blob: 42ea42acb487ae819600bdd8e745e2241fce063f [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22#include "xattr.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28static struct kmem_cache *nat_entry_slab;
29static struct kmem_cache *free_nid_slab;
30static struct kmem_cache *nat_entry_set_slab;
31static struct kmem_cache *fsync_node_entry_slab;
32
33/*
34 * Check whether the given nid is within node id range.
35 */
36int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
37{
38 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
39 set_sbi_flag(sbi, SBI_NEED_FSCK);
40 f2fs_msg(sbi->sb, KERN_WARNING,
41 "%s: out-of-range nid=%x, run fsck to fix.",
42 __func__, nid);
43 return -EINVAL;
44 }
45 return 0;
46}
47
48bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
49{
50 struct f2fs_nm_info *nm_i = NM_I(sbi);
51 struct sysinfo val;
52 unsigned long avail_ram;
53 unsigned long mem_size = 0;
54 bool res = false;
55
56 si_meminfo(&val);
57
58 /* only uses low memory */
59 avail_ram = val.totalram - val.totalhigh;
60
61 /*
62 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 */
64 if (type == FREE_NIDS) {
65 mem_size = (nm_i->nid_cnt[FREE_NID] *
66 sizeof(struct free_nid)) >> PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 } else if (type == NAT_ENTRIES) {
69 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
70 PAGE_SHIFT;
71 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
72 if (excess_cached_nats(sbi))
73 res = false;
74 } else if (type == DIRTY_DENTS) {
75 if (sbi->sb->s_bdi->wb.dirty_exceeded)
76 return false;
77 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
78 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
79 } else if (type == INO_ENTRIES) {
80 int i;
81
82 for (i = 0; i < MAX_INO_ENTRY; i++)
83 mem_size += sbi->im[i].ino_num *
84 sizeof(struct ino_entry);
85 mem_size >>= PAGE_SHIFT;
86 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
87 } else if (type == EXTENT_CACHE) {
88 mem_size = (atomic_read(&sbi->total_ext_tree) *
89 sizeof(struct extent_tree) +
90 atomic_read(&sbi->total_ext_node) *
91 sizeof(struct extent_node)) >> PAGE_SHIFT;
92 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
93 } else if (type == INMEM_PAGES) {
94 /* it allows 20% / total_ram for inmemory pages */
95 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
96 res = mem_size < (val.totalram / 5);
97 } else {
98 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
99 return true;
100 }
101 return res;
102}
103
104static void clear_node_page_dirty(struct page *page)
105{
106 if (PageDirty(page)) {
107 f2fs_clear_radix_tree_dirty_tag(page);
108 clear_page_dirty_for_io(page);
109 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
110 }
111 ClearPageUptodate(page);
112}
113
114static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
115{
116 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
117}
118
119static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
120{
121 struct page *src_page;
122 struct page *dst_page;
123 pgoff_t dst_off;
124 void *src_addr;
125 void *dst_addr;
126 struct f2fs_nm_info *nm_i = NM_I(sbi);
127
128 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
129
130 /* get current nat block page with lock */
131 src_page = get_current_nat_page(sbi, nid);
132 dst_page = f2fs_grab_meta_page(sbi, dst_off);
133 f2fs_bug_on(sbi, PageDirty(src_page));
134
135 src_addr = page_address(src_page);
136 dst_addr = page_address(dst_page);
137 memcpy(dst_addr, src_addr, PAGE_SIZE);
138 set_page_dirty(dst_page);
139 f2fs_put_page(src_page, 1);
140
141 set_to_next_nat(nm_i, nid);
142
143 return dst_page;
144}
145
146static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
147{
148 struct nat_entry *new;
149
150 if (no_fail)
151 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 else
153 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
154 if (new) {
155 nat_set_nid(new, nid);
156 nat_reset_flag(new);
157 }
158 return new;
159}
160
161static void __free_nat_entry(struct nat_entry *e)
162{
163 kmem_cache_free(nat_entry_slab, e);
164}
165
166/* must be locked by nat_tree_lock */
167static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
168 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
169{
170 if (no_fail)
171 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
172 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
173 return NULL;
174
175 if (raw_ne)
176 node_info_from_raw_nat(&ne->ni, raw_ne);
177
178 spin_lock(&nm_i->nat_list_lock);
179 list_add_tail(&ne->list, &nm_i->nat_entries);
180 spin_unlock(&nm_i->nat_list_lock);
181
182 nm_i->nat_cnt++;
183 return ne;
184}
185
186static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
187{
188 struct nat_entry *ne;
189
190 ne = radix_tree_lookup(&nm_i->nat_root, n);
191
192 /* for recent accessed nat entry, move it to tail of lru list */
193 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
194 spin_lock(&nm_i->nat_list_lock);
195 if (!list_empty(&ne->list))
196 list_move_tail(&ne->list, &nm_i->nat_entries);
197 spin_unlock(&nm_i->nat_list_lock);
198 }
199
200 return ne;
201}
202
203static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
204 nid_t start, unsigned int nr, struct nat_entry **ep)
205{
206 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
207}
208
209static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
210{
211 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
212 nm_i->nat_cnt--;
213 __free_nat_entry(e);
214}
215
216static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
217 struct nat_entry *ne)
218{
219 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
220 struct nat_entry_set *head;
221
222 head = radix_tree_lookup(&nm_i->nat_set_root, set);
223 if (!head) {
224 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
225
226 INIT_LIST_HEAD(&head->entry_list);
227 INIT_LIST_HEAD(&head->set_list);
228 head->set = set;
229 head->entry_cnt = 0;
230 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
231 }
232 return head;
233}
234
235static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
236 struct nat_entry *ne)
237{
238 struct nat_entry_set *head;
239 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
240
241 if (!new_ne)
242 head = __grab_nat_entry_set(nm_i, ne);
243
244 /*
245 * update entry_cnt in below condition:
246 * 1. update NEW_ADDR to valid block address;
247 * 2. update old block address to new one;
248 */
249 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
250 !get_nat_flag(ne, IS_DIRTY)))
251 head->entry_cnt++;
252
253 set_nat_flag(ne, IS_PREALLOC, new_ne);
254
255 if (get_nat_flag(ne, IS_DIRTY))
256 goto refresh_list;
257
258 nm_i->dirty_nat_cnt++;
259 set_nat_flag(ne, IS_DIRTY, true);
260refresh_list:
261 spin_lock(&nm_i->nat_list_lock);
262 if (new_ne)
263 list_del_init(&ne->list);
264 else
265 list_move_tail(&ne->list, &head->entry_list);
266 spin_unlock(&nm_i->nat_list_lock);
267}
268
269static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
270 struct nat_entry_set *set, struct nat_entry *ne)
271{
272 spin_lock(&nm_i->nat_list_lock);
273 list_move_tail(&ne->list, &nm_i->nat_entries);
274 spin_unlock(&nm_i->nat_list_lock);
275
276 set_nat_flag(ne, IS_DIRTY, false);
277 set->entry_cnt--;
278 nm_i->dirty_nat_cnt--;
279}
280
281static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
282 nid_t start, unsigned int nr, struct nat_entry_set **ep)
283{
284 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
285 start, nr);
286}
287
288bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
289{
290 return NODE_MAPPING(sbi) == page->mapping &&
291 IS_DNODE(page) && is_cold_node(page);
292}
293
294void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
295{
296 spin_lock_init(&sbi->fsync_node_lock);
297 INIT_LIST_HEAD(&sbi->fsync_node_list);
298 sbi->fsync_seg_id = 0;
299 sbi->fsync_node_num = 0;
300}
301
302static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
303 struct page *page)
304{
305 struct fsync_node_entry *fn;
306 unsigned long flags;
307 unsigned int seq_id;
308
309 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
310
311 get_page(page);
312 fn->page = page;
313 INIT_LIST_HEAD(&fn->list);
314
315 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
316 list_add_tail(&fn->list, &sbi->fsync_node_list);
317 fn->seq_id = sbi->fsync_seg_id++;
318 seq_id = fn->seq_id;
319 sbi->fsync_node_num++;
320 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
321
322 return seq_id;
323}
324
325void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
326{
327 struct fsync_node_entry *fn;
328 unsigned long flags;
329
330 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
331 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
332 if (fn->page == page) {
333 list_del(&fn->list);
334 sbi->fsync_node_num--;
335 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
336 kmem_cache_free(fsync_node_entry_slab, fn);
337 put_page(page);
338 return;
339 }
340 }
341 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
342 f2fs_bug_on(sbi, 1);
343}
344
345void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
346{
347 unsigned long flags;
348
349 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
350 sbi->fsync_seg_id = 0;
351 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
352}
353
354int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
355{
356 struct f2fs_nm_info *nm_i = NM_I(sbi);
357 struct nat_entry *e;
358 bool need = false;
359
360 down_read(&nm_i->nat_tree_lock);
361 e = __lookup_nat_cache(nm_i, nid);
362 if (e) {
363 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
364 !get_nat_flag(e, HAS_FSYNCED_INODE))
365 need = true;
366 }
367 up_read(&nm_i->nat_tree_lock);
368 return need;
369}
370
371bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
372{
373 struct f2fs_nm_info *nm_i = NM_I(sbi);
374 struct nat_entry *e;
375 bool is_cp = true;
376
377 down_read(&nm_i->nat_tree_lock);
378 e = __lookup_nat_cache(nm_i, nid);
379 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
380 is_cp = false;
381 up_read(&nm_i->nat_tree_lock);
382 return is_cp;
383}
384
385bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
386{
387 struct f2fs_nm_info *nm_i = NM_I(sbi);
388 struct nat_entry *e;
389 bool need_update = true;
390
391 down_read(&nm_i->nat_tree_lock);
392 e = __lookup_nat_cache(nm_i, ino);
393 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
394 (get_nat_flag(e, IS_CHECKPOINTED) ||
395 get_nat_flag(e, HAS_FSYNCED_INODE)))
396 need_update = false;
397 up_read(&nm_i->nat_tree_lock);
398 return need_update;
399}
400
401/* must be locked by nat_tree_lock */
402static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
403 struct f2fs_nat_entry *ne)
404{
405 struct f2fs_nm_info *nm_i = NM_I(sbi);
406 struct nat_entry *new, *e;
407
408 new = __alloc_nat_entry(nid, false);
409 if (!new)
410 return;
411
412 down_write(&nm_i->nat_tree_lock);
413 e = __lookup_nat_cache(nm_i, nid);
414 if (!e)
415 e = __init_nat_entry(nm_i, new, ne, false);
416 else
417 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
418 nat_get_blkaddr(e) !=
419 le32_to_cpu(ne->block_addr) ||
420 nat_get_version(e) != ne->version);
421 up_write(&nm_i->nat_tree_lock);
422 if (e != new)
423 __free_nat_entry(new);
424}
425
426static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
427 block_t new_blkaddr, bool fsync_done)
428{
429 struct f2fs_nm_info *nm_i = NM_I(sbi);
430 struct nat_entry *e;
431 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
432
433 down_write(&nm_i->nat_tree_lock);
434 e = __lookup_nat_cache(nm_i, ni->nid);
435 if (!e) {
436 e = __init_nat_entry(nm_i, new, NULL, true);
437 copy_node_info(&e->ni, ni);
438 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
439 } else if (new_blkaddr == NEW_ADDR) {
440 /*
441 * when nid is reallocated,
442 * previous nat entry can be remained in nat cache.
