Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * linux/fs/namespace.c |
| 3 | * |
| 4 | * (C) Copyright Al Viro 2000, 2001 |
| 5 | * Released under GPL v2. |
| 6 | * |
| 7 | * Based on code from fs/super.c, copyright Linus Torvalds and others. |
| 8 | * Heavily rewritten. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/syscalls.h> |
| 12 | #include <linux/export.h> |
| 13 | #include <linux/capability.h> |
| 14 | #include <linux/mnt_namespace.h> |
| 15 | #include <linux/user_namespace.h> |
| 16 | #include <linux/namei.h> |
| 17 | #include <linux/security.h> |
| 18 | #include <linux/cred.h> |
| 19 | #include <linux/idr.h> |
| 20 | #include <linux/init.h> /* init_rootfs */ |
| 21 | #include <linux/fs_struct.h> /* get_fs_root et.al. */ |
| 22 | #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ |
| 23 | #include <linux/uaccess.h> |
| 24 | #include <linux/proc_ns.h> |
| 25 | #include <linux/magic.h> |
| 26 | #include <linux/bootmem.h> |
| 27 | #include <linux/task_work.h> |
| 28 | #include <linux/sched/task.h> |
| 29 | |
| 30 | #include "pnode.h" |
| 31 | #include "internal.h" |
| 32 | |
| 33 | /* Maximum number of mounts in a mount namespace */ |
| 34 | unsigned int sysctl_mount_max __read_mostly = 100000; |
| 35 | |
| 36 | static unsigned int m_hash_mask __read_mostly; |
| 37 | static unsigned int m_hash_shift __read_mostly; |
| 38 | static unsigned int mp_hash_mask __read_mostly; |
| 39 | static unsigned int mp_hash_shift __read_mostly; |
| 40 | |
| 41 | static __initdata unsigned long mhash_entries; |
| 42 | static int __init set_mhash_entries(char *str) |
| 43 | { |
| 44 | if (!str) |
| 45 | return 0; |
| 46 | mhash_entries = simple_strtoul(str, &str, 0); |
| 47 | return 1; |
| 48 | } |
| 49 | __setup("mhash_entries=", set_mhash_entries); |
| 50 | |
| 51 | static __initdata unsigned long mphash_entries; |
| 52 | static int __init set_mphash_entries(char *str) |
| 53 | { |
| 54 | if (!str) |
| 55 | return 0; |
| 56 | mphash_entries = simple_strtoul(str, &str, 0); |
| 57 | return 1; |
| 58 | } |
| 59 | __setup("mphash_entries=", set_mphash_entries); |
| 60 | |
| 61 | static u64 event; |
| 62 | static DEFINE_IDA(mnt_id_ida); |
| 63 | static DEFINE_IDA(mnt_group_ida); |
| 64 | |
| 65 | static struct hlist_head *mount_hashtable __read_mostly; |
| 66 | static struct hlist_head *mountpoint_hashtable __read_mostly; |
| 67 | static struct kmem_cache *mnt_cache __read_mostly; |
| 68 | static DECLARE_RWSEM(namespace_sem); |
| 69 | |
| 70 | /* /sys/fs */ |
| 71 | struct kobject *fs_kobj; |
| 72 | EXPORT_SYMBOL_GPL(fs_kobj); |
| 73 | |
| 74 | /* |
| 75 | * vfsmount lock may be taken for read to prevent changes to the |
| 76 | * vfsmount hash, ie. during mountpoint lookups or walking back |
| 77 | * up the tree. |
| 78 | * |
| 79 | * It should be taken for write in all cases where the vfsmount |
| 80 | * tree or hash is modified or when a vfsmount structure is modified. |
| 81 | */ |
| 82 | __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); |
| 83 | |
| 84 | static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) |
| 85 | { |
| 86 | unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); |
| 87 | tmp += ((unsigned long)dentry / L1_CACHE_BYTES); |
| 88 | tmp = tmp + (tmp >> m_hash_shift); |
| 89 | return &mount_hashtable[tmp & m_hash_mask]; |
| 90 | } |
| 91 | |
| 92 | static inline struct hlist_head *mp_hash(struct dentry *dentry) |
| 93 | { |
| 94 | unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); |
| 95 | tmp = tmp + (tmp >> mp_hash_shift); |
| 96 | return &mountpoint_hashtable[tmp & mp_hash_mask]; |
| 97 | } |
| 98 | |
| 99 | static int mnt_alloc_id(struct mount *mnt) |
| 100 | { |
| 101 | int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); |
| 102 | |
| 103 | if (res < 0) |
| 104 | return res; |
| 105 | mnt->mnt_id = res; |
| 106 | return 0; |
| 107 | } |
| 108 | |
| 109 | static void mnt_free_id(struct mount *mnt) |
| 110 | { |
| 111 | ida_free(&mnt_id_ida, mnt->mnt_id); |
| 112 | } |
| 113 | |
| 114 | /* |
| 115 | * Allocate a new peer group ID |
| 116 | */ |
| 117 | static int mnt_alloc_group_id(struct mount *mnt) |
| 118 | { |
| 119 | int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); |
| 120 | |
| 121 | if (res < 0) |
| 122 | return res; |
| 123 | mnt->mnt_group_id = res; |
| 124 | return 0; |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | * Release a peer group ID |
| 129 | */ |
| 130 | void mnt_release_group_id(struct mount *mnt) |
| 131 | { |
| 132 | ida_free(&mnt_group_ida, mnt->mnt_group_id); |
| 133 | mnt->mnt_group_id = 0; |
| 134 | } |
| 135 | |
| 136 | /* |
| 137 | * vfsmount lock must be held for read |
| 138 | */ |
| 139 | static inline void mnt_add_count(struct mount *mnt, int n) |
| 140 | { |
| 141 | #ifdef CONFIG_SMP |
| 142 | this_cpu_add(mnt->mnt_pcp->mnt_count, n); |
| 143 | #else |
| 144 | preempt_disable(); |
| 145 | mnt->mnt_count += n; |
| 146 | preempt_enable(); |
| 147 | #endif |
| 148 | } |
| 149 | |
| 150 | /* |
| 151 | * vfsmount lock must be held for write |
| 152 | */ |
| 153 | unsigned int mnt_get_count(struct mount *mnt) |
| 154 | { |
| 155 | #ifdef CONFIG_SMP |
| 156 | unsigned int count = 0; |
| 157 | int cpu; |
| 158 | |
| 159 | for_each_possible_cpu(cpu) { |
| 160 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; |
| 161 | } |
| 162 | |
| 163 | return count; |
| 164 | #else |
| 165 | return mnt->mnt_count; |
| 166 | #endif |
| 167 | } |
| 168 | |
| 169 | static void drop_mountpoint(struct fs_pin *p) |
| 170 | { |
| 171 | struct mount *m = container_of(p, struct mount, mnt_umount); |
| 172 | dput(m->mnt_ex_mountpoint); |
| 173 | pin_remove(p); |
| 174 | mntput(&m->mnt); |
| 175 | } |
| 176 | |
| 177 | static struct mount *alloc_vfsmnt(const char *name) |
| 178 | { |
| 179 | struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); |
| 180 | if (mnt) { |
| 181 | int err; |
| 182 | |
| 183 | err = mnt_alloc_id(mnt); |
| 184 | if (err) |
| 185 | goto out_free_cache; |
| 186 | |
| 187 | if (name) { |
| 188 | mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); |
| 189 | if (!mnt->mnt_devname) |
| 190 | goto out_free_id; |
| 191 | } |
| 192 | |
| 193 | #ifdef CONFIG_SMP |
| 194 | mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); |
| 195 | if (!mnt->mnt_pcp) |
| 196 | goto out_free_devname; |
| 197 | |
| 198 | this_cpu_add(mnt->mnt_pcp->mnt_count, 1); |
| 199 | #else |
| 200 | mnt->mnt_count = 1; |
| 201 | mnt->mnt_writers = 0; |
| 202 | #endif |
| 203 | |
| 204 | INIT_HLIST_NODE(&mnt->mnt_hash); |
| 205 | INIT_LIST_HEAD(&mnt->mnt_child); |
| 206 | INIT_LIST_HEAD(&mnt->mnt_mounts); |
| 207 | INIT_LIST_HEAD(&mnt->mnt_list); |
| 208 | INIT_LIST_HEAD(&mnt->mnt_expire); |
| 209 | INIT_LIST_HEAD(&mnt->mnt_share); |
| 210 | INIT_LIST_HEAD(&mnt->mnt_slave_list); |
| 211 | INIT_LIST_HEAD(&mnt->mnt_slave); |
| 212 | INIT_HLIST_NODE(&mnt->mnt_mp_list); |
| 213 | INIT_LIST_HEAD(&mnt->mnt_umounting); |
| 214 | init_fs_pin(&mnt->mnt_umount, drop_mountpoint); |
| 215 | } |
| 216 | return mnt; |
| 217 | |
| 218 | #ifdef CONFIG_SMP |
| 219 | out_free_devname: |
| 220 | kfree_const(mnt->mnt_devname); |
| 221 | #endif |
| 222 | out_free_id: |
| 223 | mnt_free_id(mnt); |
| 224 | out_free_cache: |
| 225 | kmem_cache_free(mnt_cache, mnt); |
| 226 | return NULL; |
| 227 | } |
| 228 | |
| 229 | /* |
| 230 | * Most r/o checks on a fs are for operations that take |
| 231 | * discrete amounts of time, like a write() or unlink(). |
| 232 | * We must keep track of when those operations start |
| 233 | * (for permission checks) and when they end, so that |
| 234 | * we can determine when writes are able to occur to |
| 235 | * a filesystem. |
| 236 | */ |
| 237 | /* |
| 238 | * __mnt_is_readonly: check whether a mount is read-only |
| 239 | * @mnt: the mount to check for its write status |
| 240 | * |
| 241 | * This shouldn't be used directly ouside of the VFS. |
| 242 | * It does not guarantee that the filesystem will stay |
| 243 | * r/w, just that it is right *now*. This can not and |
| 244 | * should not be used in place of IS_RDONLY(inode). |
| 245 | * mnt_want/drop_write() will _keep_ the filesystem |
| 246 | * r/w. |
| 247 | */ |
| 248 | int __mnt_is_readonly(struct vfsmount *mnt) |
| 249 | { |
| 250 | if (mnt->mnt_flags & MNT_READONLY) |
| 251 | return 1; |
| 252 | if (sb_rdonly(mnt->mnt_sb)) |
| 253 | return 1; |
| 254 | return 0; |
| 255 | } |
| 256 | EXPORT_SYMBOL_GPL(__mnt_is_readonly); |
| 257 | |
| 258 | static inline void mnt_inc_writers(struct mount *mnt) |
| 259 | { |
| 260 | #ifdef CONFIG_SMP |
| 261 | this_cpu_inc(mnt->mnt_pcp->mnt_writers); |
| 262 | #else |
| 263 | mnt->mnt_writers++; |
| 264 | #endif |
| 265 | } |
| 266 | |
| 267 | static inline void mnt_dec_writers(struct mount *mnt) |
| 268 | { |
| 269 | #ifdef CONFIG_SMP |
| 270 | this_cpu_dec(mnt->mnt_pcp->mnt_writers); |
| 271 | #else |
| 272 | mnt->mnt_writers--; |
| 273 | #endif |
| 274 | } |
| 275 | |
| 276 | static unsigned int mnt_get_writers(struct mount *mnt) |
| 277 | { |
| 278 | #ifdef CONFIG_SMP |
| 279 | unsigned int count = 0; |
| 280 | int cpu; |
| 281 | |
| 282 | for_each_possible_cpu(cpu) { |
| 283 | count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; |
| 284 | } |
| 285 | |
| 286 | return count; |
| 287 | #else |
| 288 | return mnt->mnt_writers; |
| 289 | #endif |
| 290 | } |
| 291 | |
| 292 | static int mnt_is_readonly(struct vfsmount *mnt) |
| 293 | { |
| 294 | if (mnt->mnt_sb->s_readonly_remount) |
| 295 | return 1; |
| 296 | /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ |
| 297 | smp_rmb(); |
| 298 | return __mnt_is_readonly(mnt); |
| 299 | } |
| 300 | |
| 301 | /* |
| 302 | * Most r/o & frozen checks on a fs are for operations that take discrete |
| 303 | * amounts of time, like a write() or unlink(). We must keep track of when |
| 304 | * those operations start (for permission checks) and when they end, so that we |
| 305 | * can determine when writes are able to occur to a filesystem. |
| 306 | */ |
| 307 | /** |
| 308 | * __mnt_want_write - get write access to a mount without freeze protection |
| 309 | * @m: the mount on which to take a write |
| 310 | * |
| 311 | * This tells the low-level filesystem that a write is about to be performed to |
| 312 | * it, and makes sure that writes are allowed (mnt it read-write) before |
| 313 | * returning success. This operation does not protect against filesystem being |
| 314 | * frozen. When the write operation is finished, __mnt_drop_write() must be |
| 315 | * called. This is effectively a refcount. |
| 316 | */ |
| 317 | int __mnt_want_write(struct vfsmount *m) |
| 318 | { |
| 319 | struct mount *mnt = real_mount(m); |
| 320 | int ret = 0; |
| 321 | |
| 322 | preempt_disable(); |
| 323 | mnt_inc_writers(mnt); |
| 324 | /* |
| 325 | * The store to mnt_inc_writers must be visible before we pass |
| 326 | * MNT_WRITE_HOLD loop below, so that the slowpath can see our |
| 327 | * incremented count after it has set MNT_WRITE_HOLD. |
| 328 | */ |
| 329 | smp_mb(); |
| 330 | while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) |
| 331 | cpu_relax(); |
| 332 | /* |
| 333 | * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will |
| 334 | * be set to match its requirements. So we must not load that until |
| 335 | * MNT_WRITE_HOLD is cleared. |
| 336 | */ |
| 337 | smp_rmb(); |
| 338 | if (mnt_is_readonly(m)) { |
| 339 | mnt_dec_writers(mnt); |
| 340 | ret = -EROFS; |
| 341 | } |
| 342 | preempt_enable(); |
| 343 | |
| 344 | return ret; |
| 345 | } |
| 346 | |
| 347 | /** |
| 348 | * mnt_want_write - get write access to a mount |
| 349 | * @m: the mount on which to take a write |
| 350 | * |
| 351 | * This tells the low-level filesystem that a write is about to be performed to |
| 352 | * it, and makes sure that writes are allowed (mount is read-write, filesystem |
| 353 | * is not frozen) before returning success. When the write operation is |
| 354 | * finished, mnt_drop_write() must be called. This is effectively a refcount. |
| 355 | */ |
| 356 | int mnt_want_write(struct vfsmount *m) |
| 357 | { |
| 358 | int ret; |
| 359 | |
| 360 | sb_start_write(m->mnt_sb); |
| 361 | ret = __mnt_want_write(m); |
| 362 | if (ret) |
| 363 | sb_end_write(m->mnt_sb); |
| 364 | return ret; |
| 365 | } |
| 366 | EXPORT_SYMBOL_GPL(mnt_want_write); |
| 367 | |
| 368 | /** |
| 369 | * mnt_clone_write - get write access to a mount |
| 370 | * @mnt: the mount on which to take a write |
| 371 | * |
| 372 | * This is effectively like mnt_want_write, except |
| 373 | * it must only be used to take an extra write reference |
| 374 | * on a mountpoint that we already know has a write reference |
| 375 | * on it. This allows some optimisation. |
| 376 | * |
| 377 | * After finished, mnt_drop_write must be called as usual to |
| 378 | * drop the reference. |
| 379 | */ |
| 380 | int mnt_clone_write(struct vfsmount *mnt) |
| 381 | { |
| 382 | /* superblock may be r/o */ |
| 383 | if (__mnt_is_readonly(mnt)) |
| 384 | return -EROFS; |
| 385 | preempt_disable(); |
| 386 | mnt_inc_writers(real_mount(mnt)); |
| 387 | preempt_enable(); |
| 388 | return 0; |
| 389 | } |
| 390 | EXPORT_SYMBOL_GPL(mnt_clone_write); |
| 391 | |
| 392 | /** |
| 393 | * __mnt_want_write_file - get write access to a file's mount |
| 394 | * @file: the file who's mount on which to take a write |
| 395 | * |
| 396 | * This is like __mnt_want_write, but it takes a file and can |
| 397 | * do some optimisations if the file is open for write already |
| 398 | */ |
| 399 | int __mnt_want_write_file(struct file *file) |
| 400 | { |
| 401 | if (!(file->f_mode & FMODE_WRITER)) |
| 402 | return __mnt_want_write(file->f_path.mnt); |
| 403 | else |
| 404 | return mnt_clone_write(file->f_path.mnt); |
| 405 | } |
| 406 | |
| 407 | /** |
| 408 | * mnt_want_write_file - get write access to a file's mount |
| 409 | * @file: the file who's mount on which to take a write |
| 410 | * |
| 411 | * This is like mnt_want_write, but it takes a file and can |
| 412 | * do some optimisations if the file is open for write already |
| 413 | */ |
| 414 | int mnt_want_write_file(struct file *file) |
| 415 | { |
| 416 | int ret; |
| 417 | |
| 418 | sb_start_write(file_inode(file)->i_sb); |
| 419 | ret = __mnt_want_write_file(file); |
| 420 | if (ret) |
| 421 | sb_end_write(file_inode(file)->i_sb); |
| 422 | return ret; |
| 423 | } |
| 424 | EXPORT_SYMBOL_GPL(mnt_want_write_file); |
| 425 | |
| 426 | /** |
| 427 | * __mnt_drop_write - give up write access to a mount |
| 428 | * @mnt: the mount on which to give up write access |
| 429 | * |
| 430 | * Tells the low-level filesystem that we are done |
| 431 | * performing writes to it. Must be matched with |
| 432 | * __mnt_want_write() call above. |
| 433 | */ |
| 434 | void __mnt_drop_write(struct vfsmount *mnt) |
| 435 | { |
| 436 | preempt_disable(); |
