Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | /* |
| 3 | * super.c - NILFS module and super block management. |
| 4 | * |
| 5 | * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. |
| 6 | * |
| 7 | * Written by Ryusuke Konishi. |
| 8 | */ |
| 9 | /* |
| 10 | * linux/fs/ext2/super.c |
| 11 | * |
| 12 | * Copyright (C) 1992, 1993, 1994, 1995 |
| 13 | * Remy Card (card@masi.ibp.fr) |
| 14 | * Laboratoire MASI - Institut Blaise Pascal |
| 15 | * Universite Pierre et Marie Curie (Paris VI) |
| 16 | * |
| 17 | * from |
| 18 | * |
| 19 | * linux/fs/minix/inode.c |
| 20 | * |
| 21 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 22 | * |
| 23 | * Big-endian to little-endian byte-swapping/bitmaps by |
| 24 | * David S. Miller (davem@caip.rutgers.edu), 1995 |
| 25 | */ |
| 26 | |
| 27 | #include <linux/module.h> |
| 28 | #include <linux/string.h> |
| 29 | #include <linux/slab.h> |
| 30 | #include <linux/init.h> |
| 31 | #include <linux/blkdev.h> |
| 32 | #include <linux/parser.h> |
| 33 | #include <linux/crc32.h> |
| 34 | #include <linux/vfs.h> |
| 35 | #include <linux/writeback.h> |
| 36 | #include <linux/seq_file.h> |
| 37 | #include <linux/mount.h> |
| 38 | #include "nilfs.h" |
| 39 | #include "export.h" |
| 40 | #include "mdt.h" |
| 41 | #include "alloc.h" |
| 42 | #include "btree.h" |
| 43 | #include "btnode.h" |
| 44 | #include "page.h" |
| 45 | #include "cpfile.h" |
| 46 | #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */ |
| 47 | #include "ifile.h" |
| 48 | #include "dat.h" |
| 49 | #include "segment.h" |
| 50 | #include "segbuf.h" |
| 51 | |
| 52 | MODULE_AUTHOR("NTT Corp."); |
| 53 | MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem " |
| 54 | "(NILFS)"); |
| 55 | MODULE_LICENSE("GPL"); |
| 56 | |
| 57 | static struct kmem_cache *nilfs_inode_cachep; |
| 58 | struct kmem_cache *nilfs_transaction_cachep; |
| 59 | struct kmem_cache *nilfs_segbuf_cachep; |
| 60 | struct kmem_cache *nilfs_btree_path_cache; |
| 61 | |
| 62 | static int nilfs_setup_super(struct super_block *sb, int is_mount); |
| 63 | static int nilfs_remount(struct super_block *sb, int *flags, char *data); |
| 64 | |
| 65 | void __nilfs_msg(struct super_block *sb, const char *level, const char *fmt, |
| 66 | ...) |
| 67 | { |
| 68 | struct va_format vaf; |
| 69 | va_list args; |
| 70 | |
| 71 | va_start(args, fmt); |
| 72 | vaf.fmt = fmt; |
| 73 | vaf.va = &args; |
| 74 | if (sb) |
| 75 | printk("%sNILFS (%s): %pV\n", level, sb->s_id, &vaf); |
| 76 | else |
| 77 | printk("%sNILFS: %pV\n", level, &vaf); |
| 78 | va_end(args); |
| 79 | } |
| 80 | |
| 81 | static void nilfs_set_error(struct super_block *sb) |
| 82 | { |
| 83 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 84 | struct nilfs_super_block **sbp; |
| 85 | |
| 86 | down_write(&nilfs->ns_sem); |
| 87 | if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) { |
| 88 | nilfs->ns_mount_state |= NILFS_ERROR_FS; |
| 89 | sbp = nilfs_prepare_super(sb, 0); |
| 90 | if (likely(sbp)) { |
| 91 | sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS); |
| 92 | if (sbp[1]) |
| 93 | sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS); |
| 94 | nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); |
| 95 | } |
| 96 | } |
| 97 | up_write(&nilfs->ns_sem); |
| 98 | } |
| 99 | |
| 100 | /** |
| 101 | * __nilfs_error() - report failure condition on a filesystem |
| 102 | * |
| 103 | * __nilfs_error() sets an ERROR_FS flag on the superblock as well as |
| 104 | * reporting an error message. This function should be called when |
| 105 | * NILFS detects incoherences or defects of meta data on disk. |
| 106 | * |
| 107 | * This implements the body of nilfs_error() macro. Normally, |
| 108 | * nilfs_error() should be used. As for sustainable errors such as a |
| 109 | * single-shot I/O error, nilfs_msg() should be used instead. |
| 110 | * |
| 111 | * Callers should not add a trailing newline since this will do it. |
| 112 | */ |
| 113 | void __nilfs_error(struct super_block *sb, const char *function, |
| 114 | const char *fmt, ...) |
| 115 | { |
| 116 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 117 | struct va_format vaf; |
| 118 | va_list args; |
| 119 | |
| 120 | va_start(args, fmt); |
| 121 | |
| 122 | vaf.fmt = fmt; |
| 123 | vaf.va = &args; |
| 124 | |
| 125 | printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n", |
| 126 | sb->s_id, function, &vaf); |
| 127 | |
| 128 | va_end(args); |
| 129 | |
| 130 | if (!sb_rdonly(sb)) { |
| 131 | nilfs_set_error(sb); |
| 132 | |
| 133 | if (nilfs_test_opt(nilfs, ERRORS_RO)) { |
| 134 | printk(KERN_CRIT "Remounting filesystem read-only\n"); |
| 135 | sb->s_flags |= SB_RDONLY; |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | if (nilfs_test_opt(nilfs, ERRORS_PANIC)) |
| 140 | panic("NILFS (device %s): panic forced after error\n", |
| 141 | sb->s_id); |
| 142 | } |
| 143 | |
| 144 | struct inode *nilfs_alloc_inode(struct super_block *sb) |
| 145 | { |
| 146 | struct nilfs_inode_info *ii; |
| 147 | |
| 148 | ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS); |
| 149 | if (!ii) |
| 150 | return NULL; |
| 151 | ii->i_bh = NULL; |
| 152 | ii->i_state = 0; |
| 153 | ii->i_cno = 0; |
| 154 | nilfs_mapping_init(&ii->i_btnode_cache, &ii->vfs_inode); |
| 155 | return &ii->vfs_inode; |
| 156 | } |
| 157 | |
| 158 | static void nilfs_i_callback(struct rcu_head *head) |
| 159 | { |
| 160 | struct inode *inode = container_of(head, struct inode, i_rcu); |
| 161 | |
| 162 | if (nilfs_is_metadata_file_inode(inode)) |
| 163 | nilfs_mdt_destroy(inode); |
| 164 | |
| 165 | kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode)); |
| 166 | } |
| 167 | |
| 168 | void nilfs_destroy_inode(struct inode *inode) |
| 169 | { |
| 170 | call_rcu(&inode->i_rcu, nilfs_i_callback); |
| 171 | } |
| 172 | |
| 173 | static int nilfs_sync_super(struct super_block *sb, int flag) |
| 174 | { |
| 175 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 176 | int err; |
| 177 | |
| 178 | retry: |
| 179 | set_buffer_dirty(nilfs->ns_sbh[0]); |
| 180 | if (nilfs_test_opt(nilfs, BARRIER)) { |
| 181 | err = __sync_dirty_buffer(nilfs->ns_sbh[0], |
| 182 | REQ_SYNC | REQ_PREFLUSH | REQ_FUA); |
