blob: ec299fcf55f7aff42e5e0fcc330865a664ceb28e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
46#include <linux/kref.h>
47#include <linux/list.h>
48#include <linux/rwsem.h>
49#include <linux/scatterlist.h>
50#include <linux/workqueue.h>
51#include <linux/socket.h>
52#include <linux/irq_poll.h>
53#include <uapi/linux/if_ether.h>
54#include <net/ipv6.h>
55#include <net/ip.h>
56#include <linux/string.h>
57#include <linux/slab.h>
58#include <linux/netdevice.h>
59
60#include <linux/if_link.h>
61#include <linux/atomic.h>
62#include <linux/mmu_notifier.h>
63#include <linux/uaccess.h>
64#include <linux/cgroup_rdma.h>
65#include <uapi/rdma/ib_user_verbs.h>
66#include <rdma/restrack.h>
67#include <uapi/rdma/rdma_user_ioctl.h>
68#include <uapi/rdma/ib_user_ioctl_verbs.h>
69
70#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
71
72extern struct workqueue_struct *ib_wq;
73extern struct workqueue_struct *ib_comp_wq;
74
75union ib_gid {
76 u8 raw[16];
77 struct {
78 __be64 subnet_prefix;
79 __be64 interface_id;
80 } global;
81};
82
83extern union ib_gid zgid;
84
85enum ib_gid_type {
86 /* If link layer is Ethernet, this is RoCE V1 */
87 IB_GID_TYPE_IB = 0,
88 IB_GID_TYPE_ROCE = 0,
89 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
90 IB_GID_TYPE_SIZE
91};
92
93#define ROCE_V2_UDP_DPORT 4791
94struct ib_gid_attr {
95 struct net_device *ndev;
96 struct ib_device *device;
97 union ib_gid gid;
98 enum ib_gid_type gid_type;
99 u16 index;
100 u8 port_num;
101};
102
103enum rdma_node_type {
104 /* IB values map to NodeInfo:NodeType. */
105 RDMA_NODE_IB_CA = 1,
106 RDMA_NODE_IB_SWITCH,
107 RDMA_NODE_IB_ROUTER,
108 RDMA_NODE_RNIC,
109 RDMA_NODE_USNIC,
110 RDMA_NODE_USNIC_UDP,
111};
112
113enum {
114 /* set the local administered indication */
115 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
116};
117
118enum rdma_transport_type {
119 RDMA_TRANSPORT_IB,
120 RDMA_TRANSPORT_IWARP,
121 RDMA_TRANSPORT_USNIC,
122 RDMA_TRANSPORT_USNIC_UDP
123};
124
125enum rdma_protocol_type {
126 RDMA_PROTOCOL_IB,
127 RDMA_PROTOCOL_IBOE,
128 RDMA_PROTOCOL_IWARP,
129 RDMA_PROTOCOL_USNIC_UDP
130};
131
132__attribute_const__ enum rdma_transport_type
133rdma_node_get_transport(enum rdma_node_type node_type);
134
135enum rdma_network_type {
136 RDMA_NETWORK_IB,
137 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
138 RDMA_NETWORK_IPV4,
139 RDMA_NETWORK_IPV6
140};
141
142static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
143{
144 if (network_type == RDMA_NETWORK_IPV4 ||
145 network_type == RDMA_NETWORK_IPV6)
146 return IB_GID_TYPE_ROCE_UDP_ENCAP;
147
148 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
149 return IB_GID_TYPE_IB;
150}
151
152static inline enum rdma_network_type
153rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
154{
155 if (attr->gid_type == IB_GID_TYPE_IB)
156 return RDMA_NETWORK_IB;
157
158 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
159 return RDMA_NETWORK_IPV4;
160 else
161 return RDMA_NETWORK_IPV6;
162}
163
164enum rdma_link_layer {
165 IB_LINK_LAYER_UNSPECIFIED,
166 IB_LINK_LAYER_INFINIBAND,
167 IB_LINK_LAYER_ETHERNET,
168};
169
170enum ib_device_cap_flags {
171 IB_DEVICE_RESIZE_MAX_WR = (1 << 0),
172 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1),
173 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2),
174 IB_DEVICE_RAW_MULTI = (1 << 3),
175 IB_DEVICE_AUTO_PATH_MIG = (1 << 4),
176 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5),
177 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6),
178 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7),
179 IB_DEVICE_SHUTDOWN_PORT = (1 << 8),
180 /* Not in use, former INIT_TYPE = (1 << 9),*/
181 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10),
182 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11),
183 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12),
184 IB_DEVICE_SRQ_RESIZE = (1 << 13),
185 IB_DEVICE_N_NOTIFY_CQ = (1 << 14),
186
187 /*
188 * This device supports a per-device lkey or stag that can be
189 * used without performing a memory registration for the local
190 * memory. Note that ULPs should never check this flag, but
191 * instead of use the local_dma_lkey flag in the ib_pd structure,
192 * which will always contain a usable lkey.
193 */
194 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15),
195 /* Reserved, old SEND_W_INV = (1 << 16),*/
196 IB_DEVICE_MEM_WINDOW = (1 << 17),
197 /*
198 * Devices should set IB_DEVICE_UD_IP_SUM if they support
199 * insertion of UDP and TCP checksum on outgoing UD IPoIB
200 * messages and can verify the validity of checksum for
201 * incoming messages. Setting this flag implies that the
202 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
203 */
204 IB_DEVICE_UD_IP_CSUM = (1 << 18),
205 IB_DEVICE_UD_TSO = (1 << 19),
206 IB_DEVICE_XRC = (1 << 20),
207
208 /*
209 * This device supports the IB "base memory management extension",
210 * which includes support for fast registrations (IB_WR_REG_MR,
211 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
212 * also be set by any iWarp device which must support FRs to comply
213 * to the iWarp verbs spec. iWarp devices also support the
214 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
215 * stag.
216 */
217 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21),
218 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22),
219 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23),
220 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24),
221 IB_DEVICE_RC_IP_CSUM = (1 << 25),
222 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
223 IB_DEVICE_RAW_IP_CSUM = (1 << 26),
224 /*
225 * Devices should set IB_DEVICE_CROSS_CHANNEL if they
226 * support execution of WQEs that involve synchronization
227 * of I/O operations with single completion queue managed
228 * by hardware.
229 */
230 IB_DEVICE_CROSS_CHANNEL = (1 << 27),
231 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29),
232 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30),
233 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31),
234 IB_DEVICE_SG_GAPS_REG = (1ULL << 32),
235 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33),
236 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
237 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34),
238 IB_DEVICE_RDMA_NETDEV_OPA_VNIC = (1ULL << 35),
239 /* The device supports padding incoming writes to cacheline. */
240 IB_DEVICE_PCI_WRITE_END_PADDING = (1ULL << 36),
241};
242
243enum ib_signature_prot_cap {
244 IB_PROT_T10DIF_TYPE_1 = 1,
245 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
246 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
247};
248
249enum ib_signature_guard_cap {
250 IB_GUARD_T10DIF_CRC = 1,
251 IB_GUARD_T10DIF_CSUM = 1 << 1,
252};
253
254enum ib_atomic_cap {
255 IB_ATOMIC_NONE,
256 IB_ATOMIC_HCA,
257 IB_ATOMIC_GLOB
258};
259
260enum ib_odp_general_cap_bits {
261 IB_ODP_SUPPORT = 1 << 0,
262 IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
263};
264
265enum ib_odp_transport_cap_bits {
266 IB_ODP_SUPPORT_SEND = 1 << 0,
267 IB_ODP_SUPPORT_RECV = 1 << 1,
268 IB_ODP_SUPPORT_WRITE = 1 << 2,
269 IB_ODP_SUPPORT_READ = 1 << 3,
270 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
271};
272
273struct ib_odp_caps {
274 uint64_t general_caps;
275 struct {
276 uint32_t rc_odp_caps;
277 uint32_t uc_odp_caps;
278 uint32_t ud_odp_caps;
279 } per_transport_caps;
280};
281
282struct ib_rss_caps {
283 /* Corresponding bit will be set if qp type from
284 * 'enum ib_qp_type' is supported, e.g.
285 * supported_qpts |= 1 << IB_QPT_UD
286 */
287 u32 supported_qpts;
288 u32 max_rwq_indirection_tables;
289 u32 max_rwq_indirection_table_size;
290};
291
292enum ib_tm_cap_flags {
293 /* Support tag matching on RC transport */
294 IB_TM_CAP_RC = 1 << 0,
295};
296
297struct ib_tm_caps {
298 /* Max size of RNDV header */
299 u32 max_rndv_hdr_size;
300 /* Max number of entries in tag matching list */
301 u32 max_num_tags;
302 /* From enum ib_tm_cap_flags */
303 u32 flags;
304 /* Max number of outstanding list operations */
305 u32 max_ops;
306 /* Max number of SGE in tag matching entry */
307 u32 max_sge;
308};
309
310struct ib_cq_init_attr {
311 unsigned int cqe;
312 int comp_vector;
313 u32 flags;
314};
315
316enum ib_cq_attr_mask {
317 IB_CQ_MODERATE = 1 << 0,
318};
319
320struct ib_cq_caps {
321 u16 max_cq_moderation_count;
322 u16 max_cq_moderation_period;
323};
324
325struct ib_dm_mr_attr {
326 u64 length;
327 u64 offset;
328 u32 access_flags;
329};
330
331struct ib_dm_alloc_attr {
332 u64 length;
333 u32 alignment;
334 u32 flags;
335};
336
337struct ib_device_attr {
338 u64 fw_ver;
339 __be64 sys_image_guid;
340 u64 max_mr_size;
341 u64 page_size_cap;
342 u32 vendor_id;
343 u32 vendor_part_id;
344 u32 hw_ver;
345 int max_qp;
346 int max_qp_wr;
347 u64 device_cap_flags;
348 int max_send_sge;
349 int max_recv_sge;
350 int max_sge_rd;
351 int max_cq;
352 int max_cqe;
353 int max_mr;
354 int max_pd;
355 int max_qp_rd_atom;
356 int max_ee_rd_atom;
357 int max_res_rd_atom;
358 int max_qp_init_rd_atom;
359 int max_ee_init_rd_atom;
360 enum ib_atomic_cap atomic_cap;
361 enum ib_atomic_cap masked_atomic_cap;
362 int max_ee;
363 int max_rdd;
364 int max_mw;
365 int max_raw_ipv6_qp;
366 int max_raw_ethy_qp;
367 int max_mcast_grp;
368 int max_mcast_qp_attach;
369 int max_total_mcast_qp_attach;
370 int max_ah;
371 int max_fmr;
372 int max_map_per_fmr;
373 int max_srq;
374 int max_srq_wr;
375 int max_srq_sge;
376 unsigned int max_fast_reg_page_list_len;
377 u16 max_pkeys;
378 u8 local_ca_ack_delay;
379 int sig_prot_cap;
380 int sig_guard_cap;
381 struct ib_odp_caps odp_caps;
382 uint64_t timestamp_mask;
383 uint64_t hca_core_clock; /* in KHZ */
384 struct ib_rss_caps rss_caps;
385 u32 max_wq_type_rq;
386 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
387 struct ib_tm_caps tm_caps;
388 struct ib_cq_caps cq_caps;
389 u64 max_dm_size;
390};
391
392enum ib_mtu {
393 IB_MTU_256 = 1,
394 IB_MTU_512 = 2,
395 IB_MTU_1024 = 3,
396 IB_MTU_2048 = 4,
397 IB_MTU_4096 = 5
398};
399
400static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
401{
402 switch (mtu) {
403 case IB_MTU_256: return 256;
404 case IB_MTU_512: return 512;
405 case IB_MTU_1024: return 1024;
406 case IB_MTU_2048: return 2048;
407 case IB_MTU_4096: return 4096;
408 default: return -1;
409 }
410}
411
412static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
413{
414 if (mtu >= 4096)
415 return IB_MTU_4096;
416 else if (mtu >= 2048)
417 return IB_MTU_2048;
418 else if (mtu >= 1024)
419 return IB_MTU_1024;
420 else if (mtu >= 512)
421 return IB_MTU_512;
422 else
423 return IB_MTU_256;
424}
425
426enum ib_port_state {
427 IB_PORT_NOP = 0,
428 IB_PORT_DOWN = 1,
429 IB_PORT_INIT = 2,
430 IB_PORT_ARMED = 3,
431 IB_PORT_ACTIVE = 4,
432 IB_PORT_ACTIVE_DEFER = 5
433};
434
435enum ib_port_width {
436 IB_WIDTH_1X = 1,
437 IB_WIDTH_4X = 2,
438 IB_WIDTH_8X = 4,
439 IB_WIDTH_12X = 8
440};
441
442static inline int ib_width_enum_to_int(enum ib_port_width width)
443{
444 switch (width) {
445 case IB_WIDTH_1X: return 1;
446 case IB_WIDTH_4X: return 4;
447 case IB_WIDTH_8X: return 8;
448 case IB_WIDTH_12X: return 12;
449 default: return -1;
450 }
451}
452
453enum ib_port_speed {
454 IB_SPEED_SDR = 1,
455 IB_SPEED_DDR = 2,
456 IB_SPEED_QDR = 4,
457 IB_SPEED_FDR10 = 8,
458 IB_SPEED_FDR = 16,
459 IB_SPEED_EDR = 32,
460 IB_SPEED_HDR = 64
461};
462
463/**
464 * struct rdma_hw_stats
465 * @lock - Mutex to protect parallel write access to lifespan and values
466 * of counters, which are 64bits and not guaranteeed to be written
467 * atomicaly on 32bits systems.
468 * @timestamp - Used by the core code to track when the last update was
469 * @lifespan - Used by the core code to determine how old the counters
470 * should be before being updated again. Stored in jiffies, defaults
471 * to 10 milliseconds, drivers can override the default be specifying
472 * their own value during their allocation routine.
473 * @name - Array of pointers to static names used for the counters in
474 * directory.
475 * @num_counters - How many hardware counters there are. If name is
476 * shorter than this number, a kernel oops will result. Driver authors
477 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
478 * in their code to prevent this.
479 * @value - Array of u64 counters that are accessed by the sysfs code and
480 * filled in by the drivers get_stats routine
481 */
482struct rdma_hw_stats {
483 struct mutex lock; /* Protect lifespan and values[] */
484 unsigned long timestamp;
485 unsigned long lifespan;
486 const char * const *names;
487 int num_counters;
488 u64 value[];
489};
490
491#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
492/**
493 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct
494 * for drivers.
495 * @names - Array of static const char *
496 * @num_counters - How many elements in array
497 * @lifespan - How many milliseconds between updates
498 */
499static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
500 const char * const *names, int num_counters,
501 unsigned long lifespan)
502{
503 struct rdma_hw_stats *stats;
504
505 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64),
506 GFP_KERNEL);
507 if (!stats)
508 return NULL;
509 stats->names = names;
510 stats->num_counters = num_counters;
511 stats->lifespan = msecs_to_jiffies(lifespan);
512
513 return stats;
514}
515
516
517/* Define bits for the various functionality this port needs to be supported by
518 * the core.
