blob: 133ba78820ee5f2da69b865df43689c0a736ba3e [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMU_NOTIFIER_H
3#define _LINUX_MMU_NOTIFIER_H
4
5#include <linux/types.h>
6#include <linux/list.h>
7#include <linux/spinlock.h>
8#include <linux/mm_types.h>
9#include <linux/srcu.h>
10
11struct mmu_notifier;
12struct mmu_notifier_ops;
13
14/* mmu_notifier_ops flags */
15#define MMU_INVALIDATE_DOES_NOT_BLOCK (0x01)
16
17#ifdef CONFIG_MMU_NOTIFIER
18
19/*
20 * The mmu notifier_mm structure is allocated and installed in
21 * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
22 * critical section and it's released only when mm_count reaches zero
23 * in mmdrop().
24 */
25struct mmu_notifier_mm {
26 /* all mmu notifiers registerd in this mm are queued in this list */
27 struct hlist_head list;
28 /* to serialize the list modifications and hlist_unhashed */
29 spinlock_t lock;
30};
31
32struct mmu_notifier_ops {
33 /*
34 * Flags to specify behavior of callbacks for this MMU notifier.
35 * Used to determine which context an operation may be called.
36 *
37 * MMU_INVALIDATE_DOES_NOT_BLOCK: invalidate_range_* callbacks do not
38 * block
39 */
40 int flags;
41
42 /*
43 * Called either by mmu_notifier_unregister or when the mm is
44 * being destroyed by exit_mmap, always before all pages are
45 * freed. This can run concurrently with other mmu notifier
46 * methods (the ones invoked outside the mm context) and it
47 * should tear down all secondary mmu mappings and freeze the
48 * secondary mmu. If this method isn't implemented you've to
49 * be sure that nothing could possibly write to the pages
50 * through the secondary mmu by the time the last thread with
51 * tsk->mm == mm exits.
52 *
53 * As side note: the pages freed after ->release returns could
54 * be immediately reallocated by the gart at an alias physical
55 * address with a different cache model, so if ->release isn't
56 * implemented because all _software_ driven memory accesses
57 * through the secondary mmu are terminated by the time the
58 * last thread of this mm quits, you've also to be sure that
59 * speculative _hardware_ operations can't allocate dirty
60 * cachelines in the cpu that could not be snooped and made
61 * coherent with the other read and write operations happening
62 * through the gart alias address, so leading to memory
63 * corruption.
64 */
65 void (*release)(struct mmu_notifier *mn,
66 struct mm_struct *mm);
67
68 /*
69 * clear_flush_young is called after the VM is
70 * test-and-clearing the young/accessed bitflag in the
71 * pte. This way the VM will provide proper aging to the
72 * accesses to the page through the secondary MMUs and not
73 * only to the ones through the Linux pte.
74 * Start-end is necessary in case the secondary MMU is mapping the page
75 * at a smaller granularity than the primary MMU.
76 */
77 int (*clear_flush_young)(struct mmu_notifier *mn,
78 struct mm_struct *mm,
79 unsigned long start,
80 unsigned long end);
81
82 /*
83 * clear_young is a lightweight version of clear_flush_young. Like the
84 * latter, it is supposed to test-and-clear the young/accessed bitflag
85 * in the secondary pte, but it may omit flushing the secondary tlb.
86 */
87 int (*clear_young)(struct mmu_notifier *mn,
88 struct mm_struct *mm,
89 unsigned long start,
90 unsigned long end);
91
92 /*
93 * test_young is called to check the young/accessed bitflag in
94 * the secondary pte. This is used to know if the page is
95 * frequently used without actually clearing the flag or tearing
96 * down the secondary mapping on the page.
97 */
98 int (*test_young)(struct mmu_notifier *mn,
99 struct mm_struct *mm,
100 unsigned long address);
101
102 /*
103 * change_pte is called in cases that pte mapping to page is changed:
104 * for example, when ksm remaps pte to point to a new shared page.