| 183 | } else { |
| 184 | err = sync_dirty_buffer(nilfs->ns_sbh[0]); |
| 185 | } |
| 186 | |
| 187 | if (unlikely(err)) { |
| 188 | nilfs_msg(sb, KERN_ERR, "unable to write superblock: err=%d", |
| 189 | err); |
| 190 | if (err == -EIO && nilfs->ns_sbh[1]) { |
| 191 | /* |
| 192 | * sbp[0] points to newer log than sbp[1], |
| 193 | * so copy sbp[0] to sbp[1] to take over sbp[0]. |
| 194 | */ |
| 195 | memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0], |
| 196 | nilfs->ns_sbsize); |
| 197 | nilfs_fall_back_super_block(nilfs); |
| 198 | goto retry; |
| 199 | } |
| 200 | } else { |
| 201 | struct nilfs_super_block *sbp = nilfs->ns_sbp[0]; |
| 202 | |
| 203 | nilfs->ns_sbwcount++; |
| 204 | |
| 205 | /* |
| 206 | * The latest segment becomes trailable from the position |
| 207 | * written in superblock. |
| 208 | */ |
| 209 | clear_nilfs_discontinued(nilfs); |
| 210 | |
| 211 | /* update GC protection for recent segments */ |
| 212 | if (nilfs->ns_sbh[1]) { |
| 213 | if (flag == NILFS_SB_COMMIT_ALL) { |
| 214 | set_buffer_dirty(nilfs->ns_sbh[1]); |
| 215 | if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0) |
| 216 | goto out; |
| 217 | } |
| 218 | if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) < |
| 219 | le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno)) |
| 220 | sbp = nilfs->ns_sbp[1]; |
| 221 | } |
| 222 | |
| 223 | spin_lock(&nilfs->ns_last_segment_lock); |
| 224 | nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq); |
| 225 | spin_unlock(&nilfs->ns_last_segment_lock); |
| 226 | } |
| 227 | out: |
| 228 | return err; |
| 229 | } |
| 230 | |
| 231 | void nilfs_set_log_cursor(struct nilfs_super_block *sbp, |
| 232 | struct the_nilfs *nilfs) |
| 233 | { |
| 234 | sector_t nfreeblocks; |
| 235 | |
| 236 | /* nilfs->ns_sem must be locked by the caller. */ |
| 237 | nilfs_count_free_blocks(nilfs, &nfreeblocks); |
| 238 | sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks); |
| 239 | |
| 240 | spin_lock(&nilfs->ns_last_segment_lock); |
| 241 | sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq); |
| 242 | sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg); |
| 243 | sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno); |
| 244 | spin_unlock(&nilfs->ns_last_segment_lock); |
| 245 | } |
| 246 | |
| 247 | struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb, |
| 248 | int flip) |
| 249 | { |
| 250 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 251 | struct nilfs_super_block **sbp = nilfs->ns_sbp; |
| 252 | |
| 253 | /* nilfs->ns_sem must be locked by the caller. */ |
| 254 | if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { |
| 255 | if (sbp[1] && |
| 256 | sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) { |
| 257 | memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); |
| 258 | } else { |
| 259 | nilfs_msg(sb, KERN_CRIT, "superblock broke"); |
| 260 | return NULL; |
| 261 | } |
| 262 | } else if (sbp[1] && |
| 263 | sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) { |
| 264 | memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); |
| 265 | } |
| 266 | |
| 267 | if (flip && sbp[1]) |
| 268 | nilfs_swap_super_block(nilfs); |
| 269 | |
| 270 | return sbp; |
| 271 | } |
| 272 | |
| 273 | int nilfs_commit_super(struct super_block *sb, int flag) |
| 274 | { |
| 275 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 276 | struct nilfs_super_block **sbp = nilfs->ns_sbp; |
| 277 | time64_t t; |
| 278 | |
| 279 | /* nilfs->ns_sem must be locked by the caller. */ |
| 280 | t = ktime_get_real_seconds(); |
| 281 | nilfs->ns_sbwtime = t; |
| 282 | sbp[0]->s_wtime = cpu_to_le64(t); |
| 283 | sbp[0]->s_sum = 0; |
| 284 | sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, |
| 285 | (unsigned char *)sbp[0], |
| 286 | nilfs->ns_sbsize)); |
| 287 | if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) { |
| 288 | sbp[1]->s_wtime = sbp[0]->s_wtime; |
| 289 | sbp[1]->s_sum = 0; |
| 290 | sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed, |
| 291 | (unsigned char *)sbp[1], |
| 292 | nilfs->ns_sbsize)); |
| 293 | } |
| 294 | clear_nilfs_sb_dirty(nilfs); |
| 295 | nilfs->ns_flushed_device = 1; |
| 296 | /* make sure store to ns_flushed_device cannot be reordered */ |
| 297 | smp_wmb(); |
| 298 | return nilfs_sync_super(sb, flag); |
| 299 | } |
| 300 | |
| 301 | /** |
| 302 | * nilfs_cleanup_super() - write filesystem state for cleanup |
| 303 | * @sb: super block instance to be unmounted or degraded to read-only |
| 304 | * |
| 305 | * This function restores state flags in the on-disk super block. |
| 306 | * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the |
| 307 | * filesystem was not clean previously. |
| 308 | */ |
| 309 | int nilfs_cleanup_super(struct super_block *sb) |
| 310 | { |
| 311 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 312 | struct nilfs_super_block **sbp; |
| 313 | int flag = NILFS_SB_COMMIT; |
| 314 | int ret = -EIO; |
| 315 | |
| 316 | sbp = nilfs_prepare_super(sb, 0); |
| 317 | if (sbp) { |
| 318 | sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state); |
| 319 | nilfs_set_log_cursor(sbp[0], nilfs); |
| 320 | if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) { |
| 321 | /* |
| 322 | * make the "clean" flag also to the opposite |
| 323 | * super block if both super blocks point to |
| 324 | * the same checkpoint. |
| 325 | */ |
| 326 | sbp[1]->s_state = sbp[0]->s_state; |
| 327 | flag = NILFS_SB_COMMIT_ALL; |
| 328 | } |
| 329 | ret = nilfs_commit_super(sb, flag); |
| 330 | } |
| 331 | return ret; |
| 332 | } |
| 333 | |
| 334 | /** |
| 335 | * nilfs_move_2nd_super - relocate secondary super block |
| 336 | * @sb: super block instance |
| 337 | * @sb2off: new offset of the secondary super block (in bytes) |
| 338 | */ |
| 339 | static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off) |
| 340 | { |
| 341 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 342 | struct buffer_head *nsbh; |
| 343 | struct nilfs_super_block *nsbp; |
| 344 | sector_t blocknr, newblocknr; |
| 345 | unsigned long offset; |
| 346 | int sb2i; /* array index of the secondary superblock */ |
| 347 | int ret = 0; |