443 * So, reinitialize it with new information.
444 */
445 copy_node_info(&e->ni, ni);
446 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
447 }
448 /* let's free early to reduce memory consumption */
449 if (e != new)
450 __free_nat_entry(new);
451
452 /* sanity check */
453 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
455 new_blkaddr == NULL_ADDR);
456 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
457 new_blkaddr == NEW_ADDR);
458 f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
459 new_blkaddr == NEW_ADDR);
460
461 /* increment version no as node is removed */
462 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
463 unsigned char version = nat_get_version(e);
464 nat_set_version(e, inc_node_version(version));
465 }
466
467 /* change address */
468 nat_set_blkaddr(e, new_blkaddr);
469 if (!is_valid_data_blkaddr(sbi, new_blkaddr))
470 set_nat_flag(e, IS_CHECKPOINTED, false);
471 __set_nat_cache_dirty(nm_i, e);
472
473 /* update fsync_mark if its inode nat entry is still alive */
474 if (ni->nid != ni->ino)
475 e = __lookup_nat_cache(nm_i, ni->ino);
476 if (e) {
477 if (fsync_done && ni->nid == ni->ino)
478 set_nat_flag(e, HAS_FSYNCED_INODE, true);
479 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
480 }
481 up_write(&nm_i->nat_tree_lock);
482}
483
484int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
485{
486 struct f2fs_nm_info *nm_i = NM_I(sbi);
487 int nr = nr_shrink;
488
489 if (!down_write_trylock(&nm_i->nat_tree_lock))
490 return 0;
491
492 spin_lock(&nm_i->nat_list_lock);
493 while (nr_shrink) {
494 struct nat_entry *ne;
495
496 if (list_empty(&nm_i->nat_entries))
497 break;
498
499 ne = list_first_entry(&nm_i->nat_entries,
500 struct nat_entry, list);
501 list_del(&ne->list);
502 spin_unlock(&nm_i->nat_list_lock);
503
504 __del_from_nat_cache(nm_i, ne);
505 nr_shrink--;
506
507 spin_lock(&nm_i->nat_list_lock);
508 }
509 spin_unlock(&nm_i->nat_list_lock);
510
511 up_write(&nm_i->nat_tree_lock);
512 return nr - nr_shrink;
513}
514
515/*
516 * This function always returns success
517 */
518int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
519 struct node_info *ni)
520{
521 struct f2fs_nm_info *nm_i = NM_I(sbi);
522 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
523 struct f2fs_journal *journal = curseg->journal;
524 nid_t start_nid = START_NID(nid);
525 struct f2fs_nat_block *nat_blk;
526 struct page *page = NULL;
527 struct f2fs_nat_entry ne;
528 struct nat_entry *e;
529 pgoff_t index;
530 int i;
531
532 ni->nid = nid;
533
534 /* Check nat cache */
535 down_read(&nm_i->nat_tree_lock);
536 e = __lookup_nat_cache(nm_i, nid);
537 if (e) {
538 ni->ino = nat_get_ino(e);
539 ni->blk_addr = nat_get_blkaddr(e);
540 ni->version = nat_get_version(e);
541 up_read(&nm_i->nat_tree_lock);
542 return 0;
543 }
544
545 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
546
547 /* Check current segment summary */
548 down_read(&curseg->journal_rwsem);
549 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
550 if (i >= 0) {
551 ne = nat_in_journal(journal, i);
552 node_info_from_raw_nat(ni, &ne);
553 }
554 up_read(&curseg->journal_rwsem);
555 if (i >= 0) {
556 up_read(&nm_i->nat_tree_lock);
557 goto cache;
558 }
559
560 /* Fill node_info from nat page */
561 index = current_nat_addr(sbi, nid);
562 up_read(&nm_i->nat_tree_lock);
563
564 page = f2fs_get_meta_page(sbi, index);
565 if (IS_ERR(page))
566 return PTR_ERR(page);
567
568 nat_blk = (struct f2fs_nat_block *)page_address(page);
569 ne = nat_blk->entries[nid - start_nid];
570 node_info_from_raw_nat(ni, &ne);
571 f2fs_put_page(page, 1);
572cache:
573 /* cache nat entry */
574 cache_nat_entry(sbi, nid, &ne);
575 return 0;
576}
577
578/*
579 * readahead MAX_RA_NODE number of node pages.
580 */
581static void f2fs_ra_node_pages(struct page *parent, int start, int n)
582{
583 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
584 struct blk_plug plug;
585 int i, end;
586 nid_t nid;
587
588 blk_start_plug(&plug);
589
590 /* Then, try readahead for siblings of the desired node */
591 end = start + n;
592 end = min(end, NIDS_PER_BLOCK);
593 for (i = start; i < end; i++) {
594 nid = get_nid(parent, i, false);
595 f2fs_ra_node_page(sbi, nid);
596 }
597
598 blk_finish_plug(&plug);
599}
600
601pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
602{
603 const long direct_index = ADDRS_PER_INODE(dn->inode);
604 const long direct_blks = ADDRS_PER_BLOCK;
605 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
606 unsigned int skipped_unit = ADDRS_PER_BLOCK;
607 int cur_level = dn->cur_level;
608 int max_level = dn->max_level;
609 pgoff_t base = 0;
610
611 if (!dn->max_level)
612 return pgofs + 1;
613
614 while (max_level-- > cur_level)
615 skipped_unit *= NIDS_PER_BLOCK;
616
617 switch (dn->max_level) {
618 case 3:
619 base += 2 * indirect_blks;
620 case 2:
621 base += 2 * direct_blks;
622 case 1:
623 base += direct_index;
624 break;
625 default:
626 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
627 }
628
629 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
630}
631
632/*
633 * The maximum depth is four.
634 * Offset[0] will have raw inode offset.
635 */
636static int get_node_path(struct inode *inode, long block,
637 int offset[4], unsigned int noffset[4])
638{
639 const long direct_index = ADDRS_PER_INODE(inode);
640 const long direct_blks = ADDRS_PER_BLOCK;
641 const long dptrs_per_blk = NIDS_PER_BLOCK;
642 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
643 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
644 int n = 0;
645 int level = 0;
646
647 noffset[0] = 0;
648
649 if (block < direct_index) {
650 offset[n] = block;
651 goto got;
652 }
653 block -= direct_index;
654 if (block < direct_blks) {
655 offset[n++] = NODE_DIR1_BLOCK;
656 noffset[n] = 1;
657 offset[n] = block;
658 level = 1;
659 goto got;
660 }
661 block -= direct_blks;
662 if (block < direct_blks) {
663 offset[n++] = NODE_DIR2_BLOCK;
664 noffset[n] = 2;
665 offset[n] = block;
666 level = 1;
667 goto got;
668 }
669 block -= direct_blks;
670 if (block < indirect_blks) {
671 offset[n++] = NODE_IND1_BLOCK;
672 noffset[n] = 3;
673 offset[n++] = block / direct_blks;
674 noffset[n] = 4 + offset[n - 1];
675 offset[n] = block % direct_blks;
676 level = 2;
677 goto got;
678 }
679 block -= indirect_blks;
680 if (block < indirect_blks) {
681 offset[n++] = NODE_IND2_BLOCK;
682 noffset[n] = 4 + dptrs_per_blk;
683 offset[n++] = block / direct_blks;
684 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
685 offset[n] = block % direct_blks;
686 level = 2;
687 goto got;
688 }
689 block -= indirect_blks;
690 if (block < dindirect_blks) {
691 offset[n++] = NODE_DIND_BLOCK;
692 noffset[n] = 5 + (dptrs_per_blk * 2);
693 offset[n++] = block / indirect_blks;
694 noffset[n] = 6 + (dptrs_per_blk * 2) +
695 offset[n - 1] * (dptrs_per_blk + 1);
696 offset[n++] = (block / direct_blks) % dptrs_per_blk;
697 noffset[n] = 7 + (dptrs_per_blk * 2) +
698 offset[n - 2] * (dptrs_per_blk + 1) +
699 offset[n - 1];
700 offset[n] = block % direct_blks;
701 level = 3;
702 goto got;
703 } else {
704 return -E2BIG;
705 }
706got:
707 return level;
708}
709
710/*
711 * Caller should call f2fs_put_dnode(dn).
712 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
713 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
714 * In the case of RDONLY_NODE, we don't need to care about mutex.