519 */
520/* Management 0x00000FFF */
521#define RDMA_CORE_CAP_IB_MAD 0x00000001
522#define RDMA_CORE_CAP_IB_SMI 0x00000002
523#define RDMA_CORE_CAP_IB_CM 0x00000004
524#define RDMA_CORE_CAP_IW_CM 0x00000008
525#define RDMA_CORE_CAP_IB_SA 0x00000010
526#define RDMA_CORE_CAP_OPA_MAD 0x00000020
527
528/* Address format 0x000FF000 */
529#define RDMA_CORE_CAP_AF_IB 0x00001000
530#define RDMA_CORE_CAP_ETH_AH 0x00002000
531#define RDMA_CORE_CAP_OPA_AH 0x00004000
532#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
533
534/* Protocol 0xFFF00000 */
535#define RDMA_CORE_CAP_PROT_IB 0x00100000
536#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
537#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
538#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
539#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
540#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
541
542#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
543 | RDMA_CORE_CAP_PROT_ROCE \
544 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
545
546#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
547 | RDMA_CORE_CAP_IB_MAD \
548 | RDMA_CORE_CAP_IB_SMI \
549 | RDMA_CORE_CAP_IB_CM \
550 | RDMA_CORE_CAP_IB_SA \
551 | RDMA_CORE_CAP_AF_IB)
552#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
553 | RDMA_CORE_CAP_IB_MAD \
554 | RDMA_CORE_CAP_IB_CM \
555 | RDMA_CORE_CAP_AF_IB \
556 | RDMA_CORE_CAP_ETH_AH)
557#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
558 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
559 | RDMA_CORE_CAP_IB_MAD \
560 | RDMA_CORE_CAP_IB_CM \
561 | RDMA_CORE_CAP_AF_IB \
562 | RDMA_CORE_CAP_ETH_AH)
563#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
564 | RDMA_CORE_CAP_IW_CM)
565#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
566 | RDMA_CORE_CAP_OPA_MAD)
567
568#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
569
570#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
571
572struct ib_port_attr {
573 u64 subnet_prefix;
574 enum ib_port_state state;
575 enum ib_mtu max_mtu;
576 enum ib_mtu active_mtu;
577 int gid_tbl_len;
578 unsigned int ip_gids:1;
579 /* This is the value from PortInfo CapabilityMask, defined by IBA */
580 u32 port_cap_flags;
581 u32 max_msg_sz;
582 u32 bad_pkey_cntr;
583 u32 qkey_viol_cntr;
584 u16 pkey_tbl_len;
585 u32 sm_lid;
586 u32 lid;
587 u8 lmc;
588 u8 max_vl_num;
589 u8 sm_sl;
590 u8 subnet_timeout;
591 u8 init_type_reply;
592 u8 active_width;
593 u8 active_speed;
594 u8 phys_state;
595};
596
597enum ib_device_modify_flags {
598 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
599 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
600};
601
602#define IB_DEVICE_NODE_DESC_MAX 64
603
604struct ib_device_modify {
605 u64 sys_image_guid;
606 char node_desc[IB_DEVICE_NODE_DESC_MAX];
607};
608
609enum ib_port_modify_flags {
610 IB_PORT_SHUTDOWN = 1,
611 IB_PORT_INIT_TYPE = (1<<2),
612 IB_PORT_RESET_QKEY_CNTR = (1<<3),
613 IB_PORT_OPA_MASK_CHG = (1<<4)
614};
615
616struct ib_port_modify {
617 u32 set_port_cap_mask;
618 u32 clr_port_cap_mask;
619 u8 init_type;
620};
621
622enum ib_event_type {
623 IB_EVENT_CQ_ERR,
624 IB_EVENT_QP_FATAL,
625 IB_EVENT_QP_REQ_ERR,
626 IB_EVENT_QP_ACCESS_ERR,
627 IB_EVENT_COMM_EST,
628 IB_EVENT_SQ_DRAINED,
629 IB_EVENT_PATH_MIG,
630 IB_EVENT_PATH_MIG_ERR,
631 IB_EVENT_DEVICE_FATAL,
632 IB_EVENT_PORT_ACTIVE,
633 IB_EVENT_PORT_ERR,
634 IB_EVENT_LID_CHANGE,
635 IB_EVENT_PKEY_CHANGE,
636 IB_EVENT_SM_CHANGE,
637 IB_EVENT_SRQ_ERR,
638 IB_EVENT_SRQ_LIMIT_REACHED,
639 IB_EVENT_QP_LAST_WQE_REACHED,
640 IB_EVENT_CLIENT_REREGISTER,
641 IB_EVENT_GID_CHANGE,
642 IB_EVENT_WQ_FATAL,
643};
644
645const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
646
647struct ib_event {
648 struct ib_device *device;
649 union {
650 struct ib_cq *cq;
651 struct ib_qp *qp;
652 struct ib_srq *srq;
653 struct ib_wq *wq;
654 u8 port_num;
655 } element;
656 enum ib_event_type event;
657};
658
659struct ib_event_handler {
660 struct ib_device *device;
661 void (*handler)(struct ib_event_handler *, struct ib_event *);
662 struct list_head list;
663};
664
665#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
666 do { \
667 (_ptr)->device = _device; \
668 (_ptr)->handler = _handler; \
669 INIT_LIST_HEAD(&(_ptr)->list); \
670 } while (0)
671
672struct ib_global_route {
673 const struct ib_gid_attr *sgid_attr;
674 union ib_gid dgid;
675 u32 flow_label;
676 u8 sgid_index;
677 u8 hop_limit;
678 u8 traffic_class;
679};
680
681struct ib_grh {
682 __be32 version_tclass_flow;
683 __be16 paylen;
684 u8 next_hdr;
685 u8 hop_limit;
686 union ib_gid sgid;
687 union ib_gid dgid;
688};
689
690union rdma_network_hdr {
691 struct ib_grh ibgrh;
692 struct {
693 /* The IB spec states that if it's IPv4, the header
694 * is located in the last 20 bytes of the header.
695 */
696 u8 reserved[20];
697 struct iphdr roce4grh;
698 };
699};
700
701#define IB_QPN_MASK 0xFFFFFF
702
703enum {
704 IB_MULTICAST_QPN = 0xffffff
705};
706
707#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
708#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
709
710enum ib_ah_flags {
711 IB_AH_GRH = 1
712};
713
714enum ib_rate {
715 IB_RATE_PORT_CURRENT = 0,
716 IB_RATE_2_5_GBPS = 2,
717 IB_RATE_5_GBPS = 5,
718 IB_RATE_10_GBPS = 3,
719 IB_RATE_20_GBPS = 6,
720 IB_RATE_30_GBPS = 4,
721 IB_RATE_40_GBPS = 7,
722 IB_RATE_60_GBPS = 8,
723 IB_RATE_80_GBPS = 9,
724 IB_RATE_120_GBPS = 10,
725 IB_RATE_14_GBPS = 11,
726 IB_RATE_56_GBPS = 12,
727 IB_RATE_112_GBPS = 13,
728 IB_RATE_168_GBPS = 14,
729 IB_RATE_25_GBPS = 15,
730 IB_RATE_100_GBPS = 16,
731 IB_RATE_200_GBPS = 17,
732 IB_RATE_300_GBPS = 18
733};
734
735/**
736 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
737 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
738 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
739 * @rate: rate to convert.
740 */
741__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
742
743/**
744 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
745 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
746 * @rate: rate to convert.
747 */
748__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
749
750
751/**
752 * enum ib_mr_type - memory region type
753 * @IB_MR_TYPE_MEM_REG: memory region that is used for
754 * normal registration
755 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
756 * signature operations (data-integrity
757 * capable regions)
758 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to
759 * register any arbitrary sg lists (without
760 * the normal mr constraints - see
761 * ib_map_mr_sg)
762 */
763enum ib_mr_type {
764 IB_MR_TYPE_MEM_REG,
765 IB_MR_TYPE_SIGNATURE,
766 IB_MR_TYPE_SG_GAPS,
767};
768
769/**
770 * Signature types
771 * IB_SIG_TYPE_NONE: Unprotected.
772 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
773 */
774enum ib_signature_type {
775 IB_SIG_TYPE_NONE,
776 IB_SIG_TYPE_T10_DIF,
777};
778
779/**
780 * Signature T10-DIF block-guard types
781 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
782 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
783 */
784enum ib_t10_dif_bg_type {
785 IB_T10DIF_CRC,
786 IB_T10DIF_CSUM
787};
788
789/**
790 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
791 * domain.
792 * @bg_type: T10-DIF block guard type (CRC|CSUM)
793 * @pi_interval: protection information interval.
794 * @bg: seed of guard computation.
795 * @app_tag: application tag of guard block
796 * @ref_tag: initial guard block reference tag.
797 * @ref_remap: Indicate wethear the reftag increments each block
798 * @app_escape: Indicate to skip block check if apptag=0xffff
799 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
800 * @apptag_check_mask: check bitmask of application tag.
801 */
802struct ib_t10_dif_domain {
803 enum ib_t10_dif_bg_type bg_type;
804 u16 pi_interval;
805 u16 bg;
806 u16 app_tag;
807 u32 ref_tag;
808 bool ref_remap;
809 bool app_escape;
810 bool ref_escape;
811 u16 apptag_check_mask;
812};
813
814/**
815 * struct ib_sig_domain - Parameters for signature domain
816 * @sig_type: specific signauture type
817 * @sig: union of all signature domain attributes that may
818 * be used to set domain layout.
819 */
820struct ib_sig_domain {
821 enum ib_signature_type sig_type;
822 union {
823 struct ib_t10_dif_domain dif;
824 } sig;
825};
826
827/**
828 * struct ib_sig_attrs - Parameters for signature handover operation
829 * @check_mask: bitmask for signature byte check (8 bytes)
830 * @mem: memory domain layout desciptor.
831 * @wire: wire domain layout desciptor.
832 */
833struct ib_sig_attrs {
834 u8 check_mask;
835 struct ib_sig_domain mem;
836 struct ib_sig_domain wire;
837};
838
839enum ib_sig_err_type {
840 IB_SIG_BAD_GUARD,
841 IB_SIG_BAD_REFTAG,
842 IB_SIG_BAD_APPTAG,
843};
844
845/**
846 * Signature check masks (8 bytes in total) according to the T10-PI standard:
847 * -------- -------- ------------
848 * | GUARD | APPTAG | REFTAG |
849 * | 2B | 2B | 4B |
850 * -------- -------- ------------
851 */
852enum {
853 IB_SIG_CHECK_GUARD = 0xc0,
854 IB_SIG_CHECK_APPTAG = 0x30,
855 IB_SIG_CHECK_REFTAG = 0x0f,
856};
857
858/**
859 * struct ib_sig_err - signature error descriptor
860 */
861struct ib_sig_err {
862 enum ib_sig_err_type err_type;
863 u32 expected;
864 u32 actual;
865 u64 sig_err_offset;
866 u32 key;
867};
868
869enum ib_mr_status_check {
870 IB_MR_CHECK_SIG_STATUS = 1,
871};
872
873/**
874 * struct ib_mr_status - Memory region status container
875 *
876 * @fail_status: Bitmask of MR checks status. For each
877 * failed check a corresponding status bit is set.
878 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
879 * failure.
880 */
881struct ib_mr_status {
882 u32 fail_status;
883 struct ib_sig_err sig_err;
884};
885
886/**
887 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
888 * enum.
889 * @mult: multiple to convert.
890 */
891__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
892
893enum rdma_ah_attr_type {
894 RDMA_AH_ATTR_TYPE_UNDEFINED,
895 RDMA_AH_ATTR_TYPE_IB,
896 RDMA_AH_ATTR_TYPE_ROCE,
897 RDMA_AH_ATTR_TYPE_OPA,
898};
899
900struct ib_ah_attr {
901 u16 dlid;
902 u8 src_path_bits;
903};
904
905struct roce_ah_attr {
906 u8 dmac[ETH_ALEN];
907};
908
909struct opa_ah_attr {
910 u32 dlid;
911 u8 src_path_bits;
912 bool make_grd;
913};
914
915struct rdma_ah_attr {
916 struct ib_global_route grh;
917 u8 sl;
918 u8 static_rate;
919 u8 port_num;
920 u8 ah_flags;
921 enum rdma_ah_attr_type type;
922 union {
923 struct ib_ah_attr ib;
924 struct roce_ah_attr roce;
925 struct opa_ah_attr opa;
926 };
927};
928
929enum ib_wc_status {
930 IB_WC_SUCCESS,
931 IB_WC_LOC_LEN_ERR,
932 IB_WC_LOC_QP_OP_ERR,
933 IB_WC_LOC_EEC_OP_ERR,
934 IB_WC_LOC_PROT_ERR,
935 IB_WC_WR_FLUSH_ERR,
936 IB_WC_MW_BIND_ERR,
937 IB_WC_BAD_RESP_ERR,
938 IB_WC_LOC_ACCESS_ERR,
939 IB_WC_REM_INV_REQ_ERR,
940 IB_WC_REM_ACCESS_ERR,
941 IB_WC_REM_OP_ERR,
942 IB_WC_RETRY_EXC_ERR,
943 IB_WC_RNR_RETRY_EXC_ERR,
944 IB_WC_LOC_RDD_VIOL_ERR,
945 IB_WC_REM_INV_RD_REQ_ERR,
946 IB_WC_REM_ABORT_ERR,
947 IB_WC_INV_EECN_ERR,
948 IB_WC_INV_EEC_STATE_ERR,
949 IB_WC_FATAL_ERR,
950 IB_WC_RESP_TIMEOUT_ERR,
951 IB_WC_GENERAL_ERR
952};
953
954const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
955
956enum ib_wc_opcode {
957 IB_WC_SEND,
958 IB_WC_RDMA_WRITE,
959 IB_WC_RDMA_READ,
960 IB_WC_COMP_SWAP,
961 IB_WC_FETCH_ADD,
962 IB_WC_LSO,
963 IB_WC_LOCAL_INV,
964 IB_WC_REG_MR,
965 IB_WC_MASKED_COMP_SWAP,
966 IB_WC_MASKED_FETCH_ADD,
967/*
968 * Set value of IB_WC_RECV so consumers can test if a completion is a
969 * receive by testing (opcode & IB_WC_RECV).
970 */
971 IB_WC_RECV = 1 << 7,
972 IB_WC_RECV_RDMA_WITH_IMM
973};
974
975enum ib_wc_flags {
976 IB_WC_GRH = 1,
977 IB_WC_WITH_IMM = (1<<1),
978 IB_WC_WITH_INVALIDATE = (1<<2),
979 IB_WC_IP_CSUM_OK = (1<<3),
980 IB_WC_WITH_SMAC = (1<<4),
981 IB_WC_WITH_VLAN = (1<<5),
982 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
983};
984
985struct ib_wc {
986 union {
987 u64 wr_id;
988 struct ib_cqe *wr_cqe;
989 };
990 enum ib_wc_status status;
991 enum ib_wc_opcode opcode;
992 u32 vendor_err;
993 u32 byte_len;
994 struct ib_qp *qp;
995 union {
996 __be32 imm_data;
997 u32 invalidate_rkey;
998 } ex;
999 u32 src_qp;
1000 u32 slid;
1001 int wc_flags;
1002 u16 pkey_index;
1003 u8 sl;
1004 u8 dlid_path_bits;
1005 u8 port_num; /* valid only for DR SMPs on switches */
1006 u8 smac[ETH_ALEN];
1007 u16 vlan_id;
1008 u8 network_hdr_type;
1009};
1010
1011enum ib_cq_notify_flags {
1012 IB_CQ_SOLICITED = 1 << 0,
1013 IB_CQ_NEXT_COMP = 1 << 1,
1014 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1015 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1016};
1017
1018enum ib_srq_type {
1019 IB_SRQT_BASIC,
1020 IB_SRQT_XRC,
1021 IB_SRQT_TM,
1022};
1023
1024static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1025{
1026 return srq_type == IB_SRQT_XRC ||
1027 srq_type == IB_SRQT_TM;
1028}
1029
1030enum ib_srq_attr_mask {
1031 IB_SRQ_MAX_WR = 1 << 0,
1032 IB_SRQ_LIMIT = 1 << 1,
1033};
1034
1035struct ib_srq_attr {
1036 u32 max_wr;
1037 u32 max_sge;
1038 u32 srq_limit;
1039};
1040
1041struct ib_srq_init_attr {
1042 void (*event_handler)(struct ib_event *, void *);
1043 void *srq_context;
1044 struct ib_srq_attr attr;
1045 enum ib_srq_type srq_type;
1046
1047 struct {
1048 struct ib_cq *cq;
1049 union {
1050 struct {
1051 struct ib_xrcd *xrcd;
1052 } xrc;
1053
1054 struct {
1055 u32 max_num_tags;
1056 } tag_matching;
1057 };
1058 } ext;
1059};
1060
1061struct ib_qp_cap {
1062 u32 max_send_wr;
1063 u32 max_recv_wr;
1064 u32 max_send_sge;
1065 u32 max_recv_sge;
1066 u32 max_inline_data;
1067
1068 /*
1069 * Maximum number of rdma_rw_ctx structures in flight at a time.
1070 * ib_create_qp() will calculate the right amount of neededed WRs
1071 * and MRs based on this.
1072 */
1073 u32 max_rdma_ctxs;
1074};
1075
1076enum ib_sig_type {
1077 IB_SIGNAL_ALL_WR,
1078 IB_SIGNAL_REQ_WR
1079};
1080
1081enum ib_qp_type {
1082 /*
1083 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1084 * here (and in that order) since the MAD layer uses them as
1085 * indices into a 2-entry table.
1086 */
1087 IB_QPT_SMI,
1088 IB_QPT_GSI,
1089
1090 IB_QPT_RC,
1091 IB_QPT_UC,
1092 IB_QPT_UD,
1093 IB_QPT_RAW_IPV6,
1094 IB_QPT_RAW_ETHERTYPE,
1095 IB_QPT_RAW_PACKET = 8,
1096 IB_QPT_XRC_INI = 9,
1097 IB_QPT_XRC_TGT,
1098 IB_QPT_MAX,
1099 IB_QPT_DRIVER = 0xFF,
1100 /* Reserve a range for qp types internal to the low level driver.