| 348 | |
| 349 | /* nilfs->ns_sem must be locked by the caller. */ |
| 350 | if (nilfs->ns_sbh[1] && |
| 351 | nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) { |
| 352 | sb2i = 1; |
| 353 | blocknr = nilfs->ns_sbh[1]->b_blocknr; |
| 354 | } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) { |
| 355 | sb2i = 0; |
| 356 | blocknr = nilfs->ns_sbh[0]->b_blocknr; |
| 357 | } else { |
| 358 | sb2i = -1; |
| 359 | blocknr = 0; |
| 360 | } |
| 361 | if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off) |
| 362 | goto out; /* super block location is unchanged */ |
| 363 | |
| 364 | /* Get new super block buffer */ |
| 365 | newblocknr = sb2off >> nilfs->ns_blocksize_bits; |
| 366 | offset = sb2off & (nilfs->ns_blocksize - 1); |
| 367 | nsbh = sb_getblk(sb, newblocknr); |
| 368 | if (!nsbh) { |
| 369 | nilfs_msg(sb, KERN_WARNING, |
| 370 | "unable to move secondary superblock to block %llu", |
| 371 | (unsigned long long)newblocknr); |
| 372 | ret = -EIO; |
| 373 | goto out; |
| 374 | } |
| 375 | nsbp = (void *)nsbh->b_data + offset; |
| 376 | memset(nsbp, 0, nilfs->ns_blocksize); |
| 377 | |
| 378 | if (sb2i >= 0) { |
| 379 | memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize); |
| 380 | brelse(nilfs->ns_sbh[sb2i]); |
| 381 | nilfs->ns_sbh[sb2i] = nsbh; |
| 382 | nilfs->ns_sbp[sb2i] = nsbp; |
| 383 | } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) { |
| 384 | /* secondary super block will be restored to index 1 */ |
| 385 | nilfs->ns_sbh[1] = nsbh; |
| 386 | nilfs->ns_sbp[1] = nsbp; |
| 387 | } else { |
| 388 | brelse(nsbh); |
| 389 | } |
| 390 | out: |
| 391 | return ret; |
| 392 | } |
| 393 | |
| 394 | /** |
| 395 | * nilfs_resize_fs - resize the filesystem |
| 396 | * @sb: super block instance |
| 397 | * @newsize: new size of the filesystem (in bytes) |
| 398 | */ |
| 399 | int nilfs_resize_fs(struct super_block *sb, __u64 newsize) |
| 400 | { |
| 401 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 402 | struct nilfs_super_block **sbp; |
| 403 | __u64 devsize, newnsegs; |
| 404 | loff_t sb2off; |
| 405 | int ret; |
| 406 | |
| 407 | ret = -ERANGE; |
| 408 | devsize = i_size_read(sb->s_bdev->bd_inode); |
| 409 | if (newsize > devsize) |
| 410 | goto out; |
| 411 | |
| 412 | /* |
| 413 | * Write lock is required to protect some functions depending |
| 414 | * on the number of segments, the number of reserved segments, |
| 415 | * and so forth. |
| 416 | */ |
| 417 | down_write(&nilfs->ns_segctor_sem); |
| 418 | |
| 419 | sb2off = NILFS_SB2_OFFSET_BYTES(newsize); |
| 420 | newnsegs = sb2off >> nilfs->ns_blocksize_bits; |
| 421 | do_div(newnsegs, nilfs->ns_blocks_per_segment); |
| 422 | |
| 423 | ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs); |
| 424 | up_write(&nilfs->ns_segctor_sem); |
| 425 | if (ret < 0) |
| 426 | goto out; |
| 427 | |
| 428 | ret = nilfs_construct_segment(sb); |
| 429 | if (ret < 0) |
| 430 | goto out; |
| 431 | |
| 432 | down_write(&nilfs->ns_sem); |
| 433 | nilfs_move_2nd_super(sb, sb2off); |
| 434 | ret = -EIO; |
| 435 | sbp = nilfs_prepare_super(sb, 0); |
| 436 | if (likely(sbp)) { |
| 437 | nilfs_set_log_cursor(sbp[0], nilfs); |
| 438 | /* |
| 439 | * Drop NILFS_RESIZE_FS flag for compatibility with |
| 440 | * mount-time resize which may be implemented in a |
| 441 | * future release. |
| 442 | */ |
| 443 | sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & |
| 444 | ~NILFS_RESIZE_FS); |
| 445 | sbp[0]->s_dev_size = cpu_to_le64(newsize); |
| 446 | sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments); |
| 447 | if (sbp[1]) |
| 448 | memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); |
| 449 | ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); |
| 450 | } |
| 451 | up_write(&nilfs->ns_sem); |
| 452 | |
| 453 | /* |
| 454 | * Reset the range of allocatable segments last. This order |
| 455 | * is important in the case of expansion because the secondary |
| 456 | * superblock must be protected from log write until migration |
| 457 | * completes. |
| 458 | */ |
| 459 | if (!ret) |
| 460 | nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1); |
| 461 | out: |
| 462 | return ret; |
| 463 | } |
| 464 | |
| 465 | static void nilfs_put_super(struct super_block *sb) |
| 466 | { |
| 467 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 468 | |
| 469 | nilfs_detach_log_writer(sb); |
| 470 | |
| 471 | if (!sb_rdonly(sb)) { |
| 472 | down_write(&nilfs->ns_sem); |
| 473 | nilfs_cleanup_super(sb); |
| 474 | up_write(&nilfs->ns_sem); |
| 475 | } |
| 476 | |
| 477 | iput(nilfs->ns_sufile); |
| 478 | iput(nilfs->ns_cpfile); |
| 479 | iput(nilfs->ns_dat); |
| 480 | |
| 481 | destroy_nilfs(nilfs); |
| 482 | sb->s_fs_info = NULL; |
| 483 | } |
| 484 | |
| 485 | static int nilfs_sync_fs(struct super_block *sb, int wait) |
| 486 | { |
| 487 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 488 | struct nilfs_super_block **sbp; |
| 489 | int err = 0; |
| 490 | |
| 491 | /* This function is called when super block should be written back */ |
| 492 | if (wait) |
| 493 | err = nilfs_construct_segment(sb); |
| 494 | |
| 495 | down_write(&nilfs->ns_sem); |
| 496 | if (nilfs_sb_dirty(nilfs)) { |
| 497 | sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs)); |
| 498 | if (likely(sbp)) { |
| 499 | nilfs_set_log_cursor(sbp[0], nilfs); |
| 500 | nilfs_commit_super(sb, NILFS_SB_COMMIT); |
| 501 | } |
| 502 | } |
| 503 | up_write(&nilfs->ns_sem); |
| 504 | |
| 505 | if (!err) |
| 506 | err = nilfs_flush_device(nilfs); |
| 507 | |
| 508 | return err; |
| 509 | } |
| 510 | |
| 511 | int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt, |
| 512 | struct nilfs_root **rootp) |
| 513 | { |
| 514 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 515 | struct nilfs_root *root; |
| 516 | struct nilfs_checkpoint *raw_cp; |
| 517 | struct buffer_head *bh_cp; |
| 518 | int err = -ENOMEM; |
| 519 | |
| 520 | root = nilfs_find_or_create_root( |
| 521 | nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno); |
| 522 | if (!root) |
| 523 | return err; |
| 524 | |
| 525 | if (root->ifile) |
| 526 | goto reuse; /* already attached checkpoint */ |
| 527 | |
| 528 | down_read(&nilfs->ns_segctor_sem); |