715 */
716int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
717{
718 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
719 struct page *npage[4];
720 struct page *parent = NULL;
721 int offset[4];
722 unsigned int noffset[4];
723 nid_t nids[4];
724 int level, i = 0;
725 int err = 0;
726
727 level = get_node_path(dn->inode, index, offset, noffset);
728 if (level < 0)
729 return level;
730
731 nids[0] = dn->inode->i_ino;
732 npage[0] = dn->inode_page;
733
734 if (!npage[0]) {
735 npage[0] = f2fs_get_node_page(sbi, nids[0]);
736 if (IS_ERR(npage[0]))
737 return PTR_ERR(npage[0]);
738 }
739
740 /* if inline_data is set, should not report any block indices */
741 if (f2fs_has_inline_data(dn->inode) && index) {
742 err = -ENOENT;
743 f2fs_put_page(npage[0], 1);
744 goto release_out;
745 }
746
747 parent = npage[0];
748 if (level != 0)
749 nids[1] = get_nid(parent, offset[0], true);
750 dn->inode_page = npage[0];
751 dn->inode_page_locked = true;
752
753 /* get indirect or direct nodes */
754 for (i = 1; i <= level; i++) {
755 bool done = false;
756
757 if (!nids[i] && mode == ALLOC_NODE) {
758 /* alloc new node */
759 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
760 err = -ENOSPC;
761 goto release_pages;
762 }
763
764 dn->nid = nids[i];
765 npage[i] = f2fs_new_node_page(dn, noffset[i]);
766 if (IS_ERR(npage[i])) {
767 f2fs_alloc_nid_failed(sbi, nids[i]);
768 err = PTR_ERR(npage[i]);
769 goto release_pages;
770 }
771
772 set_nid(parent, offset[i - 1], nids[i], i == 1);
773 f2fs_alloc_nid_done(sbi, nids[i]);
774 done = true;
775 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
776 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
777 if (IS_ERR(npage[i])) {
778 err = PTR_ERR(npage[i]);
779 goto release_pages;
780 }
781 done = true;
782 }
783 if (i == 1) {
784 dn->inode_page_locked = false;
785 unlock_page(parent);
786 } else {
787 f2fs_put_page(parent, 1);
788 }
789
790 if (!done) {
791 npage[i] = f2fs_get_node_page(sbi, nids[i]);
792 if (IS_ERR(npage[i])) {
793 err = PTR_ERR(npage[i]);
794 f2fs_put_page(npage[0], 0);
795 goto release_out;
796 }
797 }
798 if (i < level) {
799 parent = npage[i];
800 nids[i + 1] = get_nid(parent, offset[i], false);
801 }
802 }
803 dn->nid = nids[level];
804 dn->ofs_in_node = offset[level];
805 dn->node_page = npage[level];
806 dn->data_blkaddr = datablock_addr(dn->inode,
807 dn->node_page, dn->ofs_in_node);
808 return 0;
809
810release_pages:
811 f2fs_put_page(parent, 1);
812 if (i > 1)
813 f2fs_put_page(npage[0], 0);
814release_out:
815 dn->inode_page = NULL;
816 dn->node_page = NULL;
817 if (err == -ENOENT) {
818 dn->cur_level = i;
819 dn->max_level = level;
820 dn->ofs_in_node = offset[level];
821 }
822 return err;
823}
824
825static int truncate_node(struct dnode_of_data *dn)
826{
827 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
828 struct node_info ni;
829 int err;
830
831 err = f2fs_get_node_info(sbi, dn->nid, &ni);
832 if (err)
833 return err;
834
835 /* Deallocate node address */
836 f2fs_invalidate_blocks(sbi, ni.blk_addr);
837 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
838 set_node_addr(sbi, &ni, NULL_ADDR, false);
839
840 if (dn->nid == dn->inode->i_ino) {
841 f2fs_remove_orphan_inode(sbi, dn->nid);
842 dec_valid_inode_count(sbi);
843 f2fs_inode_synced(dn->inode);
844 }
845
846 clear_node_page_dirty(dn->node_page);
847 set_sbi_flag(sbi, SBI_IS_DIRTY);
848
849 f2fs_put_page(dn->node_page, 1);
850
851 invalidate_mapping_pages(NODE_MAPPING(sbi),
852 dn->node_page->index, dn->node_page->index);
853
854 dn->node_page = NULL;
855 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
856
857 return 0;
858}
859
860static int truncate_dnode(struct dnode_of_data *dn)
861{
862 struct page *page;
863 int err;
864
865 if (dn->nid == 0)
866 return 1;
867
868 /* get direct node */
869 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
870 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
871 return 1;
872 else if (IS_ERR(page))
873 return PTR_ERR(page);
874
875 /* Make dnode_of_data for parameter */
876 dn->node_page = page;
877 dn->ofs_in_node = 0;
878 f2fs_truncate_data_blocks(dn);
879 err = truncate_node(dn);
880 if (err)
881 return err;
882
883 return 1;
884}
885
886static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
887 int ofs, int depth)
888{
889 struct dnode_of_data rdn = *dn;
890 struct page *page;
891 struct f2fs_node *rn;
892 nid_t child_nid;
893 unsigned int child_nofs;
894 int freed = 0;
895 int i, ret;
896
897 if (dn->nid == 0)
898 return NIDS_PER_BLOCK + 1;
899
900 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
901
902 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
903 if (IS_ERR(page)) {
904 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
905 return PTR_ERR(page);
906 }
907
908 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
909
910 rn = F2FS_NODE(page);
911 if (depth < 3) {
912 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
913 child_nid = le32_to_cpu(rn->in.nid[i]);
914 if (child_nid == 0)
915 continue;
916 rdn.nid = child_nid;
917 ret = truncate_dnode(&rdn);
918 if (ret < 0)
919 goto out_err;
920 if (set_nid(page, i, 0, false))
921 dn->node_changed = true;
922 }
923 } else {
924 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
925 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
926 child_nid = le32_to_cpu(rn->in.nid[i]);
927 if (child_nid == 0) {
928 child_nofs += NIDS_PER_BLOCK + 1;
929 continue;
930 }
931 rdn.nid = child_nid;
932 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
933 if (ret == (NIDS_PER_BLOCK + 1)) {
934 if (set_nid(page, i, 0, false))
935 dn->node_changed = true;
936 child_nofs += ret;
937 } else if (ret < 0 && ret != -ENOENT) {
938 goto out_err;
939 }
940 }
941 freed = child_nofs;
942 }
943
944 if (!ofs) {
945 /* remove current indirect node */
946 dn->node_page = page;
947 ret = truncate_node(dn);
948 if (ret)
949 goto out_err;
950 freed++;
951 } else {
952 f2fs_put_page(page, 1);
953 }
954 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
955 return freed;
956
957out_err:
958 f2fs_put_page(page, 1);
959 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
960 return ret;
961}
962
963static int truncate_partial_nodes(struct dnode_of_data *dn,
964 struct f2fs_inode *ri, int *offset, int depth)
965{
966 struct page *pages[2];
967 nid_t nid[3];
968 nid_t child_nid;
969 int err = 0;
970 int i;
971 int idx = depth - 2;
972
973 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
974 if (!nid[0])
975 return 0;
976
977 /* get indirect nodes in the path */
978 for (i = 0; i < idx + 1; i++) {
979 /* reference count'll be increased */
980 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
981 if (IS_ERR(pages[i])) {
982 err = PTR_ERR(pages[i]);
983 idx = i - 1;
984 goto fail;
985 }
986 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
987 }
988
989 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
990
991 /* free direct nodes linked to a partial indirect node */
992 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
993 child_nid = get_nid(pages[idx], i, false);
994 if (!child_nid)
995 continue;
996 dn->nid = child_nid;
997 err = truncate_dnode(dn);
998 if (err < 0)
999 goto fail;
1000 if (set_nid(pages[idx], i, 0, false))
1001 dn->node_changed = true;
1002 }
1003
1004 if (offset[idx + 1] == 0) {
1005 dn->node_page = pages[idx];
1006 dn->nid = nid[idx];
1007 err = truncate_node(dn);
1008 if (err)
1009 goto fail;
1010 } else {
1011 f2fs_put_page(pages[idx], 1);
1012 }
1013 offset[idx]++;
1014 offset[idx + 1] = 0;
1015 idx--;
1016fail:
1017 for (i = idx; i >= 0; i--)
1018 f2fs_put_page(pages[i], 1);
1019
1020 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1021
1022 return err;
1023}
1024
1025/*
1026 * All the block addresses of data and nodes should be nullified.
1027 */
1028int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1029{
1030 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1031 int err = 0, cont = 1;
1032 int level, offset[4], noffset[4];
1033 unsigned int nofs = 0;
1034 struct f2fs_inode *ri;
1035 struct dnode_of_data dn;
1036 struct page *page;
1037
1038 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1039
1040 level = get_node_path(inode, from, offset, noffset);
1041 if (level < 0)
1042 return level;
1043
1044 page = f2fs_get_node_page(sbi, inode->i_ino);
1045 if (IS_ERR(page)) {
1046 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1047 return PTR_ERR(page);
1048 }
1049
1050 set_new_dnode(&dn, inode, page, NULL, 0);
1051 unlock_page(page);
1052
1053 ri = F2FS_INODE(page);
1054 switch (level) {
1055 case 0:
1056 case 1:
1057 nofs = noffset[1];
1058 break;
1059 case 2:
1060 nofs = noffset[1];
1061 if (!offset[level - 1])
1062 goto skip_partial;
1063 err = truncate_partial_nodes(&dn, ri, offset, level);
1064 if (err < 0 && err != -ENOENT)
1065 goto fail;
1066 nofs += 1 + NIDS_PER_BLOCK;
1067 break;
1068 case 3:
1069 nofs = 5 + 2 * NIDS_PER_BLOCK;
1070 if (!offset[level - 1])
1071 goto skip_partial;
1072 err = truncate_partial_nodes(&dn, ri, offset, level);
1073 if (err < 0 && err != -ENOENT)
1074 goto fail;
1075 break;
1076 default:
1077 BUG();
1078 }
1079
1080skip_partial:
1081 while (cont) {
1082 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1083 switch (offset[0]) {
1084 case NODE_DIR1_BLOCK:
1085 case NODE_DIR2_BLOCK:
1086 err = truncate_dnode(&dn);
1087 break;
1088
1089 case NODE_IND1_BLOCK:
1090 case NODE_IND2_BLOCK:
1091 err = truncate_nodes(&dn, nofs, offset[1], 2);
1092 break;
1093
1094 case NODE_DIND_BLOCK:
1095 err = truncate_nodes(&dn, nofs, offset[1], 3);
1096 cont = 0;
1097 break;
1098
1099 default:
1100 BUG();
1101 }
1102 if (err < 0 && err != -ENOENT)
1103 goto fail;
1104 if (offset[1] == 0 &&
1105 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1106 lock_page(page);
1107 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1108 f2fs_wait_on_page_writeback(page, NODE, true);
1109 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1110 set_page_dirty(page);
1111 unlock_page(page);
1112 }
1113 offset[1] = 0;
1114 offset[0]++;
1115 nofs += err;
1116 }
1117fail:
1118 f2fs_put_page(page, 0);
1119 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1120 return err > 0 ? 0 : err;
1121}
1122
1123/* caller must lock inode page */
1124int f2fs_truncate_xattr_node(struct inode *inode)
1125{
1126 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1127 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1128 struct dnode_of_data dn;
1129 struct page *npage;
1130 int err;
1131
1132 if (!nid)
1133 return 0;
1134
1135 npage = f2fs_get_node_page(sbi, nid);
1136 if (IS_ERR(npage))
1137 return PTR_ERR(npage);
1138
1139 set_new_dnode(&dn, inode, NULL, npage, nid);
1140 err = truncate_node(&dn);
1141 if (err) {
1142 f2fs_put_page(npage, 1);
1143 return err;
1144 }
1145
1146 f2fs_i_xnid_write(inode, 0);
1147
1148 return 0;
1149}
1150
1151/*
1152 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1153 * f2fs_unlock_op().
1154 */
1155int f2fs_remove_inode_page(struct inode *inode)
1156{
1157 struct dnode_of_data dn;
1158 int err;
1159
1160 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1161 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1162 if (err)
1163 return err;
1164
1165 err = f2fs_truncate_xattr_node(inode);
1166 if (err) {
1167 f2fs_put_dnode(&dn);
1168 return err;
1169 }
1170
1171 /* remove potential inline_data blocks */
1172 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1173 S_ISLNK(inode->i_mode))
1174 f2fs_truncate_data_blocks_range(&dn, 1);
1175
1176 /* 0 is possible, after f2fs_new_inode() has failed */
1177 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1178 f2fs_put_dnode(&dn);
1179 return -EIO;
1180 }
1181 f2fs_bug_on(F2FS_I_SB(inode),
1182 inode->i_blocks != 0 && inode->i_blocks != 8);
1183
1184 /* will put inode & node pages */
1185 err = truncate_node(&dn);
1186 if (err) {
1187 f2fs_put_dnode(&dn);
1188 return err;
1189 }
1190 return 0;
1191}
1192
1193struct page *f2fs_new_inode_page(struct inode *inode)
1194{
1195 struct dnode_of_data dn;
1196
1197 /* allocate inode page for new inode */
1198 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1199
1200 /* caller should f2fs_put_page(page, 1); */
1201 return f2fs_new_node_page(&dn, 0);
1202}
1203
1204struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1205{
1206 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1207 struct node_info new_ni;
1208 struct page *page;
1209 int err;
1210
1211 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1212 return ERR_PTR(-EPERM);
1213
1214 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1215 if (!page)
1216 return ERR_PTR(-ENOMEM);
1217
1218 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1219 goto fail;
1220
1221#ifdef CONFIG_F2FS_CHECK_FS
1222 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1223 if (err) {
1224 dec_valid_node_count(sbi, dn->inode, !ofs);
1225 goto fail;
1226 }
1227 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1228#endif
1229 new_ni.nid = dn->nid;
1230 new_ni.ino = dn->inode->i_ino;
1231 new_ni.blk_addr = NULL_ADDR;
1232 new_ni.flag = 0;
1233 new_ni.version = 0;
1234 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1235
1236 f2fs_wait_on_page_writeback(page, NODE, true);
1237 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1238 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1239 if (!PageUptodate(page))
1240 SetPageUptodate(page);
1241 if (set_page_dirty(page))
1242 dn->node_changed = true;
1243
1244 if (f2fs_has_xattr_block(ofs))
1245 f2fs_i_xnid_write(dn->inode, dn->nid);
1246
1247 if (ofs == 0)
1248 inc_valid_inode_count(sbi);
1249 return page;
1250
1251fail:
1252 clear_node_page_dirty(page);
1253 f2fs_put_page(page, 1);
1254 return ERR_PTR(err);
1255}
1256
1257/*
1258 * Caller should do after getting the following values.