| 437 | mnt_dec_writers(real_mount(mnt)); |
| 438 | preempt_enable(); |
| 439 | } |
| 440 | |
| 441 | /** |
| 442 | * mnt_drop_write - give up write access to a mount |
| 443 | * @mnt: the mount on which to give up write access |
| 444 | * |
| 445 | * Tells the low-level filesystem that we are done performing writes to it and |
| 446 | * also allows filesystem to be frozen again. Must be matched with |
| 447 | * mnt_want_write() call above. |
| 448 | */ |
| 449 | void mnt_drop_write(struct vfsmount *mnt) |
| 450 | { |
| 451 | __mnt_drop_write(mnt); |
| 452 | sb_end_write(mnt->mnt_sb); |
| 453 | } |
| 454 | EXPORT_SYMBOL_GPL(mnt_drop_write); |
| 455 | |
| 456 | void __mnt_drop_write_file(struct file *file) |
| 457 | { |
| 458 | __mnt_drop_write(file->f_path.mnt); |
| 459 | } |
| 460 | |
| 461 | void mnt_drop_write_file(struct file *file) |
| 462 | { |
| 463 | __mnt_drop_write_file(file); |
| 464 | sb_end_write(file_inode(file)->i_sb); |
| 465 | } |
| 466 | EXPORT_SYMBOL(mnt_drop_write_file); |
| 467 | |
| 468 | static int mnt_make_readonly(struct mount *mnt) |
| 469 | { |
| 470 | int ret = 0; |
| 471 | |
| 472 | lock_mount_hash(); |
| 473 | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; |
| 474 | /* |
| 475 | * After storing MNT_WRITE_HOLD, we'll read the counters. This store |
| 476 | * should be visible before we do. |
| 477 | */ |
| 478 | smp_mb(); |
| 479 | |
| 480 | /* |
| 481 | * With writers on hold, if this value is zero, then there are |
| 482 | * definitely no active writers (although held writers may subsequently |
| 483 | * increment the count, they'll have to wait, and decrement it after |
| 484 | * seeing MNT_READONLY). |
| 485 | * |
| 486 | * It is OK to have counter incremented on one CPU and decremented on |
| 487 | * another: the sum will add up correctly. The danger would be when we |
| 488 | * sum up each counter, if we read a counter before it is incremented, |
| 489 | * but then read another CPU's count which it has been subsequently |
| 490 | * decremented from -- we would see more decrements than we should. |
| 491 | * MNT_WRITE_HOLD protects against this scenario, because |
| 492 | * mnt_want_write first increments count, then smp_mb, then spins on |
| 493 | * MNT_WRITE_HOLD, so it can't be decremented by another CPU while |
| 494 | * we're counting up here. |
| 495 | */ |
| 496 | if (mnt_get_writers(mnt) > 0) |
| 497 | ret = -EBUSY; |
| 498 | else |
| 499 | mnt->mnt.mnt_flags |= MNT_READONLY; |
| 500 | /* |
| 501 | * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers |
| 502 | * that become unheld will see MNT_READONLY. |
| 503 | */ |
| 504 | smp_wmb(); |
| 505 | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; |
| 506 | unlock_mount_hash(); |
| 507 | return ret; |
| 508 | } |
| 509 | |
| 510 | static void __mnt_unmake_readonly(struct mount *mnt) |
| 511 | { |
| 512 | lock_mount_hash(); |
| 513 | mnt->mnt.mnt_flags &= ~MNT_READONLY; |
| 514 | unlock_mount_hash(); |
| 515 | } |
| 516 | |
| 517 | int sb_prepare_remount_readonly(struct super_block *sb) |
| 518 | { |
| 519 | struct mount *mnt; |
| 520 | int err = 0; |
| 521 | |
| 522 | /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ |
| 523 | if (atomic_long_read(&sb->s_remove_count)) |
| 524 | return -EBUSY; |
| 525 | |
| 526 | lock_mount_hash(); |
| 527 | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { |
| 528 | if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { |
| 529 | mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; |
| 530 | smp_mb(); |
| 531 | if (mnt_get_writers(mnt) > 0) { |
| 532 | err = -EBUSY; |
| 533 | break; |
| 534 | } |
| 535 | } |
| 536 | } |
| 537 | if (!err && atomic_long_read(&sb->s_remove_count)) |
| 538 | err = -EBUSY; |
| 539 | |
| 540 | if (!err) { |
| 541 | sb->s_readonly_remount = 1; |
| 542 | smp_wmb(); |
| 543 | } |
| 544 | list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { |
| 545 | if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) |
| 546 | mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; |
| 547 | } |
| 548 | unlock_mount_hash(); |
| 549 | |
| 550 | return err; |
| 551 | } |
| 552 | |
| 553 | static void free_vfsmnt(struct mount *mnt) |
| 554 | { |
| 555 | kfree_const(mnt->mnt_devname); |
| 556 | #ifdef CONFIG_SMP |
| 557 | free_percpu(mnt->mnt_pcp); |
| 558 | #endif |
| 559 | kmem_cache_free(mnt_cache, mnt); |
| 560 | } |
| 561 | |
| 562 | static void delayed_free_vfsmnt(struct rcu_head *head) |
| 563 | { |
| 564 | free_vfsmnt(container_of(head, struct mount, mnt_rcu)); |
| 565 | } |
| 566 | |
| 567 | /* call under rcu_read_lock */ |
| 568 | int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 569 | { |
| 570 | struct mount *mnt; |
| 571 | if (read_seqretry(&mount_lock, seq)) |
| 572 | return 1; |
| 573 | if (bastard == NULL) |
| 574 | return 0; |
| 575 | mnt = real_mount(bastard); |
| 576 | mnt_add_count(mnt, 1); |
| 577 | smp_mb(); // see mntput_no_expire() |
| 578 | if (likely(!read_seqretry(&mount_lock, seq))) |
| 579 | return 0; |
| 580 | if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { |
| 581 | mnt_add_count(mnt, -1); |
| 582 | return 1; |
| 583 | } |
| 584 | lock_mount_hash(); |
| 585 | if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { |
| 586 | mnt_add_count(mnt, -1); |
| 587 | unlock_mount_hash(); |
| 588 | return 1; |
| 589 | } |
| 590 | unlock_mount_hash(); |
| 591 | /* caller will mntput() */ |
| 592 | return -1; |
| 593 | } |
| 594 | |
| 595 | /* call under rcu_read_lock */ |
| 596 | bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) |
| 597 | { |
| 598 | int res = __legitimize_mnt(bastard, seq); |
| 599 | if (likely(!res)) |
| 600 | return true; |
| 601 | if (unlikely(res < 0)) { |
| 602 | rcu_read_unlock(); |
| 603 | mntput(bastard); |
| 604 | rcu_read_lock(); |
| 605 | } |
| 606 | return false; |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | * find the first mount at @dentry on vfsmount @mnt. |
| 611 | * call under rcu_read_lock() |
| 612 | */ |
| 613 | struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) |
| 614 | { |
| 615 | struct hlist_head *head = m_hash(mnt, dentry); |
| 616 | struct mount *p; |
| 617 | |
| 618 | hlist_for_each_entry_rcu(p, head, mnt_hash) |
| 619 | if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) |
| 620 | return p; |
| 621 | return NULL; |
| 622 | } |
| 623 | |
| 624 | /* |
| 625 | * lookup_mnt - Return the first child mount mounted at path |
| 626 | * |
| 627 | * "First" means first mounted chronologically. If you create the |
| 628 | * following mounts: |
| 629 | * |
| 630 | * mount /dev/sda1 /mnt |
| 631 | * mount /dev/sda2 /mnt |
| 632 | * mount /dev/sda3 /mnt |
| 633 | * |
| 634 | * Then lookup_mnt() on the base /mnt dentry in the root mount will |
| 635 | * return successively the root dentry and vfsmount of /dev/sda1, then |
| 636 | * /dev/sda2, then /dev/sda3, then NULL. |
| 637 | * |
| 638 | * lookup_mnt takes a reference to the found vfsmount. |
| 639 | */ |
| 640 | struct vfsmount *lookup_mnt(const struct path *path) |
| 641 | { |
| 642 | struct mount *child_mnt; |
| 643 | struct vfsmount *m; |
| 644 | unsigned seq; |
| 645 | |
| 646 | rcu_read_lock(); |
| 647 | do { |
| 648 | seq = read_seqbegin(&mount_lock); |
| 649 | child_mnt = __lookup_mnt(path->mnt, path->dentry); |
| 650 | m = child_mnt ? &child_mnt->mnt : NULL; |
| 651 | } while (!legitimize_mnt(m, seq)); |
| 652 | rcu_read_unlock(); |
| 653 | return m; |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * __is_local_mountpoint - Test to see if dentry is a mountpoint in the |
| 658 | * current mount namespace. |
| 659 | * |
| 660 | * The common case is dentries are not mountpoints at all and that |
| 661 | * test is handled inline. For the slow case when we are actually |
| 662 | * dealing with a mountpoint of some kind, walk through all of the |
| 663 | * mounts in the current mount namespace and test to see if the dentry |
| 664 | * is a mountpoint. |
| 665 | * |
| 666 | * The mount_hashtable is not usable in the context because we |
| 667 | * need to identify all mounts that may be in the current mount |
| 668 | * namespace not just a mount that happens to have some specified |
| 669 | * parent mount. |
| 670 | */ |
| 671 | bool __is_local_mountpoint(struct dentry *dentry) |
| 672 | { |
| 673 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 674 | struct mount *mnt; |
| 675 | bool is_covered = false; |
| 676 | |
| 677 | if (!d_mountpoint(dentry)) |
| 678 | goto out; |
| 679 | |
| 680 | down_read(&namespace_sem); |
| 681 | list_for_each_entry(mnt, &ns->list, mnt_list) { |
| 682 | is_covered = (mnt->mnt_mountpoint == dentry); |
| 683 | if (is_covered) |
| 684 | break; |
| 685 | } |
| 686 | up_read(&namespace_sem); |
| 687 | out: |
| 688 | return is_covered; |
| 689 | } |
| 690 | |
| 691 | static struct mountpoint *lookup_mountpoint(struct dentry *dentry) |
| 692 | { |
| 693 | struct hlist_head *chain = mp_hash(dentry); |
| 694 | struct mountpoint *mp; |
| 695 | |
| 696 | hlist_for_each_entry(mp, chain, m_hash) { |
| 697 | if (mp->m_dentry == dentry) { |
| 698 | mp->m_count++; |
| 699 | return mp; |
| 700 | } |
| 701 | } |
| 702 | return NULL; |
| 703 | } |
| 704 | |
| 705 | static struct mountpoint *get_mountpoint(struct dentry *dentry) |
| 706 | { |
| 707 | struct mountpoint *mp, *new = NULL; |
| 708 | int ret; |
| 709 | |
| 710 | if (d_mountpoint(dentry)) { |
| 711 | /* might be worth a WARN_ON() */ |
| 712 | if (d_unlinked(dentry)) |
| 713 | return ERR_PTR(-ENOENT); |
| 714 | mountpoint: |
| 715 | read_seqlock_excl(&mount_lock); |
| 716 | mp = lookup_mountpoint(dentry); |
| 717 | read_sequnlock_excl(&mount_lock); |
| 718 | if (mp) |
| 719 | goto done; |
| 720 | } |
| 721 | |
| 722 | if (!new) |
| 723 | new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); |
| 724 | if (!new) |
| 725 | return ERR_PTR(-ENOMEM); |
| 726 | |
| 727 | |
| 728 | /* Exactly one processes may set d_mounted */ |
| 729 | ret = d_set_mounted(dentry); |
| 730 | |
| 731 | /* Someone else set d_mounted? */ |
| 732 | if (ret == -EBUSY) |
| 733 | goto mountpoint; |
| 734 | |
| 735 | /* The dentry is not available as a mountpoint? */ |
| 736 | mp = ERR_PTR(ret); |
| 737 | if (ret) |
| 738 | goto done; |
| 739 | |
| 740 | /* Add the new mountpoint to the hash table */ |
| 741 | read_seqlock_excl(&mount_lock); |
| 742 | new->m_dentry = dentry; |
| 743 | new->m_count = 1; |
| 744 | hlist_add_head(&new->m_hash, mp_hash(dentry)); |
| 745 | INIT_HLIST_HEAD(&new->m_list); |
| 746 | read_sequnlock_excl(&mount_lock); |
| 747 | |
| 748 | mp = new; |
| 749 | new = NULL; |
| 750 | done: |
| 751 | kfree(new); |
| 752 | return mp; |
| 753 | } |
| 754 | |
| 755 | static void put_mountpoint(struct mountpoint *mp) |
| 756 | { |
| 757 | if (!--mp->m_count) { |
| 758 | struct dentry *dentry = mp->m_dentry; |
| 759 | BUG_ON(!hlist_empty(&mp->m_list)); |
| 760 | spin_lock(&dentry->d_lock); |
| 761 | dentry->d_flags &= ~DCACHE_MOUNTED; |
| 762 | spin_unlock(&dentry->d_lock); |
| 763 | hlist_del(&mp->m_hash); |
| 764 | kfree(mp); |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | static inline int check_mnt(struct mount *mnt) |
| 769 | { |
| 770 | return mnt->mnt_ns == current->nsproxy->mnt_ns; |
| 771 | } |
| 772 | |
| 773 | /* |
| 774 | * vfsmount lock must be held for write |
| 775 | */ |
| 776 | static void touch_mnt_namespace(struct mnt_namespace *ns) |
| 777 | { |
| 778 | if (ns) { |
| 779 | ns->event = ++event; |
| 780 | wake_up_interruptible(&ns->poll); |
| 781 | } |
| 782 | } |
| 783 | |
| 784 | /* |
| 785 | * vfsmount lock must be held for write |
| 786 | */ |
| 787 | static void __touch_mnt_namespace(struct mnt_namespace *ns) |
| 788 | { |
| 789 | if (ns && ns->event != event) { |
| 790 | ns->event = event; |
| 791 | wake_up_interruptible(&ns->poll); |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | /* |
| 796 | * vfsmount lock must be held for write |
| 797 | */ |
| 798 | static void unhash_mnt(struct mount *mnt) |
| 799 | { |
| 800 | mnt->mnt_parent = mnt; |
| 801 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 802 | list_del_init(&mnt->mnt_child); |
| 803 | hlist_del_init_rcu(&mnt->mnt_hash); |
| 804 | hlist_del_init(&mnt->mnt_mp_list); |
| 805 | put_mountpoint(mnt->mnt_mp); |
| 806 | mnt->mnt_mp = NULL; |
| 807 | } |
| 808 | |
| 809 | /* |
| 810 | * vfsmount lock must be held for write |
| 811 | */ |
| 812 | static void detach_mnt(struct mount *mnt, struct path *old_path) |
| 813 | { |
| 814 | old_path->dentry = mnt->mnt_mountpoint; |
| 815 | old_path->mnt = &mnt->mnt_parent->mnt; |
| 816 | unhash_mnt(mnt); |
| 817 | } |
| 818 | |
| 819 | /* |
| 820 | * vfsmount lock must be held for write |
| 821 | */ |
| 822 | static void umount_mnt(struct mount *mnt) |
| 823 | { |
| 824 | /* old mountpoint will be dropped when we can do that */ |
| 825 | mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; |
| 826 | unhash_mnt(mnt); |
| 827 | } |
| 828 | |
| 829 | /* |
| 830 | * vfsmount lock must be held for write |
| 831 | */ |
| 832 | void mnt_set_mountpoint(struct mount *mnt, |
| 833 | struct mountpoint *mp, |
| 834 | struct mount *child_mnt) |
| 835 | { |
| 836 | mp->m_count++; |
| 837 | mnt_add_count(mnt, 1); /* essentially, that's mntget */ |
| 838 | child_mnt->mnt_mountpoint = dget(mp->m_dentry); |
| 839 | child_mnt->mnt_parent = mnt; |
| 840 | child_mnt->mnt_mp = mp; |
| 841 | hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); |
| 842 | } |
| 843 | |
| 844 | static void __attach_mnt(struct mount *mnt, struct mount *parent) |
| 845 | { |
| 846 | hlist_add_head_rcu(&mnt->mnt_hash, |
| 847 | m_hash(&parent->mnt, mnt->mnt_mountpoint)); |
| 848 | list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); |
| 849 | } |
| 850 | |
| 851 | /* |
| 852 | * vfsmount lock must be held for write |
| 853 | */ |
| 854 | static void attach_mnt(struct mount *mnt, |
| 855 | struct mount *parent, |
| 856 | struct mountpoint *mp) |
| 857 | { |
| 858 | mnt_set_mountpoint(parent, mp, mnt); |
| 859 | __attach_mnt(mnt, parent); |
| 860 | } |
| 861 | |
| 862 | void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) |
| 863 | { |
| 864 | struct mountpoint *old_mp = mnt->mnt_mp; |
| 865 | struct dentry *old_mountpoint = mnt->mnt_mountpoint; |
| 866 | struct mount *old_parent = mnt->mnt_parent; |
| 867 | |
| 868 | list_del_init(&mnt->mnt_child); |
| 869 | hlist_del_init(&mnt->mnt_mp_list); |
| 870 | hlist_del_init_rcu(&mnt->mnt_hash); |
| 871 | |
| 872 | attach_mnt(mnt, parent, mp); |
| 873 | |
| 874 | put_mountpoint(old_mp); |
| 875 | |
| 876 | /* |
| 877 | * Safely avoid even the suggestion this code might sleep or |
| 878 | * lock the mount hash by taking advantage of the knowledge that |
| 879 | * mnt_change_mountpoint will not release the final reference |
| 880 | * to a mountpoint. |
| 881 | * |
| 882 | * During mounting, the mount passed in as the parent mount will |