| 529 | err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp, |
| 530 | &bh_cp); |
| 531 | up_read(&nilfs->ns_segctor_sem); |
| 532 | if (unlikely(err)) { |
| 533 | if (err == -ENOENT || err == -EINVAL) { |
| 534 | nilfs_msg(sb, KERN_ERR, |
| 535 | "Invalid checkpoint (checkpoint number=%llu)", |
| 536 | (unsigned long long)cno); |
| 537 | err = -EINVAL; |
| 538 | } |
| 539 | goto failed; |
| 540 | } |
| 541 | |
| 542 | err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size, |
| 543 | &raw_cp->cp_ifile_inode, &root->ifile); |
| 544 | if (err) |
| 545 | goto failed_bh; |
| 546 | |
| 547 | atomic64_set(&root->inodes_count, |
| 548 | le64_to_cpu(raw_cp->cp_inodes_count)); |
| 549 | atomic64_set(&root->blocks_count, |
| 550 | le64_to_cpu(raw_cp->cp_blocks_count)); |
| 551 | |
| 552 | nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); |
| 553 | |
| 554 | reuse: |
| 555 | *rootp = root; |
| 556 | return 0; |
| 557 | |
| 558 | failed_bh: |
| 559 | nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp); |
| 560 | failed: |
| 561 | nilfs_put_root(root); |
| 562 | |
| 563 | return err; |
| 564 | } |
| 565 | |
| 566 | static int nilfs_freeze(struct super_block *sb) |
| 567 | { |
| 568 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 569 | int err; |
| 570 | |
| 571 | if (sb_rdonly(sb)) |
| 572 | return 0; |
| 573 | |
| 574 | /* Mark super block clean */ |
| 575 | down_write(&nilfs->ns_sem); |
| 576 | err = nilfs_cleanup_super(sb); |
| 577 | up_write(&nilfs->ns_sem); |
| 578 | return err; |
| 579 | } |
| 580 | |
| 581 | static int nilfs_unfreeze(struct super_block *sb) |
| 582 | { |
| 583 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 584 | |
| 585 | if (sb_rdonly(sb)) |
| 586 | return 0; |
| 587 | |
| 588 | down_write(&nilfs->ns_sem); |
| 589 | nilfs_setup_super(sb, false); |
| 590 | up_write(&nilfs->ns_sem); |
| 591 | return 0; |
| 592 | } |
| 593 | |
| 594 | static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf) |
| 595 | { |
| 596 | struct super_block *sb = dentry->d_sb; |
| 597 | struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; |
| 598 | struct the_nilfs *nilfs = root->nilfs; |
| 599 | u64 id = huge_encode_dev(sb->s_bdev->bd_dev); |
| 600 | unsigned long long blocks; |
| 601 | unsigned long overhead; |
| 602 | unsigned long nrsvblocks; |
| 603 | sector_t nfreeblocks; |
| 604 | u64 nmaxinodes, nfreeinodes; |
| 605 | int err; |
| 606 | |
| 607 | /* |
| 608 | * Compute all of the segment blocks |
| 609 | * |
| 610 | * The blocks before first segment and after last segment |
| 611 | * are excluded. |
| 612 | */ |
| 613 | blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments |
| 614 | - nilfs->ns_first_data_block; |
| 615 | nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment; |
| 616 | |
| 617 | /* |
| 618 | * Compute the overhead |
| 619 | * |
| 620 | * When distributing meta data blocks outside segment structure, |
| 621 | * We must count them as the overhead. |
| 622 | */ |
| 623 | overhead = 0; |
| 624 | |
| 625 | err = nilfs_count_free_blocks(nilfs, &nfreeblocks); |
| 626 | if (unlikely(err)) |
| 627 | return err; |
| 628 | |
| 629 | err = nilfs_ifile_count_free_inodes(root->ifile, |
| 630 | &nmaxinodes, &nfreeinodes); |
| 631 | if (unlikely(err)) { |
| 632 | nilfs_msg(sb, KERN_WARNING, |
| 633 | "failed to count free inodes: err=%d", err); |
| 634 | if (err == -ERANGE) { |
| 635 | /* |
| 636 | * If nilfs_palloc_count_max_entries() returns |
| 637 | * -ERANGE error code then we simply treat |
| 638 | * curent inodes count as maximum possible and |
| 639 | * zero as free inodes value. |
| 640 | */ |
| 641 | nmaxinodes = atomic64_read(&root->inodes_count); |
| 642 | nfreeinodes = 0; |
| 643 | err = 0; |
| 644 | } else |
| 645 | return err; |
| 646 | } |
| 647 | |
| 648 | buf->f_type = NILFS_SUPER_MAGIC; |
| 649 | buf->f_bsize = sb->s_blocksize; |
| 650 | buf->f_blocks = blocks - overhead; |
| 651 | buf->f_bfree = nfreeblocks; |
| 652 | buf->f_bavail = (buf->f_bfree >= nrsvblocks) ? |
| 653 | (buf->f_bfree - nrsvblocks) : 0; |
| 654 | buf->f_files = nmaxinodes; |
| 655 | buf->f_ffree = nfreeinodes; |
| 656 | buf->f_namelen = NILFS_NAME_LEN; |
| 657 | buf->f_fsid.val[0] = (u32)id; |
| 658 | buf->f_fsid.val[1] = (u32)(id >> 32); |
| 659 | |
| 660 | return 0; |
| 661 | } |
| 662 | |
| 663 | static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry) |
| 664 | { |
| 665 | struct super_block *sb = dentry->d_sb; |
| 666 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 667 | struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root; |
| 668 | |
| 669 | if (!nilfs_test_opt(nilfs, BARRIER)) |
| 670 | seq_puts(seq, ",nobarrier"); |
| 671 | if (root->cno != NILFS_CPTREE_CURRENT_CNO) |
| 672 | seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno); |
| 673 | if (nilfs_test_opt(nilfs, ERRORS_PANIC)) |
| 674 | seq_puts(seq, ",errors=panic"); |
| 675 | if (nilfs_test_opt(nilfs, ERRORS_CONT)) |
| 676 | seq_puts(seq, ",errors=continue"); |
| 677 | if (nilfs_test_opt(nilfs, STRICT_ORDER)) |
| 678 | seq_puts(seq, ",order=strict"); |
| 679 | if (nilfs_test_opt(nilfs, NORECOVERY)) |
| 680 | seq_puts(seq, ",norecovery"); |
| 681 | if (nilfs_test_opt(nilfs, DISCARD)) |
| 682 | seq_puts(seq, ",discard"); |
| 683 | |
| 684 | return 0; |
| 685 | } |
| 686 | |
| 687 | static const struct super_operations nilfs_sops = { |
| 688 | .alloc_inode = nilfs_alloc_inode, |
| 689 | .destroy_inode = nilfs_destroy_inode, |
| 690 | .dirty_inode = nilfs_dirty_inode, |
| 691 | .evict_inode = nilfs_evict_inode, |
| 692 | .put_super = nilfs_put_super, |
| 693 | .sync_fs = nilfs_sync_fs, |
| 694 | .freeze_fs = nilfs_freeze, |
| 695 | .unfreeze_fs = nilfs_unfreeze, |
| 696 | .statfs = nilfs_statfs, |
| 697 | .remount_fs = nilfs_remount, |
| 698 | .show_options = nilfs_show_options |
| 699 | }; |
| 700 | |
| 701 | enum { |
| 702 | Opt_err_cont, Opt_err_panic, Opt_err_ro, |
| 703 | Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery, |
| 704 | Opt_discard, Opt_nodiscard, Opt_err, |
| 705 | }; |
| 706 | |
| 707 | static match_table_t tokens = { |
| 708 | {Opt_err_cont, "errors=continue"}, |