1259 * 0: f2fs_put_page(page, 0)
1260 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1261 */
1262static int read_node_page(struct page *page, int op_flags)
1263{
1264 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1265 struct node_info ni;
1266 struct f2fs_io_info fio = {
1267 .sbi = sbi,
1268 .type = NODE,
1269 .op = REQ_OP_READ,
1270 .op_flags = op_flags,
1271 .page = page,
1272 .encrypted_page = NULL,
1273 };
1274 int err;
1275
1276 if (PageUptodate(page)) {
1277#ifdef CONFIG_F2FS_CHECK_FS
1278 f2fs_bug_on(sbi, !f2fs_inode_chksum_verify(sbi, page));
1279#endif
1280 return LOCKED_PAGE;
1281 }
1282
1283 err = f2fs_get_node_info(sbi, page->index, &ni);
1284 if (err)
1285 return err;
1286
1287 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1288 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1289 ClearPageUptodate(page);
1290 return -ENOENT;
1291 }
1292
1293 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1294 return f2fs_submit_page_bio(&fio);
1295}
1296
1297/*
1298 * Readahead a node page
1299 */
1300void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1301{
1302 struct page *apage;
1303 int err;
1304
1305 if (!nid)
1306 return;
1307 if (f2fs_check_nid_range(sbi, nid))
1308 return;
1309
1310 rcu_read_lock();
1311 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1312 rcu_read_unlock();
1313 if (apage)
1314 return;
1315
1316 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1317 if (!apage)
1318 return;
1319
1320 err = read_node_page(apage, REQ_RAHEAD);
1321 f2fs_put_page(apage, err ? 1 : 0);
1322}
1323
1324static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1325 struct page *parent, int start)
1326{
1327 struct page *page;
1328 int err;
1329
1330 if (!nid)
1331 return ERR_PTR(-ENOENT);
1332 if (f2fs_check_nid_range(sbi, nid))
1333 return ERR_PTR(-EINVAL);
1334repeat:
1335 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1336 if (!page)
1337 return ERR_PTR(-ENOMEM);
1338
1339 err = read_node_page(page, 0);
1340 if (err < 0) {
1341 f2fs_put_page(page, 1);
1342 return ERR_PTR(err);
1343 } else if (err == LOCKED_PAGE) {
1344 err = 0;
1345 goto page_hit;
1346 }
1347
1348 if (parent)
1349 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1350
1351 lock_page(page);
1352
1353 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1354 f2fs_put_page(page, 1);
1355 goto repeat;
1356 }
1357
1358 if (unlikely(!PageUptodate(page))) {
1359 err = -EIO;
1360 goto out_err;
1361 }
1362
1363 if (!f2fs_inode_chksum_verify(sbi, page)) {
1364 err = -EBADMSG;
1365 goto out_err;
1366 }
1367page_hit:
1368 if(unlikely(nid != nid_of_node(page))) {
1369 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1370 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1371 nid, nid_of_node(page), ino_of_node(page),
1372 ofs_of_node(page), cpver_of_node(page),
1373 next_blkaddr_of_node(page));
1374 err = -EINVAL;
1375out_err:
1376 ClearPageUptodate(page);
1377 f2fs_put_page(page, 1);
1378 return ERR_PTR(err);
1379 }
1380 return page;
1381}
1382
1383struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1384{
1385 return __get_node_page(sbi, nid, NULL, 0);
1386}
1387
1388struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1389{
1390 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1391 nid_t nid = get_nid(parent, start, false);
1392
1393 return __get_node_page(sbi, nid, parent, start);
1394}
1395
1396static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1397{
1398 struct inode *inode;
1399 struct page *page;
1400 int ret;
1401
1402 /* should flush inline_data before evict_inode */
1403 inode = ilookup(sbi->sb, ino);
1404 if (!inode)
1405 return;
1406
1407 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1408 FGP_LOCK|FGP_NOWAIT, 0);
1409 if (!page)
1410 goto iput_out;
1411
1412 if (!PageUptodate(page))
1413 goto page_out;
1414
1415 if (!PageDirty(page))
1416 goto page_out;
1417
1418 if (!clear_page_dirty_for_io(page))
1419 goto page_out;
1420
1421 ret = f2fs_write_inline_data(inode, page);
1422 inode_dec_dirty_pages(inode);
1423 f2fs_remove_dirty_inode(inode);
1424 if (ret)
1425 set_page_dirty(page);
1426page_out:
1427 f2fs_put_page(page, 1);
1428iput_out:
1429 iput(inode);
1430}
1431
1432static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1433{
1434 pgoff_t index;
1435 struct pagevec pvec;
1436 struct page *last_page = NULL;
1437 int nr_pages;
1438
1439 pagevec_init(&pvec);
1440 index = 0;
1441
1442 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1443 PAGECACHE_TAG_DIRTY))) {
1444 int i;
1445
1446 for (i = 0; i < nr_pages; i++) {
1447 struct page *page = pvec.pages[i];
1448
1449 if (unlikely(f2fs_cp_error(sbi))) {
1450 f2fs_put_page(last_page, 0);
1451 pagevec_release(&pvec);
1452 return ERR_PTR(-EIO);
1453 }
1454
1455 if (!IS_DNODE(page) || !is_cold_node(page))
1456 continue;
1457 if (ino_of_node(page) != ino)
1458 continue;
1459
1460 lock_page(page);
1461
1462 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1463continue_unlock:
1464 unlock_page(page);
1465 continue;
1466 }
1467 if (ino_of_node(page) != ino)
1468 goto continue_unlock;
1469
1470 if (!PageDirty(page)) {
1471 /* someone wrote it for us */
1472 goto continue_unlock;
1473 }
1474
1475 if (last_page)
1476 f2fs_put_page(last_page, 0);
1477
1478 get_page(page);
1479 last_page = page;
1480 unlock_page(page);
1481 }
1482 pagevec_release(&pvec);
1483 cond_resched();
1484 }
1485 return last_page;
1486}
1487
1488static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1489 struct writeback_control *wbc, bool do_balance,
1490 enum iostat_type io_type, unsigned int *seq_id)
1491{
1492 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1493 nid_t nid;
1494 struct node_info ni;
1495 struct f2fs_io_info fio = {
1496 .sbi = sbi,
1497 .ino = ino_of_node(page),
1498 .type = NODE,
1499 .op = REQ_OP_WRITE,
1500 .op_flags = wbc_to_write_flags(wbc),
1501 .page = page,
1502 .encrypted_page = NULL,
1503 .submitted = false,
1504 .io_type = io_type,
1505 .io_wbc = wbc,
1506 };
1507 unsigned int seq;
1508
1509 trace_f2fs_writepage(page, NODE);
1510
1511 if (unlikely(f2fs_cp_error(sbi)))
1512 goto redirty_out;
1513
1514 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1515 goto redirty_out;
1516
1517 if (wbc->sync_mode == WB_SYNC_NONE &&
1518 IS_DNODE(page) && is_cold_node(page))
1519 goto redirty_out;
1520
1521 /* get old block addr of this node page */
1522 nid = nid_of_node(page);
1523 f2fs_bug_on(sbi, page->index != nid);
1524
1525 if (f2fs_get_node_info(sbi, nid, &ni))
1526 goto redirty_out;
1527
1528 if (wbc->for_reclaim) {
1529 if (!down_read_trylock(&sbi->node_write))
1530 goto redirty_out;
1531 } else {
1532 down_read(&sbi->node_write);
1533 }
1534
1535 /* This page is already truncated */
1536 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1537 ClearPageUptodate(page);
1538 dec_page_count(sbi, F2FS_DIRTY_NODES);
1539 up_read(&sbi->node_write);
1540 unlock_page(page);
1541 return 0;
1542 }
1543
1544 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1545 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1546 up_read(&sbi->node_write);
1547 goto redirty_out;
1548 }
1549
1550 if (atomic && !test_opt(sbi, NOBARRIER))
1551 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1552
1553 set_page_writeback(page);
1554 ClearPageError(page);
1555
1556 if (f2fs_in_warm_node_list(sbi, page)) {
1557 seq = f2fs_add_fsync_node_entry(sbi, page);
1558 if (seq_id)
1559 *seq_id = seq;
1560 }
1561
1562 fio.old_blkaddr = ni.blk_addr;
1563 f2fs_do_write_node_page(nid, &fio);
1564 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1565 dec_page_count(sbi, F2FS_DIRTY_NODES);
1566 up_read(&sbi->node_write);
1567
1568 if (wbc->for_reclaim) {
1569 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1570 page->index, NODE);
1571 submitted = NULL;
1572 }
1573
1574 unlock_page(page);
1575
1576 if (unlikely(f2fs_cp_error(sbi))) {
1577 f2fs_submit_merged_write(sbi, NODE);
1578 submitted = NULL;
1579 }
1580 if (submitted)
1581 *submitted = fio.submitted;
1582
1583 if (do_balance)
1584 f2fs_balance_fs(sbi, false);
1585 return 0;
1586
1587redirty_out:
1588 redirty_page_for_writepage(wbc, page);
1589 return AOP_WRITEPAGE_ACTIVATE;
1590}
1591
1592void f2fs_move_node_page(struct page *node_page, int gc_type)
1593{
1594 if (gc_type == FG_GC) {
1595 struct writeback_control wbc = {
1596 .sync_mode = WB_SYNC_ALL,
1597 .nr_to_write = 1,
1598 .for_reclaim = 0,
1599 };
1600
1601 set_page_dirty(node_page);
1602 f2fs_wait_on_page_writeback(node_page, NODE, true);
1603
1604 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1605 if (!clear_page_dirty_for_io(node_page))
1606 goto out_page;
1607
1608 if (__write_node_page(node_page, false, NULL,
1609 &wbc, false, FS_GC_NODE_IO, NULL))
1610 unlock_page(node_page);
1611 goto release_page;
1612 } else {
1613 /* set page dirty and write it */
1614 if (!PageWriteback(node_page))
1615 set_page_dirty(node_page);
1616 }
1617out_page:
1618 unlock_page(node_page);
1619release_page:
1620 f2fs_put_page(node_page, 0);
1621}
1622
1623static int f2fs_write_node_page(struct page *page,
1624 struct writeback_control *wbc)
1625{
1626 return __write_node_page(page, false, NULL, wbc, false,
1627 FS_NODE_IO, NULL);
1628}
1629
1630int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1631 struct writeback_control *wbc, bool atomic,
1632 unsigned int *seq_id)
1633{
1634 pgoff_t index;
1635 pgoff_t last_idx = ULONG_MAX;
1636 struct pagevec pvec;
1637 int ret = 0;
1638 struct page *last_page = NULL;
1639 bool marked = false;
1640 nid_t ino = inode->i_ino;
1641 int nr_pages;
1642
1643 if (atomic) {
1644 last_page = last_fsync_dnode(sbi, ino);