1101 * These qp types will not be visible at the IB core layer, so the
1102 * IB_QPT_MAX usages should not be affected in the core layer
1103 */
1104 IB_QPT_RESERVED1 = 0x1000,
1105 IB_QPT_RESERVED2,
1106 IB_QPT_RESERVED3,
1107 IB_QPT_RESERVED4,
1108 IB_QPT_RESERVED5,
1109 IB_QPT_RESERVED6,
1110 IB_QPT_RESERVED7,
1111 IB_QPT_RESERVED8,
1112 IB_QPT_RESERVED9,
1113 IB_QPT_RESERVED10,
1114};
1115
1116enum ib_qp_create_flags {
1117 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1118 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
1119 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1120 IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1121 IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1122 IB_QP_CREATE_NETIF_QP = 1 << 5,
1123 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
1124 /* FREE = 1 << 7, */
1125 IB_QP_CREATE_SCATTER_FCS = 1 << 8,
1126 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9,
1127 IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1128 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11,
1129 /* reserve bits 26-31 for low level drivers' internal use */
1130 IB_QP_CREATE_RESERVED_START = 1 << 26,
1131 IB_QP_CREATE_RESERVED_END = 1 << 31,
1132};
1133
1134/*
1135 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1136 * callback to destroy the passed in QP.
1137 */
1138
1139struct ib_qp_init_attr {
1140 void (*event_handler)(struct ib_event *, void *);
1141 void *qp_context;
1142 struct ib_cq *send_cq;
1143 struct ib_cq *recv_cq;
1144 struct ib_srq *srq;
1145 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1146 struct ib_qp_cap cap;
1147 enum ib_sig_type sq_sig_type;
1148 enum ib_qp_type qp_type;
1149 enum ib_qp_create_flags create_flags;
1150
1151 /*
1152 * Only needed for special QP types, or when using the RW API.
1153 */
1154 u8 port_num;
1155 struct ib_rwq_ind_table *rwq_ind_tbl;
1156 u32 source_qpn;
1157};
1158
1159struct ib_qp_open_attr {
1160 void (*event_handler)(struct ib_event *, void *);
1161 void *qp_context;
1162 u32 qp_num;
1163 enum ib_qp_type qp_type;
1164};
1165
1166enum ib_rnr_timeout {
1167 IB_RNR_TIMER_655_36 = 0,
1168 IB_RNR_TIMER_000_01 = 1,
1169 IB_RNR_TIMER_000_02 = 2,
1170 IB_RNR_TIMER_000_03 = 3,
1171 IB_RNR_TIMER_000_04 = 4,
1172 IB_RNR_TIMER_000_06 = 5,
1173 IB_RNR_TIMER_000_08 = 6,
1174 IB_RNR_TIMER_000_12 = 7,
1175 IB_RNR_TIMER_000_16 = 8,
1176 IB_RNR_TIMER_000_24 = 9,
1177 IB_RNR_TIMER_000_32 = 10,
1178 IB_RNR_TIMER_000_48 = 11,
1179 IB_RNR_TIMER_000_64 = 12,
1180 IB_RNR_TIMER_000_96 = 13,
1181 IB_RNR_TIMER_001_28 = 14,
1182 IB_RNR_TIMER_001_92 = 15,
1183 IB_RNR_TIMER_002_56 = 16,
1184 IB_RNR_TIMER_003_84 = 17,
1185 IB_RNR_TIMER_005_12 = 18,
1186 IB_RNR_TIMER_007_68 = 19,
1187 IB_RNR_TIMER_010_24 = 20,
1188 IB_RNR_TIMER_015_36 = 21,
1189 IB_RNR_TIMER_020_48 = 22,
1190 IB_RNR_TIMER_030_72 = 23,
1191 IB_RNR_TIMER_040_96 = 24,
1192 IB_RNR_TIMER_061_44 = 25,
1193 IB_RNR_TIMER_081_92 = 26,
1194 IB_RNR_TIMER_122_88 = 27,
1195 IB_RNR_TIMER_163_84 = 28,
1196 IB_RNR_TIMER_245_76 = 29,
1197 IB_RNR_TIMER_327_68 = 30,
1198 IB_RNR_TIMER_491_52 = 31
1199};
1200
1201enum ib_qp_attr_mask {
1202 IB_QP_STATE = 1,
1203 IB_QP_CUR_STATE = (1<<1),
1204 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1205 IB_QP_ACCESS_FLAGS = (1<<3),
1206 IB_QP_PKEY_INDEX = (1<<4),
1207 IB_QP_PORT = (1<<5),
1208 IB_QP_QKEY = (1<<6),
1209 IB_QP_AV = (1<<7),
1210 IB_QP_PATH_MTU = (1<<8),
1211 IB_QP_TIMEOUT = (1<<9),
1212 IB_QP_RETRY_CNT = (1<<10),
1213 IB_QP_RNR_RETRY = (1<<11),
1214 IB_QP_RQ_PSN = (1<<12),
1215 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1216 IB_QP_ALT_PATH = (1<<14),
1217 IB_QP_MIN_RNR_TIMER = (1<<15),
1218 IB_QP_SQ_PSN = (1<<16),
1219 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1220 IB_QP_PATH_MIG_STATE = (1<<18),
1221 IB_QP_CAP = (1<<19),
1222 IB_QP_DEST_QPN = (1<<20),
1223 IB_QP_RESERVED1 = (1<<21),
1224 IB_QP_RESERVED2 = (1<<22),
1225 IB_QP_RESERVED3 = (1<<23),
1226 IB_QP_RESERVED4 = (1<<24),
1227 IB_QP_RATE_LIMIT = (1<<25),
1228};
1229
1230enum ib_qp_state {
1231 IB_QPS_RESET,
1232 IB_QPS_INIT,
1233 IB_QPS_RTR,
1234 IB_QPS_RTS,
1235 IB_QPS_SQD,
1236 IB_QPS_SQE,
1237 IB_QPS_ERR
1238};
1239
1240enum ib_mig_state {
1241 IB_MIG_MIGRATED,
1242 IB_MIG_REARM,
1243 IB_MIG_ARMED
1244};
1245
1246enum ib_mw_type {
1247 IB_MW_TYPE_1 = 1,
1248 IB_MW_TYPE_2 = 2
1249};
1250
1251struct ib_qp_attr {
1252 enum ib_qp_state qp_state;
1253 enum ib_qp_state cur_qp_state;
1254 enum ib_mtu path_mtu;
1255 enum ib_mig_state path_mig_state;
1256 u32 qkey;
1257 u32 rq_psn;
1258 u32 sq_psn;
1259 u32 dest_qp_num;
1260 int qp_access_flags;
1261 struct ib_qp_cap cap;
1262 struct rdma_ah_attr ah_attr;
1263 struct rdma_ah_attr alt_ah_attr;
1264 u16 pkey_index;
1265 u16 alt_pkey_index;
1266 u8 en_sqd_async_notify;
1267 u8 sq_draining;
1268 u8 max_rd_atomic;
1269 u8 max_dest_rd_atomic;
1270 u8 min_rnr_timer;
1271 u8 port_num;
1272 u8 timeout;
1273 u8 retry_cnt;
1274 u8 rnr_retry;
1275 u8 alt_port_num;
1276 u8 alt_timeout;
1277 u32 rate_limit;
1278};
1279
1280enum ib_wr_opcode {
1281 /* These are shared with userspace */
1282 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1283 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1284 IB_WR_SEND = IB_UVERBS_WR_SEND,
1285 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1286 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1287 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1288 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1289 IB_WR_LSO = IB_UVERBS_WR_TSO,
1290 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1291 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1292 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1293 IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1294 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1295 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1296 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1297
1298 /* These are kernel only and can not be issued by userspace */
1299 IB_WR_REG_MR = 0x20,
1300 IB_WR_REG_SIG_MR,
1301
1302 /* reserve values for low level drivers' internal use.
1303 * These values will not be used at all in the ib core layer.
1304 */
1305 IB_WR_RESERVED1 = 0xf0,
1306 IB_WR_RESERVED2,
1307 IB_WR_RESERVED3,
1308 IB_WR_RESERVED4,
1309 IB_WR_RESERVED5,
1310 IB_WR_RESERVED6,
1311 IB_WR_RESERVED7,
1312 IB_WR_RESERVED8,
1313 IB_WR_RESERVED9,
1314 IB_WR_RESERVED10,
1315};
1316
1317enum ib_send_flags {
1318 IB_SEND_FENCE = 1,
1319 IB_SEND_SIGNALED = (1<<1),
1320 IB_SEND_SOLICITED = (1<<2),
1321 IB_SEND_INLINE = (1<<3),
1322 IB_SEND_IP_CSUM = (1<<4),
1323
1324 /* reserve bits 26-31 for low level drivers' internal use */
1325 IB_SEND_RESERVED_START = (1 << 26),
1326 IB_SEND_RESERVED_END = (1 << 31),
1327};
1328
1329struct ib_sge {
1330 u64 addr;
1331 u32 length;
1332 u32 lkey;
1333};
1334
1335struct ib_cqe {
1336 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1337};
1338
1339struct ib_send_wr {
1340 struct ib_send_wr *next;
1341 union {
1342 u64 wr_id;
1343 struct ib_cqe *wr_cqe;
1344 };
1345 struct ib_sge *sg_list;
1346 int num_sge;
1347 enum ib_wr_opcode opcode;
1348 int send_flags;
1349 union {
1350 __be32 imm_data;
1351 u32 invalidate_rkey;
1352 } ex;
1353};
1354
1355struct ib_rdma_wr {
1356 struct ib_send_wr wr;
1357 u64 remote_addr;
1358 u32 rkey;
1359};
1360
1361static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1362{
1363 return container_of(wr, struct ib_rdma_wr, wr);
1364}
1365
1366struct ib_atomic_wr {
1367 struct ib_send_wr wr;
1368 u64 remote_addr;
1369 u64 compare_add;
1370 u64 swap;
1371 u64 compare_add_mask;
1372 u64 swap_mask;
1373 u32 rkey;
1374};
1375
1376static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1377{
1378 return container_of(wr, struct ib_atomic_wr, wr);
1379}
1380
1381struct ib_ud_wr {
1382 struct ib_send_wr wr;
1383 struct ib_ah *ah;
1384 void *header;
1385 int hlen;
1386 int mss;
1387 u32 remote_qpn;
1388 u32 remote_qkey;
1389 u16 pkey_index; /* valid for GSI only */
1390 u8 port_num; /* valid for DR SMPs on switch only */
1391};
1392
1393static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1394{
1395 return container_of(wr, struct ib_ud_wr, wr);
1396}
1397
1398struct ib_reg_wr {
1399 struct ib_send_wr wr;
1400 struct ib_mr *mr;
1401 u32 key;
1402 int access;
1403};
1404
1405static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1406{
1407 return container_of(wr, struct ib_reg_wr, wr);
1408}
1409
1410struct ib_sig_handover_wr {
1411 struct ib_send_wr wr;
1412 struct ib_sig_attrs *sig_attrs;
1413 struct ib_mr *sig_mr;
1414 int access_flags;
1415 struct ib_sge *prot;
1416};
1417
1418static inline const struct ib_sig_handover_wr *
1419sig_handover_wr(const struct ib_send_wr *wr)
1420{
1421 return container_of(wr, struct ib_sig_handover_wr, wr);
1422}
1423
1424struct ib_recv_wr {
1425 struct ib_recv_wr *next;
1426 union {
1427 u64 wr_id;
1428 struct ib_cqe *wr_cqe;
1429 };
1430 struct ib_sge *sg_list;
1431 int num_sge;
1432};
1433
1434enum ib_access_flags {
1435 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1436 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1437 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1438 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1439 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1440 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1441 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1442 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1443
1444 IB_ACCESS_SUPPORTED = ((IB_ACCESS_HUGETLB << 1) - 1)
1445};
1446
1447/*
1448 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1449 * are hidden here instead of a uapi header!
1450 */
1451enum ib_mr_rereg_flags {
1452 IB_MR_REREG_TRANS = 1,
1453 IB_MR_REREG_PD = (1<<1),
1454 IB_MR_REREG_ACCESS = (1<<2),
1455 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1456};
1457
1458struct ib_fmr_attr {
1459 int max_pages;
1460 int max_maps;
1461 u8 page_shift;
1462};
1463
1464struct ib_umem;
1465
1466enum rdma_remove_reason {
1467 /*
1468 * Userspace requested uobject deletion or initial try
1469 * to remove uobject via cleanup. Call could fail
1470 */
1471 RDMA_REMOVE_DESTROY,
1472 /* Context deletion. This call should delete the actual object itself */
1473 RDMA_REMOVE_CLOSE,
1474 /* Driver is being hot-unplugged. This call should delete the actual object itself */
1475 RDMA_REMOVE_DRIVER_REMOVE,
1476 /* uobj is being cleaned-up before being committed */
1477 RDMA_REMOVE_ABORT,
1478};
1479
1480struct ib_rdmacg_object {
1481#ifdef CONFIG_CGROUP_RDMA
1482 struct rdma_cgroup *cg; /* owner rdma cgroup */
1483#endif
1484};
1485
1486struct ib_ucontext {
1487 struct ib_device *device;
1488 struct ib_uverbs_file *ufile;
1489 /*
1490 * 'closing' can be read by the driver only during a destroy callback,
1491 * it is set when we are closing the file descriptor and indicates
1492 * that mm_sem may be locked.
1493 */
1494 int closing;
1495
1496 bool cleanup_retryable;
1497
1498 struct pid *tgid;
1499#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1500 struct rb_root_cached umem_tree;
1501 /*
1502 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1503 * mmu notifiers registration.
1504 */
1505 struct rw_semaphore umem_rwsem;
1506 void (*invalidate_range)(struct ib_umem *umem,
1507 unsigned long start, unsigned long end);
1508
1509 struct mmu_notifier mn;
1510 atomic_t notifier_count;
1511 /* A list of umems that don't have private mmu notifier counters yet. */
1512 struct list_head no_private_counters;
1513 int odp_mrs_count;
1514#endif
1515
1516 struct ib_rdmacg_object cg_obj;
1517};
1518
1519struct ib_uobject {
1520 u64 user_handle; /* handle given to us by userspace */
1521 /* ufile & ucontext owning this object */
1522 struct ib_uverbs_file *ufile;
1523 /* FIXME, save memory: ufile->context == context */
1524 struct ib_ucontext *context; /* associated user context */
1525 void *object; /* containing object */
1526 struct list_head list; /* link to context's list */
1527 struct ib_rdmacg_object cg_obj; /* rdmacg object */
1528 int id; /* index into kernel idr */
1529 struct kref ref;
1530 atomic_t usecnt; /* protects exclusive access */
1531 struct rcu_head rcu; /* kfree_rcu() overhead */
1532
1533 const struct uverbs_api_object *uapi_object;
1534};
1535
1536struct ib_udata {
1537 const void __user *inbuf;
1538 void __user *outbuf;
1539 size_t inlen;
1540 size_t outlen;
1541};
1542
1543struct ib_pd {
1544 u32 local_dma_lkey;
1545 u32 flags;
1546 struct ib_device *device;
1547 struct ib_uobject *uobject;
1548 atomic_t usecnt; /* count all resources */
1549
1550 u32 unsafe_global_rkey;
1551
1552 /*
1553 * Implementation details of the RDMA core, don't use in drivers:
1554 */
1555 struct ib_mr *__internal_mr;
1556 struct rdma_restrack_entry res;
1557};
1558
1559struct ib_xrcd {
1560 struct ib_device *device;
1561 atomic_t usecnt; /* count all exposed resources */
1562 struct inode *inode;
1563
1564 struct mutex tgt_qp_mutex;
1565 struct list_head tgt_qp_list;
1566};
1567
1568struct ib_ah {
1569 struct ib_device *device;
1570 struct ib_pd *pd;
1571 struct ib_uobject *uobject;
1572 const struct ib_gid_attr *sgid_attr;
1573 enum rdma_ah_attr_type type;
1574};
1575
1576typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1577
1578enum ib_poll_context {
1579 IB_POLL_DIRECT, /* caller context, no hw completions */
1580 IB_POLL_SOFTIRQ, /* poll from softirq context */
1581 IB_POLL_WORKQUEUE, /* poll from workqueue */
1582};
1583
1584struct ib_cq {
1585 struct ib_device *device;
1586 struct ib_uobject *uobject;
1587 ib_comp_handler comp_handler;
1588 void (*event_handler)(struct ib_event *, void *);
1589 void *cq_context;
1590 int cqe;
1591 atomic_t usecnt; /* count number of work queues */
1592 enum ib_poll_context poll_ctx;
1593 struct ib_wc *wc;
1594 union {
1595 struct irq_poll iop;
1596 struct work_struct work;
1597 };
1598 /*
1599 * Implementation details of the RDMA core, don't use in drivers:
1600 */
1601 struct rdma_restrack_entry res;
1602};
1603
1604struct ib_srq {
1605 struct ib_device *device;
1606 struct ib_pd *pd;
1607 struct ib_uobject *uobject;
1608 void (*event_handler)(struct ib_event *, void *);
1609 void *srq_context;
1610 enum ib_srq_type srq_type;
1611 atomic_t usecnt;
1612
1613 struct {
1614 struct ib_cq *cq;
1615 union {
1616 struct {
1617 struct ib_xrcd *xrcd;
1618 u32 srq_num;
1619 } xrc;
1620 };
1621 } ext;
1622};
1623
1624enum ib_raw_packet_caps {
1625 /* Strip cvlan from incoming packet and report it in the matching work
1626 * completion is supported.