| 709 | {Opt_err_panic, "errors=panic"}, |
| 710 | {Opt_err_ro, "errors=remount-ro"}, |
| 711 | {Opt_barrier, "barrier"}, |
| 712 | {Opt_nobarrier, "nobarrier"}, |
| 713 | {Opt_snapshot, "cp=%u"}, |
| 714 | {Opt_order, "order=%s"}, |
| 715 | {Opt_norecovery, "norecovery"}, |
| 716 | {Opt_discard, "discard"}, |
| 717 | {Opt_nodiscard, "nodiscard"}, |
| 718 | {Opt_err, NULL} |
| 719 | }; |
| 720 | |
| 721 | static int parse_options(char *options, struct super_block *sb, int is_remount) |
| 722 | { |
| 723 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 724 | char *p; |
| 725 | substring_t args[MAX_OPT_ARGS]; |
| 726 | |
| 727 | if (!options) |
| 728 | return 1; |
| 729 | |
| 730 | while ((p = strsep(&options, ",")) != NULL) { |
| 731 | int token; |
| 732 | |
| 733 | if (!*p) |
| 734 | continue; |
| 735 | |
| 736 | token = match_token(p, tokens, args); |
| 737 | switch (token) { |
| 738 | case Opt_barrier: |
| 739 | nilfs_set_opt(nilfs, BARRIER); |
| 740 | break; |
| 741 | case Opt_nobarrier: |
| 742 | nilfs_clear_opt(nilfs, BARRIER); |
| 743 | break; |
| 744 | case Opt_order: |
| 745 | if (strcmp(args[0].from, "relaxed") == 0) |
| 746 | /* Ordered data semantics */ |
| 747 | nilfs_clear_opt(nilfs, STRICT_ORDER); |
| 748 | else if (strcmp(args[0].from, "strict") == 0) |
| 749 | /* Strict in-order semantics */ |
| 750 | nilfs_set_opt(nilfs, STRICT_ORDER); |
| 751 | else |
| 752 | return 0; |
| 753 | break; |
| 754 | case Opt_err_panic: |
| 755 | nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC); |
| 756 | break; |
| 757 | case Opt_err_ro: |
| 758 | nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO); |
| 759 | break; |
| 760 | case Opt_err_cont: |
| 761 | nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT); |
| 762 | break; |
| 763 | case Opt_snapshot: |
| 764 | if (is_remount) { |
| 765 | nilfs_msg(sb, KERN_ERR, |
| 766 | "\"%s\" option is invalid for remount", |
| 767 | p); |
| 768 | return 0; |
| 769 | } |
| 770 | break; |
| 771 | case Opt_norecovery: |
| 772 | nilfs_set_opt(nilfs, NORECOVERY); |
| 773 | break; |
| 774 | case Opt_discard: |
| 775 | nilfs_set_opt(nilfs, DISCARD); |
| 776 | break; |
| 777 | case Opt_nodiscard: |
| 778 | nilfs_clear_opt(nilfs, DISCARD); |
| 779 | break; |
| 780 | default: |
| 781 | nilfs_msg(sb, KERN_ERR, |
| 782 | "unrecognized mount option \"%s\"", p); |
| 783 | return 0; |
| 784 | } |
| 785 | } |
| 786 | return 1; |
| 787 | } |
| 788 | |
| 789 | static inline void |
| 790 | nilfs_set_default_options(struct super_block *sb, |
| 791 | struct nilfs_super_block *sbp) |
| 792 | { |
| 793 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 794 | |
| 795 | nilfs->ns_mount_opt = |
| 796 | NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER; |
| 797 | } |
| 798 | |
| 799 | static int nilfs_setup_super(struct super_block *sb, int is_mount) |
| 800 | { |
| 801 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 802 | struct nilfs_super_block **sbp; |
| 803 | int max_mnt_count; |
| 804 | int mnt_count; |
| 805 | |
| 806 | /* nilfs->ns_sem must be locked by the caller. */ |
| 807 | sbp = nilfs_prepare_super(sb, 0); |
| 808 | if (!sbp) |
| 809 | return -EIO; |
| 810 | |
| 811 | if (!is_mount) |
| 812 | goto skip_mount_setup; |
| 813 | |
| 814 | max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count); |
| 815 | mnt_count = le16_to_cpu(sbp[0]->s_mnt_count); |
| 816 | |
| 817 | if (nilfs->ns_mount_state & NILFS_ERROR_FS) { |
| 818 | nilfs_msg(sb, KERN_WARNING, "mounting fs with errors"); |
| 819 | #if 0 |
| 820 | } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) { |
| 821 | nilfs_msg(sb, KERN_WARNING, "maximal mount count reached"); |
| 822 | #endif |
| 823 | } |
| 824 | if (!max_mnt_count) |
| 825 | sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT); |
| 826 | |
| 827 | sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1); |
| 828 | sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds()); |
| 829 | |
| 830 | skip_mount_setup: |
| 831 | sbp[0]->s_state = |
| 832 | cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS); |
| 833 | /* synchronize sbp[1] with sbp[0] */ |
| 834 | if (sbp[1]) |
| 835 | memcpy(sbp[1], sbp[0], nilfs->ns_sbsize); |
| 836 | return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL); |
| 837 | } |
| 838 | |
| 839 | struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb, |
| 840 | u64 pos, int blocksize, |
| 841 | struct buffer_head **pbh) |
| 842 | { |
| 843 | unsigned long long sb_index = pos; |
| 844 | unsigned long offset; |
| 845 | |
| 846 | offset = do_div(sb_index, blocksize); |
| 847 | *pbh = sb_bread(sb, sb_index); |
| 848 | if (!*pbh) |
| 849 | return NULL; |
| 850 | return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset); |
| 851 | } |
| 852 | |
| 853 | int nilfs_store_magic_and_option(struct super_block *sb, |
| 854 | struct nilfs_super_block *sbp, |
| 855 | char *data) |
| 856 | { |
| 857 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 858 | |
| 859 | sb->s_magic = le16_to_cpu(sbp->s_magic); |
| 860 | |
| 861 | /* FS independent flags */ |
| 862 | #ifdef NILFS_ATIME_DISABLE |
| 863 | sb->s_flags |= SB_NOATIME; |
| 864 | #endif |
| 865 | |
| 866 | nilfs_set_default_options(sb, sbp); |
| 867 | |
| 868 | nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid); |
| 869 | nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid); |
| 870 | nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval); |
| 871 | nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max); |
| 872 | |
| 873 | return !parse_options(data, sb, 0) ? -EINVAL : 0; |
| 874 | } |
| 875 | |
| 876 | int nilfs_check_feature_compatibility(struct super_block *sb, |
| 877 | struct nilfs_super_block *sbp) |
| 878 | { |
| 879 | __u64 features; |
| 880 | |
| 881 | features = le64_to_cpu(sbp->s_feature_incompat) & |
| 882 | ~NILFS_FEATURE_INCOMPAT_SUPP; |
| 883 | if (features) { |
| 884 | nilfs_msg(sb, KERN_ERR, |
| 885 | "couldn't mount because of unsupported optional features (%llx)", |
| 886 | (unsigned long long)features); |
| 887 | return -EINVAL; |
| 888 | } |
| 889 | features = le64_to_cpu(sbp->s_feature_compat_ro) & |
| 890 | ~NILFS_FEATURE_COMPAT_RO_SUPP; |