1645 if (IS_ERR_OR_NULL(last_page))
1646 return PTR_ERR_OR_ZERO(last_page);
1647 }
1648retry:
1649 pagevec_init(&pvec);
1650 index = 0;
1651
1652 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1653 PAGECACHE_TAG_DIRTY))) {
1654 int i;
1655
1656 for (i = 0; i < nr_pages; i++) {
1657 struct page *page = pvec.pages[i];
1658 bool submitted = false;
1659
1660 if (unlikely(f2fs_cp_error(sbi))) {
1661 f2fs_put_page(last_page, 0);
1662 pagevec_release(&pvec);
1663 ret = -EIO;
1664 goto out;
1665 }
1666
1667 if (!IS_DNODE(page) || !is_cold_node(page))
1668 continue;
1669 if (ino_of_node(page) != ino)
1670 continue;
1671
1672 lock_page(page);
1673
1674 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1675continue_unlock:
1676 unlock_page(page);
1677 continue;
1678 }
1679 if (ino_of_node(page) != ino)
1680 goto continue_unlock;
1681
1682 if (!PageDirty(page) && page != last_page) {
1683 /* someone wrote it for us */
1684 goto continue_unlock;
1685 }
1686
1687 f2fs_wait_on_page_writeback(page, NODE, true);
1688 BUG_ON(PageWriteback(page));
1689
1690 set_fsync_mark(page, 0);
1691 set_dentry_mark(page, 0);
1692
1693 if (!atomic || page == last_page) {
1694 set_fsync_mark(page, 1);
1695 if (IS_INODE(page)) {
1696 if (is_inode_flag_set(inode,
1697 FI_DIRTY_INODE))
1698 f2fs_update_inode(inode, page);
1699 set_dentry_mark(page,
1700 f2fs_need_dentry_mark(sbi, ino));
1701 }
1702 /* may be written by other thread */
1703 if (!PageDirty(page))
1704 set_page_dirty(page);
1705 }
1706
1707 if (!clear_page_dirty_for_io(page))
1708 goto continue_unlock;
1709
1710 ret = __write_node_page(page, atomic &&
1711 page == last_page,
1712 &submitted, wbc, true,
1713 FS_NODE_IO, seq_id);
1714 if (ret) {
1715 unlock_page(page);
1716 f2fs_put_page(last_page, 0);
1717 break;
1718 } else if (submitted) {
1719 last_idx = page->index;
1720 }
1721
1722 if (page == last_page) {
1723 f2fs_put_page(page, 0);
1724 marked = true;
1725 break;
1726 }
1727 }
1728 pagevec_release(&pvec);
1729 cond_resched();
1730
1731 if (ret || marked)
1732 break;
1733 }
1734 if (!ret && atomic && !marked) {
1735 f2fs_msg(sbi->sb, KERN_DEBUG,
1736 "Retry to write fsync mark: ino=%u, idx=%lx",
1737 ino, last_page->index);
1738 lock_page(last_page);
1739 f2fs_wait_on_page_writeback(last_page, NODE, true);
1740 set_page_dirty(last_page);
1741 unlock_page(last_page);
1742 goto retry;
1743 }
1744out:
1745 if (last_idx != ULONG_MAX)
1746 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1747 return ret ? -EIO: 0;
1748}
1749
1750int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1751 struct writeback_control *wbc,
1752 bool do_balance, enum iostat_type io_type)
1753{
1754 pgoff_t index;
1755 struct pagevec pvec;
1756 int step = 0;
1757 int nwritten = 0;
1758 int ret = 0;
1759 int nr_pages, done = 0;
1760
1761 pagevec_init(&pvec);
1762
1763next_step:
1764 index = 0;
1765
1766 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1767 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1768 int i;
1769
1770 for (i = 0; i < nr_pages; i++) {
1771 struct page *page = pvec.pages[i];
1772 bool submitted = false;
1773
1774 /* give a priority to WB_SYNC threads */
1775 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1776 wbc->sync_mode == WB_SYNC_NONE) {
1777 done = 1;
1778 break;
1779 }
1780
1781 /*
1782 * flushing sequence with step:
1783 * 0. indirect nodes
1784 * 1. dentry dnodes
1785 * 2. file dnodes
1786 */
1787 if (step == 0 && IS_DNODE(page))
1788 continue;
1789 if (step == 1 && (!IS_DNODE(page) ||
1790 is_cold_node(page)))
1791 continue;
1792 if (step == 2 && (!IS_DNODE(page) ||
1793 !is_cold_node(page)))
1794 continue;
1795lock_node:
1796 if (wbc->sync_mode == WB_SYNC_ALL)
1797 lock_page(page);
1798 else if (!trylock_page(page))
1799 continue;
1800
1801 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1802continue_unlock:
1803 unlock_page(page);
1804 continue;
1805 }
1806
1807 if (!PageDirty(page)) {
1808 /* someone wrote it for us */
1809 goto continue_unlock;
1810 }
1811
1812 /* flush inline_data */
1813 if (is_inline_node(page)) {
1814 clear_inline_node(page);
1815 unlock_page(page);
1816 flush_inline_data(sbi, ino_of_node(page));
1817 goto lock_node;
1818 }
1819
1820 f2fs_wait_on_page_writeback(page, NODE, true);
1821
1822 BUG_ON(PageWriteback(page));
1823 if (!clear_page_dirty_for_io(page))
1824 goto continue_unlock;
1825
1826 set_fsync_mark(page, 0);
1827 set_dentry_mark(page, 0);
1828
1829 ret = __write_node_page(page, false, &submitted,
1830 wbc, do_balance, io_type, NULL);
1831 if (ret)
1832 unlock_page(page);
1833 else if (submitted)
1834 nwritten++;
1835
1836 if (--wbc->nr_to_write == 0)
1837 break;
1838 }
1839 pagevec_release(&pvec);
1840 cond_resched();
1841
1842 if (wbc->nr_to_write == 0) {
1843 step = 2;
1844 break;
1845 }
1846 }
1847
1848 if (step < 2) {
1849 if (wbc->sync_mode == WB_SYNC_NONE && step == 1)
1850 goto out;
1851 step++;
1852 goto next_step;
1853 }
1854out:
1855 if (nwritten)
1856 f2fs_submit_merged_write(sbi, NODE);
1857
1858 if (unlikely(f2fs_cp_error(sbi)))
1859 return -EIO;
1860 return ret;
1861}
1862
1863int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1864 unsigned int seq_id)
1865{
1866 struct fsync_node_entry *fn;
1867 struct page *page;
1868 struct list_head *head = &sbi->fsync_node_list;
1869 unsigned long flags;
1870 unsigned int cur_seq_id = 0;
1871 int ret2, ret = 0;
1872
1873 while (seq_id && cur_seq_id < seq_id) {
1874 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1875 if (list_empty(head)) {
1876 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1877 break;
1878 }
1879 fn = list_first_entry(head, struct fsync_node_entry, list);
1880 if (fn->seq_id > seq_id) {
1881 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1882 break;
1883 }
1884 cur_seq_id = fn->seq_id;
1885 page = fn->page;
1886 get_page(page);
1887 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1888
1889 f2fs_wait_on_page_writeback(page, NODE, true);
1890 if (TestClearPageError(page))
1891 ret = -EIO;
1892
1893 put_page(page);
1894
1895 if (ret)
1896 break;
1897 }
1898
1899 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1900 if (!ret)
1901 ret = ret2;
1902
1903 return ret;
1904}
1905
1906static int f2fs_write_node_pages(struct address_space *mapping,
1907 struct writeback_control *wbc)
1908{
1909 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1910 struct blk_plug plug;
1911 long diff;
1912
1913 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1914 goto skip_write;
1915
1916 /* balancing f2fs's metadata in background */
1917 f2fs_balance_fs_bg(sbi);
1918
1919 /* collect a number of dirty node pages and write together */
1920 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1921 goto skip_write;
1922
1923 if (wbc->sync_mode == WB_SYNC_ALL)
1924 atomic_inc(&sbi->wb_sync_req[NODE]);
1925 else if (atomic_read(&sbi->wb_sync_req[NODE]))
1926 goto skip_write;
1927
1928 trace_f2fs_writepages(mapping->host, wbc, NODE);
1929
1930 diff = nr_pages_to_write(sbi, NODE, wbc);
1931 blk_start_plug(&plug);
1932 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1933 blk_finish_plug(&plug);
1934 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1935
1936 if (wbc->sync_mode == WB_SYNC_ALL)
1937 atomic_dec(&sbi->wb_sync_req[NODE]);
1938 return 0;
1939
1940skip_write:
1941 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1942 trace_f2fs_writepages(mapping->host, wbc, NODE);
1943 return 0;
1944}
1945
1946static int f2fs_set_node_page_dirty(struct page *page)
1947{
1948 trace_f2fs_set_page_dirty(page, NODE);
1949
1950 if (!PageUptodate(page))
1951 SetPageUptodate(page);
1952#ifdef CONFIG_F2FS_CHECK_FS
1953 if (IS_INODE(page))
1954 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
1955#endif
1956 if (!PageDirty(page)) {
1957 __set_page_dirty_nobuffers(page);
1958 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1959 SetPagePrivate(page);
1960 f2fs_trace_pid(page);
1961 return 1;
1962 }
1963 return 0;
1964}
1965
1966/*
1967 * Structure of the f2fs node operations
1968 */
1969const struct address_space_operations f2fs_node_aops = {
1970 .writepage = f2fs_write_node_page,
1971 .writepages = f2fs_write_node_pages,
1972 .set_page_dirty = f2fs_set_node_page_dirty,
1973 .invalidatepage = f2fs_invalidate_page,
1974 .releasepage = f2fs_release_page,
1975#ifdef CONFIG_MIGRATION
1976 .migratepage = f2fs_migrate_page,
1977#endif
1978};
1979
1980static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1981 nid_t n)
1982{
1983 return radix_tree_lookup(&nm_i->free_nid_root, n);
1984}
1985
1986static int __insert_free_nid(struct f2fs_sb_info *sbi,
1987 struct free_nid *i, enum nid_state state)
1988{
1989 struct f2fs_nm_info *nm_i = NM_I(sbi);
1990
1991 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1992 if (err)
1993 return err;
1994
1995 f2fs_bug_on(sbi, state != i->state);
1996 nm_i->nid_cnt[state]++;
1997 if (state == FREE_NID)
1998 list_add_tail(&i->list, &nm_i->free_nid_list);
1999 return 0;
2000}
2001
2002static void __remove_free_nid(struct f2fs_sb_info *sbi,
2003 struct free_nid *i, enum nid_state state)
2004{
2005 struct f2fs_nm_info *nm_i = NM_I(sbi);
2006
2007 f2fs_bug_on(sbi, state != i->state);
2008 nm_i->nid_cnt[state]--;
2009 if (state == FREE_NID)
2010 list_del(&i->list);
2011 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2012}
2013
2014static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2015 enum nid_state org_state, enum nid_state dst_state)
2016{
2017 struct f2fs_nm_info *nm_i = NM_I(sbi);
2018
2019 f2fs_bug_on(sbi, org_state != i->state);
2020 i->state = dst_state;
2021 nm_i->nid_cnt[org_state]--;
2022 nm_i->nid_cnt[dst_state]++;
2023