| 883 | * continue to use the old mountpoint and during unmounting, the |
| 884 | * old mountpoint will continue to exist until namespace_unlock, |
| 885 | * which happens well after mnt_change_mountpoint. |
| 886 | */ |
| 887 | spin_lock(&old_mountpoint->d_lock); |
| 888 | old_mountpoint->d_lockref.count--; |
| 889 | spin_unlock(&old_mountpoint->d_lock); |
| 890 | |
| 891 | mnt_add_count(old_parent, -1); |
| 892 | } |
| 893 | |
| 894 | /* |
| 895 | * vfsmount lock must be held for write |
| 896 | */ |
| 897 | static void commit_tree(struct mount *mnt) |
| 898 | { |
| 899 | struct mount *parent = mnt->mnt_parent; |
| 900 | struct mount *m; |
| 901 | LIST_HEAD(head); |
| 902 | struct mnt_namespace *n = parent->mnt_ns; |
| 903 | |
| 904 | BUG_ON(parent == mnt); |
| 905 | |
| 906 | list_add_tail(&head, &mnt->mnt_list); |
| 907 | list_for_each_entry(m, &head, mnt_list) |
| 908 | m->mnt_ns = n; |
| 909 | |
| 910 | list_splice(&head, n->list.prev); |
| 911 | |
| 912 | n->mounts += n->pending_mounts; |
| 913 | n->pending_mounts = 0; |
| 914 | |
| 915 | __attach_mnt(mnt, parent); |
| 916 | touch_mnt_namespace(n); |
| 917 | } |
| 918 | |
| 919 | static struct mount *next_mnt(struct mount *p, struct mount *root) |
| 920 | { |
| 921 | struct list_head *next = p->mnt_mounts.next; |
| 922 | if (next == &p->mnt_mounts) { |
| 923 | while (1) { |
| 924 | if (p == root) |
| 925 | return NULL; |
| 926 | next = p->mnt_child.next; |
| 927 | if (next != &p->mnt_parent->mnt_mounts) |
| 928 | break; |
| 929 | p = p->mnt_parent; |
| 930 | } |
| 931 | } |
| 932 | return list_entry(next, struct mount, mnt_child); |
| 933 | } |
| 934 | |
| 935 | static struct mount *skip_mnt_tree(struct mount *p) |
| 936 | { |
| 937 | struct list_head *prev = p->mnt_mounts.prev; |
| 938 | while (prev != &p->mnt_mounts) { |
| 939 | p = list_entry(prev, struct mount, mnt_child); |
| 940 | prev = p->mnt_mounts.prev; |
| 941 | } |
| 942 | return p; |
| 943 | } |
| 944 | |
| 945 | struct vfsmount * |
| 946 | vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) |
| 947 | { |
| 948 | struct mount *mnt; |
| 949 | struct dentry *root; |
| 950 | |
| 951 | if (!type) |
| 952 | return ERR_PTR(-ENODEV); |
| 953 | |
| 954 | mnt = alloc_vfsmnt(name); |
| 955 | if (!mnt) |
| 956 | return ERR_PTR(-ENOMEM); |
| 957 | |
| 958 | if (flags & SB_KERNMOUNT) |
| 959 | mnt->mnt.mnt_flags = MNT_INTERNAL; |
| 960 | |
| 961 | root = mount_fs(type, flags, name, data); |
| 962 | if (IS_ERR(root)) { |
| 963 | mnt_free_id(mnt); |
| 964 | free_vfsmnt(mnt); |
| 965 | return ERR_CAST(root); |
| 966 | } |
| 967 | |
| 968 | mnt->mnt.mnt_root = root; |
| 969 | mnt->mnt.mnt_sb = root->d_sb; |
| 970 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 971 | mnt->mnt_parent = mnt; |
| 972 | lock_mount_hash(); |
| 973 | list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); |
| 974 | unlock_mount_hash(); |
| 975 | return &mnt->mnt; |
| 976 | } |
| 977 | EXPORT_SYMBOL_GPL(vfs_kern_mount); |
| 978 | |
| 979 | struct vfsmount * |
| 980 | vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, |
| 981 | const char *name, void *data) |
| 982 | { |
| 983 | /* Until it is worked out how to pass the user namespace |
| 984 | * through from the parent mount to the submount don't support |
| 985 | * unprivileged mounts with submounts. |
| 986 | */ |
| 987 | if (mountpoint->d_sb->s_user_ns != &init_user_ns) |
| 988 | return ERR_PTR(-EPERM); |
| 989 | |
| 990 | return vfs_kern_mount(type, SB_SUBMOUNT, name, data); |
| 991 | } |
| 992 | EXPORT_SYMBOL_GPL(vfs_submount); |
| 993 | |
| 994 | static struct mount *clone_mnt(struct mount *old, struct dentry *root, |
| 995 | int flag) |
| 996 | { |
| 997 | struct super_block *sb = old->mnt.mnt_sb; |
| 998 | struct mount *mnt; |
| 999 | int err; |
| 1000 | |
| 1001 | mnt = alloc_vfsmnt(old->mnt_devname); |
| 1002 | if (!mnt) |
| 1003 | return ERR_PTR(-ENOMEM); |
| 1004 | |
| 1005 | if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) |
| 1006 | mnt->mnt_group_id = 0; /* not a peer of original */ |
| 1007 | else |
| 1008 | mnt->mnt_group_id = old->mnt_group_id; |
| 1009 | |
| 1010 | if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { |
| 1011 | err = mnt_alloc_group_id(mnt); |
| 1012 | if (err) |
| 1013 | goto out_free; |
| 1014 | } |
| 1015 | |
| 1016 | mnt->mnt.mnt_flags = old->mnt.mnt_flags; |
| 1017 | mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL); |
| 1018 | /* Don't allow unprivileged users to change mount flags */ |
| 1019 | if (flag & CL_UNPRIVILEGED) { |
| 1020 | mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; |
| 1021 | |
| 1022 | if (mnt->mnt.mnt_flags & MNT_READONLY) |
| 1023 | mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; |
| 1024 | |
| 1025 | if (mnt->mnt.mnt_flags & MNT_NODEV) |
| 1026 | mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; |
| 1027 | |
| 1028 | if (mnt->mnt.mnt_flags & MNT_NOSUID) |
| 1029 | mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; |
| 1030 | |
| 1031 | if (mnt->mnt.mnt_flags & MNT_NOEXEC) |
| 1032 | mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; |
| 1033 | } |
| 1034 | |
| 1035 | /* Don't allow unprivileged users to reveal what is under a mount */ |
| 1036 | if ((flag & CL_UNPRIVILEGED) && |
| 1037 | (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) |
| 1038 | mnt->mnt.mnt_flags |= MNT_LOCKED; |
| 1039 | |
| 1040 | atomic_inc(&sb->s_active); |
| 1041 | mnt->mnt.mnt_sb = sb; |
| 1042 | mnt->mnt.mnt_root = dget(root); |
| 1043 | mnt->mnt_mountpoint = mnt->mnt.mnt_root; |
| 1044 | mnt->mnt_parent = mnt; |
| 1045 | lock_mount_hash(); |
| 1046 | list_add_tail(&mnt->mnt_instance, &sb->s_mounts); |
| 1047 | unlock_mount_hash(); |
| 1048 | |
| 1049 | if ((flag & CL_SLAVE) || |
| 1050 | ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { |
| 1051 | list_add(&mnt->mnt_slave, &old->mnt_slave_list); |
| 1052 | mnt->mnt_master = old; |
| 1053 | CLEAR_MNT_SHARED(mnt); |
| 1054 | } else if (!(flag & CL_PRIVATE)) { |
| 1055 | if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) |
| 1056 | list_add(&mnt->mnt_share, &old->mnt_share); |
| 1057 | if (IS_MNT_SLAVE(old)) |
| 1058 | list_add(&mnt->mnt_slave, &old->mnt_slave); |
| 1059 | mnt->mnt_master = old->mnt_master; |
| 1060 | } else { |
| 1061 | CLEAR_MNT_SHARED(mnt); |
| 1062 | } |
| 1063 | if (flag & CL_MAKE_SHARED) |
| 1064 | set_mnt_shared(mnt); |
| 1065 | |
| 1066 | /* stick the duplicate mount on the same expiry list |
| 1067 | * as the original if that was on one */ |
| 1068 | if (flag & CL_EXPIRE) { |
| 1069 | if (!list_empty(&old->mnt_expire)) |
| 1070 | list_add(&mnt->mnt_expire, &old->mnt_expire); |
| 1071 | } |
| 1072 | |
| 1073 | return mnt; |
| 1074 | |
| 1075 | out_free: |
| 1076 | mnt_free_id(mnt); |
| 1077 | free_vfsmnt(mnt); |
| 1078 | return ERR_PTR(err); |
| 1079 | } |
| 1080 | |
| 1081 | static void cleanup_mnt(struct mount *mnt) |
| 1082 | { |
| 1083 | /* |
| 1084 | * This probably indicates that somebody messed |
| 1085 | * up a mnt_want/drop_write() pair. If this |
| 1086 | * happens, the filesystem was probably unable |
| 1087 | * to make r/w->r/o transitions. |
| 1088 | */ |
| 1089 | /* |
| 1090 | * The locking used to deal with mnt_count decrement provides barriers, |
| 1091 | * so mnt_get_writers() below is safe. |
| 1092 | */ |
| 1093 | WARN_ON(mnt_get_writers(mnt)); |
| 1094 | if (unlikely(mnt->mnt_pins.first)) |
| 1095 | mnt_pin_kill(mnt); |
| 1096 | fsnotify_vfsmount_delete(&mnt->mnt); |
| 1097 | dput(mnt->mnt.mnt_root); |
| 1098 | deactivate_super(mnt->mnt.mnt_sb); |
| 1099 | mnt_free_id(mnt); |
| 1100 | call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); |
| 1101 | } |
| 1102 | |
| 1103 | static void __cleanup_mnt(struct rcu_head *head) |
| 1104 | { |
| 1105 | cleanup_mnt(container_of(head, struct mount, mnt_rcu)); |
| 1106 | } |
| 1107 | |
| 1108 | static LLIST_HEAD(delayed_mntput_list); |
| 1109 | static void delayed_mntput(struct work_struct *unused) |
| 1110 | { |
| 1111 | struct llist_node *node = llist_del_all(&delayed_mntput_list); |
| 1112 | struct mount *m, *t; |
| 1113 | |
| 1114 | llist_for_each_entry_safe(m, t, node, mnt_llist) |
| 1115 | cleanup_mnt(m); |
| 1116 | } |
| 1117 | static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); |
| 1118 | |
| 1119 | static void mntput_no_expire(struct mount *mnt) |
| 1120 | { |
| 1121 | rcu_read_lock(); |
| 1122 | if (likely(READ_ONCE(mnt->mnt_ns))) { |
| 1123 | /* |
| 1124 | * Since we don't do lock_mount_hash() here, |
| 1125 | * ->mnt_ns can change under us. However, if it's |
| 1126 | * non-NULL, then there's a reference that won't |
| 1127 | * be dropped until after an RCU delay done after |
| 1128 | * turning ->mnt_ns NULL. So if we observe it |
| 1129 | * non-NULL under rcu_read_lock(), the reference |
| 1130 | * we are dropping is not the final one. |
| 1131 | */ |
| 1132 | mnt_add_count(mnt, -1); |
| 1133 | rcu_read_unlock(); |
| 1134 | return; |
| 1135 | } |
| 1136 | lock_mount_hash(); |
| 1137 | /* |
| 1138 | * make sure that if __legitimize_mnt() has not seen us grab |
| 1139 | * mount_lock, we'll see their refcount increment here. |
| 1140 | */ |
| 1141 | smp_mb(); |
| 1142 | mnt_add_count(mnt, -1); |
| 1143 | if (mnt_get_count(mnt)) { |
| 1144 | rcu_read_unlock(); |
| 1145 | unlock_mount_hash(); |
| 1146 | return; |
| 1147 | } |
| 1148 | if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { |
| 1149 | rcu_read_unlock(); |
| 1150 | unlock_mount_hash(); |
| 1151 | return; |
| 1152 | } |
| 1153 | mnt->mnt.mnt_flags |= MNT_DOOMED; |
| 1154 | rcu_read_unlock(); |
| 1155 | |
| 1156 | list_del(&mnt->mnt_instance); |
| 1157 | |
| 1158 | if (unlikely(!list_empty(&mnt->mnt_mounts))) { |
| 1159 | struct mount *p, *tmp; |
| 1160 | list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { |
| 1161 | umount_mnt(p); |
| 1162 | } |
| 1163 | } |
| 1164 | unlock_mount_hash(); |
| 1165 | |
| 1166 | if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { |
| 1167 | struct task_struct *task = current; |
| 1168 | if (likely(!(task->flags & PF_KTHREAD))) { |
| 1169 | init_task_work(&mnt->mnt_rcu, __cleanup_mnt); |
| 1170 | if (!task_work_add(task, &mnt->mnt_rcu, true)) |
| 1171 | return; |
| 1172 | } |
| 1173 | if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) |
| 1174 | schedule_delayed_work(&delayed_mntput_work, 1); |
| 1175 | return; |
| 1176 | } |
| 1177 | cleanup_mnt(mnt); |
| 1178 | } |
| 1179 | |
| 1180 | void mntput(struct vfsmount *mnt) |
| 1181 | { |
| 1182 | if (mnt) { |
| 1183 | struct mount *m = real_mount(mnt); |
| 1184 | /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ |
| 1185 | if (unlikely(m->mnt_expiry_mark)) |
| 1186 | m->mnt_expiry_mark = 0; |
| 1187 | mntput_no_expire(m); |
| 1188 | } |
| 1189 | } |
| 1190 | EXPORT_SYMBOL(mntput); |
| 1191 | |
| 1192 | struct vfsmount *mntget(struct vfsmount *mnt) |
| 1193 | { |
| 1194 | if (mnt) |
| 1195 | mnt_add_count(real_mount(mnt), 1); |
| 1196 | return mnt; |
| 1197 | } |
| 1198 | EXPORT_SYMBOL(mntget); |
| 1199 | |
| 1200 | /* path_is_mountpoint() - Check if path is a mount in the current |
| 1201 | * namespace. |
| 1202 | * |
| 1203 | * d_mountpoint() can only be used reliably to establish if a dentry is |
| 1204 | * not mounted in any namespace and that common case is handled inline. |
| 1205 | * d_mountpoint() isn't aware of the possibility there may be multiple |
| 1206 | * mounts using a given dentry in a different namespace. This function |
| 1207 | * checks if the passed in path is a mountpoint rather than the dentry |
| 1208 | * alone. |
| 1209 | */ |
| 1210 | bool path_is_mountpoint(const struct path *path) |
| 1211 | { |
| 1212 | unsigned seq; |
| 1213 | bool res; |
| 1214 | |
| 1215 | if (!d_mountpoint(path->dentry)) |
| 1216 | return false; |
| 1217 | |
| 1218 | rcu_read_lock(); |
| 1219 | do { |
| 1220 | seq = read_seqbegin(&mount_lock); |
| 1221 | res = __path_is_mountpoint(path); |
| 1222 | } while (read_seqretry(&mount_lock, seq)); |
| 1223 | rcu_read_unlock(); |
| 1224 | |
| 1225 | return res; |
| 1226 | } |
| 1227 | EXPORT_SYMBOL(path_is_mountpoint); |
| 1228 | |
| 1229 | struct vfsmount *mnt_clone_internal(const struct path *path) |
| 1230 | { |
| 1231 | struct mount *p; |
| 1232 | p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); |
| 1233 | if (IS_ERR(p)) |
| 1234 | return ERR_CAST(p); |
| 1235 | p->mnt.mnt_flags |= MNT_INTERNAL; |
| 1236 | return &p->mnt; |
| 1237 | } |
| 1238 | |
| 1239 | #ifdef CONFIG_PROC_FS |
| 1240 | /* iterator; we want it to have access to namespace_sem, thus here... */ |
| 1241 | static void *m_start(struct seq_file *m, loff_t *pos) |
| 1242 | { |
| 1243 | struct proc_mounts *p = m->private; |
| 1244 | |
| 1245 | down_read(&namespace_sem); |
| 1246 | if (p->cached_event == p->ns->event) { |
| 1247 | void *v = p->cached_mount; |
| 1248 | if (*pos == p->cached_index) |
| 1249 | return v; |
| 1250 | if (*pos == p->cached_index + 1) { |
| 1251 | v = seq_list_next(v, &p->ns->list, &p->cached_index); |
| 1252 | return p->cached_mount = v; |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | p->cached_event = p->ns->event; |
| 1257 | p->cached_mount = seq_list_start(&p->ns->list, *pos); |
| 1258 | p->cached_index = *pos; |
| 1259 | return p->cached_mount; |
| 1260 | } |
| 1261 | |
| 1262 | static void *m_next(struct seq_file *m, void *v, loff_t *pos) |
| 1263 | { |
| 1264 | struct proc_mounts *p = m->private; |
| 1265 | |
| 1266 | p->cached_mount = seq_list_next(v, &p->ns->list, pos); |
| 1267 | p->cached_index = *pos; |
| 1268 | return p->cached_mount; |
| 1269 | } |
| 1270 | |
| 1271 | static void m_stop(struct seq_file *m, void *v) |
| 1272 | { |
| 1273 | up_read(&namespace_sem); |
| 1274 | } |
| 1275 | |
| 1276 | static int m_show(struct seq_file *m, void *v) |
| 1277 | { |
| 1278 | struct proc_mounts *p = m->private; |
| 1279 | struct mount *r = list_entry(v, struct mount, mnt_list); |
| 1280 | return p->show(m, &r->mnt); |
| 1281 | } |
| 1282 | |
| 1283 | const struct seq_operations mounts_op = { |
| 1284 | .start = m_start, |
| 1285 | .next = m_next, |
| 1286 | .stop = m_stop, |
| 1287 | .show = m_show, |
| 1288 | }; |
| 1289 | #endif /* CONFIG_PROC_FS */ |
| 1290 | |
| 1291 | /** |
| 1292 | * may_umount_tree - check if a mount tree is busy |
| 1293 | * @mnt: root of mount tree |
| 1294 | * |
| 1295 | * This is called to check if a tree of mounts has any |
| 1296 | * open files, pwds, chroots or sub mounts that are |
| 1297 | * busy. |
| 1298 | */ |
| 1299 | int may_umount_tree(struct vfsmount *m) |
| 1300 | { |
| 1301 | struct mount *mnt = real_mount(m); |
| 1302 | int actual_refs = 0; |
| 1303 | int minimum_refs = 0; |
| 1304 | struct mount *p; |
| 1305 | BUG_ON(!m); |
| 1306 | |
| 1307 | /* write lock needed for mnt_get_count */ |
| 1308 | lock_mount_hash(); |
| 1309 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 1310 | actual_refs += mnt_get_count(p); |