| 891 | if (!sb_rdonly(sb) && features) { |
| 892 | nilfs_msg(sb, KERN_ERR, |
| 893 | "couldn't mount RDWR because of unsupported optional features (%llx)", |
| 894 | (unsigned long long)features); |
| 895 | return -EINVAL; |
| 896 | } |
| 897 | return 0; |
| 898 | } |
| 899 | |
| 900 | static int nilfs_get_root_dentry(struct super_block *sb, |
| 901 | struct nilfs_root *root, |
| 902 | struct dentry **root_dentry) |
| 903 | { |
| 904 | struct inode *inode; |
| 905 | struct dentry *dentry; |
| 906 | int ret = 0; |
| 907 | |
| 908 | inode = nilfs_iget(sb, root, NILFS_ROOT_INO); |
| 909 | if (IS_ERR(inode)) { |
| 910 | ret = PTR_ERR(inode); |
| 911 | nilfs_msg(sb, KERN_ERR, "error %d getting root inode", ret); |
| 912 | goto out; |
| 913 | } |
| 914 | if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) { |
| 915 | iput(inode); |
| 916 | nilfs_msg(sb, KERN_ERR, "corrupt root inode"); |
| 917 | ret = -EINVAL; |
| 918 | goto out; |
| 919 | } |
| 920 | |
| 921 | if (root->cno == NILFS_CPTREE_CURRENT_CNO) { |
| 922 | dentry = d_find_alias(inode); |
| 923 | if (!dentry) { |
| 924 | dentry = d_make_root(inode); |
| 925 | if (!dentry) { |
| 926 | ret = -ENOMEM; |
| 927 | goto failed_dentry; |
| 928 | } |
| 929 | } else { |
| 930 | iput(inode); |
| 931 | } |
| 932 | } else { |
| 933 | dentry = d_obtain_root(inode); |
| 934 | if (IS_ERR(dentry)) { |
| 935 | ret = PTR_ERR(dentry); |
| 936 | goto failed_dentry; |
| 937 | } |
| 938 | } |
| 939 | *root_dentry = dentry; |
| 940 | out: |
| 941 | return ret; |
| 942 | |
| 943 | failed_dentry: |
| 944 | nilfs_msg(sb, KERN_ERR, "error %d getting root dentry", ret); |
| 945 | goto out; |
| 946 | } |
| 947 | |
| 948 | static int nilfs_attach_snapshot(struct super_block *s, __u64 cno, |
| 949 | struct dentry **root_dentry) |
| 950 | { |
| 951 | struct the_nilfs *nilfs = s->s_fs_info; |
| 952 | struct nilfs_root *root; |
| 953 | int ret; |
| 954 | |
| 955 | mutex_lock(&nilfs->ns_snapshot_mount_mutex); |
| 956 | |
| 957 | down_read(&nilfs->ns_segctor_sem); |
| 958 | ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno); |
| 959 | up_read(&nilfs->ns_segctor_sem); |
| 960 | if (ret < 0) { |
| 961 | ret = (ret == -ENOENT) ? -EINVAL : ret; |
| 962 | goto out; |
| 963 | } else if (!ret) { |
| 964 | nilfs_msg(s, KERN_ERR, |
| 965 | "The specified checkpoint is not a snapshot (checkpoint number=%llu)", |
| 966 | (unsigned long long)cno); |
| 967 | ret = -EINVAL; |
| 968 | goto out; |
| 969 | } |
| 970 | |
| 971 | ret = nilfs_attach_checkpoint(s, cno, false, &root); |
| 972 | if (ret) { |
| 973 | nilfs_msg(s, KERN_ERR, |
| 974 | "error %d while loading snapshot (checkpoint number=%llu)", |
| 975 | ret, (unsigned long long)cno); |
| 976 | goto out; |
| 977 | } |
| 978 | ret = nilfs_get_root_dentry(s, root, root_dentry); |
| 979 | nilfs_put_root(root); |
| 980 | out: |
| 981 | mutex_unlock(&nilfs->ns_snapshot_mount_mutex); |
| 982 | return ret; |
| 983 | } |
| 984 | |
| 985 | /** |
| 986 | * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint |
| 987 | * @root_dentry: root dentry of the tree to be shrunk |
| 988 | * |
| 989 | * This function returns true if the tree was in-use. |
| 990 | */ |
| 991 | static bool nilfs_tree_is_busy(struct dentry *root_dentry) |
| 992 | { |
| 993 | shrink_dcache_parent(root_dentry); |
| 994 | return d_count(root_dentry) > 1; |
| 995 | } |
| 996 | |
| 997 | int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno) |
| 998 | { |
| 999 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 1000 | struct nilfs_root *root; |
| 1001 | struct inode *inode; |
| 1002 | struct dentry *dentry; |
| 1003 | int ret; |
| 1004 | |
| 1005 | if (cno > nilfs->ns_cno) |
| 1006 | return false; |
| 1007 | |
| 1008 | if (cno >= nilfs_last_cno(nilfs)) |
| 1009 | return true; /* protect recent checkpoints */ |
| 1010 | |
| 1011 | ret = false; |
| 1012 | root = nilfs_lookup_root(nilfs, cno); |
| 1013 | if (root) { |
| 1014 | inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO); |
| 1015 | if (inode) { |
| 1016 | dentry = d_find_alias(inode); |
| 1017 | if (dentry) { |
| 1018 | ret = nilfs_tree_is_busy(dentry); |
| 1019 | dput(dentry); |
| 1020 | } |
| 1021 | iput(inode); |
| 1022 | } |
| 1023 | nilfs_put_root(root); |
| 1024 | } |
| 1025 | return ret; |
| 1026 | } |
| 1027 | |
| 1028 | /** |
| 1029 | * nilfs_fill_super() - initialize a super block instance |
| 1030 | * @sb: super_block |
| 1031 | * @data: mount options |
| 1032 | * @silent: silent mode flag |
| 1033 | * |
| 1034 | * This function is called exclusively by nilfs->ns_mount_mutex. |
| 1035 | * So, the recovery process is protected from other simultaneous mounts. |
| 1036 | */ |
| 1037 | static int |
| 1038 | nilfs_fill_super(struct super_block *sb, void *data, int silent) |
| 1039 | { |
| 1040 | struct the_nilfs *nilfs; |
| 1041 | struct nilfs_root *fsroot; |
| 1042 | __u64 cno; |
| 1043 | int err; |
| 1044 | |
| 1045 | nilfs = alloc_nilfs(sb); |
| 1046 | if (!nilfs) |
| 1047 | return -ENOMEM; |
| 1048 | |
| 1049 | sb->s_fs_info = nilfs; |
| 1050 | |
| 1051 | err = init_nilfs(nilfs, sb, (char *)data); |
| 1052 | if (err) |
| 1053 | goto failed_nilfs; |
| 1054 | |
| 1055 | sb->s_op = &nilfs_sops; |
| 1056 | sb->s_export_op = &nilfs_export_ops; |
| 1057 | sb->s_root = NULL; |
| 1058 | sb->s_time_gran = 1; |
| 1059 | sb->s_max_links = NILFS_LINK_MAX; |
| 1060 | |
| 1061 | sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi); |
| 1062 | |
| 1063 | err = load_nilfs(nilfs, sb); |
| 1064 | if (err) |
| 1065 | goto failed_nilfs; |
| 1066 | |
| 1067 | cno = nilfs_last_cno(nilfs); |
| 1068 | err = nilfs_attach_checkpoint(sb, cno, true, &fsroot); |
| 1069 | if (err) { |
| 1070 | nilfs_msg(sb, KERN_ERR, |
| 1071 | "error %d while loading last checkpoint (checkpoint number=%llu)", |
| 1072 | err, (unsigned long long)cno); |
| 1073 | goto failed_unload; |
| 1074 | } |
| 1075 | |
| 1076 | if (!sb_rdonly(sb)) { |
| 1077 | err = nilfs_attach_log_writer(sb, fsroot); |
| 1078 | if (err) |
| 1079 | goto failed_checkpoint; |
| 1080 | } |
| 1081 | |
| 1082 | err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root); |
| 1083 | if (err) |
| 1084 | goto failed_segctor; |
| 1085 | |