2024 switch (dst_state) {
2025 case PREALLOC_NID:
2026 list_del(&i->list);
2027 break;
2028 case FREE_NID:
2029 list_add_tail(&i->list, &nm_i->free_nid_list);
2030 break;
2031 default:
2032 BUG_ON(1);
2033 }
2034}
2035
2036static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2037 bool set, bool build)
2038{
2039 struct f2fs_nm_info *nm_i = NM_I(sbi);
2040 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2041 unsigned int nid_ofs = nid - START_NID(nid);
2042
2043 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2044 return;
2045
2046 if (set) {
2047 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2048 return;
2049 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2050 nm_i->free_nid_count[nat_ofs]++;
2051 } else {
2052 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2053 return;
2054 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2055 if (!build)
2056 nm_i->free_nid_count[nat_ofs]--;
2057 }
2058}
2059
2060/* return if the nid is recognized as free */
2061static bool add_free_nid(struct f2fs_sb_info *sbi,
2062 nid_t nid, bool build, bool update)
2063{
2064 struct f2fs_nm_info *nm_i = NM_I(sbi);
2065 struct free_nid *i, *e;
2066 struct nat_entry *ne;
2067 int err = -EINVAL;
2068 bool ret = false;
2069
2070 /* 0 nid should not be used */
2071 if (unlikely(nid == 0))
2072 return false;
2073
2074 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2075 i->nid = nid;
2076 i->state = FREE_NID;
2077
2078 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2079
2080 spin_lock(&nm_i->nid_list_lock);
2081
2082 if (build) {
2083 /*
2084 * Thread A Thread B
2085 * - f2fs_create
2086 * - f2fs_new_inode
2087 * - f2fs_alloc_nid
2088 * - __insert_nid_to_list(PREALLOC_NID)
2089 * - f2fs_balance_fs_bg
2090 * - f2fs_build_free_nids
2091 * - __f2fs_build_free_nids
2092 * - scan_nat_page
2093 * - add_free_nid
2094 * - __lookup_nat_cache
2095 * - f2fs_add_link
2096 * - f2fs_init_inode_metadata
2097 * - f2fs_new_inode_page
2098 * - f2fs_new_node_page
2099 * - set_node_addr
2100 * - f2fs_alloc_nid_done
2101 * - __remove_nid_from_list(PREALLOC_NID)
2102 * - __insert_nid_to_list(FREE_NID)
2103 */
2104 ne = __lookup_nat_cache(nm_i, nid);
2105 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2106 nat_get_blkaddr(ne) != NULL_ADDR))
2107 goto err_out;
2108
2109 e = __lookup_free_nid_list(nm_i, nid);
2110 if (e) {
2111 if (e->state == FREE_NID)
2112 ret = true;
2113 goto err_out;
2114 }
2115 }
2116 ret = true;
2117 err = __insert_free_nid(sbi, i, FREE_NID);
2118err_out:
2119 if (update) {
2120 update_free_nid_bitmap(sbi, nid, ret, build);
2121 if (!build)
2122 nm_i->available_nids++;
2123 }
2124 spin_unlock(&nm_i->nid_list_lock);
2125 radix_tree_preload_end();
2126
2127 if (err)
2128 kmem_cache_free(free_nid_slab, i);
2129 return ret;
2130}
2131
2132static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2133{
2134 struct f2fs_nm_info *nm_i = NM_I(sbi);
2135 struct free_nid *i;
2136 bool need_free = false;
2137
2138 spin_lock(&nm_i->nid_list_lock);
2139 i = __lookup_free_nid_list(nm_i, nid);
2140 if (i && i->state == FREE_NID) {
2141 __remove_free_nid(sbi, i, FREE_NID);
2142 need_free = true;
2143 }
2144 spin_unlock(&nm_i->nid_list_lock);
2145
2146 if (need_free)
2147 kmem_cache_free(free_nid_slab, i);
2148}
2149
2150static int scan_nat_page(struct f2fs_sb_info *sbi,
2151 struct page *nat_page, nid_t start_nid)
2152{
2153 struct f2fs_nm_info *nm_i = NM_I(sbi);
2154 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2155 block_t blk_addr;
2156 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2157 int i;
2158
2159 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2160
2161 i = start_nid % NAT_ENTRY_PER_BLOCK;
2162
2163 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2164 if (unlikely(start_nid >= nm_i->max_nid))
2165 break;
2166
2167 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2168
2169 if (blk_addr == NEW_ADDR)
2170 return -EINVAL;
2171
2172 if (blk_addr == NULL_ADDR) {
2173 add_free_nid(sbi, start_nid, true, true);
2174 } else {
2175 spin_lock(&NM_I(sbi)->nid_list_lock);
2176 update_free_nid_bitmap(sbi, start_nid, false, true);
2177 spin_unlock(&NM_I(sbi)->nid_list_lock);
2178 }
2179 }
2180
2181 return 0;
2182}
2183
2184static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2185{
2186 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2187 struct f2fs_journal *journal = curseg->journal;
2188 int i;
2189
2190 down_read(&curseg->journal_rwsem);
2191 for (i = 0; i < nats_in_cursum(journal); i++) {
2192 block_t addr;
2193 nid_t nid;
2194
2195 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2196 nid = le32_to_cpu(nid_in_journal(journal, i));
2197 if (addr == NULL_ADDR)
2198 add_free_nid(sbi, nid, true, false);
2199 else
2200 remove_free_nid(sbi, nid);
2201 }
2202 up_read(&curseg->journal_rwsem);
2203}
2204
2205static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2206{
2207 struct f2fs_nm_info *nm_i = NM_I(sbi);
2208 unsigned int i, idx;
2209 nid_t nid;
2210
2211 down_read(&nm_i->nat_tree_lock);
2212
2213 for (i = 0; i < nm_i->nat_blocks; i++) {
2214 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2215 continue;
2216 if (!nm_i->free_nid_count[i])
2217 continue;
2218 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2219 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2220 NAT_ENTRY_PER_BLOCK, idx);
2221 if (idx >= NAT_ENTRY_PER_BLOCK)
2222 break;
2223
2224 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2225 add_free_nid(sbi, nid, true, false);
2226
2227 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2228 goto out;
2229 }
2230 }
2231out:
2232 scan_curseg_cache(sbi);
2233
2234 up_read(&nm_i->nat_tree_lock);
2235}
2236
2237static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2238 bool sync, bool mount)
2239{
2240 struct f2fs_nm_info *nm_i = NM_I(sbi);
2241 int i = 0, ret;
2242 nid_t nid = nm_i->next_scan_nid;
2243
2244 if (unlikely(nid >= nm_i->max_nid))
2245 nid = 0;
2246
2247 /* Enough entries */
2248 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2249 return 0;
2250
2251 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2252 return 0;
2253
2254 if (!mount) {
2255 /* try to find free nids in free_nid_bitmap */
2256 scan_free_nid_bits(sbi);
2257
2258 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2259 return 0;
2260 }
2261
2262 /* readahead nat pages to be scanned */
2263 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2264 META_NAT, true);
2265
2266 down_read(&nm_i->nat_tree_lock);
2267
2268 while (1) {
2269 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2270 nm_i->nat_block_bitmap)) {
2271 struct page *page = get_current_nat_page(sbi, nid);
2272
2273 ret = scan_nat_page(sbi, page, nid);
2274 f2fs_put_page(page, 1);
2275
2276 if (ret) {
2277 up_read(&nm_i->nat_tree_lock);
2278 f2fs_bug_on(sbi, !mount);
2279 f2fs_msg(sbi->sb, KERN_ERR,
2280 "NAT is corrupt, run fsck to fix it");
2281 return -EINVAL;
2282 }
2283 }
2284
2285 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2286 if (unlikely(nid >= nm_i->max_nid))
2287 nid = 0;
2288
2289 if (++i >= FREE_NID_PAGES)
2290 break;
2291 }
2292
2293 /* go to the next free nat pages to find free nids abundantly */
2294 nm_i->next_scan_nid = nid;
2295
2296 /* find free nids from current sum_pages */
2297 scan_curseg_cache(sbi);
2298
2299 up_read(&nm_i->nat_tree_lock);
2300
2301 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2302 nm_i->ra_nid_pages, META_NAT, false);
2303
2304 return 0;
2305}
2306
2307int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2308{
2309 int ret;
2310
2311 mutex_lock(&NM_I(sbi)->build_lock);
2312 ret = __f2fs_build_free_nids(sbi, sync, mount);
2313 mutex_unlock(&NM_I(sbi)->build_lock);
2314
2315 return ret;
2316}
2317
2318/*
2319 * If this function returns success, caller can obtain a new nid
2320 * from second parameter of this function.
2321 * The returned nid could be used ino as well as nid when inode is created.
2322 */
2323bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2324{
2325 struct f2fs_nm_info *nm_i = NM_I(sbi);
2326 struct free_nid *i = NULL;
2327retry:
2328 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2329 f2fs_show_injection_info(FAULT_ALLOC_NID);
2330 return false;
2331 }
2332
2333 spin_lock(&nm_i->nid_list_lock);
2334
2335 if (unlikely(nm_i->available_nids == 0)) {
2336 spin_unlock(&nm_i->nid_list_lock);
2337 return false;
2338 }
2339
2340 /* We should not use stale free nids created by f2fs_build_free_nids */
2341 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2342 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2343 i = list_first_entry(&nm_i->free_nid_list,
2344 struct free_nid, list);
2345 *nid = i->nid;
2346
2347 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2348 nm_i->available_nids--;
2349
2350 update_free_nid_bitmap(sbi, *nid, false, false);
2351
2352 spin_unlock(&nm_i->nid_list_lock);
2353 return true;
2354 }
2355 spin_unlock(&nm_i->nid_list_lock);
2356
2357 /* Let's scan nat pages and its caches to get free nids */
2358 f2fs_build_free_nids(sbi, true, false);
2359 goto retry;
2360}
2361
2362/*
2363 * f2fs_alloc_nid() should be called prior to this function.
2364 */
2365void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2366{
2367 struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 struct free_nid *i;
2369
2370 spin_lock(&nm_i->nid_list_lock);
2371 i = __lookup_free_nid_list(nm_i, nid);
2372 f2fs_bug_on(sbi, !i);
2373 __remove_free_nid(sbi, i, PREALLOC_NID);
2374 spin_unlock(&nm_i->nid_list_lock);
2375
2376 kmem_cache_free(free_nid_slab, i);
2377}
2378
2379/*
2380 * f2fs_alloc_nid() should be called prior to this function.