| 1311 | minimum_refs += 2; |
| 1312 | } |
| 1313 | unlock_mount_hash(); |
| 1314 | |
| 1315 | if (actual_refs > minimum_refs) |
| 1316 | return 0; |
| 1317 | |
| 1318 | return 1; |
| 1319 | } |
| 1320 | |
| 1321 | EXPORT_SYMBOL(may_umount_tree); |
| 1322 | |
| 1323 | /** |
| 1324 | * may_umount - check if a mount point is busy |
| 1325 | * @mnt: root of mount |
| 1326 | * |
| 1327 | * This is called to check if a mount point has any |
| 1328 | * open files, pwds, chroots or sub mounts. If the |
| 1329 | * mount has sub mounts this will return busy |
| 1330 | * regardless of whether the sub mounts are busy. |
| 1331 | * |
| 1332 | * Doesn't take quota and stuff into account. IOW, in some cases it will |
| 1333 | * give false negatives. The main reason why it's here is that we need |
| 1334 | * a non-destructive way to look for easily umountable filesystems. |
| 1335 | */ |
| 1336 | int may_umount(struct vfsmount *mnt) |
| 1337 | { |
| 1338 | int ret = 1; |
| 1339 | down_read(&namespace_sem); |
| 1340 | lock_mount_hash(); |
| 1341 | if (propagate_mount_busy(real_mount(mnt), 2)) |
| 1342 | ret = 0; |
| 1343 | unlock_mount_hash(); |
| 1344 | up_read(&namespace_sem); |
| 1345 | return ret; |
| 1346 | } |
| 1347 | |
| 1348 | EXPORT_SYMBOL(may_umount); |
| 1349 | |
| 1350 | static HLIST_HEAD(unmounted); /* protected by namespace_sem */ |
| 1351 | |
| 1352 | static void namespace_unlock(void) |
| 1353 | { |
| 1354 | struct hlist_head head; |
| 1355 | |
| 1356 | hlist_move_list(&unmounted, &head); |
| 1357 | |
| 1358 | up_write(&namespace_sem); |
| 1359 | |
| 1360 | if (likely(hlist_empty(&head))) |
| 1361 | return; |
| 1362 | |
| 1363 | synchronize_rcu(); |
| 1364 | |
| 1365 | group_pin_kill(&head); |
| 1366 | } |
| 1367 | |
| 1368 | static inline void namespace_lock(void) |
| 1369 | { |
| 1370 | down_write(&namespace_sem); |
| 1371 | } |
| 1372 | |
| 1373 | enum umount_tree_flags { |
| 1374 | UMOUNT_SYNC = 1, |
| 1375 | UMOUNT_PROPAGATE = 2, |
| 1376 | UMOUNT_CONNECTED = 4, |
| 1377 | }; |
| 1378 | |
| 1379 | static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) |
| 1380 | { |
| 1381 | /* Leaving mounts connected is only valid for lazy umounts */ |
| 1382 | if (how & UMOUNT_SYNC) |
| 1383 | return true; |
| 1384 | |
| 1385 | /* A mount without a parent has nothing to be connected to */ |
| 1386 | if (!mnt_has_parent(mnt)) |
| 1387 | return true; |
| 1388 | |
| 1389 | /* Because the reference counting rules change when mounts are |
| 1390 | * unmounted and connected, umounted mounts may not be |
| 1391 | * connected to mounted mounts. |
| 1392 | */ |
| 1393 | if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) |
| 1394 | return true; |
| 1395 | |
| 1396 | /* Has it been requested that the mount remain connected? */ |
| 1397 | if (how & UMOUNT_CONNECTED) |
| 1398 | return false; |
| 1399 | |
| 1400 | /* Is the mount locked such that it needs to remain connected? */ |
| 1401 | if (IS_MNT_LOCKED(mnt)) |
| 1402 | return false; |
| 1403 | |
| 1404 | /* By default disconnect the mount */ |
| 1405 | return true; |
| 1406 | } |
| 1407 | |
| 1408 | /* |
| 1409 | * mount_lock must be held |
| 1410 | * namespace_sem must be held for write |
| 1411 | */ |
| 1412 | static void umount_tree(struct mount *mnt, enum umount_tree_flags how) |
| 1413 | { |
| 1414 | LIST_HEAD(tmp_list); |
| 1415 | struct mount *p; |
| 1416 | |
| 1417 | if (how & UMOUNT_PROPAGATE) |
| 1418 | propagate_mount_unlock(mnt); |
| 1419 | |
| 1420 | /* Gather the mounts to umount */ |
| 1421 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 1422 | p->mnt.mnt_flags |= MNT_UMOUNT; |
| 1423 | list_move(&p->mnt_list, &tmp_list); |
| 1424 | } |
| 1425 | |
| 1426 | /* Hide the mounts from mnt_mounts */ |
| 1427 | list_for_each_entry(p, &tmp_list, mnt_list) { |
| 1428 | list_del_init(&p->mnt_child); |
| 1429 | } |
| 1430 | |
| 1431 | /* Add propogated mounts to the tmp_list */ |
| 1432 | if (how & UMOUNT_PROPAGATE) |
| 1433 | propagate_umount(&tmp_list); |
| 1434 | |
| 1435 | while (!list_empty(&tmp_list)) { |
| 1436 | struct mnt_namespace *ns; |
| 1437 | bool disconnect; |
| 1438 | p = list_first_entry(&tmp_list, struct mount, mnt_list); |
| 1439 | list_del_init(&p->mnt_expire); |
| 1440 | list_del_init(&p->mnt_list); |
| 1441 | ns = p->mnt_ns; |
| 1442 | if (ns) { |
| 1443 | ns->mounts--; |
| 1444 | __touch_mnt_namespace(ns); |
| 1445 | } |
| 1446 | p->mnt_ns = NULL; |
| 1447 | if (how & UMOUNT_SYNC) |
| 1448 | p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; |
| 1449 | |
| 1450 | disconnect = disconnect_mount(p, how); |
| 1451 | |
| 1452 | pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, |
| 1453 | disconnect ? &unmounted : NULL); |
| 1454 | if (mnt_has_parent(p)) { |
| 1455 | mnt_add_count(p->mnt_parent, -1); |
| 1456 | if (!disconnect) { |
| 1457 | /* Don't forget about p */ |
| 1458 | list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); |
| 1459 | } else { |
| 1460 | umount_mnt(p); |
| 1461 | } |
| 1462 | } |
| 1463 | change_mnt_propagation(p, MS_PRIVATE); |
| 1464 | } |
| 1465 | } |
| 1466 | |
| 1467 | static void shrink_submounts(struct mount *mnt); |
| 1468 | |
| 1469 | static int do_umount(struct mount *mnt, int flags) |
| 1470 | { |
| 1471 | struct super_block *sb = mnt->mnt.mnt_sb; |
| 1472 | int retval; |
| 1473 | |
| 1474 | retval = security_sb_umount(&mnt->mnt, flags); |
| 1475 | if (retval) |
| 1476 | return retval; |
| 1477 | |
| 1478 | /* |
| 1479 | * Allow userspace to request a mountpoint be expired rather than |
| 1480 | * unmounting unconditionally. Unmount only happens if: |
| 1481 | * (1) the mark is already set (the mark is cleared by mntput()) |
| 1482 | * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] |
| 1483 | */ |
| 1484 | if (flags & MNT_EXPIRE) { |
| 1485 | if (&mnt->mnt == current->fs->root.mnt || |
| 1486 | flags & (MNT_FORCE | MNT_DETACH)) |
| 1487 | return -EINVAL; |
| 1488 | |
| 1489 | /* |
| 1490 | * probably don't strictly need the lock here if we examined |
| 1491 | * all race cases, but it's a slowpath. |
| 1492 | */ |
| 1493 | lock_mount_hash(); |
| 1494 | if (mnt_get_count(mnt) != 2) { |
| 1495 | unlock_mount_hash(); |
| 1496 | return -EBUSY; |
| 1497 | } |
| 1498 | unlock_mount_hash(); |
| 1499 | |
| 1500 | if (!xchg(&mnt->mnt_expiry_mark, 1)) |
| 1501 | return -EAGAIN; |
| 1502 | } |
| 1503 | |
| 1504 | /* |
| 1505 | * If we may have to abort operations to get out of this |
| 1506 | * mount, and they will themselves hold resources we must |
| 1507 | * allow the fs to do things. In the Unix tradition of |
| 1508 | * 'Gee thats tricky lets do it in userspace' the umount_begin |
| 1509 | * might fail to complete on the first run through as other tasks |
| 1510 | * must return, and the like. Thats for the mount program to worry |
| 1511 | * about for the moment. |
| 1512 | */ |
| 1513 | |
| 1514 | if (flags & MNT_FORCE && sb->s_op->umount_begin) { |
| 1515 | sb->s_op->umount_begin(sb); |
| 1516 | } |
| 1517 | |
| 1518 | /* |
| 1519 | * No sense to grab the lock for this test, but test itself looks |
| 1520 | * somewhat bogus. Suggestions for better replacement? |
| 1521 | * Ho-hum... In principle, we might treat that as umount + switch |
| 1522 | * to rootfs. GC would eventually take care of the old vfsmount. |
| 1523 | * Actually it makes sense, especially if rootfs would contain a |
| 1524 | * /reboot - static binary that would close all descriptors and |
| 1525 | * call reboot(9). Then init(8) could umount root and exec /reboot. |
| 1526 | */ |
| 1527 | if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { |
| 1528 | /* |
| 1529 | * Special case for "unmounting" root ... |
| 1530 | * we just try to remount it readonly. |
| 1531 | */ |
| 1532 | if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) |
| 1533 | return -EPERM; |
| 1534 | down_write(&sb->s_umount); |
| 1535 | if (!sb_rdonly(sb)) |
| 1536 | retval = do_remount_sb(sb, SB_RDONLY, NULL, 0); |
| 1537 | up_write(&sb->s_umount); |
| 1538 | return retval; |
| 1539 | } |
| 1540 | |
| 1541 | namespace_lock(); |
| 1542 | lock_mount_hash(); |
| 1543 | |
| 1544 | /* Recheck MNT_LOCKED with the locks held */ |
| 1545 | retval = -EINVAL; |
| 1546 | if (mnt->mnt.mnt_flags & MNT_LOCKED) |
| 1547 | goto out; |
| 1548 | |
| 1549 | event++; |
| 1550 | if (flags & MNT_DETACH) { |
| 1551 | if (!list_empty(&mnt->mnt_list)) |
| 1552 | umount_tree(mnt, UMOUNT_PROPAGATE); |
| 1553 | retval = 0; |
| 1554 | } else { |
| 1555 | shrink_submounts(mnt); |
| 1556 | retval = -EBUSY; |
| 1557 | if (!propagate_mount_busy(mnt, 2)) { |
| 1558 | if (!list_empty(&mnt->mnt_list)) |
| 1559 | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 1560 | retval = 0; |
| 1561 | } |
| 1562 | } |
| 1563 | out: |
| 1564 | unlock_mount_hash(); |
| 1565 | namespace_unlock(); |
| 1566 | return retval; |
| 1567 | } |
| 1568 | |
| 1569 | /* |
| 1570 | * __detach_mounts - lazily unmount all mounts on the specified dentry |
| 1571 | * |
| 1572 | * During unlink, rmdir, and d_drop it is possible to loose the path |
| 1573 | * to an existing mountpoint, and wind up leaking the mount. |
| 1574 | * detach_mounts allows lazily unmounting those mounts instead of |
| 1575 | * leaking them. |
| 1576 | * |
| 1577 | * The caller may hold dentry->d_inode->i_mutex. |
| 1578 | */ |
| 1579 | void __detach_mounts(struct dentry *dentry) |
| 1580 | { |
| 1581 | struct mountpoint *mp; |
| 1582 | struct mount *mnt; |
| 1583 | |
| 1584 | namespace_lock(); |
| 1585 | lock_mount_hash(); |
| 1586 | mp = lookup_mountpoint(dentry); |
| 1587 | if (IS_ERR_OR_NULL(mp)) |
| 1588 | goto out_unlock; |
| 1589 | |
| 1590 | event++; |
| 1591 | while (!hlist_empty(&mp->m_list)) { |
| 1592 | mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); |
| 1593 | if (mnt->mnt.mnt_flags & MNT_UMOUNT) { |
| 1594 | hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); |
| 1595 | umount_mnt(mnt); |
| 1596 | } |
| 1597 | else umount_tree(mnt, UMOUNT_CONNECTED); |
| 1598 | } |
| 1599 | put_mountpoint(mp); |
| 1600 | out_unlock: |
| 1601 | unlock_mount_hash(); |
| 1602 | namespace_unlock(); |
| 1603 | } |
| 1604 | |
| 1605 | /* |
| 1606 | * Is the caller allowed to modify his namespace? |
| 1607 | */ |
| 1608 | static inline bool may_mount(void) |
| 1609 | { |
| 1610 | return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); |
| 1611 | } |
| 1612 | |
| 1613 | static inline bool may_mandlock(void) |
| 1614 | { |
| 1615 | #ifndef CONFIG_MANDATORY_FILE_LOCKING |
| 1616 | return false; |
| 1617 | #endif |
| 1618 | return capable(CAP_SYS_ADMIN); |
| 1619 | } |
| 1620 | |
| 1621 | /* |
| 1622 | * Now umount can handle mount points as well as block devices. |
| 1623 | * This is important for filesystems which use unnamed block devices. |
| 1624 | * |
| 1625 | * We now support a flag for forced unmount like the other 'big iron' |
| 1626 | * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD |
| 1627 | */ |
| 1628 | |
| 1629 | int ksys_umount(char __user *name, int flags) |
| 1630 | { |
| 1631 | struct path path; |
| 1632 | struct mount *mnt; |
| 1633 | int retval; |
| 1634 | int lookup_flags = 0; |
| 1635 | |
| 1636 | if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) |
| 1637 | return -EINVAL; |
| 1638 | |
| 1639 | if (!may_mount()) |
| 1640 | return -EPERM; |
| 1641 | |
| 1642 | if (!(flags & UMOUNT_NOFOLLOW)) |
| 1643 | lookup_flags |= LOOKUP_FOLLOW; |
| 1644 | |
| 1645 | retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); |
| 1646 | if (retval) |
| 1647 | goto out; |
| 1648 | mnt = real_mount(path.mnt); |
| 1649 | retval = -EINVAL; |
| 1650 | if (path.dentry != path.mnt->mnt_root) |
| 1651 | goto dput_and_out; |
| 1652 | if (!check_mnt(mnt)) |
| 1653 | goto dput_and_out; |
| 1654 | if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ |
| 1655 | goto dput_and_out; |
| 1656 | retval = -EPERM; |
| 1657 | if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) |
| 1658 | goto dput_and_out; |
| 1659 | |
| 1660 | retval = do_umount(mnt, flags); |
| 1661 | dput_and_out: |
| 1662 | /* we mustn't call path_put() as that would clear mnt_expiry_mark */ |
| 1663 | dput(path.dentry); |
| 1664 | mntput_no_expire(mnt); |
| 1665 | out: |
| 1666 | return retval; |
| 1667 | } |
| 1668 | |
| 1669 | SYSCALL_DEFINE2(umount, char __user *, name, int, flags) |
| 1670 | { |
| 1671 | return ksys_umount(name, flags); |
| 1672 | } |
| 1673 | |
| 1674 | #ifdef __ARCH_WANT_SYS_OLDUMOUNT |
| 1675 | |
| 1676 | /* |
| 1677 | * The 2.0 compatible umount. No flags. |
| 1678 | */ |
| 1679 | SYSCALL_DEFINE1(oldumount, char __user *, name) |
| 1680 | { |
| 1681 | return ksys_umount(name, 0); |
| 1682 | } |
| 1683 | |
| 1684 | #endif |
| 1685 | |
| 1686 | static bool is_mnt_ns_file(struct dentry *dentry) |
| 1687 | { |
| 1688 | /* Is this a proxy for a mount namespace? */ |
| 1689 | return dentry->d_op == &ns_dentry_operations && |
| 1690 | dentry->d_fsdata == &mntns_operations; |
| 1691 | } |
| 1692 | |
| 1693 | struct mnt_namespace *to_mnt_ns(struct ns_common *ns) |
| 1694 | { |
| 1695 | return container_of(ns, struct mnt_namespace, ns); |
| 1696 | } |
| 1697 | |
| 1698 | static bool mnt_ns_loop(struct dentry *dentry) |
| 1699 | { |
| 1700 | /* Could bind mounting the mount namespace inode cause a |
| 1701 | * mount namespace loop? |
| 1702 | */ |
| 1703 | struct mnt_namespace *mnt_ns; |
| 1704 | if (!is_mnt_ns_file(dentry)) |
| 1705 | return false; |
| 1706 | |
| 1707 | mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); |
| 1708 | return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; |
| 1709 | } |
| 1710 | |
| 1711 | struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, |
| 1712 | int flag) |
| 1713 | { |
| 1714 | struct mount *res, *p, *q, *r, *parent; |
| 1715 | |
| 1716 | if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) |
| 1717 | return ERR_PTR(-EINVAL); |
| 1718 | |
| 1719 | if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) |
| 1720 | return ERR_PTR(-EINVAL); |
| 1721 | |
| 1722 | res = q = clone_mnt(mnt, dentry, flag); |
| 1723 | if (IS_ERR(q)) |
| 1724 | return q; |
| 1725 | |
| 1726 | q->mnt_mountpoint = mnt->mnt_mountpoint; |
| 1727 | |
| 1728 | p = mnt; |
| 1729 | list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { |
| 1730 | struct mount *s; |
| 1731 | if (!is_subdir(r->mnt_mountpoint, dentry)) |
| 1732 | continue; |
| 1733 | |
| 1734 | for (s = r; s; s = next_mnt(s, r)) { |
| 1735 | if (!(flag & CL_COPY_UNBINDABLE) && |
| 1736 | IS_MNT_UNBINDABLE(s)) { |
| 1737 | if (s->mnt.mnt_flags & MNT_LOCKED) { |
| 1738 | /* Both unbindable and locked. */ |
| 1739 | q = ERR_PTR(-EPERM); |
| 1740 | goto out; |
| 1741 | } else { |
| 1742 | s = skip_mnt_tree(s); |
| 1743 | continue; |
| 1744 | } |
| 1745 | } |
| 1746 | if (!(flag & CL_COPY_MNT_NS_FILE) && |
| 1747 | is_mnt_ns_file(s->mnt.mnt_root)) { |