105 */
106 void (*change_pte)(struct mmu_notifier *mn,
107 struct mm_struct *mm,
108 unsigned long address,
109 pte_t pte);
110
111 /*
112 * invalidate_range_start() and invalidate_range_end() must be
113 * paired and are called only when the mmap_sem and/or the
114 * locks protecting the reverse maps are held. If the subsystem
115 * can't guarantee that no additional references are taken to
116 * the pages in the range, it has to implement the
117 * invalidate_range() notifier to remove any references taken
118 * after invalidate_range_start().
119 *
120 * Invalidation of multiple concurrent ranges may be
121 * optionally permitted by the driver. Either way the
122 * establishment of sptes is forbidden in the range passed to
123 * invalidate_range_begin/end for the whole duration of the
124 * invalidate_range_begin/end critical section.
125 *
126 * invalidate_range_start() is called when all pages in the
127 * range are still mapped and have at least a refcount of one.
128 *
129 * invalidate_range_end() is called when all pages in the
130 * range have been unmapped and the pages have been freed by
131 * the VM.
132 *
133 * The VM will remove the page table entries and potentially
134 * the page between invalidate_range_start() and
135 * invalidate_range_end(). If the page must not be freed
136 * because of pending I/O or other circumstances then the
137 * invalidate_range_start() callback (or the initial mapping
138 * by the driver) must make sure that the refcount is kept
139 * elevated.
140 *
141 * If the driver increases the refcount when the pages are
142 * initially mapped into an address space then either
143 * invalidate_range_start() or invalidate_range_end() may
144 * decrease the refcount. If the refcount is decreased on
145 * invalidate_range_start() then the VM can free pages as page
146 * table entries are removed. If the refcount is only
147 * droppped on invalidate_range_end() then the driver itself
148 * will drop the last refcount but it must take care to flush
149 * any secondary tlb before doing the final free on the
150 * page. Pages will no longer be referenced by the linux
151 * address space but may still be referenced by sptes until
152 * the last refcount is dropped.
153 *
154 * If blockable argument is set to false then the callback cannot
155 * sleep and has to return with -EAGAIN. 0 should be returned
156 * otherwise.
157 *
158 */
159 int (*invalidate_range_start)(struct mmu_notifier *mn,
160 struct mm_struct *mm,
161 unsigned long start, unsigned long end,
162 bool blockable);
163 void (*invalidate_range_end)(struct mmu_notifier *mn,
164 struct mm_struct *mm,
165 unsigned long start, unsigned long end);
166
167 /*
168 * invalidate_range() is either called between
169 * invalidate_range_start() and invalidate_range_end() when the
170 * VM has to free pages that where unmapped, but before the
171 * pages are actually freed, or outside of _start()/_end() when
172 * a (remote) TLB is necessary.
173 *
174 * If invalidate_range() is used to manage a non-CPU TLB with
175 * shared page-tables, it not necessary to implement the
176 * invalidate_range_start()/end() notifiers, as
177 * invalidate_range() alread catches the points in time when an
178 * external TLB range needs to be flushed. For more in depth
179 * discussion on this see Documentation/vm/mmu_notifier.rst
180 *
181 * Note that this function might be called with just a sub-range
182 * of what was passed to invalidate_range_start()/end(), if
183 * called between those functions.
184 *
185 * If this callback cannot block, and invalidate_range_{start,end}
186 * cannot block, mmu_notifier_ops.flags should have
187 * MMU_INVALIDATE_DOES_NOT_BLOCK set.
188 */
189 void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
190 unsigned long start, unsigned long end);
191};
192
193/*
194 * The notifier chains are protected by mmap_sem and/or the reverse map
195 * semaphores. Notifier chains are only changed when all reverse maps and
196 * the mmap_sem locks are taken.
197 *
198 * Therefore notifier chains can only be traversed when either
199 *
200 * 1. mmap_sem is held.