1627 */
1628 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = (1 << 0),
1629 /* Scatter FCS field of an incoming packet to host memory is supported.
1630 */
1631 IB_RAW_PACKET_CAP_SCATTER_FCS = (1 << 1),
1632 /* Checksum offloads are supported (for both send and receive). */
1633 IB_RAW_PACKET_CAP_IP_CSUM = (1 << 2),
1634 /* When a packet is received for an RQ with no receive WQEs, the
1635 * packet processing is delayed.
1636 */
1637 IB_RAW_PACKET_CAP_DELAY_DROP = (1 << 3),
1638};
1639
1640enum ib_wq_type {
1641 IB_WQT_RQ
1642};
1643
1644enum ib_wq_state {
1645 IB_WQS_RESET,
1646 IB_WQS_RDY,
1647 IB_WQS_ERR
1648};
1649
1650struct ib_wq {
1651 struct ib_device *device;
1652 struct ib_uobject *uobject;
1653 void *wq_context;
1654 void (*event_handler)(struct ib_event *, void *);
1655 struct ib_pd *pd;
1656 struct ib_cq *cq;
1657 u32 wq_num;
1658 enum ib_wq_state state;
1659 enum ib_wq_type wq_type;
1660 atomic_t usecnt;
1661};
1662
1663enum ib_wq_flags {
1664 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0,
1665 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1,
1666 IB_WQ_FLAGS_DELAY_DROP = 1 << 2,
1667 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3,
1668};
1669
1670struct ib_wq_init_attr {
1671 void *wq_context;
1672 enum ib_wq_type wq_type;
1673 u32 max_wr;
1674 u32 max_sge;
1675 struct ib_cq *cq;
1676 void (*event_handler)(struct ib_event *, void *);
1677 u32 create_flags; /* Use enum ib_wq_flags */
1678};
1679
1680enum ib_wq_attr_mask {
1681 IB_WQ_STATE = 1 << 0,
1682 IB_WQ_CUR_STATE = 1 << 1,
1683 IB_WQ_FLAGS = 1 << 2,
1684};
1685
1686struct ib_wq_attr {
1687 enum ib_wq_state wq_state;
1688 enum ib_wq_state curr_wq_state;
1689 u32 flags; /* Use enum ib_wq_flags */
1690 u32 flags_mask; /* Use enum ib_wq_flags */
1691};
1692
1693struct ib_rwq_ind_table {
1694 struct ib_device *device;
1695 struct ib_uobject *uobject;
1696 atomic_t usecnt;
1697 u32 ind_tbl_num;
1698 u32 log_ind_tbl_size;
1699 struct ib_wq **ind_tbl;
1700};
1701
1702struct ib_rwq_ind_table_init_attr {
1703 u32 log_ind_tbl_size;
1704 /* Each entry is a pointer to Receive Work Queue */
1705 struct ib_wq **ind_tbl;
1706};
1707
1708enum port_pkey_state {
1709 IB_PORT_PKEY_NOT_VALID = 0,
1710 IB_PORT_PKEY_VALID = 1,
1711 IB_PORT_PKEY_LISTED = 2,
1712};
1713
1714struct ib_qp_security;
1715
1716struct ib_port_pkey {
1717 enum port_pkey_state state;
1718 u16 pkey_index;
1719 u8 port_num;
1720 struct list_head qp_list;
1721 struct list_head to_error_list;
1722 struct ib_qp_security *sec;
1723};
1724
1725struct ib_ports_pkeys {
1726 struct ib_port_pkey main;
1727 struct ib_port_pkey alt;
1728};
1729
1730struct ib_qp_security {
1731 struct ib_qp *qp;
1732 struct ib_device *dev;
1733 /* Hold this mutex when changing port and pkey settings. */
1734 struct mutex mutex;
1735 struct ib_ports_pkeys *ports_pkeys;
1736 /* A list of all open shared QP handles. Required to enforce security
1737 * properly for all users of a shared QP.
1738 */
1739 struct list_head shared_qp_list;
1740 void *security;
1741 bool destroying;
1742 atomic_t error_list_count;
1743 struct completion error_complete;
1744 int error_comps_pending;
1745};
1746
1747/*
1748 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1749 * @max_read_sge: Maximum SGE elements per RDMA READ request.
1750 */
1751struct ib_qp {
1752 struct ib_device *device;
1753 struct ib_pd *pd;
1754 struct ib_cq *send_cq;
1755 struct ib_cq *recv_cq;
1756 spinlock_t mr_lock;
1757 int mrs_used;
1758 struct list_head rdma_mrs;
1759 struct list_head sig_mrs;
1760 struct ib_srq *srq;
1761 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1762 struct list_head xrcd_list;
1763
1764 /* count times opened, mcast attaches, flow attaches */
1765 atomic_t usecnt;
1766 struct list_head open_list;
1767 struct ib_qp *real_qp;
1768 struct ib_uobject *uobject;
1769 void (*event_handler)(struct ib_event *, void *);
1770 void *qp_context;
1771 /* sgid_attrs associated with the AV's */
1772 const struct ib_gid_attr *av_sgid_attr;
1773 const struct ib_gid_attr *alt_path_sgid_attr;
1774 u32 qp_num;
1775 u32 max_write_sge;
1776 u32 max_read_sge;
1777 enum ib_qp_type qp_type;
1778 struct ib_rwq_ind_table *rwq_ind_tbl;
1779 struct ib_qp_security *qp_sec;
1780 u8 port;
1781
1782 /*
1783 * Implementation details of the RDMA core, don't use in drivers:
1784 */
1785 struct rdma_restrack_entry res;
1786};
1787
1788struct ib_dm {
1789 struct ib_device *device;
1790 u32 length;
1791 u32 flags;
1792 struct ib_uobject *uobject;
1793 atomic_t usecnt;
1794};
1795
1796struct ib_mr {
1797 struct ib_device *device;
1798 struct ib_pd *pd;
1799 u32 lkey;
1800 u32 rkey;
1801 u64 iova;
1802 u64 length;
1803 unsigned int page_size;
1804 bool need_inval;
1805 union {
1806 struct ib_uobject *uobject; /* user */
1807 struct list_head qp_entry; /* FR */
1808 };
1809
1810 struct ib_dm *dm;
1811
1812 /*
1813 * Implementation details of the RDMA core, don't use in drivers:
1814 */
1815 struct rdma_restrack_entry res;
1816};
1817
1818struct ib_mw {
1819 struct ib_device *device;
1820 struct ib_pd *pd;
1821 struct ib_uobject *uobject;
1822 u32 rkey;
1823 enum ib_mw_type type;
1824};
1825
1826struct ib_fmr {
1827 struct ib_device *device;
1828 struct ib_pd *pd;
1829 struct list_head list;
1830 u32 lkey;
1831 u32 rkey;
1832};
1833
1834/* Supported steering options */
1835enum ib_flow_attr_type {
1836 /* steering according to rule specifications */
1837 IB_FLOW_ATTR_NORMAL = 0x0,
1838 /* default unicast and multicast rule -
1839 * receive all Eth traffic which isn't steered to any QP
1840 */
1841 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1842 /* default multicast rule -
1843 * receive all Eth multicast traffic which isn't steered to any QP
1844 */
1845 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1846 /* sniffer rule - receive all port traffic */
1847 IB_FLOW_ATTR_SNIFFER = 0x3
1848};
1849
1850/* Supported steering header types */
1851enum ib_flow_spec_type {
1852 /* L2 headers*/
1853 IB_FLOW_SPEC_ETH = 0x20,
1854 IB_FLOW_SPEC_IB = 0x22,
1855 /* L3 header*/
1856 IB_FLOW_SPEC_IPV4 = 0x30,
1857 IB_FLOW_SPEC_IPV6 = 0x31,
1858 IB_FLOW_SPEC_ESP = 0x34,
1859 /* L4 headers*/
1860 IB_FLOW_SPEC_TCP = 0x40,
1861 IB_FLOW_SPEC_UDP = 0x41,
1862 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1863 IB_FLOW_SPEC_GRE = 0x51,
1864 IB_FLOW_SPEC_MPLS = 0x60,
1865 IB_FLOW_SPEC_INNER = 0x100,
1866 /* Actions */
1867 IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1868 IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1869 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1870 IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1871};
1872#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1873#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1874
1875/* Flow steering rule priority is set according to it's domain.
1876 * Lower domain value means higher priority.
1877 */
1878enum ib_flow_domain {
1879 IB_FLOW_DOMAIN_USER,
1880 IB_FLOW_DOMAIN_ETHTOOL,
1881 IB_FLOW_DOMAIN_RFS,
1882 IB_FLOW_DOMAIN_NIC,
1883 IB_FLOW_DOMAIN_NUM /* Must be last */
1884};
1885
1886enum ib_flow_flags {
1887 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1888 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1889 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1890};
1891
1892struct ib_flow_eth_filter {
1893 u8 dst_mac[6];
1894 u8 src_mac[6];
1895 __be16 ether_type;
1896 __be16 vlan_tag;
1897 /* Must be last */
1898 u8 real_sz[0];
1899};
1900
1901struct ib_flow_spec_eth {
1902 u32 type;
1903 u16 size;
1904 struct ib_flow_eth_filter val;
1905 struct ib_flow_eth_filter mask;
1906};
1907
1908struct ib_flow_ib_filter {
1909 __be16 dlid;
1910 __u8 sl;
1911 /* Must be last */
1912 u8 real_sz[0];
1913};
1914
1915struct ib_flow_spec_ib {
1916 u32 type;
1917 u16 size;
1918 struct ib_flow_ib_filter val;
1919 struct ib_flow_ib_filter mask;
1920};
1921
1922/* IPv4 header flags */
1923enum ib_ipv4_flags {
1924 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1925 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1926 last have this flag set */
1927};
1928
1929struct ib_flow_ipv4_filter {
1930 __be32 src_ip;
1931 __be32 dst_ip;
1932 u8 proto;
1933 u8 tos;
1934 u8 ttl;
1935 u8 flags;
1936 /* Must be last */
1937 u8 real_sz[0];
1938};
1939
1940struct ib_flow_spec_ipv4 {
1941 u32 type;
1942 u16 size;
1943 struct ib_flow_ipv4_filter val;
1944 struct ib_flow_ipv4_filter mask;
1945};
1946
1947struct ib_flow_ipv6_filter {
1948 u8 src_ip[16];
1949 u8 dst_ip[16];
1950 __be32 flow_label;
1951 u8 next_hdr;
1952 u8 traffic_class;
1953 u8 hop_limit;
1954 /* Must be last */
1955 u8 real_sz[0];
1956};
1957
1958struct ib_flow_spec_ipv6 {
1959 u32 type;
1960 u16 size;
1961 struct ib_flow_ipv6_filter val;
1962 struct ib_flow_ipv6_filter mask;
1963};
1964
1965struct ib_flow_tcp_udp_filter {
1966 __be16 dst_port;
1967 __be16 src_port;
1968 /* Must be last */
1969 u8 real_sz[0];
1970};
1971
1972struct ib_flow_spec_tcp_udp {
1973 u32 type;
1974 u16 size;
1975 struct ib_flow_tcp_udp_filter val;
1976 struct ib_flow_tcp_udp_filter mask;
1977};
1978
1979struct ib_flow_tunnel_filter {
1980 __be32 tunnel_id;
1981 u8 real_sz[0];
1982};
1983
1984/* ib_flow_spec_tunnel describes the Vxlan tunnel
1985 * the tunnel_id from val has the vni value
1986 */
1987struct ib_flow_spec_tunnel {
1988 u32 type;
1989 u16 size;
1990 struct ib_flow_tunnel_filter val;
1991 struct ib_flow_tunnel_filter mask;
1992};
1993
1994struct ib_flow_esp_filter {
1995 __be32 spi;
1996 __be32 seq;
1997 /* Must be last */
1998 u8 real_sz[0];
1999};
2000
2001struct ib_flow_spec_esp {
2002 u32 type;
2003 u16 size;
2004 struct ib_flow_esp_filter val;
2005 struct ib_flow_esp_filter mask;
2006};
2007
2008struct ib_flow_gre_filter {
2009 __be16 c_ks_res0_ver;
2010 __be16 protocol;
2011 __be32 key;
2012 /* Must be last */
2013 u8 real_sz[0];
2014};
2015
2016struct ib_flow_spec_gre {
2017 u32 type;
2018 u16 size;
2019 struct ib_flow_gre_filter val;
2020 struct ib_flow_gre_filter mask;
2021};
2022
2023struct ib_flow_mpls_filter {
2024 __be32 tag;
2025 /* Must be last */
2026 u8 real_sz[0];
2027};
2028
2029struct ib_flow_spec_mpls {
2030 u32 type;
2031 u16 size;
2032 struct ib_flow_mpls_filter val;
2033 struct ib_flow_mpls_filter mask;
2034};
2035
2036struct ib_flow_spec_action_tag {
2037 enum ib_flow_spec_type type;
2038 u16 size;
2039 u32 tag_id;
2040};
2041
2042struct ib_flow_spec_action_drop {
2043 enum ib_flow_spec_type type;
2044 u16 size;
2045};
2046
2047struct ib_flow_spec_action_handle {
2048 enum ib_flow_spec_type type;
2049 u16 size;
2050 struct ib_flow_action *act;
2051};
2052
2053enum ib_counters_description {
2054 IB_COUNTER_PACKETS,
2055 IB_COUNTER_BYTES,
2056};
2057
2058struct ib_flow_spec_action_count {
2059 enum ib_flow_spec_type type;
2060 u16 size;
2061 struct ib_counters *counters;
2062};
2063
2064union ib_flow_spec {
2065 struct {
2066 u32 type;
2067 u16 size;
2068 };
2069 struct ib_flow_spec_eth eth;
2070 struct ib_flow_spec_ib ib;
2071 struct ib_flow_spec_ipv4 ipv4;
2072 struct ib_flow_spec_tcp_udp tcp_udp;
2073 struct ib_flow_spec_ipv6 ipv6;
2074 struct ib_flow_spec_tunnel tunnel;
2075 struct ib_flow_spec_esp esp;
2076 struct ib_flow_spec_gre gre;
2077 struct ib_flow_spec_mpls mpls;
2078 struct ib_flow_spec_action_tag flow_tag;
2079 struct ib_flow_spec_action_drop drop;
2080 struct ib_flow_spec_action_handle action;
2081 struct ib_flow_spec_action_count flow_count;
2082};
2083
2084struct ib_flow_attr {
2085 enum ib_flow_attr_type type;
2086 u16 size;
2087 u16 priority;
2088 u32 flags;
2089 u8 num_of_specs;
2090 u8 port;
2091 union ib_flow_spec flows[];
2092};
2093
2094struct ib_flow {
2095 struct ib_qp *qp;
2096 struct ib_device *device;
2097 struct ib_uobject *uobject;
2098};
2099
2100enum ib_flow_action_type {
2101 IB_FLOW_ACTION_UNSPECIFIED,
2102 IB_FLOW_ACTION_ESP = 1,
2103};
2104
2105struct ib_flow_action_attrs_esp_keymats {
2106 enum ib_uverbs_flow_action_esp_keymat protocol;
2107 union {
2108 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2109 } keymat;
2110};
2111
2112struct ib_flow_action_attrs_esp_replays {
2113 enum ib_uverbs_flow_action_esp_replay protocol;
2114 union {
2115 struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2116 } replay;
2117};
2118
2119enum ib_flow_action_attrs_esp_flags {
2120 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2121 * This is done in order to share the same flags between user-space and
2122 * kernel and spare an unnecessary translation.
