| 870 | /* Wait-Die: ensure younger waiters die. */ |
| 871 | __ww_mutex_die(lock, cur, ww_ctx); |
| 872 | } |
| 873 | |
| 874 | __mutex_add_waiter(lock, waiter, pos); |
| 875 | |
| 876 | /* |
| 877 | * Wound-Wait: if we're blocking on a mutex owned by a younger context, |
| 878 | * wound that such that we might proceed. |
| 879 | */ |
| 880 | if (!is_wait_die) { |
| 881 | struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); |
| 882 | |
| 883 | /* |
| 884 | * See ww_mutex_set_context_fastpath(). Orders setting |
| 885 | * MUTEX_FLAG_WAITERS vs the ww->ctx load, |
| 886 | * such that either we or the fastpath will wound @ww->ctx. |
| 887 | */ |
| 888 | smp_mb(); |
| 889 | __ww_mutex_wound(lock, ww_ctx, ww->ctx); |
| 890 | } |
| 891 | |
| 892 | return 0; |
| 893 | } |
| 894 | |
| 895 | /* |
| 896 | * Lock a mutex (possibly interruptible), slowpath: |
| 897 | */ |
| 898 | static __always_inline int __sched |
| 899 | __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, |
| 900 | struct lockdep_map *nest_lock, unsigned long ip, |
| 901 | struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) |
| 902 | { |
| 903 | struct mutex_waiter waiter; |
| 904 | bool first = false; |
| 905 | struct ww_mutex *ww; |
| 906 | int ret; |
| 907 | |
| 908 | might_sleep(); |
| 909 | |
| 910 | ww = container_of(lock, struct ww_mutex, base); |
| 911 | if (use_ww_ctx && ww_ctx) { |
| 912 | if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) |
| 913 | return -EALREADY; |
| 914 | |
| 915 | /* |
| 916 | * Reset the wounded flag after a kill. No other process can |
| 917 | * race and wound us here since they can't have a valid owner |
| 918 | * pointer if we don't have any locks held. |
| 919 | */ |
| 920 | if (ww_ctx->acquired == 0) |
| 921 | ww_ctx->wounded = 0; |
| 922 | } |
| 923 | |
| 924 | preempt_disable(); |
| 925 | mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); |
| 926 | |
| 927 | if (__mutex_trylock(lock) || |
| 928 | mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) { |
| 929 | /* got the lock, yay! */ |
| 930 | lock_acquired(&lock->dep_map, ip); |
| 931 | if (use_ww_ctx && ww_ctx) |
| 932 | ww_mutex_set_context_fastpath(ww, ww_ctx); |
| 933 | preempt_enable(); |
| 934 | return 0; |
| 935 | } |
| 936 | |
| 937 | spin_lock(&lock->wait_lock); |
| 938 | /* |
| 939 | * After waiting to acquire the wait_lock, try again. |
| 940 | */ |
| 941 | if (__mutex_trylock(lock)) { |
| 942 | if (use_ww_ctx && ww_ctx) |
| 943 | __ww_mutex_check_waiters(lock, ww_ctx); |
| 944 | |
| 945 | goto skip_wait; |
| 946 | } |
| 947 | |
| 948 | debug_mutex_lock_common(lock, &waiter); |
| 949 | |
| 950 | lock_contended(&lock->dep_map, ip); |
| 951 | |
| 952 | if (!use_ww_ctx) { |
| 953 | /* add waiting tasks to the end of the waitqueue (FIFO): */ |
| 954 | __mutex_add_waiter(lock, &waiter, &lock->wait_list); |
| 955 | |
| 956 | |
| 957 | #ifdef CONFIG_DEBUG_MUTEXES |
| 958 | waiter.ww_ctx = MUTEX_POISON_WW_CTX; |
| 959 | #endif |
| 960 | } else { |
| 961 | /* |
| 962 | * Add in stamp order, waking up waiters that must kill |
| 963 | * themselves. |
| 964 | */ |
| 965 | ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); |
| 966 | if (ret) |
| 967 | goto err_early_kill; |
| 968 | |