| 1748 | s = skip_mnt_tree(s); |
| 1749 | continue; |
| 1750 | } |
| 1751 | while (p != s->mnt_parent) { |
| 1752 | p = p->mnt_parent; |
| 1753 | q = q->mnt_parent; |
| 1754 | } |
| 1755 | p = s; |
| 1756 | parent = q; |
| 1757 | q = clone_mnt(p, p->mnt.mnt_root, flag); |
| 1758 | if (IS_ERR(q)) |
| 1759 | goto out; |
| 1760 | lock_mount_hash(); |
| 1761 | list_add_tail(&q->mnt_list, &res->mnt_list); |
| 1762 | attach_mnt(q, parent, p->mnt_mp); |
| 1763 | unlock_mount_hash(); |
| 1764 | } |
| 1765 | } |
| 1766 | return res; |
| 1767 | out: |
| 1768 | if (res) { |
| 1769 | lock_mount_hash(); |
| 1770 | umount_tree(res, UMOUNT_SYNC); |
| 1771 | unlock_mount_hash(); |
| 1772 | } |
| 1773 | return q; |
| 1774 | } |
| 1775 | |
| 1776 | /* Caller should check returned pointer for errors */ |
| 1777 | |
| 1778 | struct vfsmount *collect_mounts(const struct path *path) |
| 1779 | { |
| 1780 | struct mount *tree; |
| 1781 | namespace_lock(); |
| 1782 | if (!check_mnt(real_mount(path->mnt))) |
| 1783 | tree = ERR_PTR(-EINVAL); |
| 1784 | else |
| 1785 | tree = copy_tree(real_mount(path->mnt), path->dentry, |
| 1786 | CL_COPY_ALL | CL_PRIVATE); |
| 1787 | namespace_unlock(); |
| 1788 | if (IS_ERR(tree)) |
| 1789 | return ERR_CAST(tree); |
| 1790 | return &tree->mnt; |
| 1791 | } |
| 1792 | |
| 1793 | void drop_collected_mounts(struct vfsmount *mnt) |
| 1794 | { |
| 1795 | namespace_lock(); |
| 1796 | lock_mount_hash(); |
| 1797 | umount_tree(real_mount(mnt), 0); |
| 1798 | unlock_mount_hash(); |
| 1799 | namespace_unlock(); |
| 1800 | } |
| 1801 | |
| 1802 | /** |
| 1803 | * clone_private_mount - create a private clone of a path |
| 1804 | * |
| 1805 | * This creates a new vfsmount, which will be the clone of @path. The new will |
| 1806 | * not be attached anywhere in the namespace and will be private (i.e. changes |
| 1807 | * to the originating mount won't be propagated into this). |
| 1808 | * |
| 1809 | * Release with mntput(). |
| 1810 | */ |
| 1811 | struct vfsmount *clone_private_mount(const struct path *path) |
| 1812 | { |
| 1813 | struct mount *old_mnt = real_mount(path->mnt); |
| 1814 | struct mount *new_mnt; |
| 1815 | |
| 1816 | if (IS_MNT_UNBINDABLE(old_mnt)) |
| 1817 | return ERR_PTR(-EINVAL); |
| 1818 | |
| 1819 | new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); |
| 1820 | if (IS_ERR(new_mnt)) |
| 1821 | return ERR_CAST(new_mnt); |
| 1822 | |
| 1823 | return &new_mnt->mnt; |
| 1824 | } |
| 1825 | EXPORT_SYMBOL_GPL(clone_private_mount); |
| 1826 | |
| 1827 | int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, |
| 1828 | struct vfsmount *root) |
| 1829 | { |
| 1830 | struct mount *mnt; |
| 1831 | int res = f(root, arg); |
| 1832 | if (res) |
| 1833 | return res; |
| 1834 | list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { |
| 1835 | res = f(&mnt->mnt, arg); |
| 1836 | if (res) |
| 1837 | return res; |
| 1838 | } |
| 1839 | return 0; |
| 1840 | } |
| 1841 | |
| 1842 | static void cleanup_group_ids(struct mount *mnt, struct mount *end) |
| 1843 | { |
| 1844 | struct mount *p; |
| 1845 | |
| 1846 | for (p = mnt; p != end; p = next_mnt(p, mnt)) { |
| 1847 | if (p->mnt_group_id && !IS_MNT_SHARED(p)) |
| 1848 | mnt_release_group_id(p); |
| 1849 | } |
| 1850 | } |
| 1851 | |
| 1852 | static int invent_group_ids(struct mount *mnt, bool recurse) |
| 1853 | { |
| 1854 | struct mount *p; |
| 1855 | |
| 1856 | for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { |
| 1857 | if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { |
| 1858 | int err = mnt_alloc_group_id(p); |
| 1859 | if (err) { |
| 1860 | cleanup_group_ids(mnt, p); |
| 1861 | return err; |
| 1862 | } |
| 1863 | } |
| 1864 | } |
| 1865 | |
| 1866 | return 0; |
| 1867 | } |
| 1868 | |
| 1869 | int count_mounts(struct mnt_namespace *ns, struct mount *mnt) |
| 1870 | { |
| 1871 | unsigned int max = READ_ONCE(sysctl_mount_max); |
| 1872 | unsigned int mounts = 0, old, pending, sum; |
| 1873 | struct mount *p; |
| 1874 | |
| 1875 | for (p = mnt; p; p = next_mnt(p, mnt)) |
| 1876 | mounts++; |
| 1877 | |
| 1878 | old = ns->mounts; |
| 1879 | pending = ns->pending_mounts; |
| 1880 | sum = old + pending; |
| 1881 | if ((old > sum) || |
| 1882 | (pending > sum) || |
| 1883 | (max < sum) || |
| 1884 | (mounts > (max - sum))) |
| 1885 | return -ENOSPC; |
| 1886 | |
| 1887 | ns->pending_mounts = pending + mounts; |
| 1888 | return 0; |
| 1889 | } |
| 1890 | |
| 1891 | /* |
| 1892 | * @source_mnt : mount tree to be attached |
| 1893 | * @nd : place the mount tree @source_mnt is attached |
| 1894 | * @parent_nd : if non-null, detach the source_mnt from its parent and |
| 1895 | * store the parent mount and mountpoint dentry. |
| 1896 | * (done when source_mnt is moved) |
| 1897 | * |
| 1898 | * NOTE: in the table below explains the semantics when a source mount |
| 1899 | * of a given type is attached to a destination mount of a given type. |
| 1900 | * --------------------------------------------------------------------------- |
| 1901 | * | BIND MOUNT OPERATION | |
| 1902 | * |************************************************************************** |
| 1903 | * | source-->| shared | private | slave | unbindable | |
| 1904 | * | dest | | | | | |
| 1905 | * | | | | | | | |
| 1906 | * | v | | | | | |
| 1907 | * |************************************************************************** |
| 1908 | * | shared | shared (++) | shared (+) | shared(+++)| invalid | |
| 1909 | * | | | | | | |
| 1910 | * |non-shared| shared (+) | private | slave (*) | invalid | |
| 1911 | * *************************************************************************** |
| 1912 | * A bind operation clones the source mount and mounts the clone on the |
| 1913 | * destination mount. |
| 1914 | * |
| 1915 | * (++) the cloned mount is propagated to all the mounts in the propagation |
| 1916 | * tree of the destination mount and the cloned mount is added to |
| 1917 | * the peer group of the source mount. |
| 1918 | * (+) the cloned mount is created under the destination mount and is marked |
| 1919 | * as shared. The cloned mount is added to the peer group of the source |
| 1920 | * mount. |
| 1921 | * (+++) the mount is propagated to all the mounts in the propagation tree |
| 1922 | * of the destination mount and the cloned mount is made slave |
| 1923 | * of the same master as that of the source mount. The cloned mount |
| 1924 | * is marked as 'shared and slave'. |
| 1925 | * (*) the cloned mount is made a slave of the same master as that of the |
| 1926 | * source mount. |
| 1927 | * |
| 1928 | * --------------------------------------------------------------------------- |
| 1929 | * | MOVE MOUNT OPERATION | |
| 1930 | * |************************************************************************** |
| 1931 | * | source-->| shared | private | slave | unbindable | |
| 1932 | * | dest | | | | | |
| 1933 | * | | | | | | | |
| 1934 | * | v | | | | | |
| 1935 | * |************************************************************************** |
| 1936 | * | shared | shared (+) | shared (+) | shared(+++) | invalid | |
| 1937 | * | | | | | | |
| 1938 | * |non-shared| shared (+*) | private | slave (*) | unbindable | |
| 1939 | * *************************************************************************** |
| 1940 | * |
| 1941 | * (+) the mount is moved to the destination. And is then propagated to |
| 1942 | * all the mounts in the propagation tree of the destination mount. |
| 1943 | * (+*) the mount is moved to the destination. |
| 1944 | * (+++) the mount is moved to the destination and is then propagated to |
| 1945 | * all the mounts belonging to the destination mount's propagation tree. |
| 1946 | * the mount is marked as 'shared and slave'. |
| 1947 | * (*) the mount continues to be a slave at the new location. |
| 1948 | * |
| 1949 | * if the source mount is a tree, the operations explained above is |
| 1950 | * applied to each mount in the tree. |
| 1951 | * Must be called without spinlocks held, since this function can sleep |
| 1952 | * in allocations. |
| 1953 | */ |
| 1954 | static int attach_recursive_mnt(struct mount *source_mnt, |
| 1955 | struct mount *dest_mnt, |
| 1956 | struct mountpoint *dest_mp, |
| 1957 | struct path *parent_path) |
| 1958 | { |
| 1959 | HLIST_HEAD(tree_list); |
| 1960 | struct mnt_namespace *ns = dest_mnt->mnt_ns; |
| 1961 | struct mountpoint *smp; |
| 1962 | struct mount *child, *p; |
| 1963 | struct hlist_node *n; |
| 1964 | int err; |
| 1965 | |
| 1966 | /* Preallocate a mountpoint in case the new mounts need |
| 1967 | * to be tucked under other mounts. |
| 1968 | */ |
| 1969 | smp = get_mountpoint(source_mnt->mnt.mnt_root); |
| 1970 | if (IS_ERR(smp)) |
| 1971 | return PTR_ERR(smp); |
| 1972 | |
| 1973 | /* Is there space to add these mounts to the mount namespace? */ |
| 1974 | if (!parent_path) { |
| 1975 | err = count_mounts(ns, source_mnt); |
| 1976 | if (err) |
| 1977 | goto out; |
| 1978 | } |
| 1979 | |
| 1980 | if (IS_MNT_SHARED(dest_mnt)) { |
| 1981 | err = invent_group_ids(source_mnt, true); |
| 1982 | if (err) |
| 1983 | goto out; |
| 1984 | err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); |
| 1985 | lock_mount_hash(); |
| 1986 | if (err) |
| 1987 | goto out_cleanup_ids; |
| 1988 | for (p = source_mnt; p; p = next_mnt(p, source_mnt)) |
| 1989 | set_mnt_shared(p); |
| 1990 | } else { |
| 1991 | lock_mount_hash(); |
| 1992 | } |
| 1993 | if (parent_path) { |
| 1994 | detach_mnt(source_mnt, parent_path); |
| 1995 | attach_mnt(source_mnt, dest_mnt, dest_mp); |
| 1996 | touch_mnt_namespace(source_mnt->mnt_ns); |
| 1997 | } else { |
| 1998 | mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); |
| 1999 | commit_tree(source_mnt); |
| 2000 | } |
| 2001 | |
| 2002 | hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { |
| 2003 | struct mount *q; |
| 2004 | hlist_del_init(&child->mnt_hash); |
| 2005 | q = __lookup_mnt(&child->mnt_parent->mnt, |
| 2006 | child->mnt_mountpoint); |
| 2007 | if (q) |
| 2008 | mnt_change_mountpoint(child, smp, q); |
| 2009 | commit_tree(child); |
| 2010 | } |
| 2011 | put_mountpoint(smp); |
| 2012 | unlock_mount_hash(); |
| 2013 | |
| 2014 | return 0; |
| 2015 | |
| 2016 | out_cleanup_ids: |
| 2017 | while (!hlist_empty(&tree_list)) { |
| 2018 | child = hlist_entry(tree_list.first, struct mount, mnt_hash); |
| 2019 | child->mnt_parent->mnt_ns->pending_mounts = 0; |
| 2020 | umount_tree(child, UMOUNT_SYNC); |
| 2021 | } |
| 2022 | unlock_mount_hash(); |
| 2023 | cleanup_group_ids(source_mnt, NULL); |
| 2024 | out: |
| 2025 | ns->pending_mounts = 0; |
| 2026 | |
| 2027 | read_seqlock_excl(&mount_lock); |
| 2028 | put_mountpoint(smp); |
| 2029 | read_sequnlock_excl(&mount_lock); |
| 2030 | |
| 2031 | return err; |
| 2032 | } |
| 2033 | |
| 2034 | static struct mountpoint *lock_mount(struct path *path) |
| 2035 | { |
| 2036 | struct vfsmount *mnt; |
| 2037 | struct dentry *dentry = path->dentry; |
| 2038 | retry: |
| 2039 | inode_lock(dentry->d_inode); |
| 2040 | if (unlikely(cant_mount(dentry))) { |
| 2041 | inode_unlock(dentry->d_inode); |
| 2042 | return ERR_PTR(-ENOENT); |
| 2043 | } |
| 2044 | namespace_lock(); |
| 2045 | mnt = lookup_mnt(path); |
| 2046 | if (likely(!mnt)) { |
| 2047 | struct mountpoint *mp = get_mountpoint(dentry); |
| 2048 | if (IS_ERR(mp)) { |
| 2049 | namespace_unlock(); |
| 2050 | inode_unlock(dentry->d_inode); |
| 2051 | return mp; |
| 2052 | } |
| 2053 | return mp; |
| 2054 | } |
| 2055 | namespace_unlock(); |
| 2056 | inode_unlock(path->dentry->d_inode); |
| 2057 | path_put(path); |
| 2058 | path->mnt = mnt; |
| 2059 | dentry = path->dentry = dget(mnt->mnt_root); |
| 2060 | goto retry; |
| 2061 | } |
| 2062 | |
| 2063 | static void unlock_mount(struct mountpoint *where) |
| 2064 | { |
| 2065 | struct dentry *dentry = where->m_dentry; |
| 2066 | |
| 2067 | read_seqlock_excl(&mount_lock); |
| 2068 | put_mountpoint(where); |
| 2069 | read_sequnlock_excl(&mount_lock); |
| 2070 | |
| 2071 | namespace_unlock(); |
| 2072 | inode_unlock(dentry->d_inode); |
| 2073 | } |
| 2074 | |
| 2075 | static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) |
| 2076 | { |
| 2077 | if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) |
| 2078 | return -EINVAL; |
| 2079 | |
| 2080 | if (d_is_dir(mp->m_dentry) != |
| 2081 | d_is_dir(mnt->mnt.mnt_root)) |
| 2082 | return -ENOTDIR; |
| 2083 | |
| 2084 | return attach_recursive_mnt(mnt, p, mp, NULL); |
| 2085 | } |
| 2086 | |
| 2087 | /* |
| 2088 | * Sanity check the flags to change_mnt_propagation. |
| 2089 | */ |
| 2090 | |
| 2091 | static int flags_to_propagation_type(int ms_flags) |
| 2092 | { |
| 2093 | int type = ms_flags & ~(MS_REC | MS_SILENT); |
| 2094 | |
| 2095 | /* Fail if any non-propagation flags are set */ |
| 2096 | if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 2097 | return 0; |
| 2098 | /* Only one propagation flag should be set */ |
| 2099 | if (!is_power_of_2(type)) |
| 2100 | return 0; |
| 2101 | return type; |
| 2102 | } |
| 2103 | |
| 2104 | /* |
| 2105 | * recursively change the type of the mountpoint. |
| 2106 | */ |
| 2107 | static int do_change_type(struct path *path, int ms_flags) |
| 2108 | { |
| 2109 | struct mount *m; |
| 2110 | struct mount *mnt = real_mount(path->mnt); |
| 2111 | int recurse = ms_flags & MS_REC; |
| 2112 | int type; |
| 2113 | int err = 0; |
| 2114 | |
| 2115 | if (path->dentry != path->mnt->mnt_root) |
| 2116 | return -EINVAL; |
| 2117 | |
| 2118 | type = flags_to_propagation_type(ms_flags); |
| 2119 | if (!type) |
| 2120 | return -EINVAL; |
| 2121 | |
| 2122 | namespace_lock(); |
| 2123 | if (type == MS_SHARED) { |
| 2124 | err = invent_group_ids(mnt, recurse); |
| 2125 | if (err) |
| 2126 | goto out_unlock; |
| 2127 | } |
| 2128 | |
| 2129 | lock_mount_hash(); |
| 2130 | for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) |
| 2131 | change_mnt_propagation(m, type); |
| 2132 | unlock_mount_hash(); |
| 2133 | |
| 2134 | out_unlock: |
| 2135 | namespace_unlock(); |
| 2136 | return err; |
| 2137 | } |
| 2138 | |
| 2139 | static bool has_locked_children(struct mount *mnt, struct dentry *dentry) |
| 2140 | { |
| 2141 | struct mount *child; |
| 2142 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 2143 | if (!is_subdir(child->mnt_mountpoint, dentry)) |
| 2144 | continue; |
| 2145 | |
| 2146 | if (child->mnt.mnt_flags & MNT_LOCKED) |
| 2147 | return true; |
| 2148 | } |
| 2149 | return false; |
| 2150 | } |
| 2151 | |
| 2152 | /* |
| 2153 | * do loopback mount. |
| 2154 | */ |
| 2155 | static int do_loopback(struct path *path, const char *old_name, |
| 2156 | int recurse) |
| 2157 | { |
| 2158 | struct path old_path; |
| 2159 | struct mount *mnt = NULL, *old, *parent; |
| 2160 | struct mountpoint *mp; |
| 2161 | int err; |
| 2162 | if (!old_name || !*old_name) |
| 2163 | return -EINVAL; |