2123 */
2124
2125 /* Kernel flags */
2126 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2127 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2128};
2129
2130struct ib_flow_spec_list {
2131 struct ib_flow_spec_list *next;
2132 union ib_flow_spec spec;
2133};
2134
2135struct ib_flow_action_attrs_esp {
2136 struct ib_flow_action_attrs_esp_keymats *keymat;
2137 struct ib_flow_action_attrs_esp_replays *replay;
2138 struct ib_flow_spec_list *encap;
2139 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2140 * Value of 0 is a valid value.
2141 */
2142 u32 esn;
2143 u32 spi;
2144 u32 seq;
2145 u32 tfc_pad;
2146 /* Use enum ib_flow_action_attrs_esp_flags */
2147 u64 flags;
2148 u64 hard_limit_pkts;
2149};
2150
2151struct ib_flow_action {
2152 struct ib_device *device;
2153 struct ib_uobject *uobject;
2154 enum ib_flow_action_type type;
2155 atomic_t usecnt;
2156};
2157
2158struct ib_mad_hdr;
2159struct ib_grh;
2160
2161enum ib_process_mad_flags {
2162 IB_MAD_IGNORE_MKEY = 1,
2163 IB_MAD_IGNORE_BKEY = 2,
2164 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2165};
2166
2167enum ib_mad_result {
2168 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2169 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2170 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2171 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2172};
2173
2174struct ib_port_cache {
2175 u64 subnet_prefix;
2176 struct ib_pkey_cache *pkey;
2177 struct ib_gid_table *gid;
2178 u8 lmc;
2179 enum ib_port_state port_state;
2180};
2181
2182struct ib_cache {
2183 rwlock_t lock;
2184 struct ib_event_handler event_handler;
2185 struct ib_port_cache *ports;
2186};
2187
2188struct iw_cm_verbs;
2189
2190struct ib_port_immutable {
2191 int pkey_tbl_len;
2192 int gid_tbl_len;
2193 u32 core_cap_flags;
2194 u32 max_mad_size;
2195};
2196
2197/* rdma netdev type - specifies protocol type */
2198enum rdma_netdev_t {
2199 RDMA_NETDEV_OPA_VNIC,
2200 RDMA_NETDEV_IPOIB,
2201};
2202
2203/**
2204 * struct rdma_netdev - rdma netdev
2205 * For cases where netstack interfacing is required.
2206 */
2207struct rdma_netdev {
2208 void *clnt_priv;
2209 struct ib_device *hca;
2210 u8 port_num;
2211
2212 /*
2213 * cleanup function must be specified.
2214 * FIXME: This is only used for OPA_VNIC and that usage should be
2215 * removed too.
2216 */
2217 void (*free_rdma_netdev)(struct net_device *netdev);
2218
2219 /* control functions */
2220 void (*set_id)(struct net_device *netdev, int id);
2221 /* send packet */
2222 int (*send)(struct net_device *dev, struct sk_buff *skb,
2223 struct ib_ah *address, u32 dqpn);
2224 /* multicast */
2225 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2226 union ib_gid *gid, u16 mlid,
2227 int set_qkey, u32 qkey);
2228 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2229 union ib_gid *gid, u16 mlid);
2230};
2231
2232struct ib_port_pkey_list {
2233 /* Lock to hold while modifying the list. */
2234 spinlock_t list_lock;
2235 struct list_head pkey_list;
2236};
2237
2238struct ib_counters {
2239 struct ib_device *device;
2240 struct ib_uobject *uobject;
2241 /* num of objects attached */
2242 atomic_t usecnt;
2243};
2244
2245struct ib_counters_read_attr {
2246 u64 *counters_buff;
2247 u32 ncounters;
2248 u32 flags; /* use enum ib_read_counters_flags */
2249};
2250
2251struct uverbs_attr_bundle;
2252
2253struct ib_device {
2254 /* Do not access @dma_device directly from ULP nor from HW drivers. */
2255 struct device *dma_device;
2256
2257 char name[IB_DEVICE_NAME_MAX];
2258
2259 struct list_head event_handler_list;
2260 spinlock_t event_handler_lock;
2261
2262 spinlock_t client_data_lock;
2263 struct list_head core_list;
2264 /* Access to the client_data_list is protected by the client_data_lock
2265 * spinlock and the lists_rwsem read-write semaphore */
2266 struct list_head client_data_list;
2267
2268 struct ib_cache cache;
2269 /**
2270 * port_immutable is indexed by port number
2271 */
2272 struct ib_port_immutable *port_immutable;
2273
2274 int num_comp_vectors;
2275
2276 struct ib_port_pkey_list *port_pkey_list;
2277
2278 struct iw_cm_verbs *iwcm;
2279
2280 /**
2281 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the
2282 * driver initialized data. The struct is kfree()'ed by the sysfs
2283 * core when the device is removed. A lifespan of -1 in the return
2284 * struct tells the core to set a default lifespan.
2285 */
2286 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device,
2287 u8 port_num);
2288 /**
2289 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2290 * @index - The index in the value array we wish to have updated, or
2291 * num_counters if we want all stats updated
2292 * Return codes -
2293 * < 0 - Error, no counters updated
2294 * index - Updated the single counter pointed to by index
2295 * num_counters - Updated all counters (will reset the timestamp
2296 * and prevent further calls for lifespan milliseconds)
2297 * Drivers are allowed to update all counters in leiu of just the
2298 * one given in index at their option
2299 */
2300 int (*get_hw_stats)(struct ib_device *device,
2301 struct rdma_hw_stats *stats,
2302 u8 port, int index);
2303 int (*query_device)(struct ib_device *device,
2304 struct ib_device_attr *device_attr,
2305 struct ib_udata *udata);
2306 int (*query_port)(struct ib_device *device,
2307 u8 port_num,
2308 struct ib_port_attr *port_attr);
2309 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2310 u8 port_num);
2311 /* When calling get_netdev, the HW vendor's driver should return the
2312 * net device of device @device at port @port_num or NULL if such
2313 * a net device doesn't exist. The vendor driver should call dev_hold
2314 * on this net device. The HW vendor's device driver must guarantee
2315 * that this function returns NULL before the net device has finished
2316 * NETDEV_UNREGISTER state.
2317 */
2318 struct net_device *(*get_netdev)(struct ib_device *device,
2319 u8 port_num);
2320 /* query_gid should be return GID value for @device, when @port_num
2321 * link layer is either IB or iWarp. It is no-op if @port_num port
2322 * is RoCE link layer.
2323 */
2324 int (*query_gid)(struct ib_device *device,
2325 u8 port_num, int index,
2326 union ib_gid *gid);
2327 /* When calling add_gid, the HW vendor's driver should add the gid
2328 * of device of port at gid index available at @attr. Meta-info of
2329 * that gid (for example, the network device related to this gid) is
2330 * available at @attr. @context allows the HW vendor driver to store
2331 * extra information together with a GID entry. The HW vendor driver may
2332 * allocate memory to contain this information and store it in @context
2333 * when a new GID entry is written to. Params are consistent until the
2334 * next call of add_gid or delete_gid. The function should return 0 on
2335 * success or error otherwise. The function could be called
2336 * concurrently for different ports. This function is only called when
2337 * roce_gid_table is used.
2338 */
2339 int (*add_gid)(const struct ib_gid_attr *attr,
2340 void **context);
2341 /* When calling del_gid, the HW vendor's driver should delete the
2342 * gid of device @device at gid index gid_index of port port_num
2343 * available in @attr.
2344 * Upon the deletion of a GID entry, the HW vendor must free any
2345 * allocated memory. The caller will clear @context afterwards.
2346 * This function is only called when roce_gid_table is used.
2347 */
2348 int (*del_gid)(const struct ib_gid_attr *attr,
2349 void **context);
2350 int (*query_pkey)(struct ib_device *device,
2351 u8 port_num, u16 index, u16 *pkey);
2352 int (*modify_device)(struct ib_device *device,
2353 int device_modify_mask,
2354 struct ib_device_modify *device_modify);
2355 int (*modify_port)(struct ib_device *device,
2356 u8 port_num, int port_modify_mask,
2357 struct ib_port_modify *port_modify);
2358 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
2359 struct ib_udata *udata);
2360 int (*dealloc_ucontext)(struct ib_ucontext *context);
2361 int (*mmap)(struct ib_ucontext *context,
2362 struct vm_area_struct *vma);
2363 struct ib_pd * (*alloc_pd)(struct ib_device *device,
2364 struct ib_ucontext *context,
2365 struct ib_udata *udata);
2366 int (*dealloc_pd)(struct ib_pd *pd);
2367 struct ib_ah * (*create_ah)(struct ib_pd *pd,
2368 struct rdma_ah_attr *ah_attr,
2369 struct ib_udata *udata);
2370 int (*modify_ah)(struct ib_ah *ah,
2371 struct rdma_ah_attr *ah_attr);
2372 int (*query_ah)(struct ib_ah *ah,
2373 struct rdma_ah_attr *ah_attr);
2374 int (*destroy_ah)(struct ib_ah *ah);
2375 struct ib_srq * (*create_srq)(struct ib_pd *pd,
2376 struct ib_srq_init_attr *srq_init_attr,
2377 struct ib_udata *udata);
2378 int (*modify_srq)(struct ib_srq *srq,
2379 struct ib_srq_attr *srq_attr,
2380 enum ib_srq_attr_mask srq_attr_mask,
2381 struct ib_udata *udata);
2382 int (*query_srq)(struct ib_srq *srq,
2383 struct ib_srq_attr *srq_attr);
2384 int (*destroy_srq)(struct ib_srq *srq);
2385 int (*post_srq_recv)(struct ib_srq *srq,
2386 const struct ib_recv_wr *recv_wr,
2387 const struct ib_recv_wr **bad_recv_wr);
2388 struct ib_qp * (*create_qp)(struct ib_pd *pd,
2389 struct ib_qp_init_attr *qp_init_attr,
2390 struct ib_udata *udata);
2391 int (*modify_qp)(struct ib_qp *qp,
2392 struct ib_qp_attr *qp_attr,
2393 int qp_attr_mask,
2394 struct ib_udata *udata);
2395 int (*query_qp)(struct ib_qp *qp,
2396 struct ib_qp_attr *qp_attr,
2397 int qp_attr_mask,
2398 struct ib_qp_init_attr *qp_init_attr);
2399 int (*destroy_qp)(struct ib_qp *qp);
2400 int (*post_send)(struct ib_qp *qp,
2401 const struct ib_send_wr *send_wr,
2402 const struct ib_send_wr **bad_send_wr);
2403 int (*post_recv)(struct ib_qp *qp,
2404 const struct ib_recv_wr *recv_wr,
2405 const struct ib_recv_wr **bad_recv_wr);
2406 struct ib_cq * (*create_cq)(struct ib_device *device,
2407 const struct ib_cq_init_attr *attr,
2408 struct ib_ucontext *context,
2409 struct ib_udata *udata);
2410 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
2411 u16 cq_period);
2412 int (*destroy_cq)(struct ib_cq *cq);
2413 int (*resize_cq)(struct ib_cq *cq, int cqe,
2414 struct ib_udata *udata);
2415 int (*poll_cq)(struct ib_cq *cq, int num_entries,
2416 struct ib_wc *wc);
2417 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2418 int (*req_notify_cq)(struct ib_cq *cq,
2419 enum ib_cq_notify_flags flags);
2420 int (*req_ncomp_notif)(struct ib_cq *cq,
2421 int wc_cnt);
2422 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
2423 int mr_access_flags);
2424 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
2425 u64 start, u64 length,
2426 u64 virt_addr,
2427 int mr_access_flags,
2428 struct ib_udata *udata);
2429 int (*rereg_user_mr)(struct ib_mr *mr,
2430 int flags,
2431 u64 start, u64 length,
2432 u64 virt_addr,
2433 int mr_access_flags,
2434 struct ib_pd *pd,
2435 struct ib_udata *udata);
2436 int (*dereg_mr)(struct ib_mr *mr);
2437 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
2438 enum ib_mr_type mr_type,
2439 u32 max_num_sg);
2440 int (*map_mr_sg)(struct ib_mr *mr,
2441 struct scatterlist *sg,
2442 int sg_nents,
2443 unsigned int *sg_offset);
2444 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
2445 enum ib_mw_type type,
2446 struct ib_udata *udata);
2447 int (*dealloc_mw)(struct ib_mw *mw);
2448 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
2449 int mr_access_flags,
2450 struct ib_fmr_attr *fmr_attr);
2451 int (*map_phys_fmr)(struct ib_fmr *fmr,
2452 u64 *page_list, int list_len,
2453 u64 iova);
2454 int (*unmap_fmr)(struct list_head *fmr_list);
2455 int (*dealloc_fmr)(struct ib_fmr *fmr);
2456 int (*attach_mcast)(struct ib_qp *qp,
2457 union ib_gid *gid,
2458 u16 lid);
2459 int (*detach_mcast)(struct ib_qp *qp,
2460 union ib_gid *gid,
2461 u16 lid);
2462 int (*process_mad)(struct ib_device *device,
2463 int process_mad_flags,
2464 u8 port_num,
2465 const struct ib_wc *in_wc,
2466 const struct ib_grh *in_grh,
2467 const struct ib_mad_hdr *in_mad,
2468 size_t in_mad_size,
2469 struct ib_mad_hdr *out_mad,
2470 size_t *out_mad_size,
2471 u16 *out_mad_pkey_index);
2472 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
2473 struct ib_ucontext *ucontext,
2474 struct ib_udata *udata);
2475 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
2476 struct ib_flow * (*create_flow)(struct ib_qp *qp,
2477 struct ib_flow_attr
2478 *flow_attr,
2479 int domain,
2480 struct ib_udata *udata);
2481 int (*destroy_flow)(struct ib_flow *flow_id);
2482 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2483 struct ib_mr_status *mr_status);
2484 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2485 void (*drain_rq)(struct ib_qp *qp);
2486 void (*drain_sq)(struct ib_qp *qp);
2487 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port,
2488 int state);
2489 int (*get_vf_config)(struct ib_device *device, int vf, u8 port,
2490 struct ifla_vf_info *ivf);
2491 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port,
2492 struct ifla_vf_stats *stats);
2493 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid,
2494 int type);
2495 struct ib_wq * (*create_wq)(struct ib_pd *pd,
2496 struct ib_wq_init_attr *init_attr,
2497 struct ib_udata *udata);
2498 int (*destroy_wq)(struct ib_wq *wq);
2499 int (*modify_wq)(struct ib_wq *wq,
2500 struct ib_wq_attr *attr,
2501 u32 wq_attr_mask,
2502 struct ib_udata *udata);
2503 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device,
2504 struct ib_rwq_ind_table_init_attr *init_attr,
2505 struct ib_udata *udata);
2506 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2507 struct ib_flow_action * (*create_flow_action_esp)(struct ib_device *device,
2508 const struct ib_flow_action_attrs_esp *attr,
2509 struct uverbs_attr_bundle *attrs);
2510 int (*destroy_flow_action)(struct ib_flow_action *action);
2511 int (*modify_flow_action_esp)(struct ib_flow_action *action,
2512 const struct ib_flow_action_attrs_esp *attr,
2513 struct uverbs_attr_bundle *attrs);
2514 struct ib_dm * (*alloc_dm)(struct ib_device *device,
2515 struct ib_ucontext *context,
2516 struct ib_dm_alloc_attr *attr,
2517 struct uverbs_attr_bundle *attrs);
2518 int (*dealloc_dm)(struct ib_dm *dm);
2519 struct ib_mr * (*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2520 struct ib_dm_mr_attr *attr,
2521 struct uverbs_attr_bundle *attrs);
2522 struct ib_counters * (*create_counters)(struct ib_device *device,
2523 struct uverbs_attr_bundle *attrs);
2524 int (*destroy_counters)(struct ib_counters *counters);
2525 int (*read_counters)(struct ib_counters *counters,
2526 struct ib_counters_read_attr *counters_read_attr,
2527 struct uverbs_attr_bundle *attrs);
2528
2529 /**
2530 * rdma netdev operation
2531 *
2532 * Driver implementing alloc_rdma_netdev must return -EOPNOTSUPP if it
2533 * doesn't support the specified rdma netdev type.