| 969 | waiter.ww_ctx = ww_ctx; |
| 970 | } |
| 971 | |
| 972 | waiter.task = current; |
| 973 | |
| 974 | set_current_state(state); |
| 975 | for (;;) { |
| 976 | /* |
| 977 | * Once we hold wait_lock, we're serialized against |
| 978 | * mutex_unlock() handing the lock off to us, do a trylock |
| 979 | * before testing the error conditions to make sure we pick up |
| 980 | * the handoff. |
| 981 | */ |
| 982 | if (__mutex_trylock(lock)) |
| 983 | goto acquired; |
| 984 | |
| 985 | /* |
| 986 | * Check for signals and kill conditions while holding |
| 987 | * wait_lock. This ensures the lock cancellation is ordered |
| 988 | * against mutex_unlock() and wake-ups do not go missing. |
| 989 | */ |
| 990 | if (unlikely(signal_pending_state(state, current))) { |
| 991 | ret = -EINTR; |
| 992 | goto err; |
| 993 | } |
| 994 | |
| 995 | if (use_ww_ctx && ww_ctx) { |
| 996 | ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx); |
| 997 | if (ret) |
| 998 | goto err; |
| 999 | } |
| 1000 | |
| 1001 | spin_unlock(&lock->wait_lock); |
| 1002 | schedule_preempt_disabled(); |
| 1003 | |
| 1004 | /* |
| 1005 | * ww_mutex needs to always recheck its position since its waiter |
| 1006 | * list is not FIFO ordered. |
| 1007 | */ |
| 1008 | if ((use_ww_ctx && ww_ctx) || !first) { |
| 1009 | first = __mutex_waiter_is_first(lock, &waiter); |
| 1010 | if (first) |
| 1011 | __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); |
| 1012 | } |
| 1013 | |
| 1014 | set_current_state(state); |
| 1015 | /* |
| 1016 | * Here we order against unlock; we must either see it change |
| 1017 | * state back to RUNNING and fall through the next schedule(), |
| 1018 | * or we must see its unlock and acquire. |
| 1019 | */ |
| 1020 | if (__mutex_trylock(lock) || |
| 1021 | (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter))) |
| 1022 | break; |
| 1023 | |
| 1024 | spin_lock(&lock->wait_lock); |
| 1025 | } |
| 1026 | spin_lock(&lock->wait_lock); |
| 1027 | acquired: |
| 1028 | __set_current_state(TASK_RUNNING); |
| 1029 | |
| 1030 | if (use_ww_ctx && ww_ctx) { |
| 1031 | /* |
| 1032 | * Wound-Wait; we stole the lock (!first_waiter), check the |
| 1033 | * waiters as anyone might want to wound us. |
| 1034 | */ |
| 1035 | if (!ww_ctx->is_wait_die && |
| 1036 | !__mutex_waiter_is_first(lock, &waiter)) |
| 1037 | __ww_mutex_check_waiters(lock, ww_ctx); |
| 1038 | } |
| 1039 | |
| 1040 | mutex_remove_waiter(lock, &waiter, current); |
| 1041 | if (likely(list_empty(&lock->wait_list))) |
| 1042 | __mutex_clear_flag(lock, MUTEX_FLAGS); |
| 1043 | |
| 1044 | debug_mutex_free_waiter(&waiter); |
| 1045 | |
| 1046 | skip_wait: |
| 1047 | /* got the lock - cleanup and rejoice! */ |
| 1048 | lock_acquired(&lock->dep_map, ip); |
| 1049 | |
| 1050 | if (use_ww_ctx && ww_ctx) |
| 1051 | ww_mutex_lock_acquired(ww, ww_ctx); |
| 1052 | |
| 1053 | spin_unlock(&lock->wait_lock); |
| 1054 | preempt_enable(); |
| 1055 | return 0; |
| 1056 | |
| 1057 | err: |
| 1058 | __set_current_state(TASK_RUNNING); |
| 1059 | mutex_remove_waiter(lock, &waiter, current); |
| 1060 | err_early_kill: |
| 1061 | spin_unlock(&lock->wait_lock); |
| 1062 | debug_mutex_free_waiter(&waiter); |
| 1063 | mutex_release(&lock->dep_map, 1, ip); |