| 1086 | nilfs_put_root(fsroot); |
| 1087 | |
| 1088 | if (!sb_rdonly(sb)) { |
| 1089 | down_write(&nilfs->ns_sem); |
| 1090 | nilfs_setup_super(sb, true); |
| 1091 | up_write(&nilfs->ns_sem); |
| 1092 | } |
| 1093 | |
| 1094 | return 0; |
| 1095 | |
| 1096 | failed_segctor: |
| 1097 | nilfs_detach_log_writer(sb); |
| 1098 | |
| 1099 | failed_checkpoint: |
| 1100 | nilfs_put_root(fsroot); |
| 1101 | |
| 1102 | failed_unload: |
| 1103 | iput(nilfs->ns_sufile); |
| 1104 | iput(nilfs->ns_cpfile); |
| 1105 | iput(nilfs->ns_dat); |
| 1106 | |
| 1107 | failed_nilfs: |
| 1108 | destroy_nilfs(nilfs); |
| 1109 | return err; |
| 1110 | } |
| 1111 | |
| 1112 | static int nilfs_remount(struct super_block *sb, int *flags, char *data) |
| 1113 | { |
| 1114 | struct the_nilfs *nilfs = sb->s_fs_info; |
| 1115 | unsigned long old_sb_flags; |
| 1116 | unsigned long old_mount_opt; |
| 1117 | int err; |
| 1118 | |
| 1119 | sync_filesystem(sb); |
| 1120 | old_sb_flags = sb->s_flags; |
| 1121 | old_mount_opt = nilfs->ns_mount_opt; |
| 1122 | |
| 1123 | if (!parse_options(data, sb, 1)) { |
| 1124 | err = -EINVAL; |
| 1125 | goto restore_opts; |
| 1126 | } |
| 1127 | sb->s_flags = (sb->s_flags & ~SB_POSIXACL); |
| 1128 | |
| 1129 | err = -EINVAL; |
| 1130 | |
| 1131 | if (!nilfs_valid_fs(nilfs)) { |
| 1132 | nilfs_msg(sb, KERN_WARNING, |
| 1133 | "couldn't remount because the filesystem is in an incomplete recovery state"); |
| 1134 | goto restore_opts; |
| 1135 | } |
| 1136 | |
| 1137 | if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) |
| 1138 | goto out; |
| 1139 | if (*flags & SB_RDONLY) { |
| 1140 | /* Shutting down log writer */ |
| 1141 | nilfs_detach_log_writer(sb); |
| 1142 | sb->s_flags |= SB_RDONLY; |
| 1143 | |
| 1144 | /* |
| 1145 | * Remounting a valid RW partition RDONLY, so set |
| 1146 | * the RDONLY flag and then mark the partition as valid again. |
| 1147 | */ |
| 1148 | down_write(&nilfs->ns_sem); |
| 1149 | nilfs_cleanup_super(sb); |
| 1150 | up_write(&nilfs->ns_sem); |
| 1151 | } else { |
| 1152 | __u64 features; |
| 1153 | struct nilfs_root *root; |
| 1154 | |
| 1155 | /* |
| 1156 | * Mounting a RDONLY partition read-write, so reread and |
| 1157 | * store the current valid flag. (It may have been changed |
| 1158 | * by fsck since we originally mounted the partition.) |
| 1159 | */ |
| 1160 | down_read(&nilfs->ns_sem); |
| 1161 | features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & |
| 1162 | ~NILFS_FEATURE_COMPAT_RO_SUPP; |
| 1163 | up_read(&nilfs->ns_sem); |
| 1164 | if (features) { |
| 1165 | nilfs_msg(sb, KERN_WARNING, |
| 1166 | "couldn't remount RDWR because of unsupported optional features (%llx)", |
| 1167 | (unsigned long long)features); |
| 1168 | err = -EROFS; |
| 1169 | goto restore_opts; |
| 1170 | } |
| 1171 | |
| 1172 | sb->s_flags &= ~SB_RDONLY; |
| 1173 | |
| 1174 | root = NILFS_I(d_inode(sb->s_root))->i_root; |
| 1175 | err = nilfs_attach_log_writer(sb, root); |
| 1176 | if (err) |
| 1177 | goto restore_opts; |
| 1178 | |
| 1179 | down_write(&nilfs->ns_sem); |
| 1180 | nilfs_setup_super(sb, true); |
| 1181 | up_write(&nilfs->ns_sem); |
| 1182 | } |
| 1183 | out: |
| 1184 | return 0; |
| 1185 | |
| 1186 | restore_opts: |
| 1187 | sb->s_flags = old_sb_flags; |
| 1188 | nilfs->ns_mount_opt = old_mount_opt; |
| 1189 | return err; |
| 1190 | } |
| 1191 | |
| 1192 | struct nilfs_super_data { |
| 1193 | struct block_device *bdev; |
| 1194 | __u64 cno; |
| 1195 | int flags; |
| 1196 | }; |
| 1197 | |
| 1198 | static int nilfs_parse_snapshot_option(const char *option, |
| 1199 | const substring_t *arg, |
| 1200 | struct nilfs_super_data *sd) |
| 1201 | { |
| 1202 | unsigned long long val; |
| 1203 | const char *msg = NULL; |
| 1204 | int err; |
| 1205 | |
| 1206 | if (!(sd->flags & SB_RDONLY)) { |
| 1207 | msg = "read-only option is not specified"; |
| 1208 | goto parse_error; |
| 1209 | } |
| 1210 | |
| 1211 | err = kstrtoull(arg->from, 0, &val); |
| 1212 | if (err) { |
| 1213 | if (err == -ERANGE) |
| 1214 | msg = "too large checkpoint number"; |
| 1215 | else |
| 1216 | msg = "malformed argument"; |
| 1217 | goto parse_error; |
| 1218 | } else if (val == 0) { |
| 1219 | msg = "invalid checkpoint number 0"; |
| 1220 | goto parse_error; |
| 1221 | } |
| 1222 | sd->cno = val; |
| 1223 | return 0; |
| 1224 | |
| 1225 | parse_error: |
| 1226 | nilfs_msg(NULL, KERN_ERR, "invalid option \"%s\": %s", option, msg); |
| 1227 | return 1; |
| 1228 | } |
| 1229 | |
| 1230 | /** |
| 1231 | * nilfs_identify - pre-read mount options needed to identify mount instance |
| 1232 | * @data: mount options |
| 1233 | * @sd: nilfs_super_data |
| 1234 | */ |
| 1235 | static int nilfs_identify(char *data, struct nilfs_super_data *sd) |
| 1236 | { |
| 1237 | char *p, *options = data; |
| 1238 | substring_t args[MAX_OPT_ARGS]; |
| 1239 | int token; |
| 1240 | int ret = 0; |
| 1241 | |
| 1242 | do { |
| 1243 | p = strsep(&options, ","); |
| 1244 | if (p != NULL && *p) { |
| 1245 | token = match_token(p, tokens, args); |
| 1246 | if (token == Opt_snapshot) |
| 1247 | ret = nilfs_parse_snapshot_option(p, &args[0], |
| 1248 | sd); |
| 1249 | } |
| 1250 | if (!options) |
| 1251 | break; |
| 1252 | BUG_ON(options == data); |
| 1253 | *(options - 1) = ','; |
| 1254 | } while (!ret); |
| 1255 | return ret; |
| 1256 | } |
| 1257 | |
| 1258 | static int nilfs_set_bdev_super(struct super_block *s, void *data) |
| 1259 | { |
| 1260 | s->s_bdev = data; |
| 1261 | s->s_dev = s->s_bdev->bd_dev; |
| 1262 | return 0; |
| 1263 | } |
| 1264 | |
| 1265 | static int nilfs_test_bdev_super(struct super_block *s, void *data) |
| 1266 | { |
| 1267 | return (void *)s->s_bdev == data; |
| 1268 | } |
| 1269 | |
| 1270 | static struct dentry * |
| 1271 | nilfs_mount(struct file_system_type *fs_type, int flags, |
| 1272 | const char *dev_name, void *data) |
| 1273 | { |
| 1274 | struct nilfs_super_data sd; |
| 1275 | struct super_block *s; |
| 1276 | fmode_t mode = FMODE_READ | FMODE_EXCL; |
| 1277 | struct dentry *root_dentry; |
| 1278 | int err, s_new = false; |
| 1279 | |
| 1280 | if (!(flags & SB_RDONLY)) |
| 1281 | mode |= FMODE_WRITE; |
| 1282 | |