2534 */
2535 struct net_device *(*alloc_rdma_netdev)(
2536 struct ib_device *device,
2537 u8 port_num,
2538 enum rdma_netdev_t type,
2539 const char *name,
2540 unsigned char name_assign_type,
2541 void (*setup)(struct net_device *));
2542
2543 struct module *owner;
2544 struct device dev;
2545 struct kobject *ports_parent;
2546 struct list_head port_list;
2547
2548 enum {
2549 IB_DEV_UNINITIALIZED,
2550 IB_DEV_REGISTERED,
2551 IB_DEV_UNREGISTERED
2552 } reg_state;
2553
2554 int uverbs_abi_ver;
2555 u64 uverbs_cmd_mask;
2556 u64 uverbs_ex_cmd_mask;
2557
2558 char node_desc[IB_DEVICE_NODE_DESC_MAX];
2559 __be64 node_guid;
2560 u32 local_dma_lkey;
2561 u16 is_switch:1;
2562 u8 node_type;
2563 u8 phys_port_cnt;
2564 struct ib_device_attr attrs;
2565 struct attribute_group *hw_stats_ag;
2566 struct rdma_hw_stats *hw_stats;
2567
2568#ifdef CONFIG_CGROUP_RDMA
2569 struct rdmacg_device cg_device;
2570#endif
2571
2572 u32 index;
2573 /*
2574 * Implementation details of the RDMA core, don't use in drivers
2575 */
2576 struct rdma_restrack_root res;
2577
2578 /**
2579 * The following mandatory functions are used only at device
2580 * registration. Keep functions such as these at the end of this
2581 * structure to avoid cache line misses when accessing struct ib_device
2582 * in fast paths.
2583 */
2584 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
2585 void (*get_dev_fw_str)(struct ib_device *, char *str);
2586 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2587 int comp_vector);
2588
2589 const struct uverbs_object_tree_def *const *driver_specs;
2590 enum rdma_driver_id driver_id;
2591};
2592
2593struct ib_client {
2594 char *name;
2595 void (*add) (struct ib_device *);
2596 void (*remove)(struct ib_device *, void *client_data);
2597
2598 /* Returns the net_dev belonging to this ib_client and matching the
2599 * given parameters.
2600 * @dev: An RDMA device that the net_dev use for communication.
2601 * @port: A physical port number on the RDMA device.
2602 * @pkey: P_Key that the net_dev uses if applicable.
2603 * @gid: A GID that the net_dev uses to communicate.
2604 * @addr: An IP address the net_dev is configured with.
2605 * @client_data: The device's client data set by ib_set_client_data().
2606 *
2607 * An ib_client that implements a net_dev on top of RDMA devices
2608 * (such as IP over IB) should implement this callback, allowing the
2609 * rdma_cm module to find the right net_dev for a given request.
2610 *
2611 * The caller is responsible for calling dev_put on the returned
2612 * netdev. */
2613 struct net_device *(*get_net_dev_by_params)(
2614 struct ib_device *dev,
2615 u8 port,
2616 u16 pkey,
2617 const union ib_gid *gid,
2618 const struct sockaddr *addr,
2619 void *client_data);
2620 struct list_head list;
2621};
2622
2623struct ib_device *ib_alloc_device(size_t size);
2624void ib_dealloc_device(struct ib_device *device);
2625
2626void ib_get_device_fw_str(struct ib_device *device, char *str);
2627
2628int ib_register_device(struct ib_device *device,
2629 int (*port_callback)(struct ib_device *,
2630 u8, struct kobject *));
2631void ib_unregister_device(struct ib_device *device);
2632
2633int ib_register_client (struct ib_client *client);
2634void ib_unregister_client(struct ib_client *client);
2635
2636void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
2637void ib_set_client_data(struct ib_device *device, struct ib_client *client,
2638 void *data);
2639
2640static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2641{
2642 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2643}
2644
2645static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2646{
2647 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2648}
2649
2650static inline bool ib_is_buffer_cleared(const void __user *p,
2651 size_t len)
2652{
2653 bool ret;
2654 u8 *buf;
2655
2656 if (len > USHRT_MAX)
2657 return false;
2658
2659 buf = memdup_user(p, len);
2660 if (IS_ERR(buf))
2661 return false;
2662
2663 ret = !memchr_inv(buf, 0, len);
2664 kfree(buf);
2665 return ret;
2666}
2667
2668static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2669 size_t offset,
2670 size_t len)
2671{
2672 return ib_is_buffer_cleared(udata->inbuf + offset, len);
2673}
2674
2675/**
2676 * ib_is_destroy_retryable - Check whether the uobject destruction
2677 * is retryable.
2678 * @ret: The initial destruction return code
2679 * @why: remove reason
2680 * @uobj: The uobject that is destroyed
2681 *
2682 * This function is a helper function that IB layer and low-level drivers
2683 * can use to consider whether the destruction of the given uobject is
2684 * retry-able.
2685 * It checks the original return code, if it wasn't success the destruction
2686 * is retryable according to the ucontext state (i.e. cleanup_retryable) and
2687 * the remove reason. (i.e. why).
2688 * Must be called with the object locked for destroy.
2689 */
2690static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why,
2691 struct ib_uobject *uobj)
2692{
2693 return ret && (why == RDMA_REMOVE_DESTROY ||
2694 uobj->context->cleanup_retryable);
2695}
2696
2697/**
2698 * ib_destroy_usecnt - Called during destruction to check the usecnt
2699 * @usecnt: The usecnt atomic
2700 * @why: remove reason
2701 * @uobj: The uobject that is destroyed
2702 *
2703 * Non-zero usecnts will block destruction unless destruction was triggered by
2704 * a ucontext cleanup.
2705 */
2706static inline int ib_destroy_usecnt(atomic_t *usecnt,
2707 enum rdma_remove_reason why,
2708 struct ib_uobject *uobj)
2709{
2710 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj))
2711 return -EBUSY;
2712 return 0;
2713}
2714
2715/**
2716 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2717 * contains all required attributes and no attributes not allowed for
2718 * the given QP state transition.
2719 * @cur_state: Current QP state
2720 * @next_state: Next QP state
2721 * @type: QP type
2722 * @mask: Mask of supplied QP attributes
2723 * @ll : link layer of port
2724 *
2725 * This function is a helper function that a low-level driver's
2726 * modify_qp method can use to validate the consumer's input. It
2727 * checks that cur_state and next_state are valid QP states, that a
2728 * transition from cur_state to next_state is allowed by the IB spec,
2729 * and that the attribute mask supplied is allowed for the transition.
2730 */
2731bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
2732 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2733 enum rdma_link_layer ll);
2734
2735void ib_register_event_handler(struct ib_event_handler *event_handler);
2736void ib_unregister_event_handler(struct ib_event_handler *event_handler);
2737void ib_dispatch_event(struct ib_event *event);
2738
2739int ib_query_port(struct ib_device *device,
2740 u8 port_num, struct ib_port_attr *port_attr);
2741
2742enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2743 u8 port_num);
2744
2745/**
2746 * rdma_cap_ib_switch - Check if the device is IB switch
2747 * @device: Device to check
2748 *
2749 * Device driver is responsible for setting is_switch bit on
2750 * in ib_device structure at init time.
2751 *
2752 * Return: true if the device is IB switch.
2753 */
2754static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2755{
2756 return device->is_switch;
2757}
2758
2759/**
2760 * rdma_start_port - Return the first valid port number for the device
2761 * specified
2762 *
2763 * @device: Device to be checked
2764 *
2765 * Return start port number
2766 */
2767static inline u8 rdma_start_port(const struct ib_device *device)
2768{
2769 return rdma_cap_ib_switch(device) ? 0 : 1;
2770}
2771
2772/**
2773 * rdma_end_port - Return the last valid port number for the device
2774 * specified
2775 *
2776 * @device: Device to be checked
2777 *
2778 * Return last port number
2779 */
2780static inline u8 rdma_end_port(const struct ib_device *device)
2781{
2782 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
2783}
2784
2785static inline int rdma_is_port_valid(const struct ib_device *device,
2786 unsigned int port)
2787{
2788 return (port >= rdma_start_port(device) &&
2789 port <= rdma_end_port(device));
2790}
2791
2792static inline bool rdma_is_grh_required(const struct ib_device *device,
2793 u8 port_num)
2794{
2795 return device->port_immutable[port_num].core_cap_flags &
2796 RDMA_CORE_PORT_IB_GRH_REQUIRED;
2797}
2798
2799static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
2800{
2801 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
2802}
2803
2804static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
2805{
2806 return device->port_immutable[port_num].core_cap_flags &
2807 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2808}
2809
2810static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2811{
2812 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2813}
2814
2815static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
2816{
2817 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
2818}
2819
2820static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
2821{
2822 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
2823}
2824
2825static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
2826{
2827 return rdma_protocol_ib(device, port_num) ||
2828 rdma_protocol_roce(device, port_num);
2829}
2830
2831static inline bool rdma_protocol_raw_packet(const struct ib_device *device, u8 port_num)
2832{
2833 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_RAW_PACKET;
2834}
2835
2836static inline bool rdma_protocol_usnic(const struct ib_device *device, u8 port_num)
2837{
2838 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_USNIC;
2839}
2840
2841/**
2842 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
2843 * Management Datagrams.
2844 * @device: Device to check
2845 * @port_num: Port number to check
2846 *
2847 * Management Datagrams (MAD) are a required part of the InfiniBand
2848 * specification and are supported on all InfiniBand devices. A slightly
2849 * extended version are also supported on OPA interfaces.
2850 *
2851 * Return: true if the port supports sending/receiving of MAD packets.
2852 */
2853static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
2854{
2855 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
2856}
2857
2858/**
2859 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2860 * Management Datagrams.
2861 * @device: Device to check
2862 * @port_num: Port number to check
2863 *
2864 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2865 * datagrams with their own versions. These OPA MADs share many but not all of
2866 * the characteristics of InfiniBand MADs.
2867 *
2868 * OPA MADs differ in the following ways:
2869 *
2870 * 1) MADs are variable size up to 2K
2871 * IBTA defined MADs remain fixed at 256 bytes
2872 * 2) OPA SMPs must carry valid PKeys
2873 * 3) OPA SMP packets are a different format
2874 *
2875 * Return: true if the port supports OPA MAD packet formats.
2876 */
2877static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2878{
2879 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2880 == RDMA_CORE_CAP_OPA_MAD;
2881}
2882
2883/**
2884 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2885 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2886 * @device: Device to check
2887 * @port_num: Port number to check
2888 *
2889 * Each InfiniBand node is required to provide a Subnet Management Agent
2890 * that the subnet manager can access. Prior to the fabric being fully
2891 * configured by the subnet manager, the SMA is accessed via a well known
2892 * interface called the Subnet Management Interface (SMI). This interface
2893 * uses directed route packets to communicate with the SM to get around the
2894 * chicken and egg problem of the SM needing to know what's on the fabric
2895 * in order to configure the fabric, and needing to configure the fabric in
2896 * order to send packets to the devices on the fabric. These directed
2897 * route packets do not need the fabric fully configured in order to reach
2898 * their destination. The SMI is the only method allowed to send
2899 * directed route packets on an InfiniBand fabric.
2900 *
2901 * Return: true if the port provides an SMI.
2902 */
2903static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
2904{
2905 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
2906}
2907
2908/**
2909 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2910 * Communication Manager.
2911 * @device: Device to check
2912 * @port_num: Port number to check
2913 *
2914 * The InfiniBand Communication Manager is one of many pre-defined General
2915 * Service Agents (GSA) that are accessed via the General Service
2916 * Interface (GSI). It's role is to facilitate establishment of connections
2917 * between nodes as well as other management related tasks for established
2918 * connections.
2919 *
2920 * Return: true if the port supports an IB CM (this does not guarantee that
2921 * a CM is actually running however).
2922 */
2923static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
2924{
2925 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
2926}
2927
2928/**
2929 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2930 * Communication Manager.
2931 * @device: Device to check
2932 * @port_num: Port number to check
2933 *
2934 * Similar to above, but specific to iWARP connections which have a different
2935 * managment protocol than InfiniBand.
2936 *
2937 * Return: true if the port supports an iWARP CM (this does not guarantee that
2938 * a CM is actually running however).
2939 */
2940static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
2941{
2942 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
2943}
2944
2945/**
2946 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2947 * Subnet Administration.
2948 * @device: Device to check
2949 * @port_num: Port number to check
2950 *
2951 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2952 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2953 * fabrics, devices should resolve routes to other hosts by contacting the
2954 * SA to query the proper route.
2955 *
2956 * Return: true if the port should act as a client to the fabric Subnet
2957 * Administration interface. This does not imply that the SA service is
2958 * running locally.
2959 */
2960static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
2961{
2962 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
2963}
2964
2965/**
2966 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2967 * Multicast.
2968 * @device: Device to check
2969 * @port_num: Port number to check
2970 *
2971 * InfiniBand multicast registration is more complex than normal IPv4 or
2972 * IPv6 multicast registration. Each Host Channel Adapter must register
2973 * with the Subnet Manager when it wishes to join a multicast group. It
2974 * should do so only once regardless of how many queue pairs it subscribes
2975 * to this group. And it should leave the group only after all queue pairs
2976 * attached to the group have been detached.
2977 *
2978 * Return: true if the port must undertake the additional adminstrative
2979 * overhead of registering/unregistering with the SM and tracking of the
2980 * total number of queue pairs attached to the multicast group.
2981 */
2982static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
2983{
2984 return rdma_cap_ib_sa(device, port_num);
2985}
2986
2987/**
2988 * rdma_cap_af_ib - Check if the port of device has the capability
2989 * Native Infiniband Address.
2990 * @device: Device to check
2991 * @port_num: Port number to check
2992 *
2993 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2994 * GID. RoCE uses a different mechanism, but still generates a GID via
2995 * a prescribed mechanism and port specific data.
2996 *
2997 * Return: true if the port uses a GID address to identify devices on the
2998 * network.
2999 */
3000static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
3001{
3002 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
3003}
3004
3005/**
3006 * rdma_cap_eth_ah - Check if the port of device has the capability
3007 * Ethernet Address Handle.
3008 * @device: Device to check
3009 * @port_num: Port number to check
3010 *
3011 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3012 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3013 * port. Normally, packet headers are generated by the sending host
3014 * adapter, but when sending connectionless datagrams, we must manually
3015 * inject the proper headers for the fabric we are communicating over.
3016 *
3017 * Return: true if we are running as a RoCE port and must force the
3018 * addition of a Global Route Header built from our Ethernet Address
3019 * Handle into our header list for connectionless packets.
3020 */
3021static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
3022{
3023 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
3024}
3025
3026/**
3027 * rdma_cap_opa_ah - Check if the port of device supports
3028 * OPA Address handles
3029 * @device: Device to check
3030 * @port_num: Port number to check
3031 *
3032 * Return: true if we are running on an OPA device which supports
3033 * the extended OPA addressing.
3034 */
3035static inline bool rdma_cap_opa_ah(struct ib_device *device, u8 port_num)
3036{
3037 return (device->port_immutable[port_num].core_cap_flags &
3038 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3039}
3040
3041/**
3042 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3043 *
3044 * @device: Device
3045 * @port_num: Port number
3046 *
3047 * This MAD size includes the MAD headers and MAD payload. No other headers
3048 * are included.
3049 *
3050 * Return the max MAD size required by the Port. Will return 0 if the port
3051 * does not support MADs
3052 */
3053static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
3054{
3055 return device->port_immutable[port_num].max_mad_size;
3056}
3057
3058/**
3059 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3060 * @device: Device to check
3061 * @port_num: Port number to check
3062 *
3063 * RoCE GID table mechanism manages the various GIDs for a device.
3064 *
3065 * NOTE: if allocating the port's GID table has failed, this call will still
3066 * return true, but any RoCE GID table API will fail.
3067 *
3068 * Return: true if the port uses RoCE GID table mechanism in order to manage
3069 * its GIDs.
3070 */
3071static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3072 u8 port_num)
3073{
3074 return rdma_protocol_roce(device, port_num) &&
3075 device->add_gid && device->del_gid;
3076}
3077
3078/*
3079 * Check if the device supports READ W/ INVALIDATE.
3080 */
3081static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3082{
3083 /*
3084 * iWarp drivers must support READ W/ INVALIDATE. No other protocol
3085 * has support for it yet.
3086 */
3087 return rdma_protocol_iwarp(dev, port_num);
3088}
3089
3090int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
3091 int state);
3092int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
3093 struct ifla_vf_info *info);
3094int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
3095 struct ifla_vf_stats *stats);
3096int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
3097 int type);
3098
3099int ib_query_pkey(struct ib_device *device,
3100 u8 port_num, u16 index, u16 *pkey);
3101
3102int ib_modify_device(struct ib_device *device,
3103 int device_modify_mask,
3104 struct ib_device_modify *device_modify);
3105
3106int ib_modify_port(struct ib_device *device,
3107 u8 port_num, int port_modify_mask,
3108 struct ib_port_modify *port_modify);
3109
3110int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3111 u8 *port_num, u16 *index);
3112
3113int ib_find_pkey(struct ib_device *device,
3114 u8 port_num, u16 pkey, u16 *index);
3115
3116enum ib_pd_flags {
3117 /*
3118 * Create a memory registration for all memory in the system and place
3119 * the rkey for it into pd->unsafe_global_rkey. This can be used by
3120 * ULPs to avoid the overhead of dynamic MRs.