2381 */
2382void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2383{
2384 struct f2fs_nm_info *nm_i = NM_I(sbi);
2385 struct free_nid *i;
2386 bool need_free = false;
2387
2388 if (!nid)
2389 return;
2390
2391 spin_lock(&nm_i->nid_list_lock);
2392 i = __lookup_free_nid_list(nm_i, nid);
2393 f2fs_bug_on(sbi, !i);
2394
2395 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2396 __remove_free_nid(sbi, i, PREALLOC_NID);
2397 need_free = true;
2398 } else {
2399 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2400 }
2401
2402 nm_i->available_nids++;
2403
2404 update_free_nid_bitmap(sbi, nid, true, false);
2405
2406 spin_unlock(&nm_i->nid_list_lock);
2407
2408 if (need_free)
2409 kmem_cache_free(free_nid_slab, i);
2410}
2411
2412int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2413{
2414 struct f2fs_nm_info *nm_i = NM_I(sbi);
2415 struct free_nid *i, *next;
2416 int nr = nr_shrink;
2417
2418 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2419 return 0;
2420
2421 if (!mutex_trylock(&nm_i->build_lock))
2422 return 0;
2423
2424 spin_lock(&nm_i->nid_list_lock);
2425 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2426 if (nr_shrink <= 0 ||
2427 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2428 break;
2429
2430 __remove_free_nid(sbi, i, FREE_NID);
2431 kmem_cache_free(free_nid_slab, i);
2432 nr_shrink--;
2433 }
2434 spin_unlock(&nm_i->nid_list_lock);
2435 mutex_unlock(&nm_i->build_lock);
2436
2437 return nr - nr_shrink;
2438}
2439
2440void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2441{
2442 void *src_addr, *dst_addr;
2443 size_t inline_size;
2444 struct page *ipage;
2445 struct f2fs_inode *ri;
2446
2447 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2448 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2449
2450 ri = F2FS_INODE(page);
2451 if (ri->i_inline & F2FS_INLINE_XATTR) {
2452 set_inode_flag(inode, FI_INLINE_XATTR);
2453 } else {
2454 clear_inode_flag(inode, FI_INLINE_XATTR);
2455 goto update_inode;
2456 }
2457
2458 dst_addr = inline_xattr_addr(inode, ipage);
2459 src_addr = inline_xattr_addr(inode, page);
2460 inline_size = inline_xattr_size(inode);
2461
2462 f2fs_wait_on_page_writeback(ipage, NODE, true);
2463 memcpy(dst_addr, src_addr, inline_size);
2464update_inode:
2465 f2fs_update_inode(inode, ipage);
2466 f2fs_put_page(ipage, 1);
2467}
2468
2469int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2470{
2471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2472 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2473 nid_t new_xnid;
2474 struct dnode_of_data dn;
2475 struct node_info ni;
2476 struct page *xpage;
2477 int err;
2478
2479 if (!prev_xnid)
2480 goto recover_xnid;
2481
2482 /* 1: invalidate the previous xattr nid */
2483 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2484 if (err)
2485 return err;
2486
2487 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2488 dec_valid_node_count(sbi, inode, false);
2489 set_node_addr(sbi, &ni, NULL_ADDR, false);
2490
2491recover_xnid:
2492 /* 2: update xattr nid in inode */
2493 if (!f2fs_alloc_nid(sbi, &new_xnid))
2494 return -ENOSPC;
2495
2496 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2497 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2498 if (IS_ERR(xpage)) {
2499 f2fs_alloc_nid_failed(sbi, new_xnid);
2500 return PTR_ERR(xpage);
2501 }
2502
2503 f2fs_alloc_nid_done(sbi, new_xnid);
2504 f2fs_update_inode_page(inode);
2505
2506 /* 3: update and set xattr node page dirty */
2507 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2508
2509 set_page_dirty(xpage);
2510 f2fs_put_page(xpage, 1);
2511
2512 return 0;
2513}
2514
2515int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2516{
2517 struct f2fs_inode *src, *dst;
2518 nid_t ino = ino_of_node(page);
2519 struct node_info old_ni, new_ni;
2520 struct page *ipage;
2521 int err;
2522
2523 err = f2fs_get_node_info(sbi, ino, &old_ni);
2524 if (err)
2525 return err;
2526
2527 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2528 return -EINVAL;
2529retry:
2530 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2531 if (!ipage) {
2532 congestion_wait(BLK_RW_ASYNC, HZ/50);
2533 goto retry;
2534 }
2535
2536 /* Should not use this inode from free nid list */
2537 remove_free_nid(sbi, ino);
2538
2539 if (!PageUptodate(ipage))
2540 SetPageUptodate(ipage);
2541 fill_node_footer(ipage, ino, ino, 0, true);
2542 set_cold_node(ipage, false);
2543
2544 src = F2FS_INODE(page);
2545 dst = F2FS_INODE(ipage);
2546
2547 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2548 dst->i_size = 0;
2549 dst->i_blocks = cpu_to_le64(1);
2550 dst->i_links = cpu_to_le32(1);
2551 dst->i_xattr_nid = 0;
2552 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2553 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2554 dst->i_extra_isize = src->i_extra_isize;
2555
2556 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2557 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2558 i_inline_xattr_size))
2559 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2560
2561 if (f2fs_sb_has_project_quota(sbi->sb) &&
2562 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2563 i_projid))
2564 dst->i_projid = src->i_projid;
2565
2566 if (f2fs_sb_has_inode_crtime(sbi->sb) &&
2567 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2568 i_crtime_nsec)) {
2569 dst->i_crtime = src->i_crtime;
2570 dst->i_crtime_nsec = src->i_crtime_nsec;
2571 }
2572 }
2573
2574 new_ni = old_ni;
2575 new_ni.ino = ino;
2576
2577 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2578 WARN_ON(1);
2579 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2580 inc_valid_inode_count(sbi);
2581 set_page_dirty(ipage);
2582 f2fs_put_page(ipage, 1);
2583 return 0;
2584}
2585
2586int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2587 unsigned int segno, struct f2fs_summary_block *sum)
2588{
2589 struct f2fs_node *rn;
2590 struct f2fs_summary *sum_entry;
2591 block_t addr;
2592 int i, idx, last_offset, nrpages;
2593
2594 /* scan the node segment */
2595 last_offset = sbi->blocks_per_seg;
2596 addr = START_BLOCK(sbi, segno);
2597 sum_entry = &sum->entries[0];
2598
2599 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2600 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2601
2602 /* readahead node pages */
2603 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2604
2605 for (idx = addr; idx < addr + nrpages; idx++) {
2606 struct page *page = f2fs_get_tmp_page(sbi, idx);
2607
2608 if (IS_ERR(page))
2609 return PTR_ERR(page);
2610
2611 rn = F2FS_NODE(page);
2612 sum_entry->nid = rn->footer.nid;
2613 sum_entry->version = 0;
2614 sum_entry->ofs_in_node = 0;
2615 sum_entry++;
2616 f2fs_put_page(page, 1);
2617 }
2618
2619 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2620 addr + nrpages);
2621 }
2622 return 0;
2623}
2624
2625static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2626{
2627 struct f2fs_nm_info *nm_i = NM_I(sbi);
2628 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2629 struct f2fs_journal *journal = curseg->journal;
2630 int i;
2631
2632 down_write(&curseg->journal_rwsem);
2633 for (i = 0; i < nats_in_cursum(journal); i++) {
2634 struct nat_entry *ne;
2635 struct f2fs_nat_entry raw_ne;
2636 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2637
2638 raw_ne = nat_in_journal(journal, i);
2639
2640 ne = __lookup_nat_cache(nm_i, nid);
2641 if (!ne) {
2642 ne = __alloc_nat_entry(nid, true);
2643 __init_nat_entry(nm_i, ne, &raw_ne, true);
2644 }
2645
2646 /*
2647 * if a free nat in journal has not been used after last
2648 * checkpoint, we should remove it from available nids,
2649 * since later we will add it again.
2650 */
2651 if (!get_nat_flag(ne, IS_DIRTY) &&
2652 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2653 spin_lock(&nm_i->nid_list_lock);
2654 nm_i->available_nids--;
2655 spin_unlock(&nm_i->nid_list_lock);
2656 }
2657
2658 __set_nat_cache_dirty(nm_i, ne);
2659 }
2660 update_nats_in_cursum(journal, -i);
2661 up_write(&curseg->journal_rwsem);
2662}
2663
2664static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2665 struct list_head *head, int max)
2666{
2667 struct nat_entry_set *cur;
2668
2669 if (nes->entry_cnt >= max)
2670 goto add_out;
2671
2672 list_for_each_entry(cur, head, set_list) {
2673 if (cur->entry_cnt >= nes->entry_cnt) {
2674 list_add(&nes->set_list, cur->set_list.prev);
2675 return;
2676 }
2677 }
2678add_out:
2679 list_add_tail(&nes->set_list, head);
2680}
2681
2682static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2683 struct page *page)
2684{
2685 struct f2fs_nm_info *nm_i = NM_I(sbi);
2686 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2687 struct f2fs_nat_block *nat_blk = page_address(page);
2688 int valid = 0;
2689 int i = 0;
2690
2691 if (!enabled_nat_bits(sbi, NULL))
2692 return;
2693
2694 if (nat_index == 0) {
2695 valid = 1;
2696 i = 1;
2697 }
2698 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2699 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2700 valid++;
2701 }
2702 if (valid == 0) {
2703 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2704 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2705 return;
2706 }
2707
2708 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2709 if (valid == NAT_ENTRY_PER_BLOCK)
2710 __set_bit_le(nat_index, nm_i->full_nat_bits);
2711 else
2712 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2713}
2714
2715static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2716 struct nat_entry_set *set, struct cp_control *cpc)
2717{
2718 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2719 struct f2fs_journal *journal = curseg->journal;
2720 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2721 bool to_journal = true;
2722 struct f2fs_nat_block *nat_blk;
2723 struct nat_entry *ne, *cur;
2724 struct page *page = NULL;
2725
2726 /*
2727 * there are two steps to flush nat entries:
2728 * #1, flush nat entries to journal in current hot data summary block.
2729 * #2, flush nat entries to nat page.
2730 */
2731 if (enabled_nat_bits(sbi, cpc) ||
2732 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2733 to_journal = false;
2734
2735 if (to_journal) {
2736 down_write(&curseg->journal_rwsem);
2737 } else {
2738 page = get_next_nat_page(sbi, start_nid);
2739 nat_blk = page_address(page);
2740 f2fs_bug_on(sbi, !nat_blk);
2741 }
2742
2743 /* flush dirty nats in nat entry set */
2744 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2745 struct f2fs_nat_entry *raw_ne;
2746 nid_t nid = nat_get_nid(ne);
2747 int offset;
2748
2749 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2750
2751 if (to_journal) {
2752 offset = f2fs_lookup_journal_in_cursum(journal,
2753 NAT_JOURNAL, nid, 1);
2754 f2fs_bug_on(sbi, offset < 0);
2755 raw_ne = &nat_in_journal(journal, offset);
2756 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2757 } else {
2758 raw_ne = &nat_blk->entries[nid - start_nid];
2759 }
2760 raw_nat_from_node_info(raw_ne, &ne->ni);
2761 nat_reset_flag(ne);
2762 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2763 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2764 add_free_nid(sbi, nid, false, true);
2765 } else {
2766 spin_lock(&NM_I(sbi)->nid_list_lock);
2767 update_free_nid_bitmap(sbi, nid, false, false);
2768 spin_unlock(&NM_I(sbi)->nid_list_lock);
2769 }
2770 }
2771
2772 if (to_journal) {
2773 up_write(&curseg->journal_rwsem);
2774 } else {
2775 __update_nat_bits(sbi, start_nid, page);
2776 f2fs_put_page(page, 1);
2777 }
2778
2779 /* Allow dirty nats by node block allocation in write_begin */
2780 if (!set->entry_cnt) {
2781 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2782 kmem_cache_free(nat_entry_set_slab, set);
2783 }
2784}
2785
2786/*
2787 * This function is called during the checkpointing process.
2788 */
2789void f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2790{
2791 struct f2fs_nm_info *nm_i = NM_I(sbi);
2792 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2793 struct f2fs_journal *journal = curseg->journal;
2794 struct nat_entry_set *setvec[SETVEC_SIZE];
2795 struct nat_entry_set *set, *tmp;
2796 unsigned int found;
2797 nid_t set_idx = 0;
2798 LIST_HEAD(sets);
2799
2800 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2801 if (enabled_nat_bits(sbi, cpc)) {
2802 down_write(&nm_i->nat_tree_lock);
2803 remove_nats_in_journal(sbi);
2804 up_write(&nm_i->nat_tree_lock);
2805 }
2806
2807 if (!nm_i->dirty_nat_cnt)
2808 return;
2809
2810 down_write(&nm_i->nat_tree_lock);
2811
2812 /*
2813 * if there are no enough space in journal to store dirty nat
2814 * entries, remove all entries from journal and merge them
2815 * into nat entry set.
2816 */
2817 if (enabled_nat_bits(sbi, cpc) ||
2818 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2819 remove_nats_in_journal(sbi);
2820
2821 while ((found = __gang_lookup_nat_set(nm_i,
2822 set_idx, SETVEC_SIZE, setvec))) {
2823 unsigned idx;
2824 set_idx = setvec[found - 1]->set + 1;
2825 for (idx = 0; idx < found; idx++)
2826 __adjust_nat_entry_set(setvec[idx], &sets,
2827 MAX_NAT_JENTRIES(journal));
2828 }
2829
2830 /* flush dirty nats in nat entry set */
2831 list_for_each_entry_safe(set, tmp, &sets, set_list)
2832 __flush_nat_entry_set(sbi, set, cpc);
2833
2834 up_write(&nm_i->nat_tree_lock);
2835 /* Allow dirty nats by node block allocation in write_begin */
2836}
2837
2838static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2839{
2840 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2841 struct f2fs_nm_info *nm_i = NM_I(sbi);
2842 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2843 unsigned int i;
2844 __u64 cp_ver = cur_cp_version(ckpt);
2845 block_t nat_bits_addr;
2846
2847 if (!enabled_nat_bits(sbi, NULL))
2848 return 0;
2849
2850 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2851 nm_i->nat_bits = f2fs_kzalloc(sbi,
2852 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2853 if (!nm_i->nat_bits)
2854 return -ENOMEM;
2855
2856 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2857 nm_i->nat_bits_blocks;
2858 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2859 struct page *page;
2860
2861 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
2862 if (IS_ERR(page)) {
2863 disable_nat_bits(sbi, true);
2864 return PTR_ERR(page);
2865 }
2866
2867 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2868 page_address(page), F2FS_BLKSIZE);
2869 f2fs_put_page(page, 1);
2870 }
2871
2872 cp_ver |= (cur_cp_crc(ckpt) << 32);
2873 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2874 disable_nat_bits(sbi, true);
2875 return 0;
2876 }
2877
2878 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2879 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2880
2881 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2882 return 0;
2883}
2884
2885static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2886{
2887 struct f2fs_nm_info *nm_i = NM_I(sbi);
2888 unsigned int i = 0;
2889 nid_t nid, last_nid;
2890
2891 if (!enabled_nat_bits(sbi, NULL))
2892 return;
2893
2894 for (i = 0; i < nm_i->nat_blocks; i++) {
2895 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2896 if (i >= nm_i->nat_blocks)
2897 break;
2898
2899 __set_bit_le(i, nm_i->nat_block_bitmap);
2900
2901 nid = i * NAT_ENTRY_PER_BLOCK;
2902 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2903
2904 spin_lock(&NM_I(sbi)->nid_list_lock);
2905 for (; nid < last_nid; nid++)
2906 update_free_nid_bitmap(sbi, nid, true, true);
2907 spin_unlock(&NM_I(sbi)->nid_list_lock);
2908 }
2909
2910 for (i = 0; i < nm_i->nat_blocks; i++) {
2911 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2912 if (i >= nm_i->nat_blocks)
2913 break;
2914
2915 __set_bit_le(i, nm_i->nat_block_bitmap);
2916 }
2917}
2918
2919static int init_node_manager(struct f2fs_sb_info *sbi)
2920{
2921 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2922 struct f2fs_nm_info *nm_i = NM_I(sbi);
2923 unsigned char *version_bitmap;
2924 unsigned int nat_segs;
2925 int err;
2926
2927 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2928
2929 /* segment_count_nat includes pair segment so divide to 2. */
2930 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2931 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2932 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2933
2934 /* not used nids: 0, node, meta, (and root counted as valid node) */
2935 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2936 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2937 nm_i->nid_cnt[FREE_NID] = 0;
2938 nm_i->nid_cnt[PREALLOC_NID] = 0;
2939 nm_i->nat_cnt = 0;
2940 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2941 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2942 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2943
2944 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2945 INIT_LIST_HEAD(&nm_i->free_nid_list);
2946 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2947 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2948 INIT_LIST_HEAD(&nm_i->nat_entries);
2949 spin_lock_init(&nm_i->nat_list_lock);
2950
2951 mutex_init(&nm_i->build_lock);
2952 spin_lock_init(&nm_i->nid_list_lock);
2953 init_rwsem(&nm_i->nat_tree_lock);
2954
2955 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2956 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2957 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2958 if (!version_bitmap)
2959 return -EFAULT;
2960
2961 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2962 GFP_KERNEL);
2963 if (!nm_i->nat_bitmap)
2964 return -ENOMEM;
2965
2966 err = __get_nat_bitmaps(sbi);
2967 if (err)
2968 return err;
2969
2970#ifdef CONFIG_F2FS_CHECK_FS
2971 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2972 GFP_KERNEL);
2973 if (!nm_i->nat_bitmap_mir)
2974 return -ENOMEM;
2975#endif
2976
2977 return 0;
2978}
2979
2980static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2981{
2982 struct f2fs_nm_info *nm_i = NM_I(sbi);
2983 int i;
2984
2985 nm_i->free_nid_bitmap =
2986 f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *),
2987 nm_i->nat_blocks),
2988 GFP_KERNEL);
2989 if (!nm_i->free_nid_bitmap)
2990 return -ENOMEM;
2991
2992 for (i = 0; i < nm_i->nat_blocks; i++) {
2993 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2994 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
2995 if (!nm_i->free_nid_bitmap[i])
2996 return -ENOMEM;
2997 }
2998
2999 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3000 GFP_KERNEL);
3001 if (!nm_i->nat_block_bitmap)
3002 return -ENOMEM;
3003
3004 nm_i->free_nid_count =
3005 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3006 nm_i->nat_blocks),
3007 GFP_KERNEL);
3008 if (!nm_i->free_nid_count)
3009 return -ENOMEM;
3010 return 0;
3011}
3012
3013int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3014{
3015 int err;
3016
3017 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3018 GFP_KERNEL);
3019 if (!sbi->nm_info)
3020 return -ENOMEM;
3021
3022 err = init_node_manager(sbi);
3023 if (err)
3024 return err;
3025
3026 err = init_free_nid_cache(sbi);
3027 if (err)
3028 return err;
3029
3030 /* load free nid status from nat_bits table */
3031 load_free_nid_bitmap(sbi);
3032
3033 return f2fs_build_free_nids(sbi, true, true);
3034}
3035
3036void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3037{
3038 struct f2fs_nm_info *nm_i = NM_I(sbi);
3039 struct free_nid *i, *next_i;
3040 struct nat_entry *natvec[NATVEC_SIZE];
3041 struct nat_entry_set *setvec[SETVEC_SIZE];
3042 nid_t nid = 0;
3043 unsigned int found;
3044
3045 if (!nm_i)
3046 return;
3047
3048 /* destroy free nid list */
3049 spin_lock(&nm_i->nid_list_lock);
3050 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3051 __remove_free_nid(sbi, i, FREE_NID);
3052 spin_unlock(&nm_i->nid_list_lock);
3053 kmem_cache_free(free_nid_slab, i);
3054 spin_lock(&nm_i->nid_list_lock);
3055 }
3056 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3057 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3058 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3059 spin_unlock(&nm_i->nid_list_lock);
3060
3061 /* destroy nat cache */
3062 down_write(&nm_i->nat_tree_lock);
3063 while ((found = __gang_lookup_nat_cache(nm_i,
3064 nid, NATVEC_SIZE, natvec))) {
3065 unsigned idx;
3066
3067 nid = nat_get_nid(natvec[found - 1]) + 1;
3068 for (idx = 0; idx < found; idx++) {
3069 spin_lock(&nm_i->nat_list_lock);
3070 list_del(&natvec[idx]->list);
3071 spin_unlock(&nm_i->nat_list_lock);
3072
3073 __del_from_nat_cache(nm_i, natvec[idx]);
3074 }
3075 }
3076 f2fs_bug_on(sbi, nm_i->nat_cnt);
3077
3078 /* destroy nat set cache */
3079 nid = 0;
3080 while ((found = __gang_lookup_nat_set(nm_i,
3081 nid, SETVEC_SIZE, setvec))) {
3082 unsigned idx;
3083
3084 nid = setvec[found - 1]->set + 1;
3085 for (idx = 0; idx < found; idx++) {
3086 /* entry_cnt is not zero, when cp_error was occurred */
3087 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3088 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3089 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3090 }
3091 }
3092 up_write(&nm_i->nat_tree_lock);
3093
3094 kvfree(nm_i->nat_block_bitmap);
3095 if (nm_i->free_nid_bitmap) {
3096 int i;
3097
3098 for (i = 0; i < nm_i->nat_blocks; i++)
3099 kvfree(nm_i->free_nid_bitmap[i]);
3100 kfree(nm_i->free_nid_bitmap);
3101 }
3102 kvfree(nm_i->free_nid_count);
3103
3104 kfree(nm_i->nat_bitmap);
3105 kfree(nm_i->nat_bits);
3106#ifdef CONFIG_F2FS_CHECK_FS
3107 kfree(nm_i->nat_bitmap_mir);
3108#endif
3109 sbi->nm_info = NULL;
3110 kfree(nm_i);
3111}
3112
3113int __init f2fs_create_node_manager_caches(void)
3114{
3115 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
3116 sizeof(struct nat_entry));
3117 if (!nat_entry_slab)
3118 goto fail;
3119
3120 free_nid_slab = f2fs_kmem_cache_create("free_nid",
3121 sizeof(struct free_nid));
3122 if (!free_nid_slab)
3123 goto destroy_nat_entry;
3124
3125 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
3126 sizeof(struct nat_entry_set));
3127 if (!nat_entry_set_slab)
3128 goto destroy_free_nid;
3129
3130 fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry",
3131 sizeof(struct fsync_node_entry));
3132 if (!fsync_node_entry_slab)
3133 goto destroy_nat_entry_set;
3134 return 0;
3135
3136destroy_nat_entry_set:
3137 kmem_cache_destroy(nat_entry_set_slab);
3138destroy_free_nid:
3139 kmem_cache_destroy(free_nid_slab);
3140destroy_nat_entry:
3141 kmem_cache_destroy(nat_entry_slab);
3142fail:
3143 return -ENOMEM;
3144}
3145
3146void f2fs_destroy_node_manager_caches(void)
3147{
3148 kmem_cache_destroy(fsync_node_entry_slab);
3149 kmem_cache_destroy(nat_entry_set_slab);
3150 kmem_cache_destroy(free_nid_slab);
3151 kmem_cache_destroy(nat_entry_slab);
3152}