201 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
202 * 3. No other concurrent thread can access the list (release)
203 */
204struct mmu_notifier {
205 struct hlist_node hlist;
206 const struct mmu_notifier_ops *ops;
207};
208
209static inline int mm_has_notifiers(struct mm_struct *mm)
210{
211 return unlikely(mm->mmu_notifier_mm);
212}
213
214extern int mmu_notifier_register(struct mmu_notifier *mn,
215 struct mm_struct *mm);
216extern int __mmu_notifier_register(struct mmu_notifier *mn,
217 struct mm_struct *mm);
218extern void mmu_notifier_unregister(struct mmu_notifier *mn,
219 struct mm_struct *mm);
220extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
221 struct mm_struct *mm);
222extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
223extern void __mmu_notifier_release(struct mm_struct *mm);
224extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
225 unsigned long start,
226 unsigned long end);
227extern int __mmu_notifier_clear_young(struct mm_struct *mm,
228 unsigned long start,
229 unsigned long end);
230extern int __mmu_notifier_test_young(struct mm_struct *mm,
231 unsigned long address);
232extern void __mmu_notifier_change_pte(struct mm_struct *mm,
233 unsigned long address, pte_t pte);
234extern int __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
235 unsigned long start, unsigned long end,
236 bool blockable);
237extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
238 unsigned long start, unsigned long end,
239 bool only_end);
240extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
241 unsigned long start, unsigned long end);
242extern bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm);
243
244static inline void mmu_notifier_release(struct mm_struct *mm)
245{
246 if (mm_has_notifiers(mm))
247 __mmu_notifier_release(mm);
248}
249
250static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
251 unsigned long start,
252 unsigned long end)
253{
254 if (mm_has_notifiers(mm))
255 return __mmu_notifier_clear_flush_young(mm, start, end);
256 return 0;
257}
258
259static inline int mmu_notifier_clear_young(struct mm_struct *mm,
260 unsigned long start,
261 unsigned long end)
262{
263 if (mm_has_notifiers(mm))
264 return __mmu_notifier_clear_young(mm, start, end);
265 return 0;
266}
267
268static inline int mmu_notifier_test_young(struct mm_struct *mm,
269 unsigned long address)
270{
271 if (mm_has_notifiers(mm))
272 return __mmu_notifier_test_young(mm, address);
273 return 0;
274}
275
276static inline void mmu_notifier_change_pte(struct mm_struct *mm,
277 unsigned long address, pte_t pte)
278{
279 if (mm_has_notifiers(mm))
280 __mmu_notifier_change_pte(mm, address, pte);
281}
282
283static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
284 unsigned long start, unsigned long end)
285{
286 if (mm_has_notifiers(mm))
287 __mmu_notifier_invalidate_range_start(mm, start, end, true);
288}
289
290static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm,
291 unsigned long start, unsigned long end)
292{
293 if (mm_has_notifiers(mm))
294 return __mmu_notifier_invalidate_range_start(mm, start, end, false);
295 return 0;
296}
297
298static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
299 unsigned long start, unsigned long end)
300{
301 if (mm_has_notifiers(mm))
302 __mmu_notifier_invalidate_range_end(mm, start, end, false);
303}
304
305static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm,
306 unsigned long start, unsigned long end)
307{
308 if (mm_has_notifiers(mm))
309 __mmu_notifier_invalidate_range_end(mm, start, end, true);
310}
311
312static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
313 unsigned long start, unsigned long end)
314{
315 if (mm_has_notifiers(mm))
316 __mmu_notifier_invalidate_range(mm, start, end);
317}
318
319static inline void mmu_notifier_mm_init(struct mm_struct *mm)
320{
321 mm->mmu_notifier_mm = NULL;
322}
323
324static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
325{
326 if (mm_has_notifiers(mm))
327 __mmu_notifier_mm_destroy(mm);
328}
329
330#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
331({ \
332 int __young; \
333 struct vm_area_struct *___vma = __vma; \
334 unsigned long ___address = __address; \
335 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
336 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
337 ___address, \
338 ___address + \
339 PAGE_SIZE); \
340 __young; \
341})
342
343#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
344({ \
345 int __young; \
346 struct vm_area_struct *___vma = __vma; \
347 unsigned long ___address = __address; \
348 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
349 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
350 ___address, \
351 ___address + \
352 PMD_SIZE); \
353 __young; \
354})
355
356#define ptep_clear_young_notify(__vma, __address, __ptep) \
357({ \