3121 *
3122 * This flag is generally considered unsafe and must only be used in
3123 * extremly trusted environments. Every use of it will log a warning
3124 * in the kernel log.
3125 */
3126 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3127};
3128
3129struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3130 const char *caller);
3131#define ib_alloc_pd(device, flags) \
3132 __ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3133void ib_dealloc_pd(struct ib_pd *pd);
3134
3135/**
3136 * rdma_create_ah - Creates an address handle for the given address vector.
3137 * @pd: The protection domain associated with the address handle.
3138 * @ah_attr: The attributes of the address vector.
3139 *
3140 * The address handle is used to reference a local or global destination
3141 * in all UD QP post sends.
3142 */
3143struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr);
3144
3145/**
3146 * rdma_create_user_ah - Creates an address handle for the given address vector.
3147 * It resolves destination mac address for ah attribute of RoCE type.
3148 * @pd: The protection domain associated with the address handle.
3149 * @ah_attr: The attributes of the address vector.
3150 * @udata: pointer to user's input output buffer information need by
3151 * provider driver.
3152 *
3153 * It returns 0 on success and returns appropriate error code on error.
3154 * The address handle is used to reference a local or global destination
3155 * in all UD QP post sends.
3156 */
3157struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3158 struct rdma_ah_attr *ah_attr,
3159 struct ib_udata *udata);
3160/**
3161 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3162 * work completion.
3163 * @hdr: the L3 header to parse
3164 * @net_type: type of header to parse
3165 * @sgid: place to store source gid
3166 * @dgid: place to store destination gid
3167 */
3168int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3169 enum rdma_network_type net_type,
3170 union ib_gid *sgid, union ib_gid *dgid);
3171
3172/**
3173 * ib_get_rdma_header_version - Get the header version
3174 * @hdr: the L3 header to parse
3175 */
3176int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3177
3178/**
3179 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3180 * work completion.
3181 * @device: Device on which the received message arrived.
3182 * @port_num: Port on which the received message arrived.
3183 * @wc: Work completion associated with the received message.
3184 * @grh: References the received global route header. This parameter is
3185 * ignored unless the work completion indicates that the GRH is valid.
3186 * @ah_attr: Returned attributes that can be used when creating an address
3187 * handle for replying to the message.
3188 * When ib_init_ah_attr_from_wc() returns success,
3189 * (a) for IB link layer it optionally contains a reference to SGID attribute
3190 * when GRH is present for IB link layer.
3191 * (b) for RoCE link layer it contains a reference to SGID attribute.
3192 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3193 * attributes which are initialized using ib_init_ah_attr_from_wc().
3194 *
3195 */
3196int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
3197 const struct ib_wc *wc, const struct ib_grh *grh,
3198 struct rdma_ah_attr *ah_attr);
3199
3200/**
3201 * ib_create_ah_from_wc - Creates an address handle associated with the
3202 * sender of the specified work completion.
3203 * @pd: The protection domain associated with the address handle.
3204 * @wc: Work completion information associated with a received message.
3205 * @grh: References the received global route header. This parameter is
3206 * ignored unless the work completion indicates that the GRH is valid.
3207 * @port_num: The outbound port number to associate with the address.
3208 *
3209 * The address handle is used to reference a local or global destination
3210 * in all UD QP post sends.
3211 */
3212struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3213 const struct ib_grh *grh, u8 port_num);
3214
3215/**
3216 * rdma_modify_ah - Modifies the address vector associated with an address
3217 * handle.
3218 * @ah: The address handle to modify.
3219 * @ah_attr: The new address vector attributes to associate with the
3220 * address handle.
3221 */
3222int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3223
3224/**
3225 * rdma_query_ah - Queries the address vector associated with an address
3226 * handle.
3227 * @ah: The address handle to query.
3228 * @ah_attr: The address vector attributes associated with the address
3229 * handle.
3230 */
3231int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3232
3233/**
3234 * rdma_destroy_ah - Destroys an address handle.
3235 * @ah: The address handle to destroy.
3236 */
3237int rdma_destroy_ah(struct ib_ah *ah);
3238
3239/**
3240 * ib_create_srq - Creates a SRQ associated with the specified protection
3241 * domain.
3242 * @pd: The protection domain associated with the SRQ.
3243 * @srq_init_attr: A list of initial attributes required to create the
3244 * SRQ. If SRQ creation succeeds, then the attributes are updated to
3245 * the actual capabilities of the created SRQ.
3246 *
3247 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
3248 * requested size of the SRQ, and set to the actual values allocated
3249 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
3250 * will always be at least as large as the requested values.
3251 */
3252struct ib_srq *ib_create_srq(struct ib_pd *pd,
3253 struct ib_srq_init_attr *srq_init_attr);
3254
3255/**
3256 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3257 * @srq: The SRQ to modify.
3258 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3259 * the current values of selected SRQ attributes are returned.
3260 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3261 * are being modified.
3262 *
3263 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3264 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3265 * the number of receives queued drops below the limit.
3266 */
3267int ib_modify_srq(struct ib_srq *srq,
3268 struct ib_srq_attr *srq_attr,
3269 enum ib_srq_attr_mask srq_attr_mask);
3270
3271/**
3272 * ib_query_srq - Returns the attribute list and current values for the
3273 * specified SRQ.
3274 * @srq: The SRQ to query.
3275 * @srq_attr: The attributes of the specified SRQ.
3276 */
3277int ib_query_srq(struct ib_srq *srq,
3278 struct ib_srq_attr *srq_attr);
3279
3280/**
3281 * ib_destroy_srq - Destroys the specified SRQ.
3282 * @srq: The SRQ to destroy.
3283 */
3284int ib_destroy_srq(struct ib_srq *srq);
3285
3286/**
3287 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3288 * @srq: The SRQ to post the work request on.
3289 * @recv_wr: A list of work requests to post on the receive queue.
3290 * @bad_recv_wr: On an immediate failure, this parameter will reference
3291 * the work request that failed to be posted on the QP.
3292 */
3293static inline int ib_post_srq_recv(struct ib_srq *srq,
3294 const struct ib_recv_wr *recv_wr,
3295 const struct ib_recv_wr **bad_recv_wr)
3296{
3297 const struct ib_recv_wr *dummy;
3298
3299 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr ? : &dummy);
3300}
3301
3302/**
3303 * ib_create_qp - Creates a QP associated with the specified protection
3304 * domain.
3305 * @pd: The protection domain associated with the QP.
3306 * @qp_init_attr: A list of initial attributes required to create the
3307 * QP. If QP creation succeeds, then the attributes are updated to
3308 * the actual capabilities of the created QP.
3309 */
3310struct ib_qp *ib_create_qp(struct ib_pd *pd,
3311 struct ib_qp_init_attr *qp_init_attr);
3312
3313/**
3314 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3315 * @qp: The QP to modify.
3316 * @attr: On input, specifies the QP attributes to modify. On output,
3317 * the current values of selected QP attributes are returned.
3318 * @attr_mask: A bit-mask used to specify which attributes of the QP
3319 * are being modified.
3320 * @udata: pointer to user's input output buffer information
3321 * are being modified.
3322 * It returns 0 on success and returns appropriate error code on error.
3323 */
3324int ib_modify_qp_with_udata(struct ib_qp *qp,
3325 struct ib_qp_attr *attr,
3326 int attr_mask,
3327 struct ib_udata *udata);
3328
3329/**
3330 * ib_modify_qp - Modifies the attributes for the specified QP and then
3331 * transitions the QP to the given state.
3332 * @qp: The QP to modify.
3333 * @qp_attr: On input, specifies the QP attributes to modify. On output,
3334 * the current values of selected QP attributes are returned.
3335 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3336 * are being modified.
3337 */
3338int ib_modify_qp(struct ib_qp *qp,
3339 struct ib_qp_attr *qp_attr,
3340 int qp_attr_mask);
3341
3342/**
3343 * ib_query_qp - Returns the attribute list and current values for the
3344 * specified QP.
3345 * @qp: The QP to query.
3346 * @qp_attr: The attributes of the specified QP.
3347 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3348 * @qp_init_attr: Additional attributes of the selected QP.
3349 *
3350 * The qp_attr_mask may be used to limit the query to gathering only the
3351 * selected attributes.
3352 */
3353int ib_query_qp(struct ib_qp *qp,
3354 struct ib_qp_attr *qp_attr,
3355 int qp_attr_mask,
3356 struct ib_qp_init_attr *qp_init_attr);
3357
3358/**
3359 * ib_destroy_qp - Destroys the specified QP.
3360 * @qp: The QP to destroy.
3361 */
3362int ib_destroy_qp(struct ib_qp *qp);
3363
3364/**
3365 * ib_open_qp - Obtain a reference to an existing sharable QP.
3366 * @xrcd - XRC domain
3367 * @qp_open_attr: Attributes identifying the QP to open.
3368 *
3369 * Returns a reference to a sharable QP.
3370 */
3371struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3372 struct ib_qp_open_attr *qp_open_attr);
3373
3374/**
3375 * ib_close_qp - Release an external reference to a QP.
3376 * @qp: The QP handle to release
3377 *
3378 * The opened QP handle is released by the caller. The underlying
3379 * shared QP is not destroyed until all internal references are released.
3380 */
3381int ib_close_qp(struct ib_qp *qp);
3382
3383/**
3384 * ib_post_send - Posts a list of work requests to the send queue of
3385 * the specified QP.
3386 * @qp: The QP to post the work request on.
3387 * @send_wr: A list of work requests to post on the send queue.
3388 * @bad_send_wr: On an immediate failure, this parameter will reference
3389 * the work request that failed to be posted on the QP.
3390 *
3391 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3392 * error is returned, the QP state shall not be affected,
3393 * ib_post_send() will return an immediate error after queueing any
3394 * earlier work requests in the list.
3395 */
3396static inline int ib_post_send(struct ib_qp *qp,
3397 const struct ib_send_wr *send_wr,
3398 const struct ib_send_wr **bad_send_wr)
3399{
3400 const struct ib_send_wr *dummy;
3401
3402 return qp->device->post_send(qp, send_wr, bad_send_wr ? : &dummy);
3403}
3404
3405/**
3406 * ib_post_recv - Posts a list of work requests to the receive queue of
3407 * the specified QP.
3408 * @qp: The QP to post the work request on.
3409 * @recv_wr: A list of work requests to post on the receive queue.
3410 * @bad_recv_wr: On an immediate failure, this parameter will reference
3411 * the work request that failed to be posted on the QP.
3412 */
3413static inline int ib_post_recv(struct ib_qp *qp,
3414 const struct ib_recv_wr *recv_wr,
3415 const struct ib_recv_wr **bad_recv_wr)
3416{
3417 const struct ib_recv_wr *dummy;
3418
3419 return qp->device->post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3420}
3421
3422struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private,
3423 int nr_cqe, int comp_vector,
3424 enum ib_poll_context poll_ctx, const char *caller);
3425#define ib_alloc_cq(device, priv, nr_cqe, comp_vect, poll_ctx) \
3426 __ib_alloc_cq((device), (priv), (nr_cqe), (comp_vect), (poll_ctx), KBUILD_MODNAME)
3427
3428void ib_free_cq(struct ib_cq *cq);
3429int ib_process_cq_direct(struct ib_cq *cq, int budget);
3430
3431/**
3432 * ib_create_cq - Creates a CQ on the specified device.
3433 * @device: The device on which to create the CQ.
3434 * @comp_handler: A user-specified callback that is invoked when a
3435 * completion event occurs on the CQ.
3436 * @event_handler: A user-specified callback that is invoked when an
3437 * asynchronous event not associated with a completion occurs on the CQ.
3438 * @cq_context: Context associated with the CQ returned to the user via
3439 * the associated completion and event handlers.
3440 * @cq_attr: The attributes the CQ should be created upon.
3441 *
3442 * Users can examine the cq structure to determine the actual CQ size.
3443 */
3444struct ib_cq *__ib_create_cq(struct ib_device *device,
3445 ib_comp_handler comp_handler,
3446 void (*event_handler)(struct ib_event *, void *),
3447 void *cq_context,
3448 const struct ib_cq_init_attr *cq_attr,
3449 const char *caller);
3450#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3451 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3452
3453/**
3454 * ib_resize_cq - Modifies the capacity of the CQ.
3455 * @cq: The CQ to resize.
3456 * @cqe: The minimum size of the CQ.
3457 *
3458 * Users can examine the cq structure to determine the actual CQ size.
3459 */
3460int ib_resize_cq(struct ib_cq *cq, int cqe);
3461
3462/**
3463 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3464 * @cq: The CQ to modify.
3465 * @cq_count: number of CQEs that will trigger an event
3466 * @cq_period: max period of time in usec before triggering an event
3467 *
3468 */
3469int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3470
3471/**
3472 * ib_destroy_cq - Destroys the specified CQ.
3473 * @cq: The CQ to destroy.
3474 */
3475int ib_destroy_cq(struct ib_cq *cq);
3476
3477/**
3478 * ib_poll_cq - poll a CQ for completion(s)
3479 * @cq:the CQ being polled
3480 * @num_entries:maximum number of completions to return
3481 * @wc:array of at least @num_entries &struct ib_wc where completions
3482 * will be returned
3483 *
3484 * Poll a CQ for (possibly multiple) completions. If the return value
3485 * is < 0, an error occurred. If the return value is >= 0, it is the
3486 * number of completions returned. If the return value is
3487 * non-negative and < num_entries, then the CQ was emptied.
3488 */
3489static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3490 struct ib_wc *wc)
3491{
3492 return cq->device->poll_cq(cq, num_entries, wc);
3493}
3494
3495/**
3496 * ib_req_notify_cq - Request completion notification on a CQ.
3497 * @cq: The CQ to generate an event for.
3498 * @flags:
3499 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3500 * to request an event on the next solicited event or next work
3501 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3502 * may also be |ed in to request a hint about missed events, as
3503 * described below.
3504 *
3505 * Return Value:
3506 * < 0 means an error occurred while requesting notification
3507 * == 0 means notification was requested successfully, and if
3508 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3509 * were missed and it is safe to wait for another event. In
3510 * this case is it guaranteed that any work completions added
3511 * to the CQ since the last CQ poll will trigger a completion
3512 * notification event.
3513 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3514 * in. It means that the consumer must poll the CQ again to
3515 * make sure it is empty to avoid missing an event because of a
3516 * race between requesting notification and an entry being
3517 * added to the CQ. This return value means it is possible
3518 * (but not guaranteed) that a work completion has been added
3519 * to the CQ since the last poll without triggering a
3520 * completion notification event.
3521 */
3522static inline int ib_req_notify_cq(struct ib_cq *cq,
3523 enum ib_cq_notify_flags flags)
3524{
3525 return cq->device->req_notify_cq(cq, flags);
3526}
3527
3528/**
3529 * ib_req_ncomp_notif - Request completion notification when there are
3530 * at least the specified number of unreaped completions on the CQ.
3531 * @cq: The CQ to generate an event for.
3532 * @wc_cnt: The number of unreaped completions that should be on the
3533 * CQ before an event is generated.
3534 */
3535static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
3536{
3537 return cq->device->req_ncomp_notif ?