| 1064 | preempt_enable(); |
| 1065 | return ret; |
| 1066 | } |
| 1067 | |
| 1068 | static int __sched |
| 1069 | __mutex_lock(struct mutex *lock, long state, unsigned int subclass, |
| 1070 | struct lockdep_map *nest_lock, unsigned long ip) |
| 1071 | { |
| 1072 | return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); |
| 1073 | } |
| 1074 | |
| 1075 | static int __sched |
| 1076 | __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass, |
| 1077 | struct lockdep_map *nest_lock, unsigned long ip, |
| 1078 | struct ww_acquire_ctx *ww_ctx) |
| 1079 | { |
| 1080 | return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true); |
| 1081 | } |
| 1082 | |
| 1083 | #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| 1084 | void __sched |
| 1085 | mutex_lock_nested(struct mutex *lock, unsigned int subclass) |
| 1086 | { |
| 1087 | __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); |
| 1088 | } |
| 1089 | |
| 1090 | EXPORT_SYMBOL_GPL(mutex_lock_nested); |
| 1091 | |
| 1092 | void __sched |
| 1093 | _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) |
| 1094 | { |
| 1095 | __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); |
| 1096 | } |
| 1097 | EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); |
| 1098 | |
| 1099 | int __sched |
| 1100 | mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) |
| 1101 | { |
| 1102 | return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); |
| 1103 | } |
| 1104 | EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); |
| 1105 | |
| 1106 | int __sched |
| 1107 | mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) |
| 1108 | { |
| 1109 | return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); |
| 1110 | } |
| 1111 | EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); |
| 1112 | |
| 1113 | void __sched |
| 1114 | mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) |
| 1115 | { |
| 1116 | int token; |
| 1117 | |
| 1118 | might_sleep(); |
| 1119 | |
| 1120 | token = io_schedule_prepare(); |
| 1121 | __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, |
| 1122 | subclass, NULL, _RET_IP_, NULL, 0); |
| 1123 | io_schedule_finish(token); |
| 1124 | } |
| 1125 | EXPORT_SYMBOL_GPL(mutex_lock_io_nested); |
| 1126 | |
| 1127 | static inline int |
| 1128 | ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| 1129 | { |
| 1130 | #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH |
| 1131 | unsigned tmp; |
| 1132 | |
| 1133 | if (ctx->deadlock_inject_countdown-- == 0) { |
| 1134 | tmp = ctx->deadlock_inject_interval; |
| 1135 | if (tmp > UINT_MAX/4) |
| 1136 | tmp = UINT_MAX; |
| 1137 | else |
| 1138 | tmp = tmp*2 + tmp + tmp/2; |
| 1139 | |
| 1140 | ctx->deadlock_inject_interval = tmp; |
| 1141 | ctx->deadlock_inject_countdown = tmp; |
| 1142 | ctx->contending_lock = lock; |
| 1143 | |
| 1144 | ww_mutex_unlock(lock); |
| 1145 | |
| 1146 | return -EDEADLK; |
| 1147 | } |
| 1148 | #endif |
| 1149 | |
| 1150 | return 0; |
| 1151 | } |
| 1152 | |
| 1153 | int __sched |
| 1154 | ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| 1155 | { |
| 1156 | int ret; |
| 1157 | |
| 1158 | might_sleep(); |
| 1159 | ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, |