358 int __young; \
359 struct vm_area_struct *___vma = __vma; \
360 unsigned long ___address = __address; \
361 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
362 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
363 ___address + PAGE_SIZE); \
364 __young; \
365})
366
367#define pmdp_clear_young_notify(__vma, __address, __pmdp) \
368({ \
369 int __young; \
370 struct vm_area_struct *___vma = __vma; \
371 unsigned long ___address = __address; \
372 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
373 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
374 ___address + PMD_SIZE); \
375 __young; \
376})
377
378#define ptep_clear_flush_notify(__vma, __address, __ptep) \
379({ \
380 unsigned long ___addr = __address & PAGE_MASK; \
381 struct mm_struct *___mm = (__vma)->vm_mm; \
382 pte_t ___pte; \
383 \
384 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
385 mmu_notifier_invalidate_range(___mm, ___addr, \
386 ___addr + PAGE_SIZE); \
387 \
388 ___pte; \
389})
390
391#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
392({ \
393 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
394 struct mm_struct *___mm = (__vma)->vm_mm; \
395 pmd_t ___pmd; \
396 \
397 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
398 mmu_notifier_invalidate_range(___mm, ___haddr, \
399 ___haddr + HPAGE_PMD_SIZE); \
400 \
401 ___pmd; \
402})
403
404#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
405({ \
406 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
407 struct mm_struct *___mm = (__vma)->vm_mm; \
408 pud_t ___pud; \
409 \
410 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
411 mmu_notifier_invalidate_range(___mm, ___haddr, \
412 ___haddr + HPAGE_PUD_SIZE); \
413 \
414 ___pud; \
415})
416
417/*
418 * set_pte_at_notify() sets the pte _after_ running the notifier.
419 * This is safe to start by updating the secondary MMUs, because the primary MMU
420 * pte invalidate must have already happened with a ptep_clear_flush() before
421 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
422 * required when we change both the protection of the mapping from read-only to
423 * read-write and the pfn (like during copy on write page faults). Otherwise the
424 * old page would remain mapped readonly in the secondary MMUs after the new
425 * page is already writable by some CPU through the primary MMU.
426 */
427#define set_pte_at_notify(__mm, __address, __ptep, __pte) \
428({ \
429 struct mm_struct *___mm = __mm; \
430 unsigned long ___address = __address; \
431 pte_t ___pte = __pte; \
432 \
433 mmu_notifier_change_pte(___mm, ___address, ___pte); \
434 set_pte_at(___mm, ___address, __ptep, ___pte); \
435})
436
437extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
438 void (*func)(struct rcu_head *rcu));
439extern void mmu_notifier_synchronize(void);
440
441#else /* CONFIG_MMU_NOTIFIER */
442
443static inline int mm_has_notifiers(struct mm_struct *mm)
444{
445 return 0;
446}
447
448static inline void mmu_notifier_release(struct mm_struct *mm)
449{
450}
451
452static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
453 unsigned long start,
454 unsigned long end)
455{
456 return 0;
457}
458
459static inline int mmu_notifier_test_young(struct mm_struct *mm,
460 unsigned long address)
461{
462 return 0;
463}
464
465static inline void mmu_notifier_change_pte(struct mm_struct *mm,
466 unsigned long address, pte_t pte)
467{
468}
469
470static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
471 unsigned long start, unsigned long end)
472{
473}
474
475static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm,
476 unsigned long start, unsigned long end)
477{
478 return 0;
479}
480
481static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
482 unsigned long start, unsigned long end)
483{
484}
485
486static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm,
487 unsigned long start, unsigned long end)
488{
489}
490
491static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
492 unsigned long start, unsigned long end)
493{
494}
495
496static inline bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm)
497{
498 return false;
499}
500
501static inline void mmu_notifier_mm_init(struct mm_struct *mm)
502{
503}
504
505static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
506{
507}
508
509#define ptep_clear_flush_young_notify ptep_clear_flush_young
510#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
511#define ptep_clear_young_notify ptep_test_and_clear_young
512#define pmdp_clear_young_notify pmdp_test_and_clear_young
513#define ptep_clear_flush_notify ptep_clear_flush
514#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
515#define pudp_huge_clear_flush_notify pudp_huge_clear_flush
516#define set_pte_at_notify set_pte_at
517
518#endif /* CONFIG_MMU_NOTIFIER */
519
520#endif /* _LINUX_MMU_NOTIFIER_H */