3538 cq->device->req_ncomp_notif(cq, wc_cnt) :
3539 -ENOSYS;
3540}
3541
3542/**
3543 * ib_dma_mapping_error - check a DMA addr for error
3544 * @dev: The device for which the dma_addr was created
3545 * @dma_addr: The DMA address to check
3546 */
3547static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
3548{
3549 return dma_mapping_error(dev->dma_device, dma_addr);
3550}
3551
3552/**
3553 * ib_dma_map_single - Map a kernel virtual address to DMA address
3554 * @dev: The device for which the dma_addr is to be created
3555 * @cpu_addr: The kernel virtual address
3556 * @size: The size of the region in bytes
3557 * @direction: The direction of the DMA
3558 */
3559static inline u64 ib_dma_map_single(struct ib_device *dev,
3560 void *cpu_addr, size_t size,
3561 enum dma_data_direction direction)
3562{
3563 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
3564}
3565
3566/**
3567 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
3568 * @dev: The device for which the DMA address was created
3569 * @addr: The DMA address
3570 * @size: The size of the region in bytes
3571 * @direction: The direction of the DMA
3572 */
3573static inline void ib_dma_unmap_single(struct ib_device *dev,
3574 u64 addr, size_t size,
3575 enum dma_data_direction direction)
3576{
3577 dma_unmap_single(dev->dma_device, addr, size, direction);
3578}
3579
3580/**
3581 * ib_dma_map_page - Map a physical page to DMA address
3582 * @dev: The device for which the dma_addr is to be created
3583 * @page: The page to be mapped
3584 * @offset: The offset within the page
3585 * @size: The size of the region in bytes
3586 * @direction: The direction of the DMA
3587 */
3588static inline u64 ib_dma_map_page(struct ib_device *dev,
3589 struct page *page,
3590 unsigned long offset,
3591 size_t size,
3592 enum dma_data_direction direction)
3593{
3594 return dma_map_page(dev->dma_device, page, offset, size, direction);
3595}
3596
3597/**
3598 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
3599 * @dev: The device for which the DMA address was created
3600 * @addr: The DMA address
3601 * @size: The size of the region in bytes
3602 * @direction: The direction of the DMA
3603 */
3604static inline void ib_dma_unmap_page(struct ib_device *dev,
3605 u64 addr, size_t size,
3606 enum dma_data_direction direction)
3607{
3608 dma_unmap_page(dev->dma_device, addr, size, direction);
3609}
3610
3611/**
3612 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
3613 * @dev: The device for which the DMA addresses are to be created
3614 * @sg: The array of scatter/gather entries
3615 * @nents: The number of scatter/gather entries
3616 * @direction: The direction of the DMA
3617 */
3618static inline int ib_dma_map_sg(struct ib_device *dev,
3619 struct scatterlist *sg, int nents,
3620 enum dma_data_direction direction)
3621{
3622 return dma_map_sg(dev->dma_device, sg, nents, direction);
3623}
3624
3625/**
3626 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
3627 * @dev: The device for which the DMA addresses were created
3628 * @sg: The array of scatter/gather entries
3629 * @nents: The number of scatter/gather entries
3630 * @direction: The direction of the DMA
3631 */
3632static inline void ib_dma_unmap_sg(struct ib_device *dev,
3633 struct scatterlist *sg, int nents,
3634 enum dma_data_direction direction)
3635{
3636 dma_unmap_sg(dev->dma_device, sg, nents, direction);
3637}
3638
3639static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
3640 struct scatterlist *sg, int nents,
3641 enum dma_data_direction direction,
3642 unsigned long dma_attrs)
3643{
3644 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
3645 dma_attrs);
3646}
3647
3648static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
3649 struct scatterlist *sg, int nents,
3650 enum dma_data_direction direction,
3651 unsigned long dma_attrs)
3652{
3653 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, dma_attrs);
3654}
3655/**
3656 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
3657 * @dev: The device for which the DMA addresses were created
3658 * @sg: The scatter/gather entry
3659 *
3660 * Note: this function is obsolete. To do: change all occurrences of
3661 * ib_sg_dma_address() into sg_dma_address().
3662 */
3663static inline u64 ib_sg_dma_address(struct ib_device *dev,
3664 struct scatterlist *sg)
3665{
3666 return sg_dma_address(sg);
3667}
3668
3669/**
3670 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
3671 * @dev: The device for which the DMA addresses were created
3672 * @sg: The scatter/gather entry
3673 *
3674 * Note: this function is obsolete. To do: change all occurrences of
3675 * ib_sg_dma_len() into sg_dma_len().
3676 */
3677static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
3678 struct scatterlist *sg)
3679{
3680 return sg_dma_len(sg);
3681}
3682
3683/**
3684 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
3685 * @dev: The device for which the DMA address was created
3686 * @addr: The DMA address
3687 * @size: The size of the region in bytes
3688 * @dir: The direction of the DMA
3689 */
3690static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
3691 u64 addr,
3692 size_t size,
3693 enum dma_data_direction dir)
3694{
3695 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
3696}
3697
3698/**
3699 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
3700 * @dev: The device for which the DMA address was created
3701 * @addr: The DMA address
3702 * @size: The size of the region in bytes
3703 * @dir: The direction of the DMA
3704 */
3705static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
3706 u64 addr,
3707 size_t size,
3708 enum dma_data_direction dir)
3709{
3710 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
3711}
3712
3713/**
3714 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
3715 * @dev: The device for which the DMA address is requested
3716 * @size: The size of the region to allocate in bytes
3717 * @dma_handle: A pointer for returning the DMA address of the region
3718 * @flag: memory allocator flags
3719 */
3720static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
3721 size_t size,
3722 dma_addr_t *dma_handle,
3723 gfp_t flag)
3724{
3725 return dma_alloc_coherent(dev->dma_device, size, dma_handle, flag);
3726}
3727
3728/**
3729 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
3730 * @dev: The device for which the DMA addresses were allocated
3731 * @size: The size of the region
3732 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
3733 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
3734 */
3735static inline void ib_dma_free_coherent(struct ib_device *dev,
3736 size_t size, void *cpu_addr,
3737 dma_addr_t dma_handle)
3738{
3739 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
3740}
3741
3742/**
3743 * ib_dereg_mr - Deregisters a memory region and removes it from the
3744 * HCA translation table.
3745 * @mr: The memory region to deregister.
3746 *
3747 * This function can fail, if the memory region has memory windows bound to it.
3748 */
3749int ib_dereg_mr(struct ib_mr *mr);
3750
3751struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
3752 enum ib_mr_type mr_type,
3753 u32 max_num_sg);
3754
3755/**
3756 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
3757 * R_Key and L_Key.
3758 * @mr - struct ib_mr pointer to be updated.
3759 * @newkey - new key to be used.
3760 */
3761static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
3762{
3763 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
3764 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
3765}
3766
3767/**
3768 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
3769 * for calculating a new rkey for type 2 memory windows.
3770 * @rkey - the rkey to increment.
3771 */
3772static inline u32 ib_inc_rkey(u32 rkey)
3773{
3774 const u32 mask = 0x000000ff;
3775 return ((rkey + 1) & mask) | (rkey & ~mask);
3776}
3777
3778/**
3779 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3780 * @pd: The protection domain associated with the unmapped region.
3781 * @mr_access_flags: Specifies the memory access rights.
3782 * @fmr_attr: Attributes of the unmapped region.
3783 *
3784 * A fast memory region must be mapped before it can be used as part of
3785 * a work request.
3786 */
3787struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3788 int mr_access_flags,
3789 struct ib_fmr_attr *fmr_attr);
3790
3791/**
3792 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3793 * @fmr: The fast memory region to associate with the pages.
3794 * @page_list: An array of physical pages to map to the fast memory region.
3795 * @list_len: The number of pages in page_list.
3796 * @iova: The I/O virtual address to use with the mapped region.
3797 */
3798static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3799 u64 *page_list, int list_len,
3800 u64 iova)
3801{
3802 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3803}
3804
3805/**
3806 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3807 * @fmr_list: A linked list of fast memory regions to unmap.
3808 */
3809int ib_unmap_fmr(struct list_head *fmr_list);
3810
3811/**
3812 * ib_dealloc_fmr - Deallocates a fast memory region.
3813 * @fmr: The fast memory region to deallocate.
3814 */
3815int ib_dealloc_fmr(struct ib_fmr *fmr);
3816
3817/**
3818 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3819 * @qp: QP to attach to the multicast group. The QP must be type
3820 * IB_QPT_UD.
3821 * @gid: Multicast group GID.
3822 * @lid: Multicast group LID in host byte order.
3823 *
3824 * In order to send and receive multicast packets, subnet
3825 * administration must have created the multicast group and configured
3826 * the fabric appropriately. The port associated with the specified
3827 * QP must also be a member of the multicast group.
3828 */
3829int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3830
3831/**
3832 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3833 * @qp: QP to detach from the multicast group.
3834 * @gid: Multicast group GID.
3835 * @lid: Multicast group LID in host byte order.
3836 */
3837int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3838
3839/**
3840 * ib_alloc_xrcd - Allocates an XRC domain.
3841 * @device: The device on which to allocate the XRC domain.
3842 * @caller: Module name for kernel consumers
3843 */
3844struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller);
3845#define ib_alloc_xrcd(device) \
3846 __ib_alloc_xrcd((device), KBUILD_MODNAME)
3847
3848/**
3849 * ib_dealloc_xrcd - Deallocates an XRC domain.
3850 * @xrcd: The XRC domain to deallocate.
3851 */
3852int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3853
3854static inline int ib_check_mr_access(int flags)
3855{
3856 /*
3857 * Local write permission is required if remote write or
3858 * remote atomic permission is also requested.
3859 */
3860 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3861 !(flags & IB_ACCESS_LOCAL_WRITE))
3862 return -EINVAL;
3863
3864 return 0;
3865}
3866
3867static inline bool ib_access_writable(int access_flags)
3868{
3869 /*
3870 * We have writable memory backing the MR if any of the following
3871 * access flags are set. "Local write" and "remote write" obviously
3872 * require write access. "Remote atomic" can do things like fetch and
3873 * add, which will modify memory, and "MW bind" can change permissions
3874 * by binding a window.
3875 */
3876 return access_flags &
3877 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
3878 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
3879}
3880
3881/**
3882 * ib_check_mr_status: lightweight check of MR status.
3883 * This routine may provide status checks on a selected
3884 * ib_mr. first use is for signature status check.
3885 *
3886 * @mr: A memory region.
3887 * @check_mask: Bitmask of which checks to perform from
3888 * ib_mr_status_check enumeration.
3889 * @mr_status: The container of relevant status checks.
3890 * failed checks will be indicated in the status bitmask
3891 * and the relevant info shall be in the error item.
3892 */
3893int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3894 struct ib_mr_status *mr_status);
3895
3896struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3897 u16 pkey, const union ib_gid *gid,
3898 const struct sockaddr *addr);
3899struct ib_wq *ib_create_wq(struct ib_pd *pd,
3900 struct ib_wq_init_attr *init_attr);
3901int ib_destroy_wq(struct ib_wq *wq);
3902int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr,
3903 u32 wq_attr_mask);
3904struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
3905 struct ib_rwq_ind_table_init_attr*
3906 wq_ind_table_init_attr);
3907int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table);
3908
3909int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3910 unsigned int *sg_offset, unsigned int page_size);
3911
3912static inline int
3913ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
3914 unsigned int *sg_offset, unsigned int page_size)
3915{
3916 int n;
3917
3918 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
3919 mr->iova = 0;
3920
3921 return n;
3922}
3923
3924int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
3925 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
3926
3927void ib_drain_rq(struct ib_qp *qp);
3928void ib_drain_sq(struct ib_qp *qp);
3929void ib_drain_qp(struct ib_qp *qp);
3930
3931int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width);
3932
3933static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
3934{
3935 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
3936 return attr->roce.dmac;
3937 return NULL;
3938}
3939
3940static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
3941{
3942 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3943 attr->ib.dlid = (u16)dlid;
3944 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3945 attr->opa.dlid = dlid;
3946}
3947
3948static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
3949{
3950 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3951 return attr->ib.dlid;
3952 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3953 return attr->opa.dlid;
3954 return 0;
3955}
3956
3957static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
3958{
3959 attr->sl = sl;
3960}
3961
3962static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
3963{
3964 return attr->sl;
3965}
3966
3967static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
3968 u8 src_path_bits)
3969{
3970 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3971 attr->ib.src_path_bits = src_path_bits;
3972 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3973 attr->opa.src_path_bits = src_path_bits;
3974}
3975
3976static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
3977{
3978 if (attr->type == RDMA_AH_ATTR_TYPE_IB)
3979 return attr->ib.src_path_bits;
3980 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3981 return attr->opa.src_path_bits;
3982 return 0;
3983}
3984
3985static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
3986 bool make_grd)
3987{
3988 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3989 attr->opa.make_grd = make_grd;
3990}
3991
3992static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
3993{
3994 if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
3995 return attr->opa.make_grd;
3996 return false;
3997}
3998
3999static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u8 port_num)
4000{
4001 attr->port_num = port_num;
4002}
4003
4004static inline u8 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4005{
4006 return attr->port_num;
4007}
4008
4009static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4010 u8 static_rate)
4011{
4012 attr->static_rate = static_rate;
4013}
4014
4015static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4016{
4017 return attr->static_rate;
4018}
4019
4020static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4021 enum ib_ah_flags flag)
4022{
4023 attr->ah_flags = flag;
4024}
4025
4026static inline enum ib_ah_flags
4027 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4028{
4029 return attr->ah_flags;
4030}
4031
4032static inline const struct ib_global_route
4033 *rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4034{
4035 return &attr->grh;
4036}
4037
4038/*To retrieve and modify the grh */
4039static inline struct ib_global_route
4040 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4041{
4042 return &attr->grh;
4043}
4044
4045static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4046{
4047 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4048
4049 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4050}
4051
4052static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4053 __be64 prefix)
4054{
4055 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4056
4057 grh->dgid.global.subnet_prefix = prefix;
4058}
4059
4060static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4061 __be64 if_id)
4062{
4063 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4064
4065 grh->dgid.global.interface_id = if_id;
4066}
4067
4068static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4069 union ib_gid *dgid, u32 flow_label,
4070 u8 sgid_index, u8 hop_limit,
4071 u8 traffic_class)
4072{
4073 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4074
4075 attr->ah_flags = IB_AH_GRH;
4076 if (dgid)
4077 grh->dgid = *dgid;
4078 grh->flow_label = flow_label;
4079 grh->sgid_index = sgid_index;
4080 grh->hop_limit = hop_limit;
4081 grh->traffic_class = traffic_class;
4082 grh->sgid_attr = NULL;
4083}
4084
4085void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4086void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4087 u32 flow_label, u8 hop_limit, u8 traffic_class,
4088 const struct ib_gid_attr *sgid_attr);
4089void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4090 const struct rdma_ah_attr *src);
4091void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4092 const struct rdma_ah_attr *new);
4093void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4094
4095/**
4096 * rdma_ah_find_type - Return address handle type.
4097 *
4098 * @dev: Device to be checked
4099 * @port_num: Port number
4100 */
4101static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4102 u8 port_num)
4103{
4104 if (rdma_protocol_roce(dev, port_num))
4105 return RDMA_AH_ATTR_TYPE_ROCE;
4106 if (rdma_protocol_ib(dev, port_num)) {
4107 if (rdma_cap_opa_ah(dev, port_num))
4108 return RDMA_AH_ATTR_TYPE_OPA;
4109 return RDMA_AH_ATTR_TYPE_IB;
4110 }
4111
4112 return RDMA_AH_ATTR_TYPE_UNDEFINED;
4113}
4114
4115/**
4116 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4117 * In the current implementation the only way to get
4118 * get the 32bit lid is from other sources for OPA.
4119 * For IB, lids will always be 16bits so cast the
4120 * value accordingly.
4121 *
4122 * @lid: A 32bit LID
4123 */
4124static inline u16 ib_lid_cpu16(u32 lid)
4125{
4126 WARN_ON_ONCE(lid & 0xFFFF0000);
4127 return (u16)lid;
4128}
4129
4130/**
4131 * ib_lid_be16 - Return lid in 16bit BE encoding.
4132 *
4133 * @lid: A 32bit LID
4134 */
4135static inline __be16 ib_lid_be16(u32 lid)
4136{
4137 WARN_ON_ONCE(lid & 0xFFFF0000);
4138 return cpu_to_be16((u16)lid);
4139}
4140
4141/**
4142 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4143 * vector
4144 * @device: the rdma device
4145 * @comp_vector: index of completion vector
4146 *
4147 * Returns NULL on failure, otherwise a corresponding cpu map of the
4148 * completion vector (returns all-cpus map if the device driver doesn't
4149 * implement get_vector_affinity).
4150 */
4151static inline const struct cpumask *
4152ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4153{
4154 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4155 !device->get_vector_affinity)
4156 return NULL;
4157
4158 return device->get_vector_affinity(device, comp_vector);
4159
4160}
4161
4162static inline void ib_set_flow(struct ib_uobject *uobj, struct ib_flow *ibflow,
4163 struct ib_qp *qp, struct ib_device *device)
4164{
4165 uobj->object = ibflow;
4166 ibflow->uobject = uobj;
4167
4168 if (qp) {
4169 atomic_inc(&qp->usecnt);
4170 ibflow->qp = qp;
4171 }
4172
4173 ibflow->device = device;
4174}
4175
4176/**
4177 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4178 * and add their gids, as needed, to the relevant RoCE devices.
4179 *
4180 * @device: the rdma device
4181 */
4182void rdma_roce_rescan_device(struct ib_device *ibdev);
4183
4184struct ib_ucontext *ib_uverbs_get_ucontext(struct ib_uverbs_file *ufile);
4185
4186int uverbs_destroy_def_handler(struct ib_uverbs_file *file,
4187 struct uverbs_attr_bundle *attrs);
4188#endif /* IB_VERBS_H */