| 2164 | err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); |
| 2165 | if (err) |
| 2166 | return err; |
| 2167 | |
| 2168 | err = -EINVAL; |
| 2169 | if (mnt_ns_loop(old_path.dentry)) |
| 2170 | goto out; |
| 2171 | |
| 2172 | mp = lock_mount(path); |
| 2173 | err = PTR_ERR(mp); |
| 2174 | if (IS_ERR(mp)) |
| 2175 | goto out; |
| 2176 | |
| 2177 | old = real_mount(old_path.mnt); |
| 2178 | parent = real_mount(path->mnt); |
| 2179 | |
| 2180 | err = -EINVAL; |
| 2181 | if (IS_MNT_UNBINDABLE(old)) |
| 2182 | goto out2; |
| 2183 | |
| 2184 | if (!check_mnt(parent)) |
| 2185 | goto out2; |
| 2186 | |
| 2187 | if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) |
| 2188 | goto out2; |
| 2189 | |
| 2190 | if (!recurse && has_locked_children(old, old_path.dentry)) |
| 2191 | goto out2; |
| 2192 | |
| 2193 | if (recurse) |
| 2194 | mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); |
| 2195 | else |
| 2196 | mnt = clone_mnt(old, old_path.dentry, 0); |
| 2197 | |
| 2198 | if (IS_ERR(mnt)) { |
| 2199 | err = PTR_ERR(mnt); |
| 2200 | goto out2; |
| 2201 | } |
| 2202 | |
| 2203 | mnt->mnt.mnt_flags &= ~MNT_LOCKED; |
| 2204 | |
| 2205 | err = graft_tree(mnt, parent, mp); |
| 2206 | if (err) { |
| 2207 | lock_mount_hash(); |
| 2208 | umount_tree(mnt, UMOUNT_SYNC); |
| 2209 | unlock_mount_hash(); |
| 2210 | } |
| 2211 | out2: |
| 2212 | unlock_mount(mp); |
| 2213 | out: |
| 2214 | path_put(&old_path); |
| 2215 | return err; |
| 2216 | } |
| 2217 | |
| 2218 | static int change_mount_flags(struct vfsmount *mnt, int ms_flags) |
| 2219 | { |
| 2220 | int error = 0; |
| 2221 | int readonly_request = 0; |
| 2222 | |
| 2223 | if (ms_flags & MS_RDONLY) |
| 2224 | readonly_request = 1; |
| 2225 | if (readonly_request == __mnt_is_readonly(mnt)) |
| 2226 | return 0; |
| 2227 | |
| 2228 | if (readonly_request) |
| 2229 | error = mnt_make_readonly(real_mount(mnt)); |
| 2230 | else |
| 2231 | __mnt_unmake_readonly(real_mount(mnt)); |
| 2232 | return error; |
| 2233 | } |
| 2234 | |
| 2235 | /* |
| 2236 | * change filesystem flags. dir should be a physical root of filesystem. |
| 2237 | * If you've mounted a non-root directory somewhere and want to do remount |
| 2238 | * on it - tough luck. |
| 2239 | */ |
| 2240 | static int do_remount(struct path *path, int ms_flags, int sb_flags, |
| 2241 | int mnt_flags, void *data) |
| 2242 | { |
| 2243 | int err; |
| 2244 | struct super_block *sb = path->mnt->mnt_sb; |
| 2245 | struct mount *mnt = real_mount(path->mnt); |
| 2246 | |
| 2247 | if (!check_mnt(mnt)) |
| 2248 | return -EINVAL; |
| 2249 | |
| 2250 | if (path->dentry != path->mnt->mnt_root) |
| 2251 | return -EINVAL; |
| 2252 | |
| 2253 | /* Don't allow changing of locked mnt flags. |
| 2254 | * |
| 2255 | * No locks need to be held here while testing the various |
| 2256 | * MNT_LOCK flags because those flags can never be cleared |
| 2257 | * once they are set. |
| 2258 | */ |
| 2259 | if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && |
| 2260 | !(mnt_flags & MNT_READONLY)) { |
| 2261 | return -EPERM; |
| 2262 | } |
| 2263 | if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && |
| 2264 | !(mnt_flags & MNT_NODEV)) { |
| 2265 | return -EPERM; |
| 2266 | } |
| 2267 | if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && |
| 2268 | !(mnt_flags & MNT_NOSUID)) { |
| 2269 | return -EPERM; |
| 2270 | } |
| 2271 | if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && |
| 2272 | !(mnt_flags & MNT_NOEXEC)) { |
| 2273 | return -EPERM; |
| 2274 | } |
| 2275 | if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && |
| 2276 | ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { |
| 2277 | return -EPERM; |
| 2278 | } |
| 2279 | |
| 2280 | err = security_sb_remount(sb, data); |
| 2281 | if (err) |
| 2282 | return err; |
| 2283 | |
| 2284 | down_write(&sb->s_umount); |
| 2285 | if (ms_flags & MS_BIND) |
| 2286 | err = change_mount_flags(path->mnt, ms_flags); |
| 2287 | else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) |
| 2288 | err = -EPERM; |
| 2289 | else |
| 2290 | err = do_remount_sb(sb, sb_flags, data, 0); |
| 2291 | if (!err) { |
| 2292 | lock_mount_hash(); |
| 2293 | mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; |
| 2294 | mnt->mnt.mnt_flags = mnt_flags; |
| 2295 | touch_mnt_namespace(mnt->mnt_ns); |
| 2296 | unlock_mount_hash(); |
| 2297 | } |
| 2298 | up_write(&sb->s_umount); |
| 2299 | return err; |
| 2300 | } |
| 2301 | |
| 2302 | static inline int tree_contains_unbindable(struct mount *mnt) |
| 2303 | { |
| 2304 | struct mount *p; |
| 2305 | for (p = mnt; p; p = next_mnt(p, mnt)) { |
| 2306 | if (IS_MNT_UNBINDABLE(p)) |
| 2307 | return 1; |
| 2308 | } |
| 2309 | return 0; |
| 2310 | } |
| 2311 | |
| 2312 | static int do_move_mount(struct path *path, const char *old_name) |
| 2313 | { |
| 2314 | struct path old_path, parent_path; |
| 2315 | struct mount *p; |
| 2316 | struct mount *old; |
| 2317 | struct mountpoint *mp; |
| 2318 | int err; |
| 2319 | if (!old_name || !*old_name) |
| 2320 | return -EINVAL; |
| 2321 | err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); |
| 2322 | if (err) |
| 2323 | return err; |
| 2324 | |
| 2325 | mp = lock_mount(path); |
| 2326 | err = PTR_ERR(mp); |
| 2327 | if (IS_ERR(mp)) |
| 2328 | goto out; |
| 2329 | |
| 2330 | old = real_mount(old_path.mnt); |
| 2331 | p = real_mount(path->mnt); |
| 2332 | |
| 2333 | err = -EINVAL; |
| 2334 | if (!check_mnt(p) || !check_mnt(old)) |
| 2335 | goto out1; |
| 2336 | |
| 2337 | if (old->mnt.mnt_flags & MNT_LOCKED) |
| 2338 | goto out1; |
| 2339 | |
| 2340 | err = -EINVAL; |
| 2341 | if (old_path.dentry != old_path.mnt->mnt_root) |
| 2342 | goto out1; |
| 2343 | |
| 2344 | if (!mnt_has_parent(old)) |
| 2345 | goto out1; |
| 2346 | |
| 2347 | if (d_is_dir(path->dentry) != |
| 2348 | d_is_dir(old_path.dentry)) |
| 2349 | goto out1; |
| 2350 | /* |
| 2351 | * Don't move a mount residing in a shared parent. |
| 2352 | */ |
| 2353 | if (IS_MNT_SHARED(old->mnt_parent)) |
| 2354 | goto out1; |
| 2355 | /* |
| 2356 | * Don't move a mount tree containing unbindable mounts to a destination |
| 2357 | * mount which is shared. |
| 2358 | */ |
| 2359 | if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) |
| 2360 | goto out1; |
| 2361 | err = -ELOOP; |
| 2362 | for (; mnt_has_parent(p); p = p->mnt_parent) |
| 2363 | if (p == old) |
| 2364 | goto out1; |
| 2365 | |
| 2366 | err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); |
| 2367 | if (err) |
| 2368 | goto out1; |
| 2369 | |
| 2370 | /* if the mount is moved, it should no longer be expire |
| 2371 | * automatically */ |
| 2372 | list_del_init(&old->mnt_expire); |
| 2373 | out1: |
| 2374 | unlock_mount(mp); |
| 2375 | out: |
| 2376 | if (!err) |
| 2377 | path_put(&parent_path); |
| 2378 | path_put(&old_path); |
| 2379 | return err; |
| 2380 | } |
| 2381 | |
| 2382 | static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) |
| 2383 | { |
| 2384 | int err; |
| 2385 | const char *subtype = strchr(fstype, '.'); |
| 2386 | if (subtype) { |
| 2387 | subtype++; |
| 2388 | err = -EINVAL; |
| 2389 | if (!subtype[0]) |
| 2390 | goto err; |
| 2391 | } else |
| 2392 | subtype = ""; |
| 2393 | |
| 2394 | mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); |
| 2395 | err = -ENOMEM; |
| 2396 | if (!mnt->mnt_sb->s_subtype) |
| 2397 | goto err; |
| 2398 | return mnt; |
| 2399 | |
| 2400 | err: |
| 2401 | mntput(mnt); |
| 2402 | return ERR_PTR(err); |
| 2403 | } |
| 2404 | |
| 2405 | /* |
| 2406 | * add a mount into a namespace's mount tree |
| 2407 | */ |
| 2408 | static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) |
| 2409 | { |
| 2410 | struct mountpoint *mp; |
| 2411 | struct mount *parent; |
| 2412 | int err; |
| 2413 | |
| 2414 | mnt_flags &= ~MNT_INTERNAL_FLAGS; |
| 2415 | |
| 2416 | mp = lock_mount(path); |
| 2417 | if (IS_ERR(mp)) |
| 2418 | return PTR_ERR(mp); |
| 2419 | |
| 2420 | parent = real_mount(path->mnt); |
| 2421 | err = -EINVAL; |
| 2422 | if (unlikely(!check_mnt(parent))) { |
| 2423 | /* that's acceptable only for automounts done in private ns */ |
| 2424 | if (!(mnt_flags & MNT_SHRINKABLE)) |
| 2425 | goto unlock; |
| 2426 | /* ... and for those we'd better have mountpoint still alive */ |
| 2427 | if (!parent->mnt_ns) |
| 2428 | goto unlock; |
| 2429 | } |
| 2430 | |
| 2431 | /* Refuse the same filesystem on the same mount point */ |
| 2432 | err = -EBUSY; |
| 2433 | if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && |
| 2434 | path->mnt->mnt_root == path->dentry) |
| 2435 | goto unlock; |
| 2436 | |
| 2437 | err = -EINVAL; |
| 2438 | if (d_is_symlink(newmnt->mnt.mnt_root)) |
| 2439 | goto unlock; |
| 2440 | |
| 2441 | newmnt->mnt.mnt_flags = mnt_flags; |
| 2442 | err = graft_tree(newmnt, parent, mp); |
| 2443 | |
| 2444 | unlock: |
| 2445 | unlock_mount(mp); |
| 2446 | return err; |
| 2447 | } |
| 2448 | |
| 2449 | static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags); |
| 2450 | |
| 2451 | /* |
| 2452 | * create a new mount for userspace and request it to be added into the |
| 2453 | * namespace's tree |
| 2454 | */ |
| 2455 | static int do_new_mount(struct path *path, const char *fstype, int sb_flags, |
| 2456 | int mnt_flags, const char *name, void *data) |
| 2457 | { |
| 2458 | struct file_system_type *type; |
| 2459 | struct vfsmount *mnt; |
| 2460 | int err; |
| 2461 | |
| 2462 | if (!fstype) |
| 2463 | return -EINVAL; |
| 2464 | |
| 2465 | type = get_fs_type(fstype); |
| 2466 | if (!type) |
| 2467 | return -ENODEV; |
| 2468 | |
| 2469 | mnt = vfs_kern_mount(type, sb_flags, name, data); |
| 2470 | if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && |
| 2471 | !mnt->mnt_sb->s_subtype) |
| 2472 | mnt = fs_set_subtype(mnt, fstype); |
| 2473 | |
| 2474 | put_filesystem(type); |
| 2475 | if (IS_ERR(mnt)) |
| 2476 | return PTR_ERR(mnt); |
| 2477 | |
| 2478 | if (mount_too_revealing(mnt, &mnt_flags)) { |
| 2479 | mntput(mnt); |
| 2480 | return -EPERM; |
| 2481 | } |
| 2482 | |
| 2483 | err = do_add_mount(real_mount(mnt), path, mnt_flags); |
| 2484 | if (err) |
| 2485 | mntput(mnt); |
| 2486 | return err; |
| 2487 | } |
| 2488 | |
| 2489 | int finish_automount(struct vfsmount *m, struct path *path) |
| 2490 | { |
| 2491 | struct mount *mnt = real_mount(m); |
| 2492 | int err; |
| 2493 | /* The new mount record should have at least 2 refs to prevent it being |
| 2494 | * expired before we get a chance to add it |
| 2495 | */ |
| 2496 | BUG_ON(mnt_get_count(mnt) < 2); |
| 2497 | |
| 2498 | if (m->mnt_sb == path->mnt->mnt_sb && |
| 2499 | m->mnt_root == path->dentry) { |
| 2500 | err = -ELOOP; |
| 2501 | goto fail; |
| 2502 | } |
| 2503 | |
| 2504 | err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); |
| 2505 | if (!err) |
| 2506 | return 0; |
| 2507 | fail: |
| 2508 | /* remove m from any expiration list it may be on */ |
| 2509 | if (!list_empty(&mnt->mnt_expire)) { |
| 2510 | namespace_lock(); |
| 2511 | list_del_init(&mnt->mnt_expire); |
| 2512 | namespace_unlock(); |
| 2513 | } |
| 2514 | mntput(m); |
| 2515 | mntput(m); |
| 2516 | return err; |
| 2517 | } |
| 2518 | |
| 2519 | /** |
| 2520 | * mnt_set_expiry - Put a mount on an expiration list |
| 2521 | * @mnt: The mount to list. |
| 2522 | * @expiry_list: The list to add the mount to. |
| 2523 | */ |
| 2524 | void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) |
| 2525 | { |
| 2526 | namespace_lock(); |
| 2527 | |
| 2528 | list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); |
| 2529 | |
| 2530 | namespace_unlock(); |
| 2531 | } |
| 2532 | EXPORT_SYMBOL(mnt_set_expiry); |
| 2533 | |
| 2534 | /* |
| 2535 | * process a list of expirable mountpoints with the intent of discarding any |
| 2536 | * mountpoints that aren't in use and haven't been touched since last we came |
| 2537 | * here |
| 2538 | */ |
| 2539 | void mark_mounts_for_expiry(struct list_head *mounts) |
| 2540 | { |
| 2541 | struct mount *mnt, *next; |
| 2542 | LIST_HEAD(graveyard); |
| 2543 | |
| 2544 | if (list_empty(mounts)) |
| 2545 | return; |
| 2546 | |
| 2547 | namespace_lock(); |
| 2548 | lock_mount_hash(); |
| 2549 | |
| 2550 | /* extract from the expiration list every vfsmount that matches the |
| 2551 | * following criteria: |
| 2552 | * - only referenced by its parent vfsmount |
| 2553 | * - still marked for expiry (marked on the last call here; marks are |
| 2554 | * cleared by mntput()) |
| 2555 | */ |
| 2556 | list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { |
| 2557 | if (!xchg(&mnt->mnt_expiry_mark, 1) || |
| 2558 | propagate_mount_busy(mnt, 1)) |
| 2559 | continue; |
| 2560 | list_move(&mnt->mnt_expire, &graveyard); |
| 2561 | } |
| 2562 | while (!list_empty(&graveyard)) { |
| 2563 | mnt = list_first_entry(&graveyard, struct mount, mnt_expire); |
| 2564 | touch_mnt_namespace(mnt->mnt_ns); |
| 2565 | umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 2566 | } |
| 2567 | unlock_mount_hash(); |
| 2568 | namespace_unlock(); |
| 2569 | } |
| 2570 | |
| 2571 | EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); |
| 2572 | |
| 2573 | /* |
| 2574 | * Ripoff of 'select_parent()' |
| 2575 | * |
| 2576 | * search the list of submounts for a given mountpoint, and move any |
| 2577 | * shrinkable submounts to the 'graveyard' list. |
| 2578 | */ |
| 2579 | static int select_submounts(struct mount *parent, struct list_head *graveyard) |
| 2580 | { |
| 2581 | struct mount *this_parent = parent; |
| 2582 | struct list_head *next; |
| 2583 | int found = 0; |
| 2584 | |
| 2585 | repeat: |
| 2586 | next = this_parent->mnt_mounts.next; |
| 2587 | resume: |
| 2588 | while (next != &this_parent->mnt_mounts) { |
| 2589 | struct list_head *tmp = next; |
| 2590 | struct mount *mnt = list_entry(tmp, struct mount, mnt_child); |
| 2591 | |
| 2592 | next = tmp->next; |
| 2593 | if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) |
| 2594 | continue; |
| 2595 | /* |
| 2596 | * Descend a level if the d_mounts list is non-empty. |
| 2597 | */ |
| 2598 | if (!list_empty(&mnt->mnt_mounts)) { |
| 2599 | this_parent = mnt; |
| 2600 | goto repeat; |
| 2601 | } |
| 2602 | |
| 2603 | if (!propagate_mount_busy(mnt, 1)) { |
| 2604 | list_move_tail(&mnt->mnt_expire, graveyard); |
| 2605 | found++; |
| 2606 | } |
| 2607 | } |
| 2608 | /* |
| 2609 | * All done at this level ... ascend and resume the search |
| 2610 | */ |
| 2611 | if (this_parent != parent) { |
| 2612 | next = this_parent->mnt_child.next; |
| 2613 | this_parent = this_parent->mnt_parent; |
| 2614 | goto resume; |
| 2615 | } |
| 2616 | return found; |
| 2617 | } |
| 2618 | |
| 2619 | /* |
| 2620 | * process a list of expirable mountpoints with the intent of discarding any |
| 2621 | * submounts of a specific parent mountpoint |
| 2622 | * |
| 2623 | * mount_lock must be held for write |
| 2624 | */ |
| 2625 | static void shrink_submounts(struct mount *mnt) |
| 2626 | { |