| 1160 | 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, |
| 1161 | ctx); |
| 1162 | if (!ret && ctx && ctx->acquired > 1) |
| 1163 | return ww_mutex_deadlock_injection(lock, ctx); |
| 1164 | |
| 1165 | return ret; |
| 1166 | } |
| 1167 | EXPORT_SYMBOL_GPL(ww_mutex_lock); |
| 1168 | |
| 1169 | int __sched |
| 1170 | ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| 1171 | { |
| 1172 | int ret; |
| 1173 | |
| 1174 | might_sleep(); |
| 1175 | ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, |
| 1176 | 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, |
| 1177 | ctx); |
| 1178 | |
| 1179 | if (!ret && ctx && ctx->acquired > 1) |
| 1180 | return ww_mutex_deadlock_injection(lock, ctx); |
| 1181 | |
| 1182 | return ret; |
| 1183 | } |
| 1184 | EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); |
| 1185 | |
| 1186 | #endif |
| 1187 | |
| 1188 | /* |
| 1189 | * Release the lock, slowpath: |
| 1190 | */ |
| 1191 | static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) |
| 1192 | { |
| 1193 | struct task_struct *next = NULL; |
| 1194 | DEFINE_WAKE_Q(wake_q); |
| 1195 | unsigned long owner; |
| 1196 | |
| 1197 | mutex_release(&lock->dep_map, 1, ip); |
| 1198 | |
| 1199 | /* |
| 1200 | * Release the lock before (potentially) taking the spinlock such that |
| 1201 | * other contenders can get on with things ASAP. |
| 1202 | * |
| 1203 | * Except when HANDOFF, in that case we must not clear the owner field, |
| 1204 | * but instead set it to the top waiter. |
| 1205 | */ |
| 1206 | owner = atomic_long_read(&lock->owner); |
| 1207 | for (;;) { |
| 1208 | unsigned long old; |
| 1209 | |
| 1210 | #ifdef CONFIG_DEBUG_MUTEXES |
| 1211 | DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); |
| 1212 | DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); |
| 1213 | #endif |
| 1214 | |
| 1215 | if (owner & MUTEX_FLAG_HANDOFF) |
| 1216 | break; |
| 1217 | |
| 1218 | old = atomic_long_cmpxchg_release(&lock->owner, owner, |
| 1219 | __owner_flags(owner)); |
| 1220 | if (old == owner) { |
| 1221 | if (owner & MUTEX_FLAG_WAITERS) |
| 1222 | break; |
| 1223 | |
| 1224 | return; |
| 1225 | } |
| 1226 | |
| 1227 | owner = old; |
| 1228 | } |
| 1229 | |
| 1230 | spin_lock(&lock->wait_lock); |
| 1231 | debug_mutex_unlock(lock); |
| 1232 | if (!list_empty(&lock->wait_list)) { |
| 1233 | /* get the first entry from the wait-list: */ |
| 1234 | struct mutex_waiter *waiter = |
| 1235 | list_first_entry(&lock->wait_list, |
| 1236 | struct mutex_waiter, list); |
| 1237 | |
| 1238 | next = waiter->task; |
| 1239 | |
| 1240 | debug_mutex_wake_waiter(lock, waiter); |
| 1241 | wake_q_add(&wake_q, next); |
| 1242 | } |
| 1243 | |
| 1244 | if (owner & MUTEX_FLAG_HANDOFF) |
| 1245 | __mutex_handoff(lock, next); |
| 1246 | |
| 1247 | spin_unlock(&lock->wait_lock); |
| 1248 | |
| 1249 | wake_up_q(&wake_q); |
| 1250 | } |
| 1251 | |
| 1252 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
| 1253 | /* |
| 1254 | * Here come the less common (and hence less performance-critical) APIs: |
| 1255 | * mutex_lock_interruptible() and mutex_trylock(). |
| 1256 | */ |
| 1257 | static noinline int __sched |
| 1258 | __mutex_lock_killable_slowpath(struct mutex *lock); |
| 1259 | |
| 1260 | static noinline int __sched |