| 1283 | sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type); |
| 1284 | if (IS_ERR(sd.bdev)) |
| 1285 | return ERR_CAST(sd.bdev); |
| 1286 | |
| 1287 | sd.cno = 0; |
| 1288 | sd.flags = flags; |
| 1289 | if (nilfs_identify((char *)data, &sd)) { |
| 1290 | err = -EINVAL; |
| 1291 | goto failed; |
| 1292 | } |
| 1293 | |
| 1294 | /* |
| 1295 | * once the super is inserted into the list by sget, s_umount |
| 1296 | * will protect the lockfs code from trying to start a snapshot |
| 1297 | * while we are mounting |
| 1298 | */ |
| 1299 | mutex_lock(&sd.bdev->bd_fsfreeze_mutex); |
| 1300 | if (sd.bdev->bd_fsfreeze_count > 0) { |
| 1301 | mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); |
| 1302 | err = -EBUSY; |
| 1303 | goto failed; |
| 1304 | } |
| 1305 | s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags, |
| 1306 | sd.bdev); |
| 1307 | mutex_unlock(&sd.bdev->bd_fsfreeze_mutex); |
| 1308 | if (IS_ERR(s)) { |
| 1309 | err = PTR_ERR(s); |
| 1310 | goto failed; |
| 1311 | } |
| 1312 | |
| 1313 | if (!s->s_root) { |
| 1314 | s_new = true; |
| 1315 | |
| 1316 | /* New superblock instance created */ |
| 1317 | s->s_mode = mode; |
| 1318 | snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev); |
| 1319 | sb_set_blocksize(s, block_size(sd.bdev)); |
| 1320 | |
| 1321 | err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0); |
| 1322 | if (err) |
| 1323 | goto failed_super; |
| 1324 | |
| 1325 | s->s_flags |= SB_ACTIVE; |
| 1326 | } else if (!sd.cno) { |
| 1327 | if (nilfs_tree_is_busy(s->s_root)) { |
| 1328 | if ((flags ^ s->s_flags) & SB_RDONLY) { |
| 1329 | nilfs_msg(s, KERN_ERR, |
| 1330 | "the device already has a %s mount.", |
| 1331 | sb_rdonly(s) ? "read-only" : "read/write"); |
| 1332 | err = -EBUSY; |
| 1333 | goto failed_super; |
| 1334 | } |
| 1335 | } else { |
| 1336 | /* |
| 1337 | * Try remount to setup mount states if the current |
| 1338 | * tree is not mounted and only snapshots use this sb. |
| 1339 | */ |
| 1340 | err = nilfs_remount(s, &flags, data); |
| 1341 | if (err) |
| 1342 | goto failed_super; |
| 1343 | } |
| 1344 | } |
| 1345 | |
| 1346 | if (sd.cno) { |
| 1347 | err = nilfs_attach_snapshot(s, sd.cno, &root_dentry); |
| 1348 | if (err) |
| 1349 | goto failed_super; |
| 1350 | } else { |
| 1351 | root_dentry = dget(s->s_root); |
| 1352 | } |
| 1353 | |
| 1354 | if (!s_new) |
| 1355 | blkdev_put(sd.bdev, mode); |
| 1356 | |
| 1357 | return root_dentry; |
| 1358 | |
| 1359 | failed_super: |
| 1360 | deactivate_locked_super(s); |
| 1361 | |
| 1362 | failed: |
| 1363 | if (!s_new) |
| 1364 | blkdev_put(sd.bdev, mode); |
| 1365 | return ERR_PTR(err); |
| 1366 | } |
| 1367 | |
| 1368 | struct file_system_type nilfs_fs_type = { |
| 1369 | .owner = THIS_MODULE, |
| 1370 | .name = "nilfs2", |
| 1371 | .mount = nilfs_mount, |
| 1372 | .kill_sb = kill_block_super, |
| 1373 | .fs_flags = FS_REQUIRES_DEV, |
| 1374 | }; |
| 1375 | MODULE_ALIAS_FS("nilfs2"); |
| 1376 | |
| 1377 | static void nilfs_inode_init_once(void *obj) |
| 1378 | { |
| 1379 | struct nilfs_inode_info *ii = obj; |
| 1380 | |
| 1381 | INIT_LIST_HEAD(&ii->i_dirty); |
| 1382 | #ifdef CONFIG_NILFS_XATTR |
| 1383 | init_rwsem(&ii->xattr_sem); |
| 1384 | #endif |
| 1385 | address_space_init_once(&ii->i_btnode_cache); |
| 1386 | ii->i_bmap = &ii->i_bmap_data; |
| 1387 | inode_init_once(&ii->vfs_inode); |
| 1388 | } |
| 1389 | |
| 1390 | static void nilfs_segbuf_init_once(void *obj) |
| 1391 | { |
| 1392 | memset(obj, 0, sizeof(struct nilfs_segment_buffer)); |
| 1393 | } |
| 1394 | |
| 1395 | static void nilfs_destroy_cachep(void) |
| 1396 | { |
| 1397 | /* |
| 1398 | * Make sure all delayed rcu free inodes are flushed before we |
| 1399 | * destroy cache. |
| 1400 | */ |
| 1401 | rcu_barrier(); |
| 1402 | |
| 1403 | kmem_cache_destroy(nilfs_inode_cachep); |
| 1404 | kmem_cache_destroy(nilfs_transaction_cachep); |
| 1405 | kmem_cache_destroy(nilfs_segbuf_cachep); |
| 1406 | kmem_cache_destroy(nilfs_btree_path_cache); |
| 1407 | } |
| 1408 | |
| 1409 | static int __init nilfs_init_cachep(void) |
| 1410 | { |
| 1411 | nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache", |
| 1412 | sizeof(struct nilfs_inode_info), 0, |
| 1413 | SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, |
| 1414 | nilfs_inode_init_once); |
| 1415 | if (!nilfs_inode_cachep) |
| 1416 | goto fail; |
| 1417 | |
| 1418 | nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache", |
| 1419 | sizeof(struct nilfs_transaction_info), 0, |
| 1420 | SLAB_RECLAIM_ACCOUNT, NULL); |
| 1421 | if (!nilfs_transaction_cachep) |
| 1422 | goto fail; |
| 1423 | |
| 1424 | nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache", |
| 1425 | sizeof(struct nilfs_segment_buffer), 0, |
| 1426 | SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once); |
| 1427 | if (!nilfs_segbuf_cachep) |
| 1428 | goto fail; |
| 1429 | |
| 1430 | nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache", |
| 1431 | sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX, |
| 1432 | 0, 0, NULL); |
| 1433 | if (!nilfs_btree_path_cache) |
| 1434 | goto fail; |
| 1435 | |
| 1436 | return 0; |
| 1437 | |
| 1438 | fail: |
| 1439 | nilfs_destroy_cachep(); |
| 1440 | return -ENOMEM; |
| 1441 | } |
| 1442 | |
| 1443 | static int __init init_nilfs_fs(void) |
| 1444 | { |
| 1445 | int err; |
| 1446 | |
| 1447 | err = nilfs_init_cachep(); |
| 1448 | if (err) |
| 1449 | goto fail; |
| 1450 | |
| 1451 | err = nilfs_sysfs_init(); |
| 1452 | if (err) |
| 1453 | goto free_cachep; |
| 1454 | |
| 1455 | err = register_filesystem(&nilfs_fs_type); |
| 1456 | if (err) |
| 1457 | goto deinit_sysfs_entry; |
| 1458 | |
| 1459 | printk(KERN_INFO "NILFS version 2 loaded\n"); |
| 1460 | return 0; |
| 1461 | |
| 1462 | deinit_sysfs_entry: |
| 1463 | nilfs_sysfs_exit(); |
| 1464 | free_cachep: |
| 1465 | nilfs_destroy_cachep(); |
| 1466 | fail: |
| 1467 | return err; |
| 1468 | } |
| 1469 | |
| 1470 | static void __exit exit_nilfs_fs(void) |
| 1471 | { |
| 1472 | nilfs_destroy_cachep(); |
| 1473 | nilfs_sysfs_exit(); |
| 1474 | unregister_filesystem(&nilfs_fs_type); |
| 1475 | } |
| 1476 | |
| 1477 | module_init(init_nilfs_fs) |
| 1478 | module_exit(exit_nilfs_fs) |