| 2627 | LIST_HEAD(graveyard); |
| 2628 | struct mount *m; |
| 2629 | |
| 2630 | /* extract submounts of 'mountpoint' from the expiration list */ |
| 2631 | while (select_submounts(mnt, &graveyard)) { |
| 2632 | while (!list_empty(&graveyard)) { |
| 2633 | m = list_first_entry(&graveyard, struct mount, |
| 2634 | mnt_expire); |
| 2635 | touch_mnt_namespace(m->mnt_ns); |
| 2636 | umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); |
| 2637 | } |
| 2638 | } |
| 2639 | } |
| 2640 | |
| 2641 | /* |
| 2642 | * Some copy_from_user() implementations do not return the exact number of |
| 2643 | * bytes remaining to copy on a fault. But copy_mount_options() requires that. |
| 2644 | * Note that this function differs from copy_from_user() in that it will oops |
| 2645 | * on bad values of `to', rather than returning a short copy. |
| 2646 | */ |
| 2647 | static long exact_copy_from_user(void *to, const void __user * from, |
| 2648 | unsigned long n) |
| 2649 | { |
| 2650 | char *t = to; |
| 2651 | const char __user *f = from; |
| 2652 | char c; |
| 2653 | |
| 2654 | if (!access_ok(VERIFY_READ, from, n)) |
| 2655 | return n; |
| 2656 | |
| 2657 | while (n) { |
| 2658 | if (__get_user(c, f)) { |
| 2659 | memset(t, 0, n); |
| 2660 | break; |
| 2661 | } |
| 2662 | *t++ = c; |
| 2663 | f++; |
| 2664 | n--; |
| 2665 | } |
| 2666 | return n; |
| 2667 | } |
| 2668 | |
| 2669 | void *copy_mount_options(const void __user * data) |
| 2670 | { |
| 2671 | int i; |
| 2672 | unsigned long size; |
| 2673 | char *copy; |
| 2674 | |
| 2675 | if (!data) |
| 2676 | return NULL; |
| 2677 | |
| 2678 | copy = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| 2679 | if (!copy) |
| 2680 | return ERR_PTR(-ENOMEM); |
| 2681 | |
| 2682 | /* We only care that *some* data at the address the user |
| 2683 | * gave us is valid. Just in case, we'll zero |
| 2684 | * the remainder of the page. |
| 2685 | */ |
| 2686 | /* copy_from_user cannot cross TASK_SIZE ! */ |
| 2687 | size = TASK_SIZE - (unsigned long)data; |
| 2688 | if (size > PAGE_SIZE) |
| 2689 | size = PAGE_SIZE; |
| 2690 | |
| 2691 | i = size - exact_copy_from_user(copy, data, size); |
| 2692 | if (!i) { |
| 2693 | kfree(copy); |
| 2694 | return ERR_PTR(-EFAULT); |
| 2695 | } |
| 2696 | if (i != PAGE_SIZE) |
| 2697 | memset(copy + i, 0, PAGE_SIZE - i); |
| 2698 | return copy; |
| 2699 | } |
| 2700 | |
| 2701 | char *copy_mount_string(const void __user *data) |
| 2702 | { |
| 2703 | return data ? strndup_user(data, PAGE_SIZE) : NULL; |
| 2704 | } |
| 2705 | |
| 2706 | /* |
| 2707 | * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to |
| 2708 | * be given to the mount() call (ie: read-only, no-dev, no-suid etc). |
| 2709 | * |
| 2710 | * data is a (void *) that can point to any structure up to |
| 2711 | * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent |
| 2712 | * information (or be NULL). |
| 2713 | * |
| 2714 | * Pre-0.97 versions of mount() didn't have a flags word. |
| 2715 | * When the flags word was introduced its top half was required |
| 2716 | * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. |
| 2717 | * Therefore, if this magic number is present, it carries no information |
| 2718 | * and must be discarded. |
| 2719 | */ |
| 2720 | long do_mount(const char *dev_name, const char __user *dir_name, |
| 2721 | const char *type_page, unsigned long flags, void *data_page) |
| 2722 | { |
| 2723 | struct path path; |
| 2724 | unsigned int mnt_flags = 0, sb_flags; |
| 2725 | int retval = 0; |
| 2726 | |
| 2727 | /* Discard magic */ |
| 2728 | if ((flags & MS_MGC_MSK) == MS_MGC_VAL) |
| 2729 | flags &= ~MS_MGC_MSK; |
| 2730 | |
| 2731 | /* Basic sanity checks */ |
| 2732 | if (data_page) |
| 2733 | ((char *)data_page)[PAGE_SIZE - 1] = 0; |
| 2734 | |
| 2735 | if (flags & MS_NOUSER) |
| 2736 | return -EINVAL; |
| 2737 | |
| 2738 | /* ... and get the mountpoint */ |
| 2739 | retval = user_path(dir_name, &path); |
| 2740 | if (retval) |
| 2741 | return retval; |
| 2742 | |
| 2743 | retval = security_sb_mount(dev_name, &path, |
| 2744 | type_page, flags, data_page); |
| 2745 | if (!retval && !may_mount()) |
| 2746 | retval = -EPERM; |
| 2747 | if (!retval && (flags & SB_MANDLOCK) && !may_mandlock()) |
| 2748 | retval = -EPERM; |
| 2749 | if (retval) |
| 2750 | goto dput_out; |
| 2751 | |
| 2752 | /* Default to relatime unless overriden */ |
| 2753 | if (!(flags & MS_NOATIME)) |
| 2754 | mnt_flags |= MNT_RELATIME; |
| 2755 | |
| 2756 | /* Separate the per-mountpoint flags */ |
| 2757 | if (flags & MS_NOSUID) |
| 2758 | mnt_flags |= MNT_NOSUID; |
| 2759 | if (flags & MS_NODEV) |
| 2760 | mnt_flags |= MNT_NODEV; |
| 2761 | if (flags & MS_NOEXEC) |
| 2762 | mnt_flags |= MNT_NOEXEC; |
| 2763 | if (flags & MS_NOATIME) |
| 2764 | mnt_flags |= MNT_NOATIME; |
| 2765 | if (flags & MS_NODIRATIME) |
| 2766 | mnt_flags |= MNT_NODIRATIME; |
| 2767 | if (flags & MS_STRICTATIME) |
| 2768 | mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); |
| 2769 | if (flags & MS_RDONLY) |
| 2770 | mnt_flags |= MNT_READONLY; |
| 2771 | |
| 2772 | /* The default atime for remount is preservation */ |
| 2773 | if ((flags & MS_REMOUNT) && |
| 2774 | ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | |
| 2775 | MS_STRICTATIME)) == 0)) { |
| 2776 | mnt_flags &= ~MNT_ATIME_MASK; |
| 2777 | mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; |
| 2778 | } |
| 2779 | |
| 2780 | sb_flags = flags & (SB_RDONLY | |
| 2781 | SB_SYNCHRONOUS | |
| 2782 | SB_MANDLOCK | |
| 2783 | SB_DIRSYNC | |
| 2784 | SB_SILENT | |
| 2785 | SB_POSIXACL | |
| 2786 | SB_LAZYTIME | |
| 2787 | SB_I_VERSION); |
| 2788 | |
| 2789 | if (flags & MS_REMOUNT) |
| 2790 | retval = do_remount(&path, flags, sb_flags, mnt_flags, |
| 2791 | data_page); |
| 2792 | else if (flags & MS_BIND) |
| 2793 | retval = do_loopback(&path, dev_name, flags & MS_REC); |
| 2794 | else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) |
| 2795 | retval = do_change_type(&path, flags); |
| 2796 | else if (flags & MS_MOVE) |
| 2797 | retval = do_move_mount(&path, dev_name); |
| 2798 | else |
| 2799 | retval = do_new_mount(&path, type_page, sb_flags, mnt_flags, |
| 2800 | dev_name, data_page); |
| 2801 | dput_out: |
| 2802 | path_put(&path); |
| 2803 | return retval; |
| 2804 | } |
| 2805 | |
| 2806 | static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) |
| 2807 | { |
| 2808 | return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); |
| 2809 | } |
| 2810 | |
| 2811 | static void dec_mnt_namespaces(struct ucounts *ucounts) |
| 2812 | { |
| 2813 | dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); |
| 2814 | } |
| 2815 | |
| 2816 | static void free_mnt_ns(struct mnt_namespace *ns) |
| 2817 | { |
| 2818 | ns_free_inum(&ns->ns); |
| 2819 | dec_mnt_namespaces(ns->ucounts); |
| 2820 | put_user_ns(ns->user_ns); |
| 2821 | kfree(ns); |
| 2822 | } |
| 2823 | |
| 2824 | /* |
| 2825 | * Assign a sequence number so we can detect when we attempt to bind |
| 2826 | * mount a reference to an older mount namespace into the current |
| 2827 | * mount namespace, preventing reference counting loops. A 64bit |
| 2828 | * number incrementing at 10Ghz will take 12,427 years to wrap which |
| 2829 | * is effectively never, so we can ignore the possibility. |
| 2830 | */ |
| 2831 | static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); |
| 2832 | |
| 2833 | static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) |
| 2834 | { |
| 2835 | struct mnt_namespace *new_ns; |
| 2836 | struct ucounts *ucounts; |
| 2837 | int ret; |
| 2838 | |
| 2839 | ucounts = inc_mnt_namespaces(user_ns); |
| 2840 | if (!ucounts) |
| 2841 | return ERR_PTR(-ENOSPC); |
| 2842 | |
| 2843 | new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); |
| 2844 | if (!new_ns) { |
| 2845 | dec_mnt_namespaces(ucounts); |
| 2846 | return ERR_PTR(-ENOMEM); |
| 2847 | } |
| 2848 | ret = ns_alloc_inum(&new_ns->ns); |
| 2849 | if (ret) { |
| 2850 | kfree(new_ns); |
| 2851 | dec_mnt_namespaces(ucounts); |
| 2852 | return ERR_PTR(ret); |
| 2853 | } |
| 2854 | new_ns->ns.ops = &mntns_operations; |
| 2855 | new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); |
| 2856 | atomic_set(&new_ns->count, 1); |
| 2857 | new_ns->root = NULL; |
| 2858 | INIT_LIST_HEAD(&new_ns->list); |
| 2859 | init_waitqueue_head(&new_ns->poll); |
| 2860 | new_ns->event = 0; |
| 2861 | new_ns->user_ns = get_user_ns(user_ns); |
| 2862 | new_ns->ucounts = ucounts; |
| 2863 | new_ns->mounts = 0; |
| 2864 | new_ns->pending_mounts = 0; |
| 2865 | return new_ns; |
| 2866 | } |
| 2867 | |
| 2868 | __latent_entropy |
| 2869 | struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, |
| 2870 | struct user_namespace *user_ns, struct fs_struct *new_fs) |
| 2871 | { |
| 2872 | struct mnt_namespace *new_ns; |
| 2873 | struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; |
| 2874 | struct mount *p, *q; |
| 2875 | struct mount *old; |
| 2876 | struct mount *new; |
| 2877 | int copy_flags; |
| 2878 | |
| 2879 | BUG_ON(!ns); |
| 2880 | |
| 2881 | if (likely(!(flags & CLONE_NEWNS))) { |
| 2882 | get_mnt_ns(ns); |
| 2883 | return ns; |
| 2884 | } |
| 2885 | |
| 2886 | old = ns->root; |
| 2887 | |
| 2888 | new_ns = alloc_mnt_ns(user_ns); |
| 2889 | if (IS_ERR(new_ns)) |
| 2890 | return new_ns; |
| 2891 | |
| 2892 | namespace_lock(); |
| 2893 | /* First pass: copy the tree topology */ |
| 2894 | copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; |
| 2895 | if (user_ns != ns->user_ns) |
| 2896 | copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; |
| 2897 | new = copy_tree(old, old->mnt.mnt_root, copy_flags); |
| 2898 | if (IS_ERR(new)) { |
| 2899 | namespace_unlock(); |
| 2900 | free_mnt_ns(new_ns); |
| 2901 | return ERR_CAST(new); |
| 2902 | } |
| 2903 | new_ns->root = new; |
| 2904 | list_add_tail(&new_ns->list, &new->mnt_list); |
| 2905 | |
| 2906 | /* |
| 2907 | * Second pass: switch the tsk->fs->* elements and mark new vfsmounts |
| 2908 | * as belonging to new namespace. We have already acquired a private |
| 2909 | * fs_struct, so tsk->fs->lock is not needed. |
| 2910 | */ |
| 2911 | p = old; |
| 2912 | q = new; |
| 2913 | while (p) { |
| 2914 | q->mnt_ns = new_ns; |
| 2915 | new_ns->mounts++; |
| 2916 | if (new_fs) { |
| 2917 | if (&p->mnt == new_fs->root.mnt) { |
| 2918 | new_fs->root.mnt = mntget(&q->mnt); |
| 2919 | rootmnt = &p->mnt; |
| 2920 | } |
| 2921 | if (&p->mnt == new_fs->pwd.mnt) { |
| 2922 | new_fs->pwd.mnt = mntget(&q->mnt); |
| 2923 | pwdmnt = &p->mnt; |
| 2924 | } |
| 2925 | } |
| 2926 | p = next_mnt(p, old); |
| 2927 | q = next_mnt(q, new); |
| 2928 | if (!q) |
| 2929 | break; |
| 2930 | while (p->mnt.mnt_root != q->mnt.mnt_root) |
| 2931 | p = next_mnt(p, old); |
| 2932 | } |
| 2933 | namespace_unlock(); |
| 2934 | |
| 2935 | if (rootmnt) |
| 2936 | mntput(rootmnt); |
| 2937 | if (pwdmnt) |
| 2938 | mntput(pwdmnt); |
| 2939 | |
| 2940 | return new_ns; |
| 2941 | } |
| 2942 | |
| 2943 | /** |
| 2944 | * create_mnt_ns - creates a private namespace and adds a root filesystem |
| 2945 | * @mnt: pointer to the new root filesystem mountpoint |
| 2946 | */ |
| 2947 | static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) |
| 2948 | { |
| 2949 | struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); |
| 2950 | if (!IS_ERR(new_ns)) { |
| 2951 | struct mount *mnt = real_mount(m); |
| 2952 | mnt->mnt_ns = new_ns; |
| 2953 | new_ns->root = mnt; |
| 2954 | new_ns->mounts++; |
| 2955 | list_add(&mnt->mnt_list, &new_ns->list); |
| 2956 | } else { |
| 2957 | mntput(m); |
| 2958 | } |
| 2959 | return new_ns; |
| 2960 | } |
| 2961 | |
| 2962 | struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) |
| 2963 | { |
| 2964 | struct mnt_namespace *ns; |
| 2965 | struct super_block *s; |
| 2966 | struct path path; |
| 2967 | int err; |
| 2968 | |
| 2969 | ns = create_mnt_ns(mnt); |
| 2970 | if (IS_ERR(ns)) |
| 2971 | return ERR_CAST(ns); |
| 2972 | |
| 2973 | err = vfs_path_lookup(mnt->mnt_root, mnt, |
| 2974 | name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); |
| 2975 | |
| 2976 | put_mnt_ns(ns); |
| 2977 | |
| 2978 | if (err) |
| 2979 | return ERR_PTR(err); |
| 2980 | |
| 2981 | /* trade a vfsmount reference for active sb one */ |
| 2982 | s = path.mnt->mnt_sb; |
| 2983 | atomic_inc(&s->s_active); |
| 2984 | mntput(path.mnt); |
| 2985 | /* lock the sucker */ |
| 2986 | down_write(&s->s_umount); |
| 2987 | /* ... and return the root of (sub)tree on it */ |
| 2988 | return path.dentry; |
| 2989 | } |
| 2990 | EXPORT_SYMBOL(mount_subtree); |
| 2991 | |
| 2992 | int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type, |
| 2993 | unsigned long flags, void __user *data) |
| 2994 | { |
| 2995 | int ret; |
| 2996 | char *kernel_type; |
| 2997 | char *kernel_dev; |
| 2998 | void *options; |
| 2999 | |
| 3000 | kernel_type = copy_mount_string(type); |
| 3001 | ret = PTR_ERR(kernel_type); |
| 3002 | if (IS_ERR(kernel_type)) |
| 3003 | goto out_type; |
| 3004 | |
| 3005 | kernel_dev = copy_mount_string(dev_name); |
| 3006 | ret = PTR_ERR(kernel_dev); |
| 3007 | if (IS_ERR(kernel_dev)) |
| 3008 | goto out_dev; |
| 3009 | |
| 3010 | options = copy_mount_options(data); |
| 3011 | ret = PTR_ERR(options); |
| 3012 | if (IS_ERR(options)) |
| 3013 | goto out_data; |
| 3014 | |
| 3015 | ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); |
| 3016 | |
| 3017 | kfree(options); |
| 3018 | out_data: |
| 3019 | kfree(kernel_dev); |
| 3020 | out_dev: |
| 3021 | kfree(kernel_type); |
| 3022 | out_type: |
| 3023 | return ret; |
| 3024 | } |
| 3025 | |
| 3026 | SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, |
| 3027 | char __user *, type, unsigned long, flags, void __user *, data) |
| 3028 | { |
| 3029 | return ksys_mount(dev_name, dir_name, type, flags, data); |
| 3030 | } |
| 3031 | |
| 3032 | /* |
| 3033 | * Return true if path is reachable from root |
| 3034 | * |
| 3035 | * namespace_sem or mount_lock is held |
| 3036 | */ |
| 3037 | bool is_path_reachable(struct mount *mnt, struct dentry *dentry, |
| 3038 | const struct path *root) |
| 3039 | { |
| 3040 | while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { |
| 3041 | dentry = mnt->mnt_mountpoint; |
| 3042 | mnt = mnt->mnt_parent; |
| 3043 | } |
| 3044 | return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); |
| 3045 | } |
| 3046 | |
| 3047 | bool path_is_under(const struct path *path1, const struct path *path2) |
| 3048 | { |
| 3049 | bool res; |
| 3050 | read_seqlock_excl(&mount_lock); |
| 3051 | res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); |
| 3052 | read_sequnlock_excl(&mount_lock); |
| 3053 | return res; |
| 3054 | } |
| 3055 | EXPORT_SYMBOL(path_is_under); |
| 3056 | |
| 3057 | /* |
| 3058 | * pivot_root Semantics: |
| 3059 | * Moves the root file system of the current process to the directory put_old, |
