blob: 7158b5b77c9de0778022e36f10a4783ea4af6184 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/buffer_head.h>
9#include <linux/file.h>
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
16#include <linux/backing-dev.h>
17#include <linux/writeback.h>
18#include <linux/compat.h>
19#include <linux/xattr.h>
20#include <linux/posix_acl.h>
21#include <linux/falloc.h>
22#include <linux/slab.h>
23#include <linux/ratelimit.h>
24#include <linux/btrfs.h>
25#include <linux/blkdev.h>
26#include <linux/posix_acl_xattr.h>
27#include <linux/uio.h>
28#include <linux/magic.h>
29#include <linux/iversion.h>
30#include <asm/unaligned.h>
31#include "ctree.h"
32#include "disk-io.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
35#include "print-tree.h"
36#include "ordered-data.h"
37#include "xattr.h"
38#include "tree-log.h"
39#include "volumes.h"
40#include "compression.h"
41#include "locking.h"
42#include "free-space-cache.h"
43#include "inode-map.h"
44#include "backref.h"
45#include "props.h"
46#include "qgroup.h"
47#include "dedupe.h"
48
49struct btrfs_iget_args {
50 struct btrfs_key *location;
51 struct btrfs_root *root;
52};
53
54struct btrfs_dio_data {
55 u64 reserve;
56 u64 unsubmitted_oe_range_start;
57 u64 unsubmitted_oe_range_end;
58 int overwrite;
59};
60
61static const struct inode_operations btrfs_dir_inode_operations;
62static const struct inode_operations btrfs_symlink_inode_operations;
63static const struct inode_operations btrfs_dir_ro_inode_operations;
64static const struct inode_operations btrfs_special_inode_operations;
65static const struct inode_operations btrfs_file_inode_operations;
66static const struct address_space_operations btrfs_aops;
67static const struct address_space_operations btrfs_symlink_aops;
68static const struct file_operations btrfs_dir_file_operations;
69static const struct extent_io_ops btrfs_extent_io_ops;
70
71static struct kmem_cache *btrfs_inode_cachep;
72struct kmem_cache *btrfs_trans_handle_cachep;
73struct kmem_cache *btrfs_path_cachep;
74struct kmem_cache *btrfs_free_space_cachep;
75
76#define S_SHIFT 12
77static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
87static int btrfs_setsize(struct inode *inode, struct iattr *attr);
88static int btrfs_truncate(struct inode *inode, bool skip_writeback);
89static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, u64 delalloc_end,
93 int *page_started, unsigned long *nr_written,
94 int unlock, struct btrfs_dedupe_hash *hash);
95static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 u64 orig_start, u64 block_start,
97 u64 block_len, u64 orig_block_len,
98 u64 ram_bytes, int compress_type,
99 int type);
100
101static void __endio_write_update_ordered(struct inode *inode,
102 const u64 offset, const u64 bytes,
103 const bool uptodate);
104
105/*
106 * Cleanup all submitted ordered extents in specified range to handle errors
107 * from the fill_dellaloc() callback.
108 *
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
113 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
114 * fill_delalloc() callback already does proper cleanup for the first page of
115 * the range, that is, it invokes the callback writepage_end_io_hook() for the
116 * range of the first page.
117 */
118static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
119 const u64 offset,
120 const u64 bytes)
121{
122 unsigned long index = offset >> PAGE_SHIFT;
123 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
124 struct page *page;
125
126 while (index <= end_index) {
127 page = find_get_page(inode->i_mapping, index);
128 index++;
129 if (!page)
130 continue;
131 ClearPagePrivate2(page);
132 put_page(page);
133 }
134 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
135 bytes - PAGE_SIZE, false);
136}
137
138static int btrfs_dirty_inode(struct inode *inode);
139
140#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
141void btrfs_test_inode_set_ops(struct inode *inode)
142{
143 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
144}
145#endif
146
147static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
148 struct inode *inode, struct inode *dir,
149 const struct qstr *qstr)
150{
151 int err;
152
153 err = btrfs_init_acl(trans, inode, dir);
154 if (!err)
155 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
156 return err;
157}
158
159/*
160 * this does all the hard work for inserting an inline extent into
161 * the btree. The caller should have done a btrfs_drop_extents so that
162 * no overlapping inline items exist in the btree
163 */
164static int insert_inline_extent(struct btrfs_trans_handle *trans,
165 struct btrfs_path *path, int extent_inserted,
166 struct btrfs_root *root, struct inode *inode,
167 u64 start, size_t size, size_t compressed_size,
168 int compress_type,
169 struct page **compressed_pages)
170{
171 struct extent_buffer *leaf;
172 struct page *page = NULL;
173 char *kaddr;
174 unsigned long ptr;
175 struct btrfs_file_extent_item *ei;
176 int ret;
177 size_t cur_size = size;
178 unsigned long offset;
179
180 if (compressed_size && compressed_pages)
181 cur_size = compressed_size;
182
183 inode_add_bytes(inode, size);
184
185 if (!extent_inserted) {
186 struct btrfs_key key;
187 size_t datasize;
188
189 key.objectid = btrfs_ino(BTRFS_I(inode));
190 key.offset = start;
191 key.type = BTRFS_EXTENT_DATA_KEY;
192
193 datasize = btrfs_file_extent_calc_inline_size(cur_size);
194 path->leave_spinning = 1;
195 ret = btrfs_insert_empty_item(trans, root, path, &key,
196 datasize);
197 if (ret)
198 goto fail;
199 }
200 leaf = path->nodes[0];
201 ei = btrfs_item_ptr(leaf, path->slots[0],
202 struct btrfs_file_extent_item);
203 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
204 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
205 btrfs_set_file_extent_encryption(leaf, ei, 0);
206 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
207 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
208 ptr = btrfs_file_extent_inline_start(ei);
209
210 if (compress_type != BTRFS_COMPRESS_NONE) {
211 struct page *cpage;
212 int i = 0;
213 while (compressed_size > 0) {
214 cpage = compressed_pages[i];
215 cur_size = min_t(unsigned long, compressed_size,
216 PAGE_SIZE);
217
218 kaddr = kmap_atomic(cpage);
219 write_extent_buffer(leaf, kaddr, ptr, cur_size);
220 kunmap_atomic(kaddr);
221
222 i++;
223 ptr += cur_size;
224 compressed_size -= cur_size;
225 }
226 btrfs_set_file_extent_compression(leaf, ei,
227 compress_type);
228 } else {
229 page = find_get_page(inode->i_mapping,
230 start >> PAGE_SHIFT);
231 btrfs_set_file_extent_compression(leaf, ei, 0);
232 kaddr = kmap_atomic(page);
233 offset = start & (PAGE_SIZE - 1);
234 write_extent_buffer(leaf, kaddr + offset, ptr, size);
235 kunmap_atomic(kaddr);
236 put_page(page);
237 }
238 btrfs_mark_buffer_dirty(leaf);
239 btrfs_release_path(path);
240
241 /*
242 * we're an inline extent, so nobody can
243 * extend the file past i_size without locking
244 * a page we already have locked.
245 *
246 * We must do any isize and inode updates
247 * before we unlock the pages. Otherwise we
248 * could end up racing with unlink.
249 */
250 BTRFS_I(inode)->disk_i_size = inode->i_size;
251 ret = btrfs_update_inode(trans, root, inode);
252
253fail:
254 return ret;
255}
256
257
258/*
259 * conditionally insert an inline extent into the file. This
260 * does the checks required to make sure the data is small enough
261 * to fit as an inline extent.
262 */
263static noinline int cow_file_range_inline(struct inode *inode, u64 start,
264 u64 end, size_t compressed_size,
265 int compress_type,
266 struct page **compressed_pages)
267{
268 struct btrfs_root *root = BTRFS_I(inode)->root;
269 struct btrfs_fs_info *fs_info = root->fs_info;
270 struct btrfs_trans_handle *trans;
271 u64 isize = i_size_read(inode);
272 u64 actual_end = min(end + 1, isize);
273 u64 inline_len = actual_end - start;
274 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
275 u64 data_len = inline_len;
276 int ret;
277 struct btrfs_path *path;
278 int extent_inserted = 0;
279 u32 extent_item_size;
280
281 if (compressed_size)
282 data_len = compressed_size;
283
284 if (start > 0 ||
285 actual_end > fs_info->sectorsize ||
286 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
287 (!compressed_size &&
288 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
289 end + 1 < isize ||
290 data_len > fs_info->max_inline) {
291 return 1;
292 }
293
294 path = btrfs_alloc_path();
295 if (!path)
296 return -ENOMEM;
297
298 trans = btrfs_join_transaction(root);
299 if (IS_ERR(trans)) {
300 btrfs_free_path(path);
301 return PTR_ERR(trans);
302 }
303 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
304
305 if (compressed_size && compressed_pages)
306 extent_item_size = btrfs_file_extent_calc_inline_size(
307 compressed_size);
308 else
309 extent_item_size = btrfs_file_extent_calc_inline_size(
310 inline_len);
311
312 ret = __btrfs_drop_extents(trans, root, inode, path,
313 start, aligned_end, NULL,
314 1, 1, extent_item_size, &extent_inserted);
315 if (ret) {
316 btrfs_abort_transaction(trans, ret);
317 goto out;
318 }
319
320 if (isize > actual_end)
321 inline_len = min_t(u64, isize, actual_end);
322 ret = insert_inline_extent(trans, path, extent_inserted,
323 root, inode, start,
324 inline_len, compressed_size,
325 compress_type, compressed_pages);
326 if (ret && ret != -ENOSPC) {
327 btrfs_abort_transaction(trans, ret);
328 goto out;
329 } else if (ret == -ENOSPC) {
330 ret = 1;
331 goto out;
332 }
333
334 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
335 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
336out:
337 /*
338 * Don't forget to free the reserved space, as for inlined extent
339 * it won't count as data extent, free them directly here.
340 * And at reserve time, it's always aligned to page size, so
341 * just free one page here.
342 */
343 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
344 btrfs_free_path(path);
345 btrfs_end_transaction(trans);
346 return ret;
347}
348
349struct async_extent {
350 u64 start;
351 u64 ram_size;
352 u64 compressed_size;
353 struct page **pages;
354 unsigned long nr_pages;
355 int compress_type;
356 struct list_head list;
357};
358
359struct async_cow {
360 struct inode *inode;
361 struct btrfs_root *root;
362 struct page *locked_page;
363 u64 start;
364 u64 end;
365 unsigned int write_flags;
366 struct list_head extents;
367 struct btrfs_work work;
368};
369
370static noinline int add_async_extent(struct async_cow *cow,
371 u64 start, u64 ram_size,
372 u64 compressed_size,
373 struct page **pages,
374 unsigned long nr_pages,
375 int compress_type)
376{
377 struct async_extent *async_extent;
378
379 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
380 BUG_ON(!async_extent); /* -ENOMEM */
381 async_extent->start = start;
382 async_extent->ram_size = ram_size;
383 async_extent->compressed_size = compressed_size;
384 async_extent->pages = pages;
385 async_extent->nr_pages = nr_pages;
386 async_extent->compress_type = compress_type;
387 list_add_tail(&async_extent->list, &cow->extents);
388 return 0;
389}
390
391static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
392{
393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
394
395 /* force compress */
396 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
397 return 1;
398 /* defrag ioctl */
399 if (BTRFS_I(inode)->defrag_compress)
400 return 1;
401 /* bad compression ratios */
402 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
403 return 0;
404 if (btrfs_test_opt(fs_info, COMPRESS) ||
405 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
406 BTRFS_I(inode)->prop_compress)
407 return btrfs_compress_heuristic(inode, start, end);
408 return 0;
409}
410
411static inline void inode_should_defrag(struct btrfs_inode *inode,
412 u64 start, u64 end, u64 num_bytes, u64 small_write)
413{
414 /* If this is a small write inside eof, kick off a defrag */
415 if (num_bytes < small_write &&
416 (start > 0 || end + 1 < inode->disk_i_size))
417 btrfs_add_inode_defrag(NULL, inode);
418}
419
420/*
421 * we create compressed extents in two phases. The first
422 * phase compresses a range of pages that have already been
423 * locked (both pages and state bits are locked).
424 *
425 * This is done inside an ordered work queue, and the compression
426 * is spread across many cpus. The actual IO submission is step
427 * two, and the ordered work queue takes care of making sure that
428 * happens in the same order things were put onto the queue by
429 * writepages and friends.
430 *
431 * If this code finds it can't get good compression, it puts an
432 * entry onto the work queue to write the uncompressed bytes. This
433 * makes sure that both compressed inodes and uncompressed inodes
434 * are written in the same order that the flusher thread sent them
435 * down.
436 */
437static noinline void compress_file_range(struct inode *inode,
438 struct page *locked_page,
439 u64 start, u64 end,
440 struct async_cow *async_cow,
441 int *num_added)
442{
443 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
444 u64 blocksize = fs_info->sectorsize;
445 u64 actual_end;
446 u64 isize = i_size_read(inode);
447 int ret = 0;
448 struct page **pages = NULL;
449 unsigned long nr_pages;
450 unsigned long total_compressed = 0;
451 unsigned long total_in = 0;
452 int i;
453 int will_compress;
454 int compress_type = fs_info->compress_type;
455 int redirty = 0;
456
457 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
458 SZ_16K);
459
460 actual_end = min_t(u64, isize, end + 1);
461again:
462 will_compress = 0;
463 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
464 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
465 nr_pages = min_t(unsigned long, nr_pages,
466 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
467
468 /*
469 * we don't want to send crud past the end of i_size through
470 * compression, that's just a waste of CPU time. So, if the
471 * end of the file is before the start of our current
472 * requested range of bytes, we bail out to the uncompressed
473 * cleanup code that can deal with all of this.
474 *
475 * It isn't really the fastest way to fix things, but this is a
476 * very uncommon corner.
477 */
478 if (actual_end <= start)
479 goto cleanup_and_bail_uncompressed;
480
481 total_compressed = actual_end - start;
482
483 /*
484 * skip compression for a small file range(<=blocksize) that
485 * isn't an inline extent, since it doesn't save disk space at all.
486 */
487 if (total_compressed <= blocksize &&
488 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
489 goto cleanup_and_bail_uncompressed;
490
491 total_compressed = min_t(unsigned long, total_compressed,
492 BTRFS_MAX_UNCOMPRESSED);
493 total_in = 0;
494 ret = 0;
495
496 /*
497 * we do compression for mount -o compress and when the
498 * inode has not been flagged as nocompress. This flag can
499 * change at any time if we discover bad compression ratios.
500 */
501 if (inode_need_compress(inode, start, end)) {
502 WARN_ON(pages);
503 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
504 if (!pages) {
505 /* just bail out to the uncompressed code */
506 nr_pages = 0;
507 goto cont;
508 }
509
510 if (BTRFS_I(inode)->defrag_compress)
511 compress_type = BTRFS_I(inode)->defrag_compress;
512 else if (BTRFS_I(inode)->prop_compress)
513 compress_type = BTRFS_I(inode)->prop_compress;
514
515 /*
516 * we need to call clear_page_dirty_for_io on each
517 * page in the range. Otherwise applications with the file
518 * mmap'd can wander in and change the page contents while
519 * we are compressing them.
520 *
521 * If the compression fails for any reason, we set the pages
522 * dirty again later on.
523 *
524 * Note that the remaining part is redirtied, the start pointer
525 * has moved, the end is the original one.
526 */
527 if (!redirty) {
528 extent_range_clear_dirty_for_io(inode, start, end);
529 redirty = 1;
530 }
531
532 /* Compression level is applied here and only here */
533 ret = btrfs_compress_pages(
534 compress_type | (fs_info->compress_level << 4),
535 inode->i_mapping, start,
536 pages,
537 &nr_pages,
538 &total_in,
539 &total_compressed);
540
541 if (!ret) {
542 unsigned long offset = total_compressed &
543 (PAGE_SIZE - 1);
544 struct page *page = pages[nr_pages - 1];
545 char *kaddr;
546
547 /* zero the tail end of the last page, we might be
548 * sending it down to disk
549 */
550 if (offset) {
551 kaddr = kmap_atomic(page);
552 memset(kaddr + offset, 0,
553 PAGE_SIZE - offset);
554 kunmap_atomic(kaddr);
555 }
556 will_compress = 1;
557 }
558 }
559cont:
560 if (start == 0) {
561 /* lets try to make an inline extent */
562 if (ret || total_in < actual_end) {
563 /* we didn't compress the entire range, try
564 * to make an uncompressed inline extent.
565 */
566 ret = cow_file_range_inline(inode, start, end, 0,
567 BTRFS_COMPRESS_NONE, NULL);
568 } else {
569 /* try making a compressed inline extent */
570 ret = cow_file_range_inline(inode, start, end,
571 total_compressed,
572 compress_type, pages);
573 }
574 if (ret <= 0) {
575 unsigned long clear_flags = EXTENT_DELALLOC |
576 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
577 EXTENT_DO_ACCOUNTING;
578 unsigned long page_error_op;
579
580 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
581
582 /*
583 * inline extent creation worked or returned error,
584 * we don't need to create any more async work items.
585 * Unlock and free up our temp pages.
586 *
587 * We use DO_ACCOUNTING here because we need the
588 * delalloc_release_metadata to be done _after_ we drop
589 * our outstanding extent for clearing delalloc for this
590 * range.
591 */
592 extent_clear_unlock_delalloc(inode, start, end, end,
593 NULL, clear_flags,
594 PAGE_UNLOCK |
595 PAGE_CLEAR_DIRTY |
596 PAGE_SET_WRITEBACK |
597 page_error_op |
598 PAGE_END_WRITEBACK);
599 goto free_pages_out;
600 }
601 }
602
603 if (will_compress) {
604 /*
605 * we aren't doing an inline extent round the compressed size
606 * up to a block size boundary so the allocator does sane
607 * things
608 */
609 total_compressed = ALIGN(total_compressed, blocksize);
610
611 /*
612 * one last check to make sure the compression is really a
613 * win, compare the page count read with the blocks on disk,
614 * compression must free at least one sector size
615 */
616 total_in = ALIGN(total_in, PAGE_SIZE);
617 if (total_compressed + blocksize <= total_in) {
618 *num_added += 1;
619
620 /*
621 * The async work queues will take care of doing actual
622 * allocation on disk for these compressed pages, and
623 * will submit them to the elevator.
624 */
625 add_async_extent(async_cow, start, total_in,
626 total_compressed, pages, nr_pages,
627 compress_type);
628
629 if (start + total_in < end) {
630 start += total_in;
631 pages = NULL;
632 cond_resched();
633 goto again;
634 }
635 return;
636 }
637 }
638 if (pages) {
639 /*
640 * the compression code ran but failed to make things smaller,
641 * free any pages it allocated and our page pointer array
642 */
643 for (i = 0; i < nr_pages; i++) {
644 WARN_ON(pages[i]->mapping);
645 put_page(pages[i]);
646 }
647 kfree(pages);
648 pages = NULL;
649 total_compressed = 0;
650 nr_pages = 0;
651
652 /* flag the file so we don't compress in the future */
653 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
654 !(BTRFS_I(inode)->prop_compress)) {
655 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
656 }
657 }
658cleanup_and_bail_uncompressed:
659 /*
660 * No compression, but we still need to write the pages in the file
661 * we've been given so far. redirty the locked page if it corresponds
662 * to our extent and set things up for the async work queue to run
663 * cow_file_range to do the normal delalloc dance.
664 */
665 if (page_offset(locked_page) >= start &&
666 page_offset(locked_page) <= end)
667 __set_page_dirty_nobuffers(locked_page);
668 /* unlocked later on in the async handlers */
669
670 if (redirty)
671 extent_range_redirty_for_io(inode, start, end);
672 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
673 BTRFS_COMPRESS_NONE);
674 *num_added += 1;
675
676 return;
677
678free_pages_out:
679 for (i = 0; i < nr_pages; i++) {
680 WARN_ON(pages[i]->mapping);
681 put_page(pages[i]);
682 }
683 kfree(pages);
684}
685
686static void free_async_extent_pages(struct async_extent *async_extent)
687{
688 int i;
689
690 if (!async_extent->pages)
691 return;
692
693 for (i = 0; i < async_extent->nr_pages; i++) {
694 WARN_ON(async_extent->pages[i]->mapping);
695 put_page(async_extent->pages[i]);
696 }
697 kfree(async_extent->pages);
698 async_extent->nr_pages = 0;
699 async_extent->pages = NULL;
700}
701
702/*
703 * phase two of compressed writeback. This is the ordered portion
704 * of the code, which only gets called in the order the work was
705 * queued. We walk all the async extents created by compress_file_range
706 * and send them down to the disk.
707 */
708static noinline void submit_compressed_extents(struct inode *inode,
709 struct async_cow *async_cow)
710{
711 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
712 struct async_extent *async_extent;
713 u64 alloc_hint = 0;
714 struct btrfs_key ins;
715 struct extent_map *em;
716 struct btrfs_root *root = BTRFS_I(inode)->root;
717 struct extent_io_tree *io_tree;
718 int ret = 0;
719
720again:
721 while (!list_empty(&async_cow->extents)) {
722 async_extent = list_entry(async_cow->extents.next,
723 struct async_extent, list);
724 list_del(&async_extent->list);
725
726 io_tree = &BTRFS_I(inode)->io_tree;
727
728retry:
729 /* did the compression code fall back to uncompressed IO? */
730 if (!async_extent->pages) {
731 int page_started = 0;
732 unsigned long nr_written = 0;
733
734 lock_extent(io_tree, async_extent->start,
735 async_extent->start +
736 async_extent->ram_size - 1);
737
738 /* allocate blocks */
739 ret = cow_file_range(inode, async_cow->locked_page,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1,
743 async_extent->start +
744 async_extent->ram_size - 1,
745 &page_started, &nr_written, 0,
746 NULL);
747
748 /* JDM XXX */
749
750 /*
751 * if page_started, cow_file_range inserted an
752 * inline extent and took care of all the unlocking
753 * and IO for us. Otherwise, we need to submit
754 * all those pages down to the drive.
755 */
756 if (!page_started && !ret)
757 extent_write_locked_range(inode,
758 async_extent->start,
759 async_extent->start +
760 async_extent->ram_size - 1,
761 WB_SYNC_ALL);
762 else if (ret)
763 unlock_page(async_cow->locked_page);
764 kfree(async_extent);
765 cond_resched();
766 continue;
767 }
768
769 lock_extent(io_tree, async_extent->start,
770 async_extent->start + async_extent->ram_size - 1);
771
772 ret = btrfs_reserve_extent(root, async_extent->ram_size,
773 async_extent->compressed_size,
774 async_extent->compressed_size,
775 0, alloc_hint, &ins, 1, 1);
776 if (ret) {
777 free_async_extent_pages(async_extent);
778
779 if (ret == -ENOSPC) {
780 unlock_extent(io_tree, async_extent->start,
781 async_extent->start +
782 async_extent->ram_size - 1);
783
784 /*
785 * we need to redirty the pages if we decide to
786 * fallback to uncompressed IO, otherwise we
787 * will not submit these pages down to lower
788 * layers.
789 */
790 extent_range_redirty_for_io(inode,
791 async_extent->start,
792 async_extent->start +
793 async_extent->ram_size - 1);
794
795 goto retry;
796 }
797 goto out_free;
798 }
799 /*
800 * here we're doing allocation and writeback of the
801 * compressed pages
802 */
803 em = create_io_em(inode, async_extent->start,
804 async_extent->ram_size, /* len */
805 async_extent->start, /* orig_start */
806 ins.objectid, /* block_start */
807 ins.offset, /* block_len */
808 ins.offset, /* orig_block_len */
809 async_extent->ram_size, /* ram_bytes */
810 async_extent->compress_type,
811 BTRFS_ORDERED_COMPRESSED);
812 if (IS_ERR(em))
813 /* ret value is not necessary due to void function */
814 goto out_free_reserve;
815 free_extent_map(em);
816
817 ret = btrfs_add_ordered_extent_compress(inode,
818 async_extent->start,
819 ins.objectid,
820 async_extent->ram_size,
821 ins.offset,
822 BTRFS_ORDERED_COMPRESSED,
823 async_extent->compress_type);
824 if (ret) {
825 btrfs_drop_extent_cache(BTRFS_I(inode),
826 async_extent->start,
827 async_extent->start +
828 async_extent->ram_size - 1, 0);
829 goto out_free_reserve;
830 }
831 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
832
833 /*
834 * clear dirty, set writeback and unlock the pages.
835 */
836 extent_clear_unlock_delalloc(inode, async_extent->start,
837 async_extent->start +
838 async_extent->ram_size - 1,
839 async_extent->start +
840 async_extent->ram_size - 1,
841 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
842 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
843 PAGE_SET_WRITEBACK);
844 if (btrfs_submit_compressed_write(inode,
845 async_extent->start,
846 async_extent->ram_size,
847 ins.objectid,
848 ins.offset, async_extent->pages,
849 async_extent->nr_pages,
850 async_cow->write_flags)) {
851 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
852 struct page *p = async_extent->pages[0];
853 const u64 start = async_extent->start;
854 const u64 end = start + async_extent->ram_size - 1;
855
856 p->mapping = inode->i_mapping;
857 tree->ops->writepage_end_io_hook(p, start, end,
858 NULL, 0);
859 p->mapping = NULL;
860 extent_clear_unlock_delalloc(inode, start, end, end,
861 NULL, 0,
862 PAGE_END_WRITEBACK |
863 PAGE_SET_ERROR);
864 free_async_extent_pages(async_extent);
865 }
866 alloc_hint = ins.objectid + ins.offset;
867 kfree(async_extent);
868 cond_resched();
869 }
870 return;
871out_free_reserve:
872 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
873 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
874out_free:
875 extent_clear_unlock_delalloc(inode, async_extent->start,
876 async_extent->start +
877 async_extent->ram_size - 1,
878 async_extent->start +
879 async_extent->ram_size - 1,
880 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
881 EXTENT_DELALLOC_NEW |
882 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
883 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
884 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
885 PAGE_SET_ERROR);
886 free_async_extent_pages(async_extent);
887 kfree(async_extent);
888 goto again;
889}
890
891static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
892 u64 num_bytes)
893{
894 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
895 struct extent_map *em;
896 u64 alloc_hint = 0;
897
898 read_lock(&em_tree->lock);
899 em = search_extent_mapping(em_tree, start, num_bytes);
900 if (em) {
901 /*
902 * if block start isn't an actual block number then find the
903 * first block in this inode and use that as a hint. If that
904 * block is also bogus then just don't worry about it.
905 */
906 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
907 free_extent_map(em);
908 em = search_extent_mapping(em_tree, 0, 0);
909 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
910 alloc_hint = em->block_start;
911 if (em)
912 free_extent_map(em);
913 } else {
914 alloc_hint = em->block_start;
915 free_extent_map(em);
916 }
917 }
918 read_unlock(&em_tree->lock);
919
920 return alloc_hint;
921}
922
923/*
924 * when extent_io.c finds a delayed allocation range in the file,
925 * the call backs end up in this code. The basic idea is to
926 * allocate extents on disk for the range, and create ordered data structs
927 * in ram to track those extents.
928 *
929 * locked_page is the page that writepage had locked already. We use
930 * it to make sure we don't do extra locks or unlocks.
931 *
932 * *page_started is set to one if we unlock locked_page and do everything
933 * required to start IO on it. It may be clean and already done with
934 * IO when we return.
935 */
936static noinline int cow_file_range(struct inode *inode,
937 struct page *locked_page,
938 u64 start, u64 end, u64 delalloc_end,
939 int *page_started, unsigned long *nr_written,
940 int unlock, struct btrfs_dedupe_hash *hash)
941{
942 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
943 struct btrfs_root *root = BTRFS_I(inode)->root;
944 u64 alloc_hint = 0;
945 u64 num_bytes;
946 unsigned long ram_size;
947 u64 cur_alloc_size = 0;
948 u64 blocksize = fs_info->sectorsize;
949 struct btrfs_key ins;
950 struct extent_map *em;
951 unsigned clear_bits;
952 unsigned long page_ops;
953 bool extent_reserved = false;
954 int ret = 0;
955
956 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
957 WARN_ON_ONCE(1);
958 ret = -EINVAL;
959 goto out_unlock;
960 }
961
962 num_bytes = ALIGN(end - start + 1, blocksize);
963 num_bytes = max(blocksize, num_bytes);
964 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
965
966 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
967
968 if (start == 0) {
969 /* lets try to make an inline extent */
970 ret = cow_file_range_inline(inode, start, end, 0,
971 BTRFS_COMPRESS_NONE, NULL);
972 if (ret == 0) {
973 /*
974 * We use DO_ACCOUNTING here because we need the
975 * delalloc_release_metadata to be run _after_ we drop
976 * our outstanding extent for clearing delalloc for this
977 * range.
978 */
979 extent_clear_unlock_delalloc(inode, start, end,
980 delalloc_end, NULL,
981 EXTENT_LOCKED | EXTENT_DELALLOC |
982 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
983 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
984 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
985 PAGE_END_WRITEBACK);
986 *nr_written = *nr_written +
987 (end - start + PAGE_SIZE) / PAGE_SIZE;
988 *page_started = 1;
989 goto out;
990 } else if (ret < 0) {
991 goto out_unlock;
992 }
993 }
994
995 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
996 btrfs_drop_extent_cache(BTRFS_I(inode), start,
997 start + num_bytes - 1, 0);
998
999 while (num_bytes > 0) {
1000 cur_alloc_size = num_bytes;
1001 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1002 fs_info->sectorsize, 0, alloc_hint,
1003 &ins, 1, 1);
1004 if (ret < 0)
1005 goto out_unlock;
1006 cur_alloc_size = ins.offset;
1007 extent_reserved = true;
1008
1009 ram_size = ins.offset;
1010 em = create_io_em(inode, start, ins.offset, /* len */
1011 start, /* orig_start */
1012 ins.objectid, /* block_start */
1013 ins.offset, /* block_len */
1014 ins.offset, /* orig_block_len */
1015 ram_size, /* ram_bytes */
1016 BTRFS_COMPRESS_NONE, /* compress_type */
1017 BTRFS_ORDERED_REGULAR /* type */);
1018 if (IS_ERR(em)) {
1019 ret = PTR_ERR(em);
1020 goto out_reserve;
1021 }
1022 free_extent_map(em);
1023
1024 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1025 ram_size, cur_alloc_size, 0);
1026 if (ret)
1027 goto out_drop_extent_cache;
1028
1029 if (root->root_key.objectid ==
1030 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1031 ret = btrfs_reloc_clone_csums(inode, start,
1032 cur_alloc_size);
1033 /*
1034 * Only drop cache here, and process as normal.
1035 *
1036 * We must not allow extent_clear_unlock_delalloc()
1037 * at out_unlock label to free meta of this ordered
1038 * extent, as its meta should be freed by
1039 * btrfs_finish_ordered_io().
1040 *
1041 * So we must continue until @start is increased to
1042 * skip current ordered extent.
1043 */
1044 if (ret)
1045 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1046 start + ram_size - 1, 0);
1047 }
1048
1049 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1050
1051 /* we're not doing compressed IO, don't unlock the first
1052 * page (which the caller expects to stay locked), don't
1053 * clear any dirty bits and don't set any writeback bits
1054 *
1055 * Do set the Private2 bit so we know this page was properly
1056 * setup for writepage
1057 */
1058 page_ops = unlock ? PAGE_UNLOCK : 0;
1059 page_ops |= PAGE_SET_PRIVATE2;
1060
1061 extent_clear_unlock_delalloc(inode, start,
1062 start + ram_size - 1,
1063 delalloc_end, locked_page,
1064 EXTENT_LOCKED | EXTENT_DELALLOC,
1065 page_ops);
1066 if (num_bytes < cur_alloc_size)
1067 num_bytes = 0;
1068 else
1069 num_bytes -= cur_alloc_size;
1070 alloc_hint = ins.objectid + ins.offset;
1071 start += cur_alloc_size;
1072 extent_reserved = false;
1073
1074 /*
1075 * btrfs_reloc_clone_csums() error, since start is increased
1076 * extent_clear_unlock_delalloc() at out_unlock label won't
1077 * free metadata of current ordered extent, we're OK to exit.
1078 */
1079 if (ret)
1080 goto out_unlock;
1081 }
1082out:
1083 return ret;
1084
1085out_drop_extent_cache:
1086 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1087out_reserve:
1088 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1089 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1090out_unlock:
1091 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1092 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1093 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1094 PAGE_END_WRITEBACK;
1095 /*
1096 * If we reserved an extent for our delalloc range (or a subrange) and
1097 * failed to create the respective ordered extent, then it means that
1098 * when we reserved the extent we decremented the extent's size from
1099 * the data space_info's bytes_may_use counter and incremented the
1100 * space_info's bytes_reserved counter by the same amount. We must make
1101 * sure extent_clear_unlock_delalloc() does not try to decrement again
1102 * the data space_info's bytes_may_use counter, therefore we do not pass
1103 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 */
1105 if (extent_reserved) {
1106 extent_clear_unlock_delalloc(inode, start,
1107 start + cur_alloc_size,
1108 start + cur_alloc_size,
1109 locked_page,
1110 clear_bits,
1111 page_ops);
1112 start += cur_alloc_size;
1113 if (start >= end)
1114 goto out;
1115 }
1116 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1117 locked_page,
1118 clear_bits | EXTENT_CLEAR_DATA_RESV,
1119 page_ops);
1120 goto out;
1121}
1122
1123/*
1124 * work queue call back to started compression on a file and pages
1125 */
1126static noinline void async_cow_start(struct btrfs_work *work)
1127{
1128 struct async_cow *async_cow;
1129 int num_added = 0;
1130 async_cow = container_of(work, struct async_cow, work);
1131
1132 compress_file_range(async_cow->inode, async_cow->locked_page,
1133 async_cow->start, async_cow->end, async_cow,
1134 &num_added);
1135 if (num_added == 0) {
1136 btrfs_add_delayed_iput(async_cow->inode);
1137 async_cow->inode = NULL;
1138 }
1139}
1140
1141/*
1142 * work queue call back to submit previously compressed pages
1143 */
1144static noinline void async_cow_submit(struct btrfs_work *work)
1145{
1146 struct btrfs_fs_info *fs_info;
1147 struct async_cow *async_cow;
1148 struct btrfs_root *root;
1149 unsigned long nr_pages;
1150
1151 async_cow = container_of(work, struct async_cow, work);
1152
1153 root = async_cow->root;
1154 fs_info = root->fs_info;
1155 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1156 PAGE_SHIFT;
1157
1158 /* atomic_sub_return implies a barrier */
1159 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1160 5 * SZ_1M)
1161 cond_wake_up_nomb(&fs_info->async_submit_wait);
1162
1163 if (async_cow->inode)
1164 submit_compressed_extents(async_cow->inode, async_cow);
1165}
1166
1167static noinline void async_cow_free(struct btrfs_work *work)
1168{
1169 struct async_cow *async_cow;
1170 async_cow = container_of(work, struct async_cow, work);
1171 if (async_cow->inode)
1172 btrfs_add_delayed_iput(async_cow->inode);
1173 kfree(async_cow);
1174}
1175
1176static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1177 u64 start, u64 end, int *page_started,
1178 unsigned long *nr_written,
1179 unsigned int write_flags)
1180{
1181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1182 struct async_cow *async_cow;
1183 struct btrfs_root *root = BTRFS_I(inode)->root;
1184 unsigned long nr_pages;
1185 u64 cur_end;
1186
1187 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1188 1, 0, NULL);
1189 while (start < end) {
1190 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1191 BUG_ON(!async_cow); /* -ENOMEM */
1192 async_cow->inode = igrab(inode);
1193 async_cow->root = root;
1194 async_cow->locked_page = locked_page;
1195 async_cow->start = start;
1196 async_cow->write_flags = write_flags;
1197
1198 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1199 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
1200 cur_end = end;
1201 else
1202 cur_end = min(end, start + SZ_512K - 1);
1203
1204 async_cow->end = cur_end;
1205 INIT_LIST_HEAD(&async_cow->extents);
1206
1207 btrfs_init_work(&async_cow->work,
1208 btrfs_delalloc_helper,
1209 async_cow_start, async_cow_submit,
1210 async_cow_free);
1211
1212 nr_pages = (cur_end - start + PAGE_SIZE) >>
1213 PAGE_SHIFT;
1214 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1215
1216 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
1217
1218 *nr_written += nr_pages;
1219 start = cur_end + 1;
1220 }
1221 *page_started = 1;
1222 return 0;
1223}
1224
1225static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1226 u64 bytenr, u64 num_bytes)
1227{
1228 int ret;
1229 struct btrfs_ordered_sum *sums;
1230 LIST_HEAD(list);
1231
1232 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1233 bytenr + num_bytes - 1, &list, 0);
1234 if (ret == 0 && list_empty(&list))
1235 return 0;
1236
1237 while (!list_empty(&list)) {
1238 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1239 list_del(&sums->list);
1240 kfree(sums);
1241 }
1242 if (ret < 0)
1243 return ret;
1244 return 1;
1245}
1246
1247/*
1248 * when nowcow writeback call back. This checks for snapshots or COW copies
1249 * of the extents that exist in the file, and COWs the file as required.
1250 *
1251 * If no cow copies or snapshots exist, we write directly to the existing
1252 * blocks on disk
1253 */
1254static noinline int run_delalloc_nocow(struct inode *inode,
1255 struct page *locked_page,
1256 u64 start, u64 end, int *page_started, int force,
1257 unsigned long *nr_written)
1258{
1259 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1260 struct btrfs_root *root = BTRFS_I(inode)->root;
1261 struct extent_buffer *leaf;
1262 struct btrfs_path *path;
1263 struct btrfs_file_extent_item *fi;
1264 struct btrfs_key found_key;
1265 struct extent_map *em;
1266 u64 cow_start;
1267 u64 cur_offset;
1268 u64 extent_end;
1269 u64 extent_offset;
1270 u64 disk_bytenr;
1271 u64 num_bytes;
1272 u64 disk_num_bytes;
1273 u64 ram_bytes;
1274 int extent_type;
1275 int ret;
1276 int type;
1277 int nocow;
1278 int check_prev = 1;
1279 bool nolock;
1280 u64 ino = btrfs_ino(BTRFS_I(inode));
1281
1282 path = btrfs_alloc_path();
1283 if (!path) {
1284 extent_clear_unlock_delalloc(inode, start, end, end,
1285 locked_page,
1286 EXTENT_LOCKED | EXTENT_DELALLOC |
1287 EXTENT_DO_ACCOUNTING |
1288 EXTENT_DEFRAG, PAGE_UNLOCK |
1289 PAGE_CLEAR_DIRTY |
1290 PAGE_SET_WRITEBACK |
1291 PAGE_END_WRITEBACK);
1292 return -ENOMEM;
1293 }
1294
1295 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
1296
1297 cow_start = (u64)-1;
1298 cur_offset = start;
1299 while (1) {
1300 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1301 cur_offset, 0);
1302 if (ret < 0)
1303 goto error;
1304 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1305 leaf = path->nodes[0];
1306 btrfs_item_key_to_cpu(leaf, &found_key,
1307 path->slots[0] - 1);
1308 if (found_key.objectid == ino &&
1309 found_key.type == BTRFS_EXTENT_DATA_KEY)
1310 path->slots[0]--;
1311 }
1312 check_prev = 0;
1313next_slot:
1314 leaf = path->nodes[0];
1315 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1316 ret = btrfs_next_leaf(root, path);
1317 if (ret < 0) {
1318 if (cow_start != (u64)-1)
1319 cur_offset = cow_start;
1320 goto error;
1321 }
1322 if (ret > 0)
1323 break;
1324 leaf = path->nodes[0];
1325 }
1326
1327 nocow = 0;
1328 disk_bytenr = 0;
1329 num_bytes = 0;
1330 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1331
1332 if (found_key.objectid > ino)
1333 break;
1334 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1335 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1336 path->slots[0]++;
1337 goto next_slot;
1338 }
1339 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1340 found_key.offset > end)
1341 break;
1342
1343 if (found_key.offset > cur_offset) {
1344 extent_end = found_key.offset;
1345 extent_type = 0;
1346 goto out_check;
1347 }
1348
1349 fi = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_file_extent_item);
1351 extent_type = btrfs_file_extent_type(leaf, fi);
1352
1353 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1354 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1355 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1356 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1357 extent_offset = btrfs_file_extent_offset(leaf, fi);
1358 extent_end = found_key.offset +
1359 btrfs_file_extent_num_bytes(leaf, fi);
1360 disk_num_bytes =
1361 btrfs_file_extent_disk_num_bytes(leaf, fi);
1362 if (extent_end <= start) {
1363 path->slots[0]++;
1364 goto next_slot;
1365 }
1366 if (disk_bytenr == 0)
1367 goto out_check;
1368 if (btrfs_file_extent_compression(leaf, fi) ||
1369 btrfs_file_extent_encryption(leaf, fi) ||
1370 btrfs_file_extent_other_encoding(leaf, fi))
1371 goto out_check;
1372 /*
1373 * Do the same check as in btrfs_cross_ref_exist but
1374 * without the unnecessary search.
1375 */
1376 if (btrfs_file_extent_generation(leaf, fi) <=
1377 btrfs_root_last_snapshot(&root->root_item))
1378 goto out_check;
1379 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1380 goto out_check;
1381 if (btrfs_extent_readonly(fs_info, disk_bytenr))
1382 goto out_check;
1383 ret = btrfs_cross_ref_exist(root, ino,
1384 found_key.offset -
1385 extent_offset, disk_bytenr);
1386 if (ret) {
1387 /*
1388 * ret could be -EIO if the above fails to read
1389 * metadata.
1390 */
1391 if (ret < 0) {
1392 if (cow_start != (u64)-1)
1393 cur_offset = cow_start;
1394 goto error;
1395 }
1396
1397 WARN_ON_ONCE(nolock);
1398 goto out_check;
1399 }
1400 disk_bytenr += extent_offset;
1401 disk_bytenr += cur_offset - found_key.offset;
1402 num_bytes = min(end + 1, extent_end) - cur_offset;
1403 /*
1404 * if there are pending snapshots for this root,
1405 * we fall into common COW way.
1406 */
1407 if (!nolock && atomic_read(&root->snapshot_force_cow))
1408 goto out_check;
1409 /*
1410 * force cow if csum exists in the range.
1411 * this ensure that csum for a given extent are
1412 * either valid or do not exist.
1413 */
1414 ret = csum_exist_in_range(fs_info, disk_bytenr,
1415 num_bytes);
1416 if (ret) {
1417 /*
1418 * ret could be -EIO if the above fails to read
1419 * metadata.
1420 */
1421 if (ret < 0) {
1422 if (cow_start != (u64)-1)
1423 cur_offset = cow_start;
1424 goto error;
1425 }
1426 WARN_ON_ONCE(nolock);
1427 goto out_check;
1428 }
1429 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1430 goto out_check;
1431 nocow = 1;
1432 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1433 extent_end = found_key.offset +
1434 btrfs_file_extent_ram_bytes(leaf, fi);
1435 extent_end = ALIGN(extent_end,
1436 fs_info->sectorsize);
1437 } else {
1438 BUG_ON(1);
1439 }
1440out_check:
1441 if (extent_end <= start) {
1442 path->slots[0]++;
1443 if (nocow)
1444 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1445 goto next_slot;
1446 }
1447 if (!nocow) {
1448 if (cow_start == (u64)-1)
1449 cow_start = cur_offset;
1450 cur_offset = extent_end;
1451 if (cur_offset > end)
1452 break;
1453 path->slots[0]++;
1454 goto next_slot;
1455 }
1456
1457 btrfs_release_path(path);
1458 if (cow_start != (u64)-1) {
1459 ret = cow_file_range(inode, locked_page,
1460 cow_start, found_key.offset - 1,
1461 end, page_started, nr_written, 1,
1462 NULL);
1463 if (ret) {
1464 if (nocow)
1465 btrfs_dec_nocow_writers(fs_info,
1466 disk_bytenr);
1467 goto error;
1468 }
1469 cow_start = (u64)-1;
1470 }
1471
1472 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1473 u64 orig_start = found_key.offset - extent_offset;
1474
1475 em = create_io_em(inode, cur_offset, num_bytes,
1476 orig_start,
1477 disk_bytenr, /* block_start */
1478 num_bytes, /* block_len */
1479 disk_num_bytes, /* orig_block_len */
1480 ram_bytes, BTRFS_COMPRESS_NONE,
1481 BTRFS_ORDERED_PREALLOC);
1482 if (IS_ERR(em)) {
1483 if (nocow)
1484 btrfs_dec_nocow_writers(fs_info,
1485 disk_bytenr);
1486 ret = PTR_ERR(em);
1487 goto error;
1488 }
1489 free_extent_map(em);
1490 }
1491
1492 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1493 type = BTRFS_ORDERED_PREALLOC;
1494 } else {
1495 type = BTRFS_ORDERED_NOCOW;
1496 }
1497
1498 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1499 num_bytes, num_bytes, type);
1500 if (nocow)
1501 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1502 BUG_ON(ret); /* -ENOMEM */
1503
1504 if (root->root_key.objectid ==
1505 BTRFS_DATA_RELOC_TREE_OBJECTID)
1506 /*
1507 * Error handled later, as we must prevent
1508 * extent_clear_unlock_delalloc() in error handler
1509 * from freeing metadata of created ordered extent.
1510 */
1511 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1512 num_bytes);
1513
1514 extent_clear_unlock_delalloc(inode, cur_offset,
1515 cur_offset + num_bytes - 1, end,
1516 locked_page, EXTENT_LOCKED |
1517 EXTENT_DELALLOC |
1518 EXTENT_CLEAR_DATA_RESV,
1519 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1520
1521 cur_offset = extent_end;
1522
1523 /*
1524 * btrfs_reloc_clone_csums() error, now we're OK to call error
1525 * handler, as metadata for created ordered extent will only
1526 * be freed by btrfs_finish_ordered_io().
1527 */
1528 if (ret)
1529 goto error;
1530 if (cur_offset > end)
1531 break;
1532 }
1533 btrfs_release_path(path);
1534
1535 if (cur_offset <= end && cow_start == (u64)-1)
1536 cow_start = cur_offset;
1537
1538 if (cow_start != (u64)-1) {
1539 cur_offset = end;
1540 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1541 page_started, nr_written, 1, NULL);
1542 if (ret)
1543 goto error;
1544 }
1545
1546error:
1547 if (ret && cur_offset < end)
1548 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1549 locked_page, EXTENT_LOCKED |
1550 EXTENT_DELALLOC | EXTENT_DEFRAG |
1551 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1552 PAGE_CLEAR_DIRTY |
1553 PAGE_SET_WRITEBACK |
1554 PAGE_END_WRITEBACK);
1555 btrfs_free_path(path);
1556 return ret;
1557}
1558
1559static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1560{
1561
1562 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1563 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1564 return 0;
1565
1566 /*
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1570 */
1571 if (BTRFS_I(inode)->defrag_bytes &&
1572 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1573 EXTENT_DEFRAG, 0, NULL))
1574 return 1;
1575
1576 return 0;
1577}
1578
1579/*
1580 * extent_io.c call back to do delayed allocation processing
1581 */
1582static int run_delalloc_range(void *private_data, struct page *locked_page,
1583 u64 start, u64 end, int *page_started,
1584 unsigned long *nr_written,
1585 struct writeback_control *wbc)
1586{
1587 struct inode *inode = private_data;
1588 int ret;
1589 int force_cow = need_force_cow(inode, start, end);
1590 unsigned int write_flags = wbc_to_write_flags(wbc);
1591
1592 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1593 ret = run_delalloc_nocow(inode, locked_page, start, end,
1594 page_started, 1, nr_written);
1595 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1596 ret = run_delalloc_nocow(inode, locked_page, start, end,
1597 page_started, 0, nr_written);
1598 } else if (!inode_need_compress(inode, start, end)) {
1599 ret = cow_file_range(inode, locked_page, start, end, end,
1600 page_started, nr_written, 1, NULL);
1601 } else {
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1603 &BTRFS_I(inode)->runtime_flags);
1604 ret = cow_file_range_async(inode, locked_page, start, end,
1605 page_started, nr_written,
1606 write_flags);
1607 }
1608 if (ret)
1609 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
1610 return ret;
1611}
1612
1613static void btrfs_split_extent_hook(void *private_data,
1614 struct extent_state *orig, u64 split)
1615{
1616 struct inode *inode = private_data;
1617 u64 size;
1618
1619 /* not delalloc, ignore it */
1620 if (!(orig->state & EXTENT_DELALLOC))
1621 return;
1622
1623 size = orig->end - orig->start + 1;
1624 if (size > BTRFS_MAX_EXTENT_SIZE) {
1625 u32 num_extents;
1626 u64 new_size;
1627
1628 /*
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
1631 */
1632 new_size = orig->end - split + 1;
1633 num_extents = count_max_extents(new_size);
1634 new_size = split - orig->start;
1635 num_extents += count_max_extents(new_size);
1636 if (count_max_extents(size) >= num_extents)
1637 return;
1638 }
1639
1640 spin_lock(&BTRFS_I(inode)->lock);
1641 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1642 spin_unlock(&BTRFS_I(inode)->lock);
1643}
1644
1645/*
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1650 */
1651static void btrfs_merge_extent_hook(void *private_data,
1652 struct extent_state *new,
1653 struct extent_state *other)
1654{
1655 struct inode *inode = private_data;
1656 u64 new_size, old_size;
1657 u32 num_extents;
1658
1659 /* not delalloc, ignore it */
1660 if (!(other->state & EXTENT_DELALLOC))
1661 return;
1662
1663 if (new->start > other->start)
1664 new_size = new->end - other->start + 1;
1665 else
1666 new_size = other->end - new->start + 1;
1667
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1670 spin_lock(&BTRFS_I(inode)->lock);
1671 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1672 spin_unlock(&BTRFS_I(inode)->lock);
1673 return;
1674 }
1675
1676 /*
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1681 *
1682 * [ 4k][MAX_SIZE]
1683 *
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1687 *
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 *
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1692 * this case.
1693 */
1694 old_size = other->end - other->start + 1;
1695 num_extents = count_max_extents(old_size);
1696 old_size = new->end - new->start + 1;
1697 num_extents += count_max_extents(old_size);
1698 if (count_max_extents(new_size) >= num_extents)
1699 return;
1700
1701 spin_lock(&BTRFS_I(inode)->lock);
1702 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1703 spin_unlock(&BTRFS_I(inode)->lock);
1704}
1705
1706static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1707 struct inode *inode)
1708{
1709 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1710
1711 spin_lock(&root->delalloc_lock);
1712 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1713 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1714 &root->delalloc_inodes);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1716 &BTRFS_I(inode)->runtime_flags);
1717 root->nr_delalloc_inodes++;
1718 if (root->nr_delalloc_inodes == 1) {
1719 spin_lock(&fs_info->delalloc_root_lock);
1720 BUG_ON(!list_empty(&root->delalloc_root));
1721 list_add_tail(&root->delalloc_root,
1722 &fs_info->delalloc_roots);
1723 spin_unlock(&fs_info->delalloc_root_lock);
1724 }
1725 }
1726 spin_unlock(&root->delalloc_lock);
1727}
1728
1729
1730void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1731 struct btrfs_inode *inode)
1732{
1733 struct btrfs_fs_info *fs_info = root->fs_info;
1734
1735 if (!list_empty(&inode->delalloc_inodes)) {
1736 list_del_init(&inode->delalloc_inodes);
1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1738 &inode->runtime_flags);
1739 root->nr_delalloc_inodes--;
1740 if (!root->nr_delalloc_inodes) {
1741 ASSERT(list_empty(&root->delalloc_inodes));
1742 spin_lock(&fs_info->delalloc_root_lock);
1743 BUG_ON(list_empty(&root->delalloc_root));
1744 list_del_init(&root->delalloc_root);
1745 spin_unlock(&fs_info->delalloc_root_lock);
1746 }
1747 }
1748}
1749
1750static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1751 struct btrfs_inode *inode)
1752{
1753 spin_lock(&root->delalloc_lock);
1754 __btrfs_del_delalloc_inode(root, inode);
1755 spin_unlock(&root->delalloc_lock);
1756}
1757
1758/*
1759 * extent_io.c set_bit_hook, used to track delayed allocation
1760 * bytes in this file, and to maintain the list of inodes that
1761 * have pending delalloc work to be done.
1762 */
1763static void btrfs_set_bit_hook(void *private_data,
1764 struct extent_state *state, unsigned *bits)
1765{
1766 struct inode *inode = private_data;
1767
1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769
1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1771 WARN_ON(1);
1772 /*
1773 * set_bit and clear bit hooks normally require _irqsave/restore
1774 * but in this case, we are only testing for the DELALLOC
1775 * bit, which is only set or cleared with irqs on
1776 */
1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1778 struct btrfs_root *root = BTRFS_I(inode)->root;
1779 u64 len = state->end + 1 - state->start;
1780 u32 num_extents = count_max_extents(len);
1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
1782
1783 spin_lock(&BTRFS_I(inode)->lock);
1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785 spin_unlock(&BTRFS_I(inode)->lock);
1786
1787 /* For sanity tests */
1788 if (btrfs_is_testing(fs_info))
1789 return;
1790
1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792 fs_info->delalloc_batch);
1793 spin_lock(&BTRFS_I(inode)->lock);
1794 BTRFS_I(inode)->delalloc_bytes += len;
1795 if (*bits & EXTENT_DEFRAG)
1796 BTRFS_I(inode)->defrag_bytes += len;
1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1798 &BTRFS_I(inode)->runtime_flags))
1799 btrfs_add_delalloc_inodes(root, inode);
1800 spin_unlock(&BTRFS_I(inode)->lock);
1801 }
1802
1803 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804 (*bits & EXTENT_DELALLOC_NEW)) {
1805 spin_lock(&BTRFS_I(inode)->lock);
1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807 state->start;
1808 spin_unlock(&BTRFS_I(inode)->lock);
1809 }
1810}
1811
1812/*
1813 * extent_io.c clear_bit_hook, see set_bit_hook for why
1814 */
1815static void btrfs_clear_bit_hook(void *private_data,
1816 struct extent_state *state,
1817 unsigned *bits)
1818{
1819 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
1820 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1821 u64 len = state->end + 1 - state->start;
1822 u32 num_extents = count_max_extents(len);
1823
1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825 spin_lock(&inode->lock);
1826 inode->defrag_bytes -= len;
1827 spin_unlock(&inode->lock);
1828 }
1829
1830 /*
1831 * set_bit and clear bit hooks normally require _irqsave/restore
1832 * but in this case, we are only testing for the DELALLOC
1833 * bit, which is only set or cleared with irqs on
1834 */
1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1836 struct btrfs_root *root = inode->root;
1837 bool do_list = !btrfs_is_free_space_inode(inode);
1838
1839 spin_lock(&inode->lock);
1840 btrfs_mod_outstanding_extents(inode, -num_extents);
1841 spin_unlock(&inode->lock);
1842
1843 /*
1844 * We don't reserve metadata space for space cache inodes so we
1845 * don't need to call dellalloc_release_metadata if there is an
1846 * error.
1847 */
1848 if (*bits & EXTENT_CLEAR_META_RESV &&
1849 root != fs_info->tree_root)
1850 btrfs_delalloc_release_metadata(inode, len, false);
1851
1852 /* For sanity tests. */
1853 if (btrfs_is_testing(fs_info))
1854 return;
1855
1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857 do_list && !(state->state & EXTENT_NORESERVE) &&
1858 (*bits & EXTENT_CLEAR_DATA_RESV))
1859 btrfs_free_reserved_data_space_noquota(
1860 &inode->vfs_inode,
1861 state->start, len);
1862
1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864 fs_info->delalloc_batch);
1865 spin_lock(&inode->lock);
1866 inode->delalloc_bytes -= len;
1867 if (do_list && inode->delalloc_bytes == 0 &&
1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1869 &inode->runtime_flags))
1870 btrfs_del_delalloc_inode(root, inode);
1871 spin_unlock(&inode->lock);
1872 }
1873
1874 if ((state->state & EXTENT_DELALLOC_NEW) &&
1875 (*bits & EXTENT_DELALLOC_NEW)) {
1876 spin_lock(&inode->lock);
1877 ASSERT(inode->new_delalloc_bytes >= len);
1878 inode->new_delalloc_bytes -= len;
1879 spin_unlock(&inode->lock);
1880 }
1881}
1882
1883/*
1884 * Merge bio hook, this must check the chunk tree to make sure we don't create
1885 * bios that span stripes or chunks
1886 *
1887 * return 1 if page cannot be merged to bio
1888 * return 0 if page can be merged to bio
1889 * return error otherwise
1890 */
1891int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1892 size_t size, struct bio *bio,
1893 unsigned long bio_flags)
1894{
1895 struct inode *inode = page->mapping->host;
1896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1897 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1898 u64 length = 0;
1899 u64 map_length;
1900 int ret;
1901
1902 if (bio_flags & EXTENT_BIO_COMPRESSED)
1903 return 0;
1904
1905 length = bio->bi_iter.bi_size;
1906 map_length = length;
1907 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1908 NULL, 0);
1909 if (ret < 0)
1910 return ret;
1911 if (map_length < length + size)
1912 return 1;
1913 return 0;
1914}
1915
1916/*
1917 * in order to insert checksums into the metadata in large chunks,
1918 * we wait until bio submission time. All the pages in the bio are
1919 * checksummed and sums are attached onto the ordered extent record.
1920 *
1921 * At IO completion time the cums attached on the ordered extent record
1922 * are inserted into the btree
1923 */
1924static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
1925 u64 bio_offset)
1926{
1927 struct inode *inode = private_data;
1928 blk_status_t ret = 0;
1929
1930 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
1931 BUG_ON(ret); /* -ENOMEM */
1932 return 0;
1933}
1934
1935/*
1936 * in order to insert checksums into the metadata in large chunks,
1937 * we wait until bio submission time. All the pages in the bio are
1938 * checksummed and sums are attached onto the ordered extent record.
1939 *
1940 * At IO completion time the cums attached on the ordered extent record
1941 * are inserted into the btree
1942 */
1943blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio,
1944 int mirror_num)
1945{
1946 struct inode *inode = private_data;
1947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1948 blk_status_t ret;
1949
1950 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
1951 if (ret) {
1952 bio->bi_status = ret;
1953 bio_endio(bio);
1954 }
1955 return ret;
1956}
1957
1958/*
1959 * extent_io.c submission hook. This does the right thing for csum calculation
1960 * on write, or reading the csums from the tree before a read.
1961 *
1962 * Rules about async/sync submit,
1963 * a) read: sync submit
1964 *
1965 * b) write without checksum: sync submit
1966 *
1967 * c) write with checksum:
1968 * c-1) if bio is issued by fsync: sync submit
1969 * (sync_writers != 0)
1970 *
1971 * c-2) if root is reloc root: sync submit
1972 * (only in case of buffered IO)
1973 *
1974 * c-3) otherwise: async submit
1975 */
1976static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
1977 int mirror_num, unsigned long bio_flags,
1978 u64 bio_offset)
1979{
1980 struct inode *inode = private_data;
1981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1982 struct btrfs_root *root = BTRFS_I(inode)->root;
1983 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1984 blk_status_t ret = 0;
1985 int skip_sum;
1986 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1987
1988 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1989
1990 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
1991 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1992
1993 if (bio_op(bio) != REQ_OP_WRITE) {
1994 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
1995 if (ret)
1996 goto out;
1997
1998 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1999 ret = btrfs_submit_compressed_read(inode, bio,
2000 mirror_num,
2001 bio_flags);
2002 goto out;
2003 } else if (!skip_sum) {
2004 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
2005 if (ret)
2006 goto out;
2007 }
2008 goto mapit;
2009 } else if (async && !skip_sum) {
2010 /* csum items have already been cloned */
2011 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2012 goto mapit;
2013 /* we're doing a write, do the async checksumming */
2014 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2015 bio_offset, inode,
2016 btrfs_submit_bio_start);
2017 goto out;
2018 } else if (!skip_sum) {
2019 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2020 if (ret)
2021 goto out;
2022 }
2023
2024mapit:
2025 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
2026
2027out:
2028 if (ret) {
2029 bio->bi_status = ret;
2030 bio_endio(bio);
2031 }
2032 return ret;
2033}
2034
2035/*
2036 * given a list of ordered sums record them in the inode. This happens
2037 * at IO completion time based on sums calculated at bio submission time.
2038 */
2039static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2040 struct inode *inode, struct list_head *list)
2041{
2042 struct btrfs_ordered_sum *sum;
2043 int ret;
2044
2045 list_for_each_entry(sum, list, list) {
2046 trans->adding_csums = true;
2047 ret = btrfs_csum_file_blocks(trans,
2048 BTRFS_I(inode)->root->fs_info->csum_root, sum);
2049 trans->adding_csums = false;
2050 if (ret)
2051 return ret;
2052 }
2053 return 0;
2054}
2055
2056int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2057 unsigned int extra_bits,
2058 struct extent_state **cached_state, int dedupe)
2059{
2060 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2061 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2062 extra_bits, cached_state);
2063}
2064
2065/* see btrfs_writepage_start_hook for details on why this is required */
2066struct btrfs_writepage_fixup {
2067 struct page *page;
2068 struct btrfs_work work;
2069};
2070
2071static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2072{
2073 struct btrfs_writepage_fixup *fixup;
2074 struct btrfs_ordered_extent *ordered;
2075 struct extent_state *cached_state = NULL;
2076 struct extent_changeset *data_reserved = NULL;
2077 struct page *page;
2078 struct inode *inode;
2079 u64 page_start;
2080 u64 page_end;
2081 int ret;
2082
2083 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2084 page = fixup->page;
2085again:
2086 lock_page(page);
2087 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2088 ClearPageChecked(page);
2089 goto out_page;
2090 }
2091
2092 inode = page->mapping->host;
2093 page_start = page_offset(page);
2094 page_end = page_offset(page) + PAGE_SIZE - 1;
2095
2096 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2097 &cached_state);
2098
2099 /* already ordered? We're done */
2100 if (PagePrivate2(page))
2101 goto out;
2102
2103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2104 PAGE_SIZE);
2105 if (ordered) {
2106 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2107 page_end, &cached_state);
2108 unlock_page(page);
2109 btrfs_start_ordered_extent(inode, ordered, 1);
2110 btrfs_put_ordered_extent(ordered);
2111 goto again;
2112 }
2113
2114 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2115 PAGE_SIZE);
2116 if (ret) {
2117 mapping_set_error(page->mapping, ret);
2118 end_extent_writepage(page, ret, page_start, page_end);
2119 ClearPageChecked(page);
2120 goto out;
2121 }
2122
2123 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2124 &cached_state, 0);
2125 if (ret) {
2126 mapping_set_error(page->mapping, ret);
2127 end_extent_writepage(page, ret, page_start, page_end);
2128 ClearPageChecked(page);
2129 goto out;
2130 }
2131
2132 ClearPageChecked(page);
2133 set_page_dirty(page);
2134 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
2135out:
2136 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2137 &cached_state);
2138out_page:
2139 unlock_page(page);
2140 put_page(page);
2141 kfree(fixup);
2142 extent_changeset_free(data_reserved);
2143}
2144
2145/*
2146 * There are a few paths in the higher layers of the kernel that directly
2147 * set the page dirty bit without asking the filesystem if it is a
2148 * good idea. This causes problems because we want to make sure COW
2149 * properly happens and the data=ordered rules are followed.
2150 *
2151 * In our case any range that doesn't have the ORDERED bit set
2152 * hasn't been properly setup for IO. We kick off an async process
2153 * to fix it up. The async helper will wait for ordered extents, set
2154 * the delalloc bit and make it safe to write the page.
2155 */
2156static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2157{
2158 struct inode *inode = page->mapping->host;
2159 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2160 struct btrfs_writepage_fixup *fixup;
2161
2162 /* this page is properly in the ordered list */
2163 if (TestClearPagePrivate2(page))
2164 return 0;
2165
2166 if (PageChecked(page))
2167 return -EAGAIN;
2168
2169 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2170 if (!fixup)
2171 return -EAGAIN;
2172
2173 SetPageChecked(page);
2174 get_page(page);
2175 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2176 btrfs_writepage_fixup_worker, NULL, NULL);
2177 fixup->page = page;
2178 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2179 return -EBUSY;
2180}
2181
2182static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2183 struct inode *inode, u64 file_pos,
2184 u64 disk_bytenr, u64 disk_num_bytes,
2185 u64 num_bytes, u64 ram_bytes,
2186 u8 compression, u8 encryption,
2187 u16 other_encoding, int extent_type)
2188{
2189 struct btrfs_root *root = BTRFS_I(inode)->root;
2190 struct btrfs_file_extent_item *fi;
2191 struct btrfs_path *path;
2192 struct extent_buffer *leaf;
2193 struct btrfs_key ins;
2194 u64 qg_released;
2195 int extent_inserted = 0;
2196 int ret;
2197
2198 path = btrfs_alloc_path();
2199 if (!path)
2200 return -ENOMEM;
2201
2202 /*
2203 * we may be replacing one extent in the tree with another.
2204 * The new extent is pinned in the extent map, and we don't want
2205 * to drop it from the cache until it is completely in the btree.
2206 *
2207 * So, tell btrfs_drop_extents to leave this extent in the cache.
2208 * the caller is expected to unpin it and allow it to be merged
2209 * with the others.
2210 */
2211 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2212 file_pos + num_bytes, NULL, 0,
2213 1, sizeof(*fi), &extent_inserted);
2214 if (ret)
2215 goto out;
2216
2217 if (!extent_inserted) {
2218 ins.objectid = btrfs_ino(BTRFS_I(inode));
2219 ins.offset = file_pos;
2220 ins.type = BTRFS_EXTENT_DATA_KEY;
2221
2222 path->leave_spinning = 1;
2223 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2224 sizeof(*fi));
2225 if (ret)
2226 goto out;
2227 }
2228 leaf = path->nodes[0];
2229 fi = btrfs_item_ptr(leaf, path->slots[0],
2230 struct btrfs_file_extent_item);
2231 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2232 btrfs_set_file_extent_type(leaf, fi, extent_type);
2233 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2234 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2235 btrfs_set_file_extent_offset(leaf, fi, 0);
2236 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2237 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2238 btrfs_set_file_extent_compression(leaf, fi, compression);
2239 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2240 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2241
2242 btrfs_mark_buffer_dirty(leaf);
2243 btrfs_release_path(path);
2244
2245 inode_add_bytes(inode, num_bytes);
2246
2247 ins.objectid = disk_bytenr;
2248 ins.offset = disk_num_bytes;
2249 ins.type = BTRFS_EXTENT_ITEM_KEY;
2250
2251 /*
2252 * Release the reserved range from inode dirty range map, as it is
2253 * already moved into delayed_ref_head
2254 */
2255 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2256 if (ret < 0)
2257 goto out;
2258 qg_released = ret;
2259 ret = btrfs_alloc_reserved_file_extent(trans, root,
2260 btrfs_ino(BTRFS_I(inode)),
2261 file_pos, qg_released, &ins);
2262out:
2263 btrfs_free_path(path);
2264
2265 return ret;
2266}
2267
2268/* snapshot-aware defrag */
2269struct sa_defrag_extent_backref {
2270 struct rb_node node;
2271 struct old_sa_defrag_extent *old;
2272 u64 root_id;
2273 u64 inum;
2274 u64 file_pos;
2275 u64 extent_offset;
2276 u64 num_bytes;
2277 u64 generation;
2278};
2279
2280struct old_sa_defrag_extent {
2281 struct list_head list;
2282 struct new_sa_defrag_extent *new;
2283
2284 u64 extent_offset;
2285 u64 bytenr;
2286 u64 offset;
2287 u64 len;
2288 int count;
2289};
2290
2291struct new_sa_defrag_extent {
2292 struct rb_root root;
2293 struct list_head head;
2294 struct btrfs_path *path;
2295 struct inode *inode;
2296 u64 file_pos;
2297 u64 len;
2298 u64 bytenr;
2299 u64 disk_len;
2300 u8 compress_type;
2301};
2302
2303static int backref_comp(struct sa_defrag_extent_backref *b1,
2304 struct sa_defrag_extent_backref *b2)
2305{
2306 if (b1->root_id < b2->root_id)
2307 return -1;
2308 else if (b1->root_id > b2->root_id)
2309 return 1;
2310
2311 if (b1->inum < b2->inum)
2312 return -1;
2313 else if (b1->inum > b2->inum)
2314 return 1;
2315
2316 if (b1->file_pos < b2->file_pos)
2317 return -1;
2318 else if (b1->file_pos > b2->file_pos)
2319 return 1;
2320
2321 /*
2322 * [------------------------------] ===> (a range of space)
2323 * |<--->| |<---->| =============> (fs/file tree A)
2324 * |<---------------------------->| ===> (fs/file tree B)
2325 *
2326 * A range of space can refer to two file extents in one tree while
2327 * refer to only one file extent in another tree.
2328 *
2329 * So we may process a disk offset more than one time(two extents in A)
2330 * and locate at the same extent(one extent in B), then insert two same
2331 * backrefs(both refer to the extent in B).
2332 */
2333 return 0;
2334}
2335
2336static void backref_insert(struct rb_root *root,
2337 struct sa_defrag_extent_backref *backref)
2338{
2339 struct rb_node **p = &root->rb_node;
2340 struct rb_node *parent = NULL;
2341 struct sa_defrag_extent_backref *entry;
2342 int ret;
2343
2344 while (*p) {
2345 parent = *p;
2346 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2347
2348 ret = backref_comp(backref, entry);
2349 if (ret < 0)
2350 p = &(*p)->rb_left;
2351 else
2352 p = &(*p)->rb_right;
2353 }
2354
2355 rb_link_node(&backref->node, parent, p);
2356 rb_insert_color(&backref->node, root);
2357}
2358
2359/*
2360 * Note the backref might has changed, and in this case we just return 0.
2361 */
2362static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2363 void *ctx)
2364{
2365 struct btrfs_file_extent_item *extent;
2366 struct old_sa_defrag_extent *old = ctx;
2367 struct new_sa_defrag_extent *new = old->new;
2368 struct btrfs_path *path = new->path;
2369 struct btrfs_key key;
2370 struct btrfs_root *root;
2371 struct sa_defrag_extent_backref *backref;
2372 struct extent_buffer *leaf;
2373 struct inode *inode = new->inode;
2374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2375 int slot;
2376 int ret;
2377 u64 extent_offset;
2378 u64 num_bytes;
2379
2380 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2381 inum == btrfs_ino(BTRFS_I(inode)))
2382 return 0;
2383
2384 key.objectid = root_id;
2385 key.type = BTRFS_ROOT_ITEM_KEY;
2386 key.offset = (u64)-1;
2387
2388 root = btrfs_read_fs_root_no_name(fs_info, &key);
2389 if (IS_ERR(root)) {
2390 if (PTR_ERR(root) == -ENOENT)
2391 return 0;
2392 WARN_ON(1);
2393 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2394 inum, offset, root_id);
2395 return PTR_ERR(root);
2396 }
2397
2398 key.objectid = inum;
2399 key.type = BTRFS_EXTENT_DATA_KEY;
2400 if (offset > (u64)-1 << 32)
2401 key.offset = 0;
2402 else
2403 key.offset = offset;
2404
2405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2406 if (WARN_ON(ret < 0))
2407 return ret;
2408 ret = 0;
2409
2410 while (1) {
2411 cond_resched();
2412
2413 leaf = path->nodes[0];
2414 slot = path->slots[0];
2415
2416 if (slot >= btrfs_header_nritems(leaf)) {
2417 ret = btrfs_next_leaf(root, path);
2418 if (ret < 0) {
2419 goto out;
2420 } else if (ret > 0) {
2421 ret = 0;
2422 goto out;
2423 }
2424 continue;
2425 }
2426
2427 path->slots[0]++;
2428
2429 btrfs_item_key_to_cpu(leaf, &key, slot);
2430
2431 if (key.objectid > inum)
2432 goto out;
2433
2434 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2435 continue;
2436
2437 extent = btrfs_item_ptr(leaf, slot,
2438 struct btrfs_file_extent_item);
2439
2440 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2441 continue;
2442
2443 /*
2444 * 'offset' refers to the exact key.offset,
2445 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2446 * (key.offset - extent_offset).
2447 */
2448 if (key.offset != offset)
2449 continue;
2450
2451 extent_offset = btrfs_file_extent_offset(leaf, extent);
2452 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2453
2454 if (extent_offset >= old->extent_offset + old->offset +
2455 old->len || extent_offset + num_bytes <=
2456 old->extent_offset + old->offset)
2457 continue;
2458 break;
2459 }
2460
2461 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2462 if (!backref) {
2463 ret = -ENOENT;
2464 goto out;
2465 }
2466
2467 backref->root_id = root_id;
2468 backref->inum = inum;
2469 backref->file_pos = offset;
2470 backref->num_bytes = num_bytes;
2471 backref->extent_offset = extent_offset;
2472 backref->generation = btrfs_file_extent_generation(leaf, extent);
2473 backref->old = old;
2474 backref_insert(&new->root, backref);
2475 old->count++;
2476out:
2477 btrfs_release_path(path);
2478 WARN_ON(ret);
2479 return ret;
2480}
2481
2482static noinline bool record_extent_backrefs(struct btrfs_path *path,
2483 struct new_sa_defrag_extent *new)
2484{
2485 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2486 struct old_sa_defrag_extent *old, *tmp;
2487 int ret;
2488
2489 new->path = path;
2490
2491 list_for_each_entry_safe(old, tmp, &new->head, list) {
2492 ret = iterate_inodes_from_logical(old->bytenr +
2493 old->extent_offset, fs_info,
2494 path, record_one_backref,
2495 old, false);
2496 if (ret < 0 && ret != -ENOENT)
2497 return false;
2498
2499 /* no backref to be processed for this extent */
2500 if (!old->count) {
2501 list_del(&old->list);
2502 kfree(old);
2503 }
2504 }
2505
2506 if (list_empty(&new->head))
2507 return false;
2508
2509 return true;
2510}
2511
2512static int relink_is_mergable(struct extent_buffer *leaf,
2513 struct btrfs_file_extent_item *fi,
2514 struct new_sa_defrag_extent *new)
2515{
2516 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2517 return 0;
2518
2519 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2520 return 0;
2521
2522 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2523 return 0;
2524
2525 if (btrfs_file_extent_encryption(leaf, fi) ||
2526 btrfs_file_extent_other_encoding(leaf, fi))
2527 return 0;
2528
2529 return 1;
2530}
2531
2532/*
2533 * Note the backref might has changed, and in this case we just return 0.
2534 */
2535static noinline int relink_extent_backref(struct btrfs_path *path,
2536 struct sa_defrag_extent_backref *prev,
2537 struct sa_defrag_extent_backref *backref)
2538{
2539 struct btrfs_file_extent_item *extent;
2540 struct btrfs_file_extent_item *item;
2541 struct btrfs_ordered_extent *ordered;
2542 struct btrfs_trans_handle *trans;
2543 struct btrfs_root *root;
2544 struct btrfs_key key;
2545 struct extent_buffer *leaf;
2546 struct old_sa_defrag_extent *old = backref->old;
2547 struct new_sa_defrag_extent *new = old->new;
2548 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2549 struct inode *inode;
2550 struct extent_state *cached = NULL;
2551 int ret = 0;
2552 u64 start;
2553 u64 len;
2554 u64 lock_start;
2555 u64 lock_end;
2556 bool merge = false;
2557 int index;
2558
2559 if (prev && prev->root_id == backref->root_id &&
2560 prev->inum == backref->inum &&
2561 prev->file_pos + prev->num_bytes == backref->file_pos)
2562 merge = true;
2563
2564 /* step 1: get root */
2565 key.objectid = backref->root_id;
2566 key.type = BTRFS_ROOT_ITEM_KEY;
2567 key.offset = (u64)-1;
2568
2569 index = srcu_read_lock(&fs_info->subvol_srcu);
2570
2571 root = btrfs_read_fs_root_no_name(fs_info, &key);
2572 if (IS_ERR(root)) {
2573 srcu_read_unlock(&fs_info->subvol_srcu, index);
2574 if (PTR_ERR(root) == -ENOENT)
2575 return 0;
2576 return PTR_ERR(root);
2577 }
2578
2579 if (btrfs_root_readonly(root)) {
2580 srcu_read_unlock(&fs_info->subvol_srcu, index);
2581 return 0;
2582 }
2583
2584 /* step 2: get inode */
2585 key.objectid = backref->inum;
2586 key.type = BTRFS_INODE_ITEM_KEY;
2587 key.offset = 0;
2588
2589 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2590 if (IS_ERR(inode)) {
2591 srcu_read_unlock(&fs_info->subvol_srcu, index);
2592 return 0;
2593 }
2594
2595 srcu_read_unlock(&fs_info->subvol_srcu, index);
2596
2597 /* step 3: relink backref */
2598 lock_start = backref->file_pos;
2599 lock_end = backref->file_pos + backref->num_bytes - 1;
2600 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2601 &cached);
2602
2603 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2604 if (ordered) {
2605 btrfs_put_ordered_extent(ordered);
2606 goto out_unlock;
2607 }
2608
2609 trans = btrfs_join_transaction(root);
2610 if (IS_ERR(trans)) {
2611 ret = PTR_ERR(trans);
2612 goto out_unlock;
2613 }
2614
2615 key.objectid = backref->inum;
2616 key.type = BTRFS_EXTENT_DATA_KEY;
2617 key.offset = backref->file_pos;
2618
2619 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2620 if (ret < 0) {
2621 goto out_free_path;
2622 } else if (ret > 0) {
2623 ret = 0;
2624 goto out_free_path;
2625 }
2626
2627 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2628 struct btrfs_file_extent_item);
2629
2630 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2631 backref->generation)
2632 goto out_free_path;
2633
2634 btrfs_release_path(path);
2635
2636 start = backref->file_pos;
2637 if (backref->extent_offset < old->extent_offset + old->offset)
2638 start += old->extent_offset + old->offset -
2639 backref->extent_offset;
2640
2641 len = min(backref->extent_offset + backref->num_bytes,
2642 old->extent_offset + old->offset + old->len);
2643 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2644
2645 ret = btrfs_drop_extents(trans, root, inode, start,
2646 start + len, 1);
2647 if (ret)
2648 goto out_free_path;
2649again:
2650 key.objectid = btrfs_ino(BTRFS_I(inode));
2651 key.type = BTRFS_EXTENT_DATA_KEY;
2652 key.offset = start;
2653
2654 path->leave_spinning = 1;
2655 if (merge) {
2656 struct btrfs_file_extent_item *fi;
2657 u64 extent_len;
2658 struct btrfs_key found_key;
2659
2660 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2661 if (ret < 0)
2662 goto out_free_path;
2663
2664 path->slots[0]--;
2665 leaf = path->nodes[0];
2666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2667
2668 fi = btrfs_item_ptr(leaf, path->slots[0],
2669 struct btrfs_file_extent_item);
2670 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2671
2672 if (extent_len + found_key.offset == start &&
2673 relink_is_mergable(leaf, fi, new)) {
2674 btrfs_set_file_extent_num_bytes(leaf, fi,
2675 extent_len + len);
2676 btrfs_mark_buffer_dirty(leaf);
2677 inode_add_bytes(inode, len);
2678
2679 ret = 1;
2680 goto out_free_path;
2681 } else {
2682 merge = false;
2683 btrfs_release_path(path);
2684 goto again;
2685 }
2686 }
2687
2688 ret = btrfs_insert_empty_item(trans, root, path, &key,
2689 sizeof(*extent));
2690 if (ret) {
2691 btrfs_abort_transaction(trans, ret);
2692 goto out_free_path;
2693 }
2694
2695 leaf = path->nodes[0];
2696 item = btrfs_item_ptr(leaf, path->slots[0],
2697 struct btrfs_file_extent_item);
2698 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2699 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2700 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2701 btrfs_set_file_extent_num_bytes(leaf, item, len);
2702 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2703 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2704 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2705 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2706 btrfs_set_file_extent_encryption(leaf, item, 0);
2707 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2708
2709 btrfs_mark_buffer_dirty(leaf);
2710 inode_add_bytes(inode, len);
2711 btrfs_release_path(path);
2712
2713 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2714 new->disk_len, 0,
2715 backref->root_id, backref->inum,
2716 new->file_pos); /* start - extent_offset */
2717 if (ret) {
2718 btrfs_abort_transaction(trans, ret);
2719 goto out_free_path;
2720 }
2721
2722 ret = 1;
2723out_free_path:
2724 btrfs_release_path(path);
2725 path->leave_spinning = 0;
2726 btrfs_end_transaction(trans);
2727out_unlock:
2728 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2729 &cached);
2730 iput(inode);
2731 return ret;
2732}
2733
2734static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2735{
2736 struct old_sa_defrag_extent *old, *tmp;
2737
2738 if (!new)
2739 return;
2740
2741 list_for_each_entry_safe(old, tmp, &new->head, list) {
2742 kfree(old);
2743 }
2744 kfree(new);
2745}
2746
2747static void relink_file_extents(struct new_sa_defrag_extent *new)
2748{
2749 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
2750 struct btrfs_path *path;
2751 struct sa_defrag_extent_backref *backref;
2752 struct sa_defrag_extent_backref *prev = NULL;
2753 struct inode *inode;
2754 struct rb_node *node;
2755 int ret;
2756
2757 inode = new->inode;
2758
2759 path = btrfs_alloc_path();
2760 if (!path)
2761 return;
2762
2763 if (!record_extent_backrefs(path, new)) {
2764 btrfs_free_path(path);
2765 goto out;
2766 }
2767 btrfs_release_path(path);
2768
2769 while (1) {
2770 node = rb_first(&new->root);
2771 if (!node)
2772 break;
2773 rb_erase(node, &new->root);
2774
2775 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2776
2777 ret = relink_extent_backref(path, prev, backref);
2778 WARN_ON(ret < 0);
2779
2780 kfree(prev);
2781
2782 if (ret == 1)
2783 prev = backref;
2784 else
2785 prev = NULL;
2786 cond_resched();
2787 }
2788 kfree(prev);
2789
2790 btrfs_free_path(path);
2791out:
2792 free_sa_defrag_extent(new);
2793
2794 atomic_dec(&fs_info->defrag_running);
2795 wake_up(&fs_info->transaction_wait);
2796}
2797
2798static struct new_sa_defrag_extent *
2799record_old_file_extents(struct inode *inode,
2800 struct btrfs_ordered_extent *ordered)
2801{
2802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2803 struct btrfs_root *root = BTRFS_I(inode)->root;
2804 struct btrfs_path *path;
2805 struct btrfs_key key;
2806 struct old_sa_defrag_extent *old;
2807 struct new_sa_defrag_extent *new;
2808 int ret;
2809
2810 new = kmalloc(sizeof(*new), GFP_NOFS);
2811 if (!new)
2812 return NULL;
2813
2814 new->inode = inode;
2815 new->file_pos = ordered->file_offset;
2816 new->len = ordered->len;
2817 new->bytenr = ordered->start;
2818 new->disk_len = ordered->disk_len;
2819 new->compress_type = ordered->compress_type;
2820 new->root = RB_ROOT;
2821 INIT_LIST_HEAD(&new->head);
2822
2823 path = btrfs_alloc_path();
2824 if (!path)
2825 goto out_kfree;
2826
2827 key.objectid = btrfs_ino(BTRFS_I(inode));
2828 key.type = BTRFS_EXTENT_DATA_KEY;
2829 key.offset = new->file_pos;
2830
2831 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2832 if (ret < 0)
2833 goto out_free_path;
2834 if (ret > 0 && path->slots[0] > 0)
2835 path->slots[0]--;
2836
2837 /* find out all the old extents for the file range */
2838 while (1) {
2839 struct btrfs_file_extent_item *extent;
2840 struct extent_buffer *l;
2841 int slot;
2842 u64 num_bytes;
2843 u64 offset;
2844 u64 end;
2845 u64 disk_bytenr;
2846 u64 extent_offset;
2847
2848 l = path->nodes[0];
2849 slot = path->slots[0];
2850
2851 if (slot >= btrfs_header_nritems(l)) {
2852 ret = btrfs_next_leaf(root, path);
2853 if (ret < 0)
2854 goto out_free_path;
2855 else if (ret > 0)
2856 break;
2857 continue;
2858 }
2859
2860 btrfs_item_key_to_cpu(l, &key, slot);
2861
2862 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
2863 break;
2864 if (key.type != BTRFS_EXTENT_DATA_KEY)
2865 break;
2866 if (key.offset >= new->file_pos + new->len)
2867 break;
2868
2869 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2870
2871 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2872 if (key.offset + num_bytes < new->file_pos)
2873 goto next;
2874
2875 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2876 if (!disk_bytenr)
2877 goto next;
2878
2879 extent_offset = btrfs_file_extent_offset(l, extent);
2880
2881 old = kmalloc(sizeof(*old), GFP_NOFS);
2882 if (!old)
2883 goto out_free_path;
2884
2885 offset = max(new->file_pos, key.offset);
2886 end = min(new->file_pos + new->len, key.offset + num_bytes);
2887
2888 old->bytenr = disk_bytenr;
2889 old->extent_offset = extent_offset;
2890 old->offset = offset - key.offset;
2891 old->len = end - offset;
2892 old->new = new;
2893 old->count = 0;
2894 list_add_tail(&old->list, &new->head);
2895next:
2896 path->slots[0]++;
2897 cond_resched();
2898 }
2899
2900 btrfs_free_path(path);
2901 atomic_inc(&fs_info->defrag_running);
2902
2903 return new;
2904
2905out_free_path:
2906 btrfs_free_path(path);
2907out_kfree:
2908 free_sa_defrag_extent(new);
2909 return NULL;
2910}
2911
2912static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2913 u64 start, u64 len)
2914{
2915 struct btrfs_block_group_cache *cache;
2916
2917 cache = btrfs_lookup_block_group(fs_info, start);
2918 ASSERT(cache);
2919
2920 spin_lock(&cache->lock);
2921 cache->delalloc_bytes -= len;
2922 spin_unlock(&cache->lock);
2923
2924 btrfs_put_block_group(cache);
2925}
2926
2927/* as ordered data IO finishes, this gets called so we can finish
2928 * an ordered extent if the range of bytes in the file it covers are
2929 * fully written.
2930 */
2931static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2932{
2933 struct inode *inode = ordered_extent->inode;
2934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2935 struct btrfs_root *root = BTRFS_I(inode)->root;
2936 struct btrfs_trans_handle *trans = NULL;
2937 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2938 struct extent_state *cached_state = NULL;
2939 struct new_sa_defrag_extent *new = NULL;
2940 int compress_type = 0;
2941 int ret = 0;
2942 u64 logical_len = ordered_extent->len;
2943 bool nolock;
2944 bool truncated = false;
2945 bool range_locked = false;
2946 bool clear_new_delalloc_bytes = false;
2947 bool clear_reserved_extent = true;
2948
2949 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2950 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2951 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2952 clear_new_delalloc_bytes = true;
2953
2954 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
2955
2956 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2957 ret = -EIO;
2958 goto out;
2959 }
2960
2961 btrfs_free_io_failure_record(BTRFS_I(inode),
2962 ordered_extent->file_offset,
2963 ordered_extent->file_offset +
2964 ordered_extent->len - 1);
2965
2966 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2967 truncated = true;
2968 logical_len = ordered_extent->truncated_len;
2969 /* Truncated the entire extent, don't bother adding */
2970 if (!logical_len)
2971 goto out;
2972 }
2973
2974 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2975 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2976
2977 /*
2978 * For mwrite(mmap + memset to write) case, we still reserve
2979 * space for NOCOW range.
2980 * As NOCOW won't cause a new delayed ref, just free the space
2981 */
2982 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
2983 ordered_extent->len);
2984 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2985 if (nolock)
2986 trans = btrfs_join_transaction_nolock(root);
2987 else
2988 trans = btrfs_join_transaction(root);
2989 if (IS_ERR(trans)) {
2990 ret = PTR_ERR(trans);
2991 trans = NULL;
2992 goto out;
2993 }
2994 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2995 ret = btrfs_update_inode_fallback(trans, root, inode);
2996 if (ret) /* -ENOMEM or corruption */
2997 btrfs_abort_transaction(trans, ret);
2998 goto out;
2999 }
3000
3001 range_locked = true;
3002 lock_extent_bits(io_tree, ordered_extent->file_offset,
3003 ordered_extent->file_offset + ordered_extent->len - 1,
3004 &cached_state);
3005
3006 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3007 ordered_extent->file_offset + ordered_extent->len - 1,
3008 EXTENT_DEFRAG, 0, cached_state);
3009 if (ret) {
3010 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
3011 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
3012 /* the inode is shared */
3013 new = record_old_file_extents(inode, ordered_extent);
3014
3015 clear_extent_bit(io_tree, ordered_extent->file_offset,
3016 ordered_extent->file_offset + ordered_extent->len - 1,
3017 EXTENT_DEFRAG, 0, 0, &cached_state);
3018 }
3019
3020 if (nolock)
3021 trans = btrfs_join_transaction_nolock(root);
3022 else
3023 trans = btrfs_join_transaction(root);
3024 if (IS_ERR(trans)) {
3025 ret = PTR_ERR(trans);
3026 trans = NULL;
3027 goto out;
3028 }
3029
3030 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
3031
3032 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
3033 compress_type = ordered_extent->compress_type;
3034 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3035 BUG_ON(compress_type);
3036 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3037 ordered_extent->len);
3038 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
3039 ordered_extent->file_offset,
3040 ordered_extent->file_offset +
3041 logical_len);
3042 } else {
3043 BUG_ON(root == fs_info->tree_root);
3044 ret = insert_reserved_file_extent(trans, inode,
3045 ordered_extent->file_offset,
3046 ordered_extent->start,
3047 ordered_extent->disk_len,
3048 logical_len, logical_len,
3049 compress_type, 0, 0,
3050 BTRFS_FILE_EXTENT_REG);
3051 if (!ret) {
3052 clear_reserved_extent = false;
3053 btrfs_release_delalloc_bytes(fs_info,
3054 ordered_extent->start,
3055 ordered_extent->disk_len);
3056 }
3057 }
3058 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3059 ordered_extent->file_offset, ordered_extent->len,
3060 trans->transid);
3061 if (ret < 0) {
3062 btrfs_abort_transaction(trans, ret);
3063 goto out;
3064 }
3065
3066 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3067 if (ret) {
3068 btrfs_abort_transaction(trans, ret);
3069 goto out;
3070 }
3071
3072 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3073 ret = btrfs_update_inode_fallback(trans, root, inode);
3074 if (ret) { /* -ENOMEM or corruption */
3075 btrfs_abort_transaction(trans, ret);
3076 goto out;
3077 }
3078 ret = 0;
3079out:
3080 if (range_locked || clear_new_delalloc_bytes) {
3081 unsigned int clear_bits = 0;
3082
3083 if (range_locked)
3084 clear_bits |= EXTENT_LOCKED;
3085 if (clear_new_delalloc_bytes)
3086 clear_bits |= EXTENT_DELALLOC_NEW;
3087 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3088 ordered_extent->file_offset,
3089 ordered_extent->file_offset +
3090 ordered_extent->len - 1,
3091 clear_bits,
3092 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3093 0, &cached_state);
3094 }
3095
3096 if (trans)
3097 btrfs_end_transaction(trans);
3098
3099 if (ret || truncated) {
3100 u64 start, end;
3101
3102 if (truncated)
3103 start = ordered_extent->file_offset + logical_len;
3104 else
3105 start = ordered_extent->file_offset;
3106 end = ordered_extent->file_offset + ordered_extent->len - 1;
3107 clear_extent_uptodate(io_tree, start, end, NULL);
3108
3109 /* Drop the cache for the part of the extent we didn't write. */
3110 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3111
3112 /*
3113 * If the ordered extent had an IOERR or something else went
3114 * wrong we need to return the space for this ordered extent
3115 * back to the allocator. We only free the extent in the
3116 * truncated case if we didn't write out the extent at all.
3117 *
3118 * If we made it past insert_reserved_file_extent before we
3119 * errored out then we don't need to do this as the accounting
3120 * has already been done.
3121 */
3122 if ((ret || !logical_len) &&
3123 clear_reserved_extent &&
3124 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3125 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3126 btrfs_free_reserved_extent(fs_info,
3127 ordered_extent->start,
3128 ordered_extent->disk_len, 1);
3129 }
3130
3131
3132 /*
3133 * This needs to be done to make sure anybody waiting knows we are done
3134 * updating everything for this ordered extent.
3135 */
3136 btrfs_remove_ordered_extent(inode, ordered_extent);
3137
3138 /* for snapshot-aware defrag */
3139 if (new) {
3140 if (ret) {
3141 free_sa_defrag_extent(new);
3142 atomic_dec(&fs_info->defrag_running);
3143 } else {
3144 relink_file_extents(new);
3145 }
3146 }
3147
3148 /* once for us */
3149 btrfs_put_ordered_extent(ordered_extent);
3150 /* once for the tree */
3151 btrfs_put_ordered_extent(ordered_extent);
3152
3153 /* Try to release some metadata so we don't get an OOM but don't wait */
3154 btrfs_btree_balance_dirty_nodelay(fs_info);
3155
3156 return ret;
3157}
3158
3159static void finish_ordered_fn(struct btrfs_work *work)
3160{
3161 struct btrfs_ordered_extent *ordered_extent;
3162 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3163 btrfs_finish_ordered_io(ordered_extent);
3164}
3165
3166static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3167 struct extent_state *state, int uptodate)
3168{
3169 struct inode *inode = page->mapping->host;
3170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3171 struct btrfs_ordered_extent *ordered_extent = NULL;
3172 struct btrfs_workqueue *wq;
3173 btrfs_work_func_t func;
3174
3175 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3176
3177 ClearPagePrivate2(page);
3178 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3179 end - start + 1, uptodate))
3180 return;
3181
3182 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
3183 wq = fs_info->endio_freespace_worker;
3184 func = btrfs_freespace_write_helper;
3185 } else {
3186 wq = fs_info->endio_write_workers;
3187 func = btrfs_endio_write_helper;
3188 }
3189
3190 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3191 NULL);
3192 btrfs_queue_work(wq, &ordered_extent->work);
3193}
3194
3195static int __readpage_endio_check(struct inode *inode,
3196 struct btrfs_io_bio *io_bio,
3197 int icsum, struct page *page,
3198 int pgoff, u64 start, size_t len)
3199{
3200 char *kaddr;
3201 u32 csum_expected;
3202 u32 csum = ~(u32)0;
3203
3204 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3205
3206 kaddr = kmap_atomic(page);
3207 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3208 btrfs_csum_final(csum, (u8 *)&csum);
3209 if (csum != csum_expected)
3210 goto zeroit;
3211
3212 kunmap_atomic(kaddr);
3213 return 0;
3214zeroit:
3215 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
3216 io_bio->mirror_num);
3217 memset(kaddr + pgoff, 1, len);
3218 flush_dcache_page(page);
3219 kunmap_atomic(kaddr);
3220 return -EIO;
3221}
3222
3223/*
3224 * when reads are done, we need to check csums to verify the data is correct
3225 * if there's a match, we allow the bio to finish. If not, the code in
3226 * extent_io.c will try to find good copies for us.
3227 */
3228static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3229 u64 phy_offset, struct page *page,
3230 u64 start, u64 end, int mirror)
3231{
3232 size_t offset = start - page_offset(page);
3233 struct inode *inode = page->mapping->host;
3234 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3235 struct btrfs_root *root = BTRFS_I(inode)->root;
3236
3237 if (PageChecked(page)) {
3238 ClearPageChecked(page);
3239 return 0;
3240 }
3241
3242 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3243 return 0;
3244
3245 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3246 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3247 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3248 return 0;
3249 }
3250
3251 phy_offset >>= inode->i_sb->s_blocksize_bits;
3252 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3253 start, (size_t)(end - start + 1));
3254}
3255
3256/*
3257 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3258 *
3259 * @inode: The inode we want to perform iput on
3260 *
3261 * This function uses the generic vfs_inode::i_count to track whether we should
3262 * just decrement it (in case it's > 1) or if this is the last iput then link
3263 * the inode to the delayed iput machinery. Delayed iputs are processed at
3264 * transaction commit time/superblock commit/cleaner kthread.
3265 */
3266void btrfs_add_delayed_iput(struct inode *inode)
3267{
3268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3269 struct btrfs_inode *binode = BTRFS_I(inode);
3270
3271 if (atomic_add_unless(&inode->i_count, -1, 1))
3272 return;
3273
3274 spin_lock(&fs_info->delayed_iput_lock);
3275 ASSERT(list_empty(&binode->delayed_iput));
3276 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3277 spin_unlock(&fs_info->delayed_iput_lock);
3278}
3279
3280void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
3281{
3282
3283 spin_lock(&fs_info->delayed_iput_lock);
3284 while (!list_empty(&fs_info->delayed_iputs)) {
3285 struct btrfs_inode *inode;
3286
3287 inode = list_first_entry(&fs_info->delayed_iputs,
3288 struct btrfs_inode, delayed_iput);
3289 list_del_init(&inode->delayed_iput);
3290 spin_unlock(&fs_info->delayed_iput_lock);
3291 iput(&inode->vfs_inode);
3292 spin_lock(&fs_info->delayed_iput_lock);
3293 }
3294 spin_unlock(&fs_info->delayed_iput_lock);
3295}
3296
3297/*
3298 * This creates an orphan entry for the given inode in case something goes wrong
3299 * in the middle of an unlink.
3300 */
3301int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3302 struct btrfs_inode *inode)
3303{
3304 int ret;
3305
3306 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3307 if (ret && ret != -EEXIST) {
3308 btrfs_abort_transaction(trans, ret);
3309 return ret;
3310 }
3311
3312 return 0;
3313}
3314
3315/*
3316 * We have done the delete so we can go ahead and remove the orphan item for
3317 * this particular inode.
3318 */
3319static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3320 struct btrfs_inode *inode)
3321{
3322 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
3323}
3324
3325/*
3326 * this cleans up any orphans that may be left on the list from the last use
3327 * of this root.
3328 */
3329int btrfs_orphan_cleanup(struct btrfs_root *root)
3330{
3331 struct btrfs_fs_info *fs_info = root->fs_info;
3332 struct btrfs_path *path;
3333 struct extent_buffer *leaf;
3334 struct btrfs_key key, found_key;
3335 struct btrfs_trans_handle *trans;
3336 struct inode *inode;
3337 u64 last_objectid = 0;
3338 int ret = 0, nr_unlink = 0;
3339
3340 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3341 return 0;
3342
3343 path = btrfs_alloc_path();
3344 if (!path) {
3345 ret = -ENOMEM;
3346 goto out;
3347 }
3348 path->reada = READA_BACK;
3349
3350 key.objectid = BTRFS_ORPHAN_OBJECTID;
3351 key.type = BTRFS_ORPHAN_ITEM_KEY;
3352 key.offset = (u64)-1;
3353
3354 while (1) {
3355 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3356 if (ret < 0)
3357 goto out;
3358
3359 /*
3360 * if ret == 0 means we found what we were searching for, which
3361 * is weird, but possible, so only screw with path if we didn't
3362 * find the key and see if we have stuff that matches
3363 */
3364 if (ret > 0) {
3365 ret = 0;
3366 if (path->slots[0] == 0)
3367 break;
3368 path->slots[0]--;
3369 }
3370
3371 /* pull out the item */
3372 leaf = path->nodes[0];
3373 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3374
3375 /* make sure the item matches what we want */
3376 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3377 break;
3378 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3379 break;
3380
3381 /* release the path since we're done with it */
3382 btrfs_release_path(path);
3383
3384 /*
3385 * this is where we are basically btrfs_lookup, without the
3386 * crossing root thing. we store the inode number in the
3387 * offset of the orphan item.
3388 */
3389
3390 if (found_key.offset == last_objectid) {
3391 btrfs_err(fs_info,
3392 "Error removing orphan entry, stopping orphan cleanup");
3393 ret = -EINVAL;
3394 goto out;
3395 }
3396
3397 last_objectid = found_key.offset;
3398
3399 found_key.objectid = found_key.offset;
3400 found_key.type = BTRFS_INODE_ITEM_KEY;
3401 found_key.offset = 0;
3402 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
3403 ret = PTR_ERR_OR_ZERO(inode);
3404 if (ret && ret != -ENOENT)
3405 goto out;
3406
3407 if (ret == -ENOENT && root == fs_info->tree_root) {
3408 struct btrfs_root *dead_root;
3409 struct btrfs_fs_info *fs_info = root->fs_info;
3410 int is_dead_root = 0;
3411
3412 /*
3413 * this is an orphan in the tree root. Currently these
3414 * could come from 2 sources:
3415 * a) a snapshot deletion in progress
3416 * b) a free space cache inode
3417 * We need to distinguish those two, as the snapshot
3418 * orphan must not get deleted.
3419 * find_dead_roots already ran before us, so if this
3420 * is a snapshot deletion, we should find the root
3421 * in the dead_roots list
3422 */
3423 spin_lock(&fs_info->trans_lock);
3424 list_for_each_entry(dead_root, &fs_info->dead_roots,
3425 root_list) {
3426 if (dead_root->root_key.objectid ==
3427 found_key.objectid) {
3428 is_dead_root = 1;
3429 break;
3430 }
3431 }
3432 spin_unlock(&fs_info->trans_lock);
3433 if (is_dead_root) {
3434 /* prevent this orphan from being found again */
3435 key.offset = found_key.objectid - 1;
3436 continue;
3437 }
3438
3439 }
3440
3441 /*
3442 * If we have an inode with links, there are a couple of
3443 * possibilities. Old kernels (before v3.12) used to create an
3444 * orphan item for truncate indicating that there were possibly
3445 * extent items past i_size that needed to be deleted. In v3.12,
3446 * truncate was changed to update i_size in sync with the extent
3447 * items, but the (useless) orphan item was still created. Since
3448 * v4.18, we don't create the orphan item for truncate at all.
3449 *
3450 * So, this item could mean that we need to do a truncate, but
3451 * only if this filesystem was last used on a pre-v3.12 kernel
3452 * and was not cleanly unmounted. The odds of that are quite
3453 * slim, and it's a pain to do the truncate now, so just delete
3454 * the orphan item.
3455 *
3456 * It's also possible that this orphan item was supposed to be
3457 * deleted but wasn't. The inode number may have been reused,
3458 * but either way, we can delete the orphan item.
3459 */
3460 if (ret == -ENOENT || inode->i_nlink) {
3461 if (!ret)
3462 iput(inode);
3463 trans = btrfs_start_transaction(root, 1);
3464 if (IS_ERR(trans)) {
3465 ret = PTR_ERR(trans);
3466 goto out;
3467 }
3468 btrfs_debug(fs_info, "auto deleting %Lu",
3469 found_key.objectid);
3470 ret = btrfs_del_orphan_item(trans, root,
3471 found_key.objectid);
3472 btrfs_end_transaction(trans);
3473 if (ret)
3474 goto out;
3475 continue;
3476 }
3477
3478 nr_unlink++;
3479
3480 /* this will do delete_inode and everything for us */
3481 iput(inode);
3482 if (ret)
3483 goto out;
3484 }
3485 /* release the path since we're done with it */
3486 btrfs_release_path(path);
3487
3488 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3489
3490 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3491 trans = btrfs_join_transaction(root);
3492 if (!IS_ERR(trans))
3493 btrfs_end_transaction(trans);
3494 }
3495
3496 if (nr_unlink)
3497 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3498
3499out:
3500 if (ret)
3501 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3502 btrfs_free_path(path);
3503 return ret;
3504}
3505
3506/*
3507 * very simple check to peek ahead in the leaf looking for xattrs. If we
3508 * don't find any xattrs, we know there can't be any acls.
3509 *
3510 * slot is the slot the inode is in, objectid is the objectid of the inode
3511 */
3512static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3513 int slot, u64 objectid,
3514 int *first_xattr_slot)
3515{
3516 u32 nritems = btrfs_header_nritems(leaf);
3517 struct btrfs_key found_key;
3518 static u64 xattr_access = 0;
3519 static u64 xattr_default = 0;
3520 int scanned = 0;
3521
3522 if (!xattr_access) {
3523 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3524 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3525 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3526 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3527 }
3528
3529 slot++;
3530 *first_xattr_slot = -1;
3531 while (slot < nritems) {
3532 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3533
3534 /* we found a different objectid, there must not be acls */
3535 if (found_key.objectid != objectid)
3536 return 0;
3537
3538 /* we found an xattr, assume we've got an acl */
3539 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3540 if (*first_xattr_slot == -1)
3541 *first_xattr_slot = slot;
3542 if (found_key.offset == xattr_access ||
3543 found_key.offset == xattr_default)
3544 return 1;
3545 }
3546
3547 /*
3548 * we found a key greater than an xattr key, there can't
3549 * be any acls later on
3550 */
3551 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3552 return 0;
3553
3554 slot++;
3555 scanned++;
3556
3557 /*
3558 * it goes inode, inode backrefs, xattrs, extents,
3559 * so if there are a ton of hard links to an inode there can
3560 * be a lot of backrefs. Don't waste time searching too hard,
3561 * this is just an optimization
3562 */
3563 if (scanned >= 8)
3564 break;
3565 }
3566 /* we hit the end of the leaf before we found an xattr or
3567 * something larger than an xattr. We have to assume the inode
3568 * has acls
3569 */
3570 if (*first_xattr_slot == -1)
3571 *first_xattr_slot = slot;
3572 return 1;
3573}
3574
3575/*
3576 * read an inode from the btree into the in-memory inode
3577 */
3578static int btrfs_read_locked_inode(struct inode *inode)
3579{
3580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3581 struct btrfs_path *path;
3582 struct extent_buffer *leaf;
3583 struct btrfs_inode_item *inode_item;
3584 struct btrfs_root *root = BTRFS_I(inode)->root;
3585 struct btrfs_key location;
3586 unsigned long ptr;
3587 int maybe_acls;
3588 u32 rdev;
3589 int ret;
3590 bool filled = false;
3591 int first_xattr_slot;
3592
3593 ret = btrfs_fill_inode(inode, &rdev);
3594 if (!ret)
3595 filled = true;
3596
3597 path = btrfs_alloc_path();
3598 if (!path)
3599 return -ENOMEM;
3600
3601 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3602
3603 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3604 if (ret) {
3605 btrfs_free_path(path);
3606 return ret;
3607 }
3608
3609 leaf = path->nodes[0];
3610
3611 if (filled)
3612 goto cache_index;
3613
3614 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3615 struct btrfs_inode_item);
3616 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3617 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3618 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3619 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3620 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3621
3622 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3623 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3624
3625 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3626 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3627
3628 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3629 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3630
3631 BTRFS_I(inode)->i_otime.tv_sec =
3632 btrfs_timespec_sec(leaf, &inode_item->otime);
3633 BTRFS_I(inode)->i_otime.tv_nsec =
3634 btrfs_timespec_nsec(leaf, &inode_item->otime);
3635
3636 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3637 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3638 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3639
3640 inode_set_iversion_queried(inode,
3641 btrfs_inode_sequence(leaf, inode_item));
3642 inode->i_generation = BTRFS_I(inode)->generation;
3643 inode->i_rdev = 0;
3644 rdev = btrfs_inode_rdev(leaf, inode_item);
3645
3646 BTRFS_I(inode)->index_cnt = (u64)-1;
3647 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3648
3649cache_index:
3650 /*
3651 * If we were modified in the current generation and evicted from memory
3652 * and then re-read we need to do a full sync since we don't have any
3653 * idea about which extents were modified before we were evicted from
3654 * cache.
3655 *
3656 * This is required for both inode re-read from disk and delayed inode
3657 * in delayed_nodes_tree.
3658 */
3659 if (BTRFS_I(inode)->last_trans == fs_info->generation)
3660 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3661 &BTRFS_I(inode)->runtime_flags);
3662
3663 /*
3664 * We don't persist the id of the transaction where an unlink operation
3665 * against the inode was last made. So here we assume the inode might
3666 * have been evicted, and therefore the exact value of last_unlink_trans
3667 * lost, and set it to last_trans to avoid metadata inconsistencies
3668 * between the inode and its parent if the inode is fsync'ed and the log
3669 * replayed. For example, in the scenario:
3670 *
3671 * touch mydir/foo
3672 * ln mydir/foo mydir/bar
3673 * sync
3674 * unlink mydir/bar
3675 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3676 * xfs_io -c fsync mydir/foo
3677 * <power failure>
3678 * mount fs, triggers fsync log replay
3679 *
3680 * We must make sure that when we fsync our inode foo we also log its
3681 * parent inode, otherwise after log replay the parent still has the
3682 * dentry with the "bar" name but our inode foo has a link count of 1
3683 * and doesn't have an inode ref with the name "bar" anymore.
3684 *
3685 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3686 * but it guarantees correctness at the expense of occasional full
3687 * transaction commits on fsync if our inode is a directory, or if our
3688 * inode is not a directory, logging its parent unnecessarily.
3689 */
3690 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3691
3692 path->slots[0]++;
3693 if (inode->i_nlink != 1 ||
3694 path->slots[0] >= btrfs_header_nritems(leaf))
3695 goto cache_acl;
3696
3697 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3698 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3699 goto cache_acl;
3700
3701 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3702 if (location.type == BTRFS_INODE_REF_KEY) {
3703 struct btrfs_inode_ref *ref;
3704
3705 ref = (struct btrfs_inode_ref *)ptr;
3706 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3707 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3708 struct btrfs_inode_extref *extref;
3709
3710 extref = (struct btrfs_inode_extref *)ptr;
3711 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3712 extref);
3713 }
3714cache_acl:
3715 /*
3716 * try to precache a NULL acl entry for files that don't have
3717 * any xattrs or acls
3718 */
3719 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3720 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3721 if (first_xattr_slot != -1) {
3722 path->slots[0] = first_xattr_slot;
3723 ret = btrfs_load_inode_props(inode, path);
3724 if (ret)
3725 btrfs_err(fs_info,
3726 "error loading props for ino %llu (root %llu): %d",
3727 btrfs_ino(BTRFS_I(inode)),
3728 root->root_key.objectid, ret);
3729 }
3730 btrfs_free_path(path);
3731
3732 if (!maybe_acls)
3733 cache_no_acl(inode);
3734
3735 switch (inode->i_mode & S_IFMT) {
3736 case S_IFREG:
3737 inode->i_mapping->a_ops = &btrfs_aops;
3738 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3739 inode->i_fop = &btrfs_file_operations;
3740 inode->i_op = &btrfs_file_inode_operations;
3741 break;
3742 case S_IFDIR:
3743 inode->i_fop = &btrfs_dir_file_operations;
3744 inode->i_op = &btrfs_dir_inode_operations;
3745 break;
3746 case S_IFLNK:
3747 inode->i_op = &btrfs_symlink_inode_operations;
3748 inode_nohighmem(inode);
3749 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3750 break;
3751 default:
3752 inode->i_op = &btrfs_special_inode_operations;
3753 init_special_inode(inode, inode->i_mode, rdev);
3754 break;
3755 }
3756
3757 btrfs_sync_inode_flags_to_i_flags(inode);
3758 return 0;
3759}
3760
3761/*
3762 * given a leaf and an inode, copy the inode fields into the leaf
3763 */
3764static void fill_inode_item(struct btrfs_trans_handle *trans,
3765 struct extent_buffer *leaf,
3766 struct btrfs_inode_item *item,
3767 struct inode *inode)
3768{
3769 struct btrfs_map_token token;
3770
3771 btrfs_init_map_token(&token);
3772
3773 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3774 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3775 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3776 &token);
3777 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3778 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3779
3780 btrfs_set_token_timespec_sec(leaf, &item->atime,
3781 inode->i_atime.tv_sec, &token);
3782 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3783 inode->i_atime.tv_nsec, &token);
3784
3785 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3786 inode->i_mtime.tv_sec, &token);
3787 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3788 inode->i_mtime.tv_nsec, &token);
3789
3790 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3791 inode->i_ctime.tv_sec, &token);
3792 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3793 inode->i_ctime.tv_nsec, &token);
3794
3795 btrfs_set_token_timespec_sec(leaf, &item->otime,
3796 BTRFS_I(inode)->i_otime.tv_sec, &token);
3797 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3798 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3799
3800 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3801 &token);
3802 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3803 &token);
3804 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3805 &token);
3806 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3807 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3808 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3809 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3810}
3811
3812/*
3813 * copy everything in the in-memory inode into the btree.
3814 */
3815static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3816 struct btrfs_root *root, struct inode *inode)
3817{
3818 struct btrfs_inode_item *inode_item;
3819 struct btrfs_path *path;
3820 struct extent_buffer *leaf;
3821 int ret;
3822
3823 path = btrfs_alloc_path();
3824 if (!path)
3825 return -ENOMEM;
3826
3827 path->leave_spinning = 1;
3828 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3829 1);
3830 if (ret) {
3831 if (ret > 0)
3832 ret = -ENOENT;
3833 goto failed;
3834 }
3835
3836 leaf = path->nodes[0];
3837 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3838 struct btrfs_inode_item);
3839
3840 fill_inode_item(trans, leaf, inode_item, inode);
3841 btrfs_mark_buffer_dirty(leaf);
3842 btrfs_set_inode_last_trans(trans, inode);
3843 ret = 0;
3844failed:
3845 btrfs_free_path(path);
3846 return ret;
3847}
3848
3849/*
3850 * copy everything in the in-memory inode into the btree.
3851 */
3852noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3853 struct btrfs_root *root, struct inode *inode)
3854{
3855 struct btrfs_fs_info *fs_info = root->fs_info;
3856 int ret;
3857
3858 /*
3859 * If the inode is a free space inode, we can deadlock during commit
3860 * if we put it into the delayed code.
3861 *
3862 * The data relocation inode should also be directly updated
3863 * without delay
3864 */
3865 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3866 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3867 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3868 btrfs_update_root_times(trans, root);
3869
3870 ret = btrfs_delayed_update_inode(trans, root, inode);
3871 if (!ret)
3872 btrfs_set_inode_last_trans(trans, inode);
3873 return ret;
3874 }
3875
3876 return btrfs_update_inode_item(trans, root, inode);
3877}
3878
3879noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3880 struct btrfs_root *root,
3881 struct inode *inode)
3882{
3883 int ret;
3884
3885 ret = btrfs_update_inode(trans, root, inode);
3886 if (ret == -ENOSPC)
3887 return btrfs_update_inode_item(trans, root, inode);
3888 return ret;
3889}
3890
3891/*
3892 * unlink helper that gets used here in inode.c and in the tree logging
3893 * recovery code. It remove a link in a directory with a given name, and
3894 * also drops the back refs in the inode to the directory
3895 */
3896static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3897 struct btrfs_root *root,
3898 struct btrfs_inode *dir,
3899 struct btrfs_inode *inode,
3900 const char *name, int name_len)
3901{
3902 struct btrfs_fs_info *fs_info = root->fs_info;
3903 struct btrfs_path *path;
3904 int ret = 0;
3905 struct extent_buffer *leaf;
3906 struct btrfs_dir_item *di;
3907 struct btrfs_key key;
3908 u64 index;
3909 u64 ino = btrfs_ino(inode);
3910 u64 dir_ino = btrfs_ino(dir);
3911
3912 path = btrfs_alloc_path();
3913 if (!path) {
3914 ret = -ENOMEM;
3915 goto out;
3916 }
3917
3918 path->leave_spinning = 1;
3919 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3920 name, name_len, -1);
3921 if (IS_ERR(di)) {
3922 ret = PTR_ERR(di);
3923 goto err;
3924 }
3925 if (!di) {
3926 ret = -ENOENT;
3927 goto err;
3928 }
3929 leaf = path->nodes[0];
3930 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3931 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3932 if (ret)
3933 goto err;
3934 btrfs_release_path(path);
3935
3936 /*
3937 * If we don't have dir index, we have to get it by looking up
3938 * the inode ref, since we get the inode ref, remove it directly,
3939 * it is unnecessary to do delayed deletion.
3940 *
3941 * But if we have dir index, needn't search inode ref to get it.
3942 * Since the inode ref is close to the inode item, it is better
3943 * that we delay to delete it, and just do this deletion when
3944 * we update the inode item.
3945 */
3946 if (inode->dir_index) {
3947 ret = btrfs_delayed_delete_inode_ref(inode);
3948 if (!ret) {
3949 index = inode->dir_index;
3950 goto skip_backref;
3951 }
3952 }
3953
3954 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3955 dir_ino, &index);
3956 if (ret) {
3957 btrfs_info(fs_info,
3958 "failed to delete reference to %.*s, inode %llu parent %llu",
3959 name_len, name, ino, dir_ino);
3960 btrfs_abort_transaction(trans, ret);
3961 goto err;
3962 }
3963skip_backref:
3964 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3965 if (ret) {
3966 btrfs_abort_transaction(trans, ret);
3967 goto err;
3968 }
3969
3970 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3971 dir_ino);
3972 if (ret != 0 && ret != -ENOENT) {
3973 btrfs_abort_transaction(trans, ret);
3974 goto err;
3975 }
3976
3977 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3978 index);
3979 if (ret == -ENOENT)
3980 ret = 0;
3981 else if (ret)
3982 btrfs_abort_transaction(trans, ret);
3983err:
3984 btrfs_free_path(path);
3985 if (ret)
3986 goto out;
3987
3988 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3989 inode_inc_iversion(&inode->vfs_inode);
3990 inode_inc_iversion(&dir->vfs_inode);
3991 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3992 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3993 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3994out:
3995 return ret;
3996}
3997
3998int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3999 struct btrfs_root *root,
4000 struct btrfs_inode *dir, struct btrfs_inode *inode,
4001 const char *name, int name_len)
4002{
4003 int ret;
4004 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4005 if (!ret) {
4006 drop_nlink(&inode->vfs_inode);
4007 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
4008 }
4009 return ret;
4010}
4011
4012/*
4013 * helper to start transaction for unlink and rmdir.
4014 *
4015 * unlink and rmdir are special in btrfs, they do not always free space, so
4016 * if we cannot make our reservations the normal way try and see if there is
4017 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4018 * allow the unlink to occur.
4019 */
4020static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4021{
4022 struct btrfs_root *root = BTRFS_I(dir)->root;
4023
4024 /*
4025 * 1 for the possible orphan item
4026 * 1 for the dir item
4027 * 1 for the dir index
4028 * 1 for the inode ref
4029 * 1 for the inode
4030 */
4031 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4032}
4033
4034static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4035{
4036 struct btrfs_root *root = BTRFS_I(dir)->root;
4037 struct btrfs_trans_handle *trans;
4038 struct inode *inode = d_inode(dentry);
4039 int ret;
4040
4041 trans = __unlink_start_trans(dir);
4042 if (IS_ERR(trans))
4043 return PTR_ERR(trans);
4044
4045 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4046 0);
4047
4048 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4049 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4050 dentry->d_name.len);
4051 if (ret)
4052 goto out;
4053
4054 if (inode->i_nlink == 0) {
4055 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
4056 if (ret)
4057 goto out;
4058 }
4059
4060out:
4061 btrfs_end_transaction(trans);
4062 btrfs_btree_balance_dirty(root->fs_info);
4063 return ret;
4064}
4065
4066static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4067 struct inode *dir, u64 objectid,
4068 const char *name, int name_len)
4069{
4070 struct btrfs_root *root = BTRFS_I(dir)->root;
4071 struct btrfs_path *path;
4072 struct extent_buffer *leaf;
4073 struct btrfs_dir_item *di;
4074 struct btrfs_key key;
4075 u64 index;
4076 int ret;
4077 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4078
4079 path = btrfs_alloc_path();
4080 if (!path)
4081 return -ENOMEM;
4082
4083 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4084 name, name_len, -1);
4085 if (IS_ERR_OR_NULL(di)) {
4086 if (!di)
4087 ret = -ENOENT;
4088 else
4089 ret = PTR_ERR(di);
4090 goto out;
4091 }
4092
4093 leaf = path->nodes[0];
4094 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4095 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4096 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4097 if (ret) {
4098 btrfs_abort_transaction(trans, ret);
4099 goto out;
4100 }
4101 btrfs_release_path(path);
4102
4103 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4104 dir_ino, &index, name, name_len);
4105 if (ret < 0) {
4106 if (ret != -ENOENT) {
4107 btrfs_abort_transaction(trans, ret);
4108 goto out;
4109 }
4110 di = btrfs_search_dir_index_item(root, path, dir_ino,
4111 name, name_len);
4112 if (IS_ERR_OR_NULL(di)) {
4113 if (!di)
4114 ret = -ENOENT;
4115 else
4116 ret = PTR_ERR(di);
4117 btrfs_abort_transaction(trans, ret);
4118 goto out;
4119 }
4120
4121 leaf = path->nodes[0];
4122 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4123 index = key.offset;
4124 }
4125 btrfs_release_path(path);
4126
4127 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
4128 if (ret) {
4129 btrfs_abort_transaction(trans, ret);
4130 goto out;
4131 }
4132
4133 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
4134 inode_inc_iversion(dir);
4135 dir->i_mtime = dir->i_ctime = current_time(dir);
4136 ret = btrfs_update_inode_fallback(trans, root, dir);
4137 if (ret)
4138 btrfs_abort_transaction(trans, ret);
4139out:
4140 btrfs_free_path(path);
4141 return ret;
4142}
4143
4144/*
4145 * Helper to check if the subvolume references other subvolumes or if it's
4146 * default.
4147 */
4148static noinline int may_destroy_subvol(struct btrfs_root *root)
4149{
4150 struct btrfs_fs_info *fs_info = root->fs_info;
4151 struct btrfs_path *path;
4152 struct btrfs_dir_item *di;
4153 struct btrfs_key key;
4154 u64 dir_id;
4155 int ret;
4156
4157 path = btrfs_alloc_path();
4158 if (!path)
4159 return -ENOMEM;
4160
4161 /* Make sure this root isn't set as the default subvol */
4162 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4163 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4164 dir_id, "default", 7, 0);
4165 if (di && !IS_ERR(di)) {
4166 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4167 if (key.objectid == root->root_key.objectid) {
4168 ret = -EPERM;
4169 btrfs_err(fs_info,
4170 "deleting default subvolume %llu is not allowed",
4171 key.objectid);
4172 goto out;
4173 }
4174 btrfs_release_path(path);
4175 }
4176
4177 key.objectid = root->root_key.objectid;
4178 key.type = BTRFS_ROOT_REF_KEY;
4179 key.offset = (u64)-1;
4180
4181 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4182 if (ret < 0)
4183 goto out;
4184 BUG_ON(ret == 0);
4185
4186 ret = 0;
4187 if (path->slots[0] > 0) {
4188 path->slots[0]--;
4189 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4190 if (key.objectid == root->root_key.objectid &&
4191 key.type == BTRFS_ROOT_REF_KEY)
4192 ret = -ENOTEMPTY;
4193 }
4194out:
4195 btrfs_free_path(path);
4196 return ret;
4197}
4198
4199/* Delete all dentries for inodes belonging to the root */
4200static void btrfs_prune_dentries(struct btrfs_root *root)
4201{
4202 struct btrfs_fs_info *fs_info = root->fs_info;
4203 struct rb_node *node;
4204 struct rb_node *prev;
4205 struct btrfs_inode *entry;
4206 struct inode *inode;
4207 u64 objectid = 0;
4208
4209 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4210 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4211
4212 spin_lock(&root->inode_lock);
4213again:
4214 node = root->inode_tree.rb_node;
4215 prev = NULL;
4216 while (node) {
4217 prev = node;
4218 entry = rb_entry(node, struct btrfs_inode, rb_node);
4219
4220 if (objectid < btrfs_ino(entry))
4221 node = node->rb_left;
4222 else if (objectid > btrfs_ino(entry))
4223 node = node->rb_right;
4224 else
4225 break;
4226 }
4227 if (!node) {
4228 while (prev) {
4229 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4230 if (objectid <= btrfs_ino(entry)) {
4231 node = prev;
4232 break;
4233 }
4234 prev = rb_next(prev);
4235 }
4236 }
4237 while (node) {
4238 entry = rb_entry(node, struct btrfs_inode, rb_node);
4239 objectid = btrfs_ino(entry) + 1;
4240 inode = igrab(&entry->vfs_inode);
4241 if (inode) {
4242 spin_unlock(&root->inode_lock);
4243 if (atomic_read(&inode->i_count) > 1)
4244 d_prune_aliases(inode);
4245 /*
4246 * btrfs_drop_inode will have it removed from the inode
4247 * cache when its usage count hits zero.
4248 */
4249 iput(inode);
4250 cond_resched();
4251 spin_lock(&root->inode_lock);
4252 goto again;
4253 }
4254
4255 if (cond_resched_lock(&root->inode_lock))
4256 goto again;
4257
4258 node = rb_next(node);
4259 }
4260 spin_unlock(&root->inode_lock);
4261}
4262
4263int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4264{
4265 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4266 struct btrfs_root *root = BTRFS_I(dir)->root;
4267 struct inode *inode = d_inode(dentry);
4268 struct btrfs_root *dest = BTRFS_I(inode)->root;
4269 struct btrfs_trans_handle *trans;
4270 struct btrfs_block_rsv block_rsv;
4271 u64 root_flags;
4272 int ret;
4273 int err;
4274
4275 /*
4276 * Don't allow to delete a subvolume with send in progress. This is
4277 * inside the inode lock so the error handling that has to drop the bit
4278 * again is not run concurrently.
4279 */
4280 spin_lock(&dest->root_item_lock);
4281 root_flags = btrfs_root_flags(&dest->root_item);
4282 if (dest->send_in_progress == 0) {
4283 btrfs_set_root_flags(&dest->root_item,
4284 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4285 spin_unlock(&dest->root_item_lock);
4286 } else {
4287 spin_unlock(&dest->root_item_lock);
4288 btrfs_warn(fs_info,
4289 "attempt to delete subvolume %llu during send",
4290 dest->root_key.objectid);
4291 return -EPERM;
4292 }
4293
4294 down_write(&fs_info->subvol_sem);
4295
4296 err = may_destroy_subvol(dest);
4297 if (err)
4298 goto out_up_write;
4299
4300 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4301 /*
4302 * One for dir inode,
4303 * two for dir entries,
4304 * two for root ref/backref.
4305 */
4306 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4307 if (err)
4308 goto out_up_write;
4309
4310 trans = btrfs_start_transaction(root, 0);
4311 if (IS_ERR(trans)) {
4312 err = PTR_ERR(trans);
4313 goto out_release;
4314 }
4315 trans->block_rsv = &block_rsv;
4316 trans->bytes_reserved = block_rsv.size;
4317
4318 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4319
4320 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4321 dentry->d_name.name, dentry->d_name.len);
4322 if (ret) {
4323 err = ret;
4324 btrfs_abort_transaction(trans, ret);
4325 goto out_end_trans;
4326 }
4327
4328 btrfs_record_root_in_trans(trans, dest);
4329
4330 memset(&dest->root_item.drop_progress, 0,
4331 sizeof(dest->root_item.drop_progress));
4332 dest->root_item.drop_level = 0;
4333 btrfs_set_root_refs(&dest->root_item, 0);
4334
4335 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4336 ret = btrfs_insert_orphan_item(trans,
4337 fs_info->tree_root,
4338 dest->root_key.objectid);
4339 if (ret) {
4340 btrfs_abort_transaction(trans, ret);
4341 err = ret;
4342 goto out_end_trans;
4343 }
4344 }
4345
4346 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4347 BTRFS_UUID_KEY_SUBVOL,
4348 dest->root_key.objectid);
4349 if (ret && ret != -ENOENT) {
4350 btrfs_abort_transaction(trans, ret);
4351 err = ret;
4352 goto out_end_trans;
4353 }
4354 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4355 ret = btrfs_uuid_tree_remove(trans,
4356 dest->root_item.received_uuid,
4357 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4358 dest->root_key.objectid);
4359 if (ret && ret != -ENOENT) {
4360 btrfs_abort_transaction(trans, ret);
4361 err = ret;
4362 goto out_end_trans;
4363 }
4364 }
4365
4366out_end_trans:
4367 trans->block_rsv = NULL;
4368 trans->bytes_reserved = 0;
4369 ret = btrfs_end_transaction(trans);
4370 if (ret && !err)
4371 err = ret;
4372 inode->i_flags |= S_DEAD;
4373out_release:
4374 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4375out_up_write:
4376 up_write(&fs_info->subvol_sem);
4377 if (err) {
4378 spin_lock(&dest->root_item_lock);
4379 root_flags = btrfs_root_flags(&dest->root_item);
4380 btrfs_set_root_flags(&dest->root_item,
4381 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4382 spin_unlock(&dest->root_item_lock);
4383 } else {
4384 d_invalidate(dentry);
4385 btrfs_prune_dentries(dest);
4386 ASSERT(dest->send_in_progress == 0);
4387
4388 /* the last ref */
4389 if (dest->ino_cache_inode) {
4390 iput(dest->ino_cache_inode);
4391 dest->ino_cache_inode = NULL;
4392 }
4393 }
4394
4395 return err;
4396}
4397
4398static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4399{
4400 struct inode *inode = d_inode(dentry);
4401 int err = 0;
4402 struct btrfs_root *root = BTRFS_I(dir)->root;
4403 struct btrfs_trans_handle *trans;
4404 u64 last_unlink_trans;
4405
4406 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4407 return -ENOTEMPTY;
4408 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4409 return btrfs_delete_subvolume(dir, dentry);
4410
4411 trans = __unlink_start_trans(dir);
4412 if (IS_ERR(trans))
4413 return PTR_ERR(trans);
4414
4415 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4416 err = btrfs_unlink_subvol(trans, dir,
4417 BTRFS_I(inode)->location.objectid,
4418 dentry->d_name.name,
4419 dentry->d_name.len);
4420 goto out;
4421 }
4422
4423 err = btrfs_orphan_add(trans, BTRFS_I(inode));
4424 if (err)
4425 goto out;
4426
4427 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4428
4429 /* now the directory is empty */
4430 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4431 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4432 dentry->d_name.len);
4433 if (!err) {
4434 btrfs_i_size_write(BTRFS_I(inode), 0);
4435 /*
4436 * Propagate the last_unlink_trans value of the deleted dir to
4437 * its parent directory. This is to prevent an unrecoverable
4438 * log tree in the case we do something like this:
4439 * 1) create dir foo
4440 * 2) create snapshot under dir foo
4441 * 3) delete the snapshot
4442 * 4) rmdir foo
4443 * 5) mkdir foo
4444 * 6) fsync foo or some file inside foo
4445 */
4446 if (last_unlink_trans >= trans->transid)
4447 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4448 }
4449out:
4450 btrfs_end_transaction(trans);
4451 btrfs_btree_balance_dirty(root->fs_info);
4452
4453 return err;
4454}
4455
4456static int truncate_space_check(struct btrfs_trans_handle *trans,
4457 struct btrfs_root *root,
4458 u64 bytes_deleted)
4459{
4460 struct btrfs_fs_info *fs_info = root->fs_info;
4461 int ret;
4462
4463 /*
4464 * This is only used to apply pressure to the enospc system, we don't
4465 * intend to use this reservation at all.
4466 */
4467 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
4468 bytes_deleted *= fs_info->nodesize;
4469 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
4470 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4471 if (!ret) {
4472 trace_btrfs_space_reservation(fs_info, "transaction",
4473 trans->transid,
4474 bytes_deleted, 1);
4475 trans->bytes_reserved += bytes_deleted;
4476 }
4477 return ret;
4478
4479}
4480
4481/*
4482 * Return this if we need to call truncate_block for the last bit of the
4483 * truncate.
4484 */
4485#define NEED_TRUNCATE_BLOCK 1
4486
4487/*
4488 * this can truncate away extent items, csum items and directory items.
4489 * It starts at a high offset and removes keys until it can't find
4490 * any higher than new_size
4491 *
4492 * csum items that cross the new i_size are truncated to the new size
4493 * as well.
4494 *
4495 * min_type is the minimum key type to truncate down to. If set to 0, this
4496 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4497 */
4498int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4499 struct btrfs_root *root,
4500 struct inode *inode,
4501 u64 new_size, u32 min_type)
4502{
4503 struct btrfs_fs_info *fs_info = root->fs_info;
4504 struct btrfs_path *path;
4505 struct extent_buffer *leaf;
4506 struct btrfs_file_extent_item *fi;
4507 struct btrfs_key key;
4508 struct btrfs_key found_key;
4509 u64 extent_start = 0;
4510 u64 extent_num_bytes = 0;
4511 u64 extent_offset = 0;
4512 u64 item_end = 0;
4513 u64 last_size = new_size;
4514 u32 found_type = (u8)-1;
4515 int found_extent;
4516 int del_item;
4517 int pending_del_nr = 0;
4518 int pending_del_slot = 0;
4519 int extent_type = -1;
4520 int ret;
4521 u64 ino = btrfs_ino(BTRFS_I(inode));
4522 u64 bytes_deleted = 0;
4523 bool be_nice = false;
4524 bool should_throttle = false;
4525 bool should_end = false;
4526
4527 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4528
4529 /*
4530 * for non-free space inodes and ref cows, we want to back off from
4531 * time to time
4532 */
4533 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4534 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4535 be_nice = true;
4536
4537 path = btrfs_alloc_path();
4538 if (!path)
4539 return -ENOMEM;
4540 path->reada = READA_BACK;
4541
4542 /*
4543 * We want to drop from the next block forward in case this new size is
4544 * not block aligned since we will be keeping the last block of the
4545 * extent just the way it is.
4546 */
4547 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4548 root == fs_info->tree_root)
4549 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4550 fs_info->sectorsize),
4551 (u64)-1, 0);
4552
4553 /*
4554 * This function is also used to drop the items in the log tree before
4555 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4556 * it is used to drop the loged items. So we shouldn't kill the delayed
4557 * items.
4558 */
4559 if (min_type == 0 && root == BTRFS_I(inode)->root)
4560 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4561
4562 key.objectid = ino;
4563 key.offset = (u64)-1;
4564 key.type = (u8)-1;
4565
4566search_again:
4567 /*
4568 * with a 16K leaf size and 128MB extents, you can actually queue
4569 * up a huge file in a single leaf. Most of the time that
4570 * bytes_deleted is > 0, it will be huge by the time we get here
4571 */
4572 if (be_nice && bytes_deleted > SZ_32M &&
4573 btrfs_should_end_transaction(trans)) {
4574 ret = -EAGAIN;
4575 goto out;
4576 }
4577
4578 path->leave_spinning = 1;
4579 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4580 if (ret < 0)
4581 goto out;
4582
4583 if (ret > 0) {
4584 ret = 0;
4585 /* there are no items in the tree for us to truncate, we're
4586 * done
4587 */
4588 if (path->slots[0] == 0)
4589 goto out;
4590 path->slots[0]--;
4591 }
4592
4593 while (1) {
4594 fi = NULL;
4595 leaf = path->nodes[0];
4596 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4597 found_type = found_key.type;
4598
4599 if (found_key.objectid != ino)
4600 break;
4601
4602 if (found_type < min_type)
4603 break;
4604
4605 item_end = found_key.offset;
4606 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4607 fi = btrfs_item_ptr(leaf, path->slots[0],
4608 struct btrfs_file_extent_item);
4609 extent_type = btrfs_file_extent_type(leaf, fi);
4610 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4611 item_end +=
4612 btrfs_file_extent_num_bytes(leaf, fi);
4613
4614 trace_btrfs_truncate_show_fi_regular(
4615 BTRFS_I(inode), leaf, fi,
4616 found_key.offset);
4617 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4618 item_end += btrfs_file_extent_ram_bytes(leaf,
4619 fi);
4620
4621 trace_btrfs_truncate_show_fi_inline(
4622 BTRFS_I(inode), leaf, fi, path->slots[0],
4623 found_key.offset);
4624 }
4625 item_end--;
4626 }
4627 if (found_type > min_type) {
4628 del_item = 1;
4629 } else {
4630 if (item_end < new_size)
4631 break;
4632 if (found_key.offset >= new_size)
4633 del_item = 1;
4634 else
4635 del_item = 0;
4636 }
4637 found_extent = 0;
4638 /* FIXME, shrink the extent if the ref count is only 1 */
4639 if (found_type != BTRFS_EXTENT_DATA_KEY)
4640 goto delete;
4641
4642 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4643 u64 num_dec;
4644 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4645 if (!del_item) {
4646 u64 orig_num_bytes =
4647 btrfs_file_extent_num_bytes(leaf, fi);
4648 extent_num_bytes = ALIGN(new_size -
4649 found_key.offset,
4650 fs_info->sectorsize);
4651 btrfs_set_file_extent_num_bytes(leaf, fi,
4652 extent_num_bytes);
4653 num_dec = (orig_num_bytes -
4654 extent_num_bytes);
4655 if (test_bit(BTRFS_ROOT_REF_COWS,
4656 &root->state) &&
4657 extent_start != 0)
4658 inode_sub_bytes(inode, num_dec);
4659 btrfs_mark_buffer_dirty(leaf);
4660 } else {
4661 extent_num_bytes =
4662 btrfs_file_extent_disk_num_bytes(leaf,
4663 fi);
4664 extent_offset = found_key.offset -
4665 btrfs_file_extent_offset(leaf, fi);
4666
4667 /* FIXME blocksize != 4096 */
4668 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4669 if (extent_start != 0) {
4670 found_extent = 1;
4671 if (test_bit(BTRFS_ROOT_REF_COWS,
4672 &root->state))
4673 inode_sub_bytes(inode, num_dec);
4674 }
4675 }
4676 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4677 /*
4678 * we can't truncate inline items that have had
4679 * special encodings
4680 */
4681 if (!del_item &&
4682 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4683 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4684 btrfs_file_extent_compression(leaf, fi) == 0) {
4685 u32 size = (u32)(new_size - found_key.offset);
4686
4687 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4688 size = btrfs_file_extent_calc_inline_size(size);
4689 btrfs_truncate_item(root->fs_info, path, size, 1);
4690 } else if (!del_item) {
4691 /*
4692 * We have to bail so the last_size is set to
4693 * just before this extent.
4694 */
4695 ret = NEED_TRUNCATE_BLOCK;
4696 break;
4697 }
4698
4699 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4700 inode_sub_bytes(inode, item_end + 1 - new_size);
4701 }
4702delete:
4703 if (del_item)
4704 last_size = found_key.offset;
4705 else
4706 last_size = new_size;
4707 if (del_item) {
4708 if (!pending_del_nr) {
4709 /* no pending yet, add ourselves */
4710 pending_del_slot = path->slots[0];
4711 pending_del_nr = 1;
4712 } else if (pending_del_nr &&
4713 path->slots[0] + 1 == pending_del_slot) {
4714 /* hop on the pending chunk */
4715 pending_del_nr++;
4716 pending_del_slot = path->slots[0];
4717 } else {
4718 BUG();
4719 }
4720 } else {
4721 break;
4722 }
4723 should_throttle = false;
4724
4725 if (found_extent &&
4726 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4727 root == fs_info->tree_root)) {
4728 btrfs_set_path_blocking(path);
4729 bytes_deleted += extent_num_bytes;
4730 ret = btrfs_free_extent(trans, root, extent_start,
4731 extent_num_bytes, 0,
4732 btrfs_header_owner(leaf),
4733 ino, extent_offset);
4734 if (ret) {
4735 btrfs_abort_transaction(trans, ret);
4736 break;
4737 }
4738 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4739 btrfs_async_run_delayed_refs(fs_info,
4740 trans->delayed_ref_updates * 2,
4741 trans->transid, 0);
4742 if (be_nice) {
4743 if (truncate_space_check(trans, root,
4744 extent_num_bytes)) {
4745 should_end = true;
4746 }
4747 if (btrfs_should_throttle_delayed_refs(trans,
4748 fs_info))
4749 should_throttle = true;
4750 }
4751 }
4752
4753 if (found_type == BTRFS_INODE_ITEM_KEY)
4754 break;
4755
4756 if (path->slots[0] == 0 ||
4757 path->slots[0] != pending_del_slot ||
4758 should_throttle || should_end) {
4759 if (pending_del_nr) {
4760 ret = btrfs_del_items(trans, root, path,
4761 pending_del_slot,
4762 pending_del_nr);
4763 if (ret) {
4764 btrfs_abort_transaction(trans, ret);
4765 break;
4766 }
4767 pending_del_nr = 0;
4768 }
4769 btrfs_release_path(path);
4770 if (should_throttle) {
4771 unsigned long updates = trans->delayed_ref_updates;
4772 if (updates) {
4773 trans->delayed_ref_updates = 0;
4774 ret = btrfs_run_delayed_refs(trans,
4775 updates * 2);
4776 if (ret)
4777 break;
4778 }
4779 }
4780 /*
4781 * if we failed to refill our space rsv, bail out
4782 * and let the transaction restart
4783 */
4784 if (should_end) {
4785 ret = -EAGAIN;
4786 break;
4787 }
4788 goto search_again;
4789 } else {
4790 path->slots[0]--;
4791 }
4792 }
4793out:
4794 if (ret >= 0 && pending_del_nr) {
4795 int err;
4796
4797 err = btrfs_del_items(trans, root, path, pending_del_slot,
4798 pending_del_nr);
4799 if (err) {
4800 btrfs_abort_transaction(trans, err);
4801 ret = err;
4802 }
4803 }
4804 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4805 ASSERT(last_size >= new_size);
4806 if (!ret && last_size > new_size)
4807 last_size = new_size;
4808 btrfs_ordered_update_i_size(inode, last_size, NULL);
4809 }
4810
4811 btrfs_free_path(path);
4812
4813 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
4814 unsigned long updates = trans->delayed_ref_updates;
4815 int err;
4816
4817 if (updates) {
4818 trans->delayed_ref_updates = 0;
4819 err = btrfs_run_delayed_refs(trans, updates * 2);
4820 if (err)
4821 ret = err;
4822 }
4823 }
4824 return ret;
4825}
4826
4827/*
4828 * btrfs_truncate_block - read, zero a chunk and write a block
4829 * @inode - inode that we're zeroing
4830 * @from - the offset to start zeroing
4831 * @len - the length to zero, 0 to zero the entire range respective to the
4832 * offset
4833 * @front - zero up to the offset instead of from the offset on
4834 *
4835 * This will find the block for the "from" offset and cow the block and zero the
4836 * part we want to zero. This is used with truncate and hole punching.
4837 */
4838int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4839 int front)
4840{
4841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4842 struct address_space *mapping = inode->i_mapping;
4843 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4844 struct btrfs_ordered_extent *ordered;
4845 struct extent_state *cached_state = NULL;
4846 struct extent_changeset *data_reserved = NULL;
4847 char *kaddr;
4848 u32 blocksize = fs_info->sectorsize;
4849 pgoff_t index = from >> PAGE_SHIFT;
4850 unsigned offset = from & (blocksize - 1);
4851 struct page *page;
4852 gfp_t mask = btrfs_alloc_write_mask(mapping);
4853 int ret = 0;
4854 u64 block_start;
4855 u64 block_end;
4856
4857 if (IS_ALIGNED(offset, blocksize) &&
4858 (!len || IS_ALIGNED(len, blocksize)))
4859 goto out;
4860
4861 block_start = round_down(from, blocksize);
4862 block_end = block_start + blocksize - 1;
4863
4864 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4865 block_start, blocksize);
4866 if (ret)
4867 goto out;
4868
4869again:
4870 page = find_or_create_page(mapping, index, mask);
4871 if (!page) {
4872 btrfs_delalloc_release_space(inode, data_reserved,
4873 block_start, blocksize, true);
4874 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
4875 ret = -ENOMEM;
4876 goto out;
4877 }
4878
4879 if (!PageUptodate(page)) {
4880 ret = btrfs_readpage(NULL, page);
4881 lock_page(page);
4882 if (page->mapping != mapping) {
4883 unlock_page(page);
4884 put_page(page);
4885 goto again;
4886 }
4887 if (!PageUptodate(page)) {
4888 ret = -EIO;
4889 goto out_unlock;
4890 }
4891 }
4892 wait_on_page_writeback(page);
4893
4894 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4895 set_page_extent_mapped(page);
4896
4897 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4898 if (ordered) {
4899 unlock_extent_cached(io_tree, block_start, block_end,
4900 &cached_state);
4901 unlock_page(page);
4902 put_page(page);
4903 btrfs_start_ordered_extent(inode, ordered, 1);
4904 btrfs_put_ordered_extent(ordered);
4905 goto again;
4906 }
4907
4908 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4909 EXTENT_DIRTY | EXTENT_DELALLOC |
4910 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4911 0, 0, &cached_state);
4912
4913 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4914 &cached_state, 0);
4915 if (ret) {
4916 unlock_extent_cached(io_tree, block_start, block_end,
4917 &cached_state);
4918 goto out_unlock;
4919 }
4920
4921 if (offset != blocksize) {
4922 if (!len)
4923 len = blocksize - offset;
4924 kaddr = kmap(page);
4925 if (front)
4926 memset(kaddr + (block_start - page_offset(page)),
4927 0, offset);
4928 else
4929 memset(kaddr + (block_start - page_offset(page)) + offset,
4930 0, len);
4931 flush_dcache_page(page);
4932 kunmap(page);
4933 }
4934 ClearPageChecked(page);
4935 set_page_dirty(page);
4936 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4937
4938out_unlock:
4939 if (ret)
4940 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4941 blocksize, true);
4942 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
4943 unlock_page(page);
4944 put_page(page);
4945out:
4946 extent_changeset_free(data_reserved);
4947 return ret;
4948}
4949
4950static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4951 u64 offset, u64 len)
4952{
4953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4954 struct btrfs_trans_handle *trans;
4955 int ret;
4956
4957 /*
4958 * Still need to make sure the inode looks like it's been updated so
4959 * that any holes get logged if we fsync.
4960 */
4961 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4962 BTRFS_I(inode)->last_trans = fs_info->generation;
4963 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4964 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4965 return 0;
4966 }
4967
4968 /*
4969 * 1 - for the one we're dropping
4970 * 1 - for the one we're adding
4971 * 1 - for updating the inode.
4972 */
4973 trans = btrfs_start_transaction(root, 3);
4974 if (IS_ERR(trans))
4975 return PTR_ERR(trans);
4976
4977 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4978 if (ret) {
4979 btrfs_abort_transaction(trans, ret);
4980 btrfs_end_transaction(trans);
4981 return ret;
4982 }
4983
4984 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4985 offset, 0, 0, len, 0, len, 0, 0, 0);
4986 if (ret)
4987 btrfs_abort_transaction(trans, ret);
4988 else
4989 btrfs_update_inode(trans, root, inode);
4990 btrfs_end_transaction(trans);
4991 return ret;
4992}
4993
4994/*
4995 * This function puts in dummy file extents for the area we're creating a hole
4996 * for. So if we are truncating this file to a larger size we need to insert
4997 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4998 * the range between oldsize and size
4999 */
5000int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
5001{
5002 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5003 struct btrfs_root *root = BTRFS_I(inode)->root;
5004 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5005 struct extent_map *em = NULL;
5006 struct extent_state *cached_state = NULL;
5007 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5008 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5009 u64 block_end = ALIGN(size, fs_info->sectorsize);
5010 u64 last_byte;
5011 u64 cur_offset;
5012 u64 hole_size;
5013 int err = 0;
5014
5015 /*
5016 * If our size started in the middle of a block we need to zero out the
5017 * rest of the block before we expand the i_size, otherwise we could
5018 * expose stale data.
5019 */
5020 err = btrfs_truncate_block(inode, oldsize, 0, 0);
5021 if (err)
5022 return err;
5023
5024 if (size <= hole_start)
5025 return 0;
5026
5027 while (1) {
5028 struct btrfs_ordered_extent *ordered;
5029
5030 lock_extent_bits(io_tree, hole_start, block_end - 1,
5031 &cached_state);
5032 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
5033 block_end - hole_start);
5034 if (!ordered)
5035 break;
5036 unlock_extent_cached(io_tree, hole_start, block_end - 1,
5037 &cached_state);
5038 btrfs_start_ordered_extent(inode, ordered, 1);
5039 btrfs_put_ordered_extent(ordered);
5040 }
5041
5042 cur_offset = hole_start;
5043 while (1) {
5044 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
5045 block_end - cur_offset, 0);
5046 if (IS_ERR(em)) {
5047 err = PTR_ERR(em);
5048 em = NULL;
5049 break;
5050 }
5051 last_byte = min(extent_map_end(em), block_end);
5052 last_byte = ALIGN(last_byte, fs_info->sectorsize);
5053 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5054 struct extent_map *hole_em;
5055 hole_size = last_byte - cur_offset;
5056
5057 err = maybe_insert_hole(root, inode, cur_offset,
5058 hole_size);
5059 if (err)
5060 break;
5061 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5062 cur_offset + hole_size - 1, 0);
5063 hole_em = alloc_extent_map();
5064 if (!hole_em) {
5065 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5066 &BTRFS_I(inode)->runtime_flags);
5067 goto next;
5068 }
5069 hole_em->start = cur_offset;
5070 hole_em->len = hole_size;
5071 hole_em->orig_start = cur_offset;
5072
5073 hole_em->block_start = EXTENT_MAP_HOLE;
5074 hole_em->block_len = 0;
5075 hole_em->orig_block_len = 0;
5076 hole_em->ram_bytes = hole_size;
5077 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5078 hole_em->compress_type = BTRFS_COMPRESS_NONE;
5079 hole_em->generation = fs_info->generation;
5080
5081 while (1) {
5082 write_lock(&em_tree->lock);
5083 err = add_extent_mapping(em_tree, hole_em, 1);
5084 write_unlock(&em_tree->lock);
5085 if (err != -EEXIST)
5086 break;
5087 btrfs_drop_extent_cache(BTRFS_I(inode),
5088 cur_offset,
5089 cur_offset +
5090 hole_size - 1, 0);
5091 }
5092 free_extent_map(hole_em);
5093 }
5094next:
5095 free_extent_map(em);
5096 em = NULL;
5097 cur_offset = last_byte;
5098 if (cur_offset >= block_end)
5099 break;
5100 }
5101 free_extent_map(em);
5102 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
5103 return err;
5104}
5105
5106static int btrfs_setsize(struct inode *inode, struct iattr *attr)
5107{
5108 struct btrfs_root *root = BTRFS_I(inode)->root;
5109 struct btrfs_trans_handle *trans;
5110 loff_t oldsize = i_size_read(inode);
5111 loff_t newsize = attr->ia_size;
5112 int mask = attr->ia_valid;
5113 int ret;
5114
5115 /*
5116 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5117 * special case where we need to update the times despite not having
5118 * these flags set. For all other operations the VFS set these flags
5119 * explicitly if it wants a timestamp update.
5120 */
5121 if (newsize != oldsize) {
5122 inode_inc_iversion(inode);
5123 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5124 inode->i_ctime = inode->i_mtime =
5125 current_time(inode);
5126 }
5127
5128 if (newsize > oldsize) {
5129 /*
5130 * Don't do an expanding truncate while snapshotting is ongoing.
5131 * This is to ensure the snapshot captures a fully consistent
5132 * state of this file - if the snapshot captures this expanding
5133 * truncation, it must capture all writes that happened before
5134 * this truncation.
5135 */
5136 btrfs_wait_for_snapshot_creation(root);
5137 ret = btrfs_cont_expand(inode, oldsize, newsize);
5138 if (ret) {
5139 btrfs_end_write_no_snapshotting(root);
5140 return ret;
5141 }
5142
5143 trans = btrfs_start_transaction(root, 1);
5144 if (IS_ERR(trans)) {
5145 btrfs_end_write_no_snapshotting(root);
5146 return PTR_ERR(trans);
5147 }
5148
5149 i_size_write(inode, newsize);
5150 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5151 pagecache_isize_extended(inode, oldsize, newsize);
5152 ret = btrfs_update_inode(trans, root, inode);
5153 btrfs_end_write_no_snapshotting(root);
5154 btrfs_end_transaction(trans);
5155 } else {
5156
5157 /*
5158 * We're truncating a file that used to have good data down to
5159 * zero. Make sure it gets into the ordered flush list so that
5160 * any new writes get down to disk quickly.
5161 */
5162 if (newsize == 0)
5163 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5164 &BTRFS_I(inode)->runtime_flags);
5165
5166 truncate_setsize(inode, newsize);
5167
5168 /* Disable nonlocked read DIO to avoid the end less truncate */
5169 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
5170 inode_dio_wait(inode);
5171 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
5172
5173 ret = btrfs_truncate(inode, newsize == oldsize);
5174 if (ret && inode->i_nlink) {
5175 int err;
5176
5177 /*
5178 * Truncate failed, so fix up the in-memory size. We
5179 * adjusted disk_i_size down as we removed extents, so
5180 * wait for disk_i_size to be stable and then update the
5181 * in-memory size to match.
5182 */
5183 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5184 if (err)
5185 return err;
5186 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5187 }
5188 }
5189
5190 return ret;
5191}
5192
5193static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5194{
5195 struct inode *inode = d_inode(dentry);
5196 struct btrfs_root *root = BTRFS_I(inode)->root;
5197 int err;
5198
5199 if (btrfs_root_readonly(root))
5200 return -EROFS;
5201
5202 err = setattr_prepare(dentry, attr);
5203 if (err)
5204 return err;
5205
5206 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5207 err = btrfs_setsize(inode, attr);
5208 if (err)
5209 return err;
5210 }
5211
5212 if (attr->ia_valid) {
5213 setattr_copy(inode, attr);
5214 inode_inc_iversion(inode);
5215 err = btrfs_dirty_inode(inode);
5216
5217 if (!err && attr->ia_valid & ATTR_MODE)
5218 err = posix_acl_chmod(inode, inode->i_mode);
5219 }
5220
5221 return err;
5222}
5223
5224/*
5225 * While truncating the inode pages during eviction, we get the VFS calling
5226 * btrfs_invalidatepage() against each page of the inode. This is slow because
5227 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5228 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5229 * extent_state structures over and over, wasting lots of time.
5230 *
5231 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5232 * those expensive operations on a per page basis and do only the ordered io
5233 * finishing, while we release here the extent_map and extent_state structures,
5234 * without the excessive merging and splitting.
5235 */
5236static void evict_inode_truncate_pages(struct inode *inode)
5237{
5238 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5239 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5240 struct rb_node *node;
5241
5242 ASSERT(inode->i_state & I_FREEING);
5243 truncate_inode_pages_final(&inode->i_data);
5244
5245 write_lock(&map_tree->lock);
5246 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5247 struct extent_map *em;
5248
5249 node = rb_first(&map_tree->map);
5250 em = rb_entry(node, struct extent_map, rb_node);
5251 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5252 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5253 remove_extent_mapping(map_tree, em);
5254 free_extent_map(em);
5255 if (need_resched()) {
5256 write_unlock(&map_tree->lock);
5257 cond_resched();
5258 write_lock(&map_tree->lock);
5259 }
5260 }
5261 write_unlock(&map_tree->lock);
5262
5263 /*
5264 * Keep looping until we have no more ranges in the io tree.
5265 * We can have ongoing bios started by readpages (called from readahead)
5266 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5267 * still in progress (unlocked the pages in the bio but did not yet
5268 * unlocked the ranges in the io tree). Therefore this means some
5269 * ranges can still be locked and eviction started because before
5270 * submitting those bios, which are executed by a separate task (work
5271 * queue kthread), inode references (inode->i_count) were not taken
5272 * (which would be dropped in the end io callback of each bio).
5273 * Therefore here we effectively end up waiting for those bios and
5274 * anyone else holding locked ranges without having bumped the inode's
5275 * reference count - if we don't do it, when they access the inode's
5276 * io_tree to unlock a range it may be too late, leading to an
5277 * use-after-free issue.
5278 */
5279 spin_lock(&io_tree->lock);
5280 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5281 struct extent_state *state;
5282 struct extent_state *cached_state = NULL;
5283 u64 start;
5284 u64 end;
5285 unsigned state_flags;
5286
5287 node = rb_first(&io_tree->state);
5288 state = rb_entry(node, struct extent_state, rb_node);
5289 start = state->start;
5290 end = state->end;
5291 state_flags = state->state;
5292 spin_unlock(&io_tree->lock);
5293
5294 lock_extent_bits(io_tree, start, end, &cached_state);
5295
5296 /*
5297 * If still has DELALLOC flag, the extent didn't reach disk,
5298 * and its reserved space won't be freed by delayed_ref.
5299 * So we need to free its reserved space here.
5300 * (Refer to comment in btrfs_invalidatepage, case 2)
5301 *
5302 * Note, end is the bytenr of last byte, so we need + 1 here.
5303 */
5304 if (state_flags & EXTENT_DELALLOC)
5305 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
5306
5307 clear_extent_bit(io_tree, start, end,
5308 EXTENT_LOCKED | EXTENT_DIRTY |
5309 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5310 EXTENT_DEFRAG, 1, 1, &cached_state);
5311
5312 cond_resched();
5313 spin_lock(&io_tree->lock);
5314 }
5315 spin_unlock(&io_tree->lock);
5316}
5317
5318static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
5319 struct btrfs_block_rsv *rsv,
5320 u64 min_size)
5321{
5322 struct btrfs_fs_info *fs_info = root->fs_info;
5323 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5324 int failures = 0;
5325
5326 for (;;) {
5327 struct btrfs_trans_handle *trans;
5328 int ret;
5329
5330 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5331 BTRFS_RESERVE_FLUSH_LIMIT);
5332
5333 if (ret && ++failures > 2) {
5334 btrfs_warn(fs_info,
5335 "could not allocate space for a delete; will truncate on mount");
5336 return ERR_PTR(-ENOSPC);
5337 }
5338
5339 trans = btrfs_join_transaction(root);
5340 if (IS_ERR(trans) || !ret)
5341 return trans;
5342
5343 /*
5344 * Try to steal from the global reserve if there is space for
5345 * it.
5346 */
5347 if (!btrfs_check_space_for_delayed_refs(trans, fs_info) &&
5348 !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0))
5349 return trans;
5350
5351 /* If not, commit and try again. */
5352 ret = btrfs_commit_transaction(trans);
5353 if (ret)
5354 return ERR_PTR(ret);
5355 }
5356}
5357
5358void btrfs_evict_inode(struct inode *inode)
5359{
5360 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5361 struct btrfs_trans_handle *trans;
5362 struct btrfs_root *root = BTRFS_I(inode)->root;
5363 struct btrfs_block_rsv *rsv;
5364 u64 min_size;
5365 int ret;
5366
5367 trace_btrfs_inode_evict(inode);
5368
5369 if (!root) {
5370 clear_inode(inode);
5371 return;
5372 }
5373
5374 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
5375
5376 evict_inode_truncate_pages(inode);
5377
5378 if (inode->i_nlink &&
5379 ((btrfs_root_refs(&root->root_item) != 0 &&
5380 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5381 btrfs_is_free_space_inode(BTRFS_I(inode))))
5382 goto no_delete;
5383
5384 if (is_bad_inode(inode))
5385 goto no_delete;
5386 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5387 if (!special_file(inode->i_mode))
5388 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5389
5390 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5391
5392 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5393 goto no_delete;
5394
5395 if (inode->i_nlink > 0) {
5396 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5397 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5398 goto no_delete;
5399 }
5400
5401 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5402 if (ret)
5403 goto no_delete;
5404
5405 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5406 if (!rsv)
5407 goto no_delete;
5408 rsv->size = min_size;
5409 rsv->failfast = 1;
5410
5411 btrfs_i_size_write(BTRFS_I(inode), 0);
5412
5413 while (1) {
5414 trans = evict_refill_and_join(root, rsv, min_size);
5415 if (IS_ERR(trans))
5416 goto free_rsv;
5417
5418 trans->block_rsv = rsv;
5419
5420 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5421 trans->block_rsv = &fs_info->trans_block_rsv;
5422 btrfs_end_transaction(trans);
5423 btrfs_btree_balance_dirty(fs_info);
5424 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5425 goto free_rsv;
5426 else if (!ret)
5427 break;
5428 }
5429
5430 /*
5431 * Errors here aren't a big deal, it just means we leave orphan items in
5432 * the tree. They will be cleaned up on the next mount. If the inode
5433 * number gets reused, cleanup deletes the orphan item without doing
5434 * anything, and unlink reuses the existing orphan item.
5435 *
5436 * If it turns out that we are dropping too many of these, we might want
5437 * to add a mechanism for retrying these after a commit.
5438 */
5439 trans = evict_refill_and_join(root, rsv, min_size);
5440 if (!IS_ERR(trans)) {
5441 trans->block_rsv = rsv;
5442 btrfs_orphan_del(trans, BTRFS_I(inode));
5443 trans->block_rsv = &fs_info->trans_block_rsv;
5444 btrfs_end_transaction(trans);
5445 }
5446
5447 if (!(root == fs_info->tree_root ||
5448 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5449 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5450
5451free_rsv:
5452 btrfs_free_block_rsv(fs_info, rsv);
5453no_delete:
5454 /*
5455 * If we didn't successfully delete, the orphan item will still be in
5456 * the tree and we'll retry on the next mount. Again, we might also want
5457 * to retry these periodically in the future.
5458 */
5459 btrfs_remove_delayed_node(BTRFS_I(inode));
5460 clear_inode(inode);
5461}
5462
5463/*
5464 * this returns the key found in the dir entry in the location pointer.
5465 * If no dir entries were found, returns -ENOENT.
5466 * If found a corrupted location in dir entry, returns -EUCLEAN.
5467 */
5468static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5469 struct btrfs_key *location)
5470{
5471 const char *name = dentry->d_name.name;
5472 int namelen = dentry->d_name.len;
5473 struct btrfs_dir_item *di;
5474 struct btrfs_path *path;
5475 struct btrfs_root *root = BTRFS_I(dir)->root;
5476 int ret = 0;
5477
5478 path = btrfs_alloc_path();
5479 if (!path)
5480 return -ENOMEM;
5481
5482 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5483 name, namelen, 0);
5484 if (!di) {
5485 ret = -ENOENT;
5486 goto out;
5487 }
5488 if (IS_ERR(di)) {
5489 ret = PTR_ERR(di);
5490 goto out;
5491 }
5492
5493 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5494 if (location->type != BTRFS_INODE_ITEM_KEY &&
5495 location->type != BTRFS_ROOT_ITEM_KEY) {
5496 ret = -EUCLEAN;
5497 btrfs_warn(root->fs_info,
5498"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5499 __func__, name, btrfs_ino(BTRFS_I(dir)),
5500 location->objectid, location->type, location->offset);
5501 }
5502out:
5503 btrfs_free_path(path);
5504 return ret;
5505}
5506
5507/*
5508 * when we hit a tree root in a directory, the btrfs part of the inode
5509 * needs to be changed to reflect the root directory of the tree root. This
5510 * is kind of like crossing a mount point.
5511 */
5512static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5513 struct inode *dir,
5514 struct dentry *dentry,
5515 struct btrfs_key *location,
5516 struct btrfs_root **sub_root)
5517{
5518 struct btrfs_path *path;
5519 struct btrfs_root *new_root;
5520 struct btrfs_root_ref *ref;
5521 struct extent_buffer *leaf;
5522 struct btrfs_key key;
5523 int ret;
5524 int err = 0;
5525
5526 path = btrfs_alloc_path();
5527 if (!path) {
5528 err = -ENOMEM;
5529 goto out;
5530 }
5531
5532 err = -ENOENT;
5533 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5534 key.type = BTRFS_ROOT_REF_KEY;
5535 key.offset = location->objectid;
5536
5537 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5538 if (ret) {
5539 if (ret < 0)
5540 err = ret;
5541 goto out;
5542 }
5543
5544 leaf = path->nodes[0];
5545 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5546 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5547 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5548 goto out;
5549
5550 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5551 (unsigned long)(ref + 1),
5552 dentry->d_name.len);
5553 if (ret)
5554 goto out;
5555
5556 btrfs_release_path(path);
5557
5558 new_root = btrfs_read_fs_root_no_name(fs_info, location);
5559 if (IS_ERR(new_root)) {
5560 err = PTR_ERR(new_root);
5561 goto out;
5562 }
5563
5564 *sub_root = new_root;
5565 location->objectid = btrfs_root_dirid(&new_root->root_item);
5566 location->type = BTRFS_INODE_ITEM_KEY;
5567 location->offset = 0;
5568 err = 0;
5569out:
5570 btrfs_free_path(path);
5571 return err;
5572}
5573
5574static void inode_tree_add(struct inode *inode)
5575{
5576 struct btrfs_root *root = BTRFS_I(inode)->root;
5577 struct btrfs_inode *entry;
5578 struct rb_node **p;
5579 struct rb_node *parent;
5580 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5581 u64 ino = btrfs_ino(BTRFS_I(inode));
5582
5583 if (inode_unhashed(inode))
5584 return;
5585 parent = NULL;
5586 spin_lock(&root->inode_lock);
5587 p = &root->inode_tree.rb_node;
5588 while (*p) {
5589 parent = *p;
5590 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5591
5592 if (ino < btrfs_ino(entry))
5593 p = &parent->rb_left;
5594 else if (ino > btrfs_ino(entry))
5595 p = &parent->rb_right;
5596 else {
5597 WARN_ON(!(entry->vfs_inode.i_state &
5598 (I_WILL_FREE | I_FREEING)));
5599 rb_replace_node(parent, new, &root->inode_tree);
5600 RB_CLEAR_NODE(parent);
5601 spin_unlock(&root->inode_lock);
5602 return;
5603 }
5604 }
5605 rb_link_node(new, parent, p);
5606 rb_insert_color(new, &root->inode_tree);
5607 spin_unlock(&root->inode_lock);
5608}
5609
5610static void inode_tree_del(struct inode *inode)
5611{
5612 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5613 struct btrfs_root *root = BTRFS_I(inode)->root;
5614 int empty = 0;
5615
5616 spin_lock(&root->inode_lock);
5617 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5618 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5619 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5620 empty = RB_EMPTY_ROOT(&root->inode_tree);
5621 }
5622 spin_unlock(&root->inode_lock);
5623
5624 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5625 synchronize_srcu(&fs_info->subvol_srcu);
5626 spin_lock(&root->inode_lock);
5627 empty = RB_EMPTY_ROOT(&root->inode_tree);
5628 spin_unlock(&root->inode_lock);
5629 if (empty)
5630 btrfs_add_dead_root(root);
5631 }
5632}
5633
5634
5635static int btrfs_init_locked_inode(struct inode *inode, void *p)
5636{
5637 struct btrfs_iget_args *args = p;
5638 inode->i_ino = args->location->objectid;
5639 memcpy(&BTRFS_I(inode)->location, args->location,
5640 sizeof(*args->location));
5641 BTRFS_I(inode)->root = args->root;
5642 return 0;
5643}
5644
5645static int btrfs_find_actor(struct inode *inode, void *opaque)
5646{
5647 struct btrfs_iget_args *args = opaque;
5648 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5649 args->root == BTRFS_I(inode)->root;
5650}
5651
5652static struct inode *btrfs_iget_locked(struct super_block *s,
5653 struct btrfs_key *location,
5654 struct btrfs_root *root)
5655{
5656 struct inode *inode;
5657 struct btrfs_iget_args args;
5658 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5659
5660 args.location = location;
5661 args.root = root;
5662
5663 inode = iget5_locked(s, hashval, btrfs_find_actor,
5664 btrfs_init_locked_inode,
5665 (void *)&args);
5666 return inode;
5667}
5668
5669/* Get an inode object given its location and corresponding root.
5670 * Returns in *is_new if the inode was read from disk
5671 */
5672struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5673 struct btrfs_root *root, int *new)
5674{
5675 struct inode *inode;
5676
5677 inode = btrfs_iget_locked(s, location, root);
5678 if (!inode)
5679 return ERR_PTR(-ENOMEM);
5680
5681 if (inode->i_state & I_NEW) {
5682 int ret;
5683
5684 ret = btrfs_read_locked_inode(inode);
5685 if (!ret) {
5686 inode_tree_add(inode);
5687 unlock_new_inode(inode);
5688 if (new)
5689 *new = 1;
5690 } else {
5691 iget_failed(inode);
5692 /*
5693 * ret > 0 can come from btrfs_search_slot called by
5694 * btrfs_read_locked_inode, this means the inode item
5695 * was not found.
5696 */
5697 if (ret > 0)
5698 ret = -ENOENT;
5699 inode = ERR_PTR(ret);
5700 }
5701 }
5702
5703 return inode;
5704}
5705
5706static struct inode *new_simple_dir(struct super_block *s,
5707 struct btrfs_key *key,
5708 struct btrfs_root *root)
5709{
5710 struct inode *inode = new_inode(s);
5711
5712 if (!inode)
5713 return ERR_PTR(-ENOMEM);
5714
5715 BTRFS_I(inode)->root = root;
5716 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5717 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5718
5719 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5720 inode->i_op = &btrfs_dir_ro_inode_operations;
5721 inode->i_opflags &= ~IOP_XATTR;
5722 inode->i_fop = &simple_dir_operations;
5723 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5724 inode->i_mtime = current_time(inode);
5725 inode->i_atime = inode->i_mtime;
5726 inode->i_ctime = inode->i_mtime;
5727 BTRFS_I(inode)->i_otime = inode->i_mtime;
5728
5729 return inode;
5730}
5731
5732struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5733{
5734 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5735 struct inode *inode;
5736 struct btrfs_root *root = BTRFS_I(dir)->root;
5737 struct btrfs_root *sub_root = root;
5738 struct btrfs_key location;
5739 int index;
5740 int ret = 0;
5741
5742 if (dentry->d_name.len > BTRFS_NAME_LEN)
5743