| 1261 | __mutex_lock_interruptible_slowpath(struct mutex *lock); |
| 1262 | |
| 1263 | /** |
| 1264 | * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. |
| 1265 | * @lock: The mutex to be acquired. |
| 1266 | * |
| 1267 | * Lock the mutex like mutex_lock(). If a signal is delivered while the |
| 1268 | * process is sleeping, this function will return without acquiring the |
| 1269 | * mutex. |
| 1270 | * |
| 1271 | * Context: Process context. |
| 1272 | * Return: 0 if the lock was successfully acquired or %-EINTR if a |
| 1273 | * signal arrived. |
| 1274 | */ |
| 1275 | int __sched mutex_lock_interruptible(struct mutex *lock) |
| 1276 | { |
| 1277 | might_sleep(); |
| 1278 | |
| 1279 | if (__mutex_trylock_fast(lock)) |
| 1280 | return 0; |
| 1281 | |
| 1282 | return __mutex_lock_interruptible_slowpath(lock); |
| 1283 | } |
| 1284 | |
| 1285 | EXPORT_SYMBOL(mutex_lock_interruptible); |
| 1286 | |
| 1287 | /** |
| 1288 | * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. |
| 1289 | * @lock: The mutex to be acquired. |
| 1290 | * |
| 1291 | * Lock the mutex like mutex_lock(). If a signal which will be fatal to |
| 1292 | * the current process is delivered while the process is sleeping, this |
| 1293 | * function will return without acquiring the mutex. |
| 1294 | * |
| 1295 | * Context: Process context. |
| 1296 | * Return: 0 if the lock was successfully acquired or %-EINTR if a |
| 1297 | * fatal signal arrived. |
| 1298 | */ |
| 1299 | int __sched mutex_lock_killable(struct mutex *lock) |
| 1300 | { |
| 1301 | might_sleep(); |
| 1302 | |
| 1303 | if (__mutex_trylock_fast(lock)) |
| 1304 | return 0; |
| 1305 | |
| 1306 | return __mutex_lock_killable_slowpath(lock); |
| 1307 | } |
| 1308 | EXPORT_SYMBOL(mutex_lock_killable); |
| 1309 | |
| 1310 | /** |
| 1311 | * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O |
| 1312 | * @lock: The mutex to be acquired. |
| 1313 | * |
| 1314 | * Lock the mutex like mutex_lock(). While the task is waiting for this |
| 1315 | * mutex, it will be accounted as being in the IO wait state by the |
| 1316 | * scheduler. |
| 1317 | * |
| 1318 | * Context: Process context. |
| 1319 | */ |
| 1320 | void __sched mutex_lock_io(struct mutex *lock) |
| 1321 | { |
| 1322 | int token; |
| 1323 | |
| 1324 | token = io_schedule_prepare(); |
| 1325 | mutex_lock(lock); |
| 1326 | io_schedule_finish(token); |
| 1327 | } |
| 1328 | EXPORT_SYMBOL_GPL(mutex_lock_io); |
| 1329 | |
| 1330 | static noinline void __sched |
| 1331 | __mutex_lock_slowpath(struct mutex *lock) |
| 1332 | { |
| 1333 | __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); |
| 1334 | } |
| 1335 | |
| 1336 | static noinline int __sched |
| 1337 | __mutex_lock_killable_slowpath(struct mutex *lock) |
| 1338 | { |
| 1339 | return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); |
| 1340 | } |
| 1341 | |
| 1342 | static noinline int __sched |
| 1343 | __mutex_lock_interruptible_slowpath(struct mutex *lock) |
| 1344 | { |
| 1345 | return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); |
| 1346 | } |
| 1347 | |
| 1348 | static noinline int __sched |
| 1349 | __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| 1350 | { |
| 1351 | return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL, |
| 1352 | _RET_IP_, ctx); |
| 1353 | } |
| 1354 | |
| 1355 | static noinline int __sched |
| 1356 | __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, |
| 1357 | struct ww_acquire_ctx *ctx) |
| 1358 | { |
| 1359 | return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL, |
| 1360 | _RET_IP_, ctx); |
| 1361 | } |
| 1362 | |
| 1363 | #endif |
| 1364 | |
| 1365 | /** |
| 1366 | * mutex_trylock - try to acquire the mutex, without waiting |
| 1367 | * @lock: the mutex to be acquired |
| 1368 | * |
| 1369 | * Try to acquire the mutex atomically. Returns 1 if the mutex |
| 1370 | * has been acquired successfully, and 0 on contention. |
| 1371 | * |
| 1372 | * NOTE: this function follows the spin_trylock() convention, so |
| 1373 | * it is negated from the down_trylock() return values! Be careful |
| 1374 | * about this when converting semaphore users to mutexes. |
| 1375 | * |
| 1376 | * This function must not be used in interrupt context. The |
| 1377 | * mutex must be released by the same task that acquired it. |
| 1378 | */ |
| 1379 | int __sched mutex_trylock(struct mutex *lock) |
| 1380 | { |
| 1381 | bool locked = __mutex_trylock(lock); |
| 1382 | |
| 1383 | if (locked) |
| 1384 | mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); |
| 1385 | |
| 1386 | return locked; |
| 1387 | } |
| 1388 | EXPORT_SYMBOL(mutex_trylock); |
| 1389 | |
| 1390 | #ifndef CONFIG_DEBUG_LOCK_ALLOC |
| 1391 | int __sched |
| 1392 | ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| 1393 | { |
| 1394 | might_sleep(); |
| 1395 | |
| 1396 | if (__mutex_trylock_fast(&lock->base)) { |
| 1397 | if (ctx) |
| 1398 | ww_mutex_set_context_fastpath(lock, ctx); |
| 1399 | return 0; |
| 1400 | } |
| 1401 | |
| 1402 | return __ww_mutex_lock_slowpath(lock, ctx); |
| 1403 | } |
| 1404 | EXPORT_SYMBOL(ww_mutex_lock); |
| 1405 | |
| 1406 | int __sched |
| 1407 | ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| 1408 | { |
| 1409 | might_sleep(); |
| 1410 | |
| 1411 | if (__mutex_trylock_fast(&lock->base)) { |
| 1412 | if (ctx) |
| 1413 | ww_mutex_set_context_fastpath(lock, ctx); |
| 1414 | return 0; |
| 1415 | } |
| 1416 | |
| 1417 | return __ww_mutex_lock_interruptible_slowpath(lock, ctx); |
| 1418 | } |
| 1419 | EXPORT_SYMBOL(ww_mutex_lock_interruptible); |
| 1420 | |
| 1421 | #endif |
| 1422 | |
| 1423 | /** |
| 1424 | * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 |
| 1425 | * @cnt: the atomic which we are to dec |
| 1426 | * @lock: the mutex to return holding if we dec to 0 |
| 1427 | * |
| 1428 | * return true and hold lock if we dec to 0, return false otherwise |
| 1429 | */ |
| 1430 | int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) |
| 1431 | { |
| 1432 | /* dec if we can't possibly hit 0 */ |
| 1433 | if (atomic_add_unless(cnt, -1, 1)) |
| 1434 | return 0; |
| 1435 | /* we might hit 0, so take the lock */ |
| 1436 | mutex_lock(lock); |
| 1437 | if (!atomic_dec_and_test(cnt)) { |
| 1438 | /* when we actually did the dec, we didn't hit 0 */ |
| 1439 | mutex_unlock(lock); |
| 1440 | return 0; |
| 1441 | } |
| 1442 | /* we hit 0, and we hold the lock */ |
| 1443 | return 1; |
| 1444 | } |
| 1445 | EXPORT_SYMBOL(atomic_dec_and_mutex_lock); |