| 3060 | * makes new_root as the new root file system of the current process, and sets |
| 3061 | * root/cwd of all processes which had them on the current root to new_root. |
| 3062 | * |
| 3063 | * Restrictions: |
| 3064 | * The new_root and put_old must be directories, and must not be on the |
| 3065 | * same file system as the current process root. The put_old must be |
| 3066 | * underneath new_root, i.e. adding a non-zero number of /.. to the string |
| 3067 | * pointed to by put_old must yield the same directory as new_root. No other |
| 3068 | * file system may be mounted on put_old. After all, new_root is a mountpoint. |
| 3069 | * |
| 3070 | * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. |
| 3071 | * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives |
| 3072 | * in this situation. |
| 3073 | * |
| 3074 | * Notes: |
| 3075 | * - we don't move root/cwd if they are not at the root (reason: if something |
| 3076 | * cared enough to change them, it's probably wrong to force them elsewhere) |
| 3077 | * - it's okay to pick a root that isn't the root of a file system, e.g. |
| 3078 | * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, |
| 3079 | * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root |
| 3080 | * first. |
| 3081 | */ |
| 3082 | SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, |
| 3083 | const char __user *, put_old) |
| 3084 | { |
| 3085 | struct path new, old, parent_path, root_parent, root; |
| 3086 | struct mount *new_mnt, *root_mnt, *old_mnt; |
| 3087 | struct mountpoint *old_mp, *root_mp; |
| 3088 | int error; |
| 3089 | |
| 3090 | if (!may_mount()) |
| 3091 | return -EPERM; |
| 3092 | |
| 3093 | error = user_path_dir(new_root, &new); |
| 3094 | if (error) |
| 3095 | goto out0; |
| 3096 | |
| 3097 | error = user_path_dir(put_old, &old); |
| 3098 | if (error) |
| 3099 | goto out1; |
| 3100 | |
| 3101 | error = security_sb_pivotroot(&old, &new); |
| 3102 | if (error) |
| 3103 | goto out2; |
| 3104 | |
| 3105 | get_fs_root(current->fs, &root); |
| 3106 | old_mp = lock_mount(&old); |
| 3107 | error = PTR_ERR(old_mp); |
| 3108 | if (IS_ERR(old_mp)) |
| 3109 | goto out3; |
| 3110 | |
| 3111 | error = -EINVAL; |
| 3112 | new_mnt = real_mount(new.mnt); |
| 3113 | root_mnt = real_mount(root.mnt); |
| 3114 | old_mnt = real_mount(old.mnt); |
| 3115 | if (IS_MNT_SHARED(old_mnt) || |
| 3116 | IS_MNT_SHARED(new_mnt->mnt_parent) || |
| 3117 | IS_MNT_SHARED(root_mnt->mnt_parent)) |
| 3118 | goto out4; |
| 3119 | if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) |
| 3120 | goto out4; |
| 3121 | if (new_mnt->mnt.mnt_flags & MNT_LOCKED) |
| 3122 | goto out4; |
| 3123 | error = -ENOENT; |
| 3124 | if (d_unlinked(new.dentry)) |
| 3125 | goto out4; |
| 3126 | error = -EBUSY; |
| 3127 | if (new_mnt == root_mnt || old_mnt == root_mnt) |
| 3128 | goto out4; /* loop, on the same file system */ |
| 3129 | error = -EINVAL; |
| 3130 | if (root.mnt->mnt_root != root.dentry) |
| 3131 | goto out4; /* not a mountpoint */ |
| 3132 | if (!mnt_has_parent(root_mnt)) |
| 3133 | goto out4; /* not attached */ |
| 3134 | root_mp = root_mnt->mnt_mp; |
| 3135 | if (new.mnt->mnt_root != new.dentry) |
| 3136 | goto out4; /* not a mountpoint */ |
| 3137 | if (!mnt_has_parent(new_mnt)) |
| 3138 | goto out4; /* not attached */ |
| 3139 | /* make sure we can reach put_old from new_root */ |
| 3140 | if (!is_path_reachable(old_mnt, old.dentry, &new)) |
| 3141 | goto out4; |
| 3142 | /* make certain new is below the root */ |
| 3143 | if (!is_path_reachable(new_mnt, new.dentry, &root)) |
| 3144 | goto out4; |
| 3145 | root_mp->m_count++; /* pin it so it won't go away */ |
| 3146 | lock_mount_hash(); |
| 3147 | detach_mnt(new_mnt, &parent_path); |
| 3148 | detach_mnt(root_mnt, &root_parent); |
| 3149 | if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { |
| 3150 | new_mnt->mnt.mnt_flags |= MNT_LOCKED; |
| 3151 | root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; |
| 3152 | } |
| 3153 | /* mount old root on put_old */ |
| 3154 | attach_mnt(root_mnt, old_mnt, old_mp); |
| 3155 | /* mount new_root on / */ |
| 3156 | attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); |
| 3157 | touch_mnt_namespace(current->nsproxy->mnt_ns); |
| 3158 | /* A moved mount should not expire automatically */ |
| 3159 | list_del_init(&new_mnt->mnt_expire); |
| 3160 | put_mountpoint(root_mp); |
| 3161 | unlock_mount_hash(); |
| 3162 | chroot_fs_refs(&root, &new); |
| 3163 | error = 0; |
| 3164 | out4: |
| 3165 | unlock_mount(old_mp); |
| 3166 | if (!error) { |
| 3167 | path_put(&root_parent); |
| 3168 | path_put(&parent_path); |
| 3169 | } |
| 3170 | out3: |
| 3171 | path_put(&root); |
| 3172 | out2: |
| 3173 | path_put(&old); |
| 3174 | out1: |
| 3175 | path_put(&new); |
| 3176 | out0: |
| 3177 | return error; |
| 3178 | } |
| 3179 | |
| 3180 | static void __init init_mount_tree(void) |
| 3181 | { |
| 3182 | struct vfsmount *mnt; |
| 3183 | struct mnt_namespace *ns; |
| 3184 | struct path root; |
| 3185 | struct file_system_type *type; |
| 3186 | |
| 3187 | type = get_fs_type("rootfs"); |
| 3188 | if (!type) |
| 3189 | panic("Can't find rootfs type"); |
| 3190 | mnt = vfs_kern_mount(type, 0, "rootfs", NULL); |
| 3191 | put_filesystem(type); |
| 3192 | if (IS_ERR(mnt)) |
| 3193 | panic("Can't create rootfs"); |
| 3194 | |
| 3195 | ns = create_mnt_ns(mnt); |
| 3196 | if (IS_ERR(ns)) |
| 3197 | panic("Can't allocate initial namespace"); |
| 3198 | |
| 3199 | init_task.nsproxy->mnt_ns = ns; |
| 3200 | get_mnt_ns(ns); |
| 3201 | |
| 3202 | root.mnt = mnt; |
| 3203 | root.dentry = mnt->mnt_root; |
| 3204 | mnt->mnt_flags |= MNT_LOCKED; |
| 3205 | |
| 3206 | set_fs_pwd(current->fs, &root); |
| 3207 | set_fs_root(current->fs, &root); |
| 3208 | } |
| 3209 | |
| 3210 | void __init mnt_init(void) |
| 3211 | { |
| 3212 | int err; |
| 3213 | |
| 3214 | mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), |
| 3215 | 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); |
| 3216 | |
| 3217 | mount_hashtable = alloc_large_system_hash("Mount-cache", |
| 3218 | sizeof(struct hlist_head), |
| 3219 | mhash_entries, 19, |
| 3220 | HASH_ZERO, |
| 3221 | &m_hash_shift, &m_hash_mask, 0, 0); |
| 3222 | mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", |
| 3223 | sizeof(struct hlist_head), |
| 3224 | mphash_entries, 19, |
| 3225 | HASH_ZERO, |
| 3226 | &mp_hash_shift, &mp_hash_mask, 0, 0); |
| 3227 | |
| 3228 | if (!mount_hashtable || !mountpoint_hashtable) |
| 3229 | panic("Failed to allocate mount hash table\n"); |
| 3230 | |
| 3231 | kernfs_init(); |
| 3232 | |
| 3233 | err = sysfs_init(); |
| 3234 | if (err) |
| 3235 | printk(KERN_WARNING "%s: sysfs_init error: %d\n", |
| 3236 | __func__, err); |
| 3237 | fs_kobj = kobject_create_and_add("fs", NULL); |
| 3238 | if (!fs_kobj) |
| 3239 | printk(KERN_WARNING "%s: kobj create error\n", __func__); |
| 3240 | init_rootfs(); |
| 3241 | init_mount_tree(); |
| 3242 | } |
| 3243 | |
| 3244 | void put_mnt_ns(struct mnt_namespace *ns) |
| 3245 | { |
| 3246 | if (!atomic_dec_and_test(&ns->count)) |
| 3247 | return; |
| 3248 | drop_collected_mounts(&ns->root->mnt); |
| 3249 | free_mnt_ns(ns); |
| 3250 | } |
| 3251 | |
| 3252 | struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) |
| 3253 | { |
| 3254 | struct vfsmount *mnt; |
| 3255 | mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data); |
| 3256 | if (!IS_ERR(mnt)) { |
| 3257 | /* |
| 3258 | * it is a longterm mount, don't release mnt until |
| 3259 | * we unmount before file sys is unregistered |
| 3260 | */ |
| 3261 | real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; |
| 3262 | } |
| 3263 | return mnt; |
| 3264 | } |
| 3265 | EXPORT_SYMBOL_GPL(kern_mount_data); |
| 3266 | |
| 3267 | void kern_unmount(struct vfsmount *mnt) |
| 3268 | { |
| 3269 | /* release long term mount so mount point can be released */ |
| 3270 | if (!IS_ERR_OR_NULL(mnt)) { |
| 3271 | real_mount(mnt)->mnt_ns = NULL; |
| 3272 | synchronize_rcu(); /* yecchhh... */ |
| 3273 | mntput(mnt); |
| 3274 | } |
| 3275 | } |
| 3276 | EXPORT_SYMBOL(kern_unmount); |
| 3277 | |
| 3278 | bool our_mnt(struct vfsmount *mnt) |
| 3279 | { |
| 3280 | return check_mnt(real_mount(mnt)); |
| 3281 | } |
| 3282 | |
| 3283 | bool current_chrooted(void) |
| 3284 | { |
| 3285 | /* Does the current process have a non-standard root */ |
| 3286 | struct path ns_root; |
| 3287 | struct path fs_root; |
| 3288 | bool chrooted; |
| 3289 | |
| 3290 | /* Find the namespace root */ |
| 3291 | ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; |
| 3292 | ns_root.dentry = ns_root.mnt->mnt_root; |
| 3293 | path_get(&ns_root); |
| 3294 | while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) |
| 3295 | ; |
| 3296 | |
| 3297 | get_fs_root(current->fs, &fs_root); |
| 3298 | |
| 3299 | chrooted = !path_equal(&fs_root, &ns_root); |
| 3300 | |
| 3301 | path_put(&fs_root); |
| 3302 | path_put(&ns_root); |
| 3303 | |
| 3304 | return chrooted; |
| 3305 | } |
| 3306 | |
| 3307 | static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new, |
| 3308 | int *new_mnt_flags) |
| 3309 | { |
| 3310 | int new_flags = *new_mnt_flags; |
| 3311 | struct mount *mnt; |
| 3312 | bool visible = false; |
| 3313 | |
| 3314 | down_read(&namespace_sem); |
| 3315 | list_for_each_entry(mnt, &ns->list, mnt_list) { |
| 3316 | struct mount *child; |
| 3317 | int mnt_flags; |
| 3318 | |
| 3319 | if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type) |
| 3320 | continue; |
| 3321 | |
| 3322 | /* This mount is not fully visible if it's root directory |
| 3323 | * is not the root directory of the filesystem. |
| 3324 | */ |
| 3325 | if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) |
| 3326 | continue; |
| 3327 | |
| 3328 | /* A local view of the mount flags */ |
| 3329 | mnt_flags = mnt->mnt.mnt_flags; |
| 3330 | |
| 3331 | /* Don't miss readonly hidden in the superblock flags */ |
| 3332 | if (sb_rdonly(mnt->mnt.mnt_sb)) |
| 3333 | mnt_flags |= MNT_LOCK_READONLY; |
| 3334 | |
| 3335 | /* Verify the mount flags are equal to or more permissive |
| 3336 | * than the proposed new mount. |
| 3337 | */ |
| 3338 | if ((mnt_flags & MNT_LOCK_READONLY) && |
| 3339 | !(new_flags & MNT_READONLY)) |
| 3340 | continue; |
| 3341 | if ((mnt_flags & MNT_LOCK_ATIME) && |
| 3342 | ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) |
| 3343 | continue; |
| 3344 | |
| 3345 | /* This mount is not fully visible if there are any |
| 3346 | * locked child mounts that cover anything except for |
| 3347 | * empty directories. |
| 3348 | */ |
| 3349 | list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { |
| 3350 | struct inode *inode = child->mnt_mountpoint->d_inode; |
| 3351 | /* Only worry about locked mounts */ |
| 3352 | if (!(child->mnt.mnt_flags & MNT_LOCKED)) |
| 3353 | continue; |
| 3354 | /* Is the directory permanetly empty? */ |
| 3355 | if (!is_empty_dir_inode(inode)) |
| 3356 | goto next; |
| 3357 | } |
| 3358 | /* Preserve the locked attributes */ |
| 3359 | *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ |
| 3360 | MNT_LOCK_ATIME); |
| 3361 | visible = true; |
| 3362 | goto found; |
| 3363 | next: ; |
| 3364 | } |
| 3365 | found: |
| 3366 | up_read(&namespace_sem); |
| 3367 | return visible; |
| 3368 | } |
| 3369 | |
| 3370 | static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags) |
| 3371 | { |
| 3372 | const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; |
| 3373 | struct mnt_namespace *ns = current->nsproxy->mnt_ns; |
| 3374 | unsigned long s_iflags; |
| 3375 | |
| 3376 | if (ns->user_ns == &init_user_ns) |
| 3377 | return false; |
| 3378 | |
| 3379 | /* Can this filesystem be too revealing? */ |
| 3380 | s_iflags = mnt->mnt_sb->s_iflags; |
| 3381 | if (!(s_iflags & SB_I_USERNS_VISIBLE)) |
| 3382 | return false; |
| 3383 | |
| 3384 | if ((s_iflags & required_iflags) != required_iflags) { |
| 3385 | WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", |
| 3386 | required_iflags); |
| 3387 | return true; |
| 3388 | } |
| 3389 | |
| 3390 | return !mnt_already_visible(ns, mnt, new_mnt_flags); |
| 3391 | } |
| 3392 | |
| 3393 | bool mnt_may_suid(struct vfsmount *mnt) |
| 3394 | { |
| 3395 | /* |
| 3396 | * Foreign mounts (accessed via fchdir or through /proc |
| 3397 | * symlinks) are always treated as if they are nosuid. This |
| 3398 | * prevents namespaces from trusting potentially unsafe |
| 3399 | * suid/sgid bits, file caps, or security labels that originate |
| 3400 | * in other namespaces. |
| 3401 | */ |
| 3402 | return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && |
| 3403 | current_in_userns(mnt->mnt_sb->s_user_ns); |
| 3404 | } |
| 3405 | |
| 3406 | static struct ns_common *mntns_get(struct task_struct *task) |
| 3407 | { |
| 3408 | struct ns_common *ns = NULL; |
| 3409 | struct nsproxy *nsproxy; |
| 3410 | |
| 3411 | task_lock(task); |
| 3412 | nsproxy = task->nsproxy; |
| 3413 | if (nsproxy) { |
| 3414 | ns = &nsproxy->mnt_ns->ns; |
| 3415 | get_mnt_ns(to_mnt_ns(ns)); |
| 3416 | } |
| 3417 | task_unlock(task); |
| 3418 | |
| 3419 | return ns; |
| 3420 | } |
| 3421 | |
| 3422 | static void mntns_put(struct ns_common *ns) |
| 3423 | { |
| 3424 | put_mnt_ns(to_mnt_ns(ns)); |
| 3425 | } |
| 3426 | |
| 3427 | static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) |
| 3428 | { |
| 3429 | struct fs_struct *fs = current->fs; |
| 3430 | struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; |
| 3431 | struct path root; |
| 3432 | int err; |
| 3433 | |
| 3434 | if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || |
| 3435 | !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || |
| 3436 | !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) |
| 3437 | return -EPERM; |
| 3438 | |
| 3439 | if (fs->users != 1) |
| 3440 | return -EINVAL; |
| 3441 | |
| 3442 | get_mnt_ns(mnt_ns); |
| 3443 | old_mnt_ns = nsproxy->mnt_ns; |
| 3444 | nsproxy->mnt_ns = mnt_ns; |
| 3445 | |
| 3446 | /* Find the root */ |
| 3447 | err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, |
| 3448 | "/", LOOKUP_DOWN, &root); |
| 3449 | if (err) { |
| 3450 | /* revert to old namespace */ |
| 3451 | nsproxy->mnt_ns = old_mnt_ns; |
| 3452 | put_mnt_ns(mnt_ns); |
| 3453 | return err; |
| 3454 | } |
| 3455 | |
| 3456 | put_mnt_ns(old_mnt_ns); |
| 3457 | |
| 3458 | /* Update the pwd and root */ |
| 3459 | set_fs_pwd(fs, &root); |
| 3460 | set_fs_root(fs, &root); |
| 3461 | |
| 3462 | path_put(&root); |
| 3463 | return 0; |
| 3464 | } |
| 3465 | |
| 3466 | static struct user_namespace *mntns_owner(struct ns_common *ns) |
| 3467 | { |
| 3468 | return to_mnt_ns(ns)->user_ns; |
| 3469 | } |
| 3470 | |
| 3471 | const struct proc_ns_operations mntns_operations = { |
| 3472 | .name = "mnt", |
| 3473 | .type = CLONE_NEWNS, |
| 3474 | .get = mntns_get, |
| 3475 | .put = mntns_put, |
| 3476 | .install = mntns_install, |
| 3477 | .owner = mntns_owner, |
| 3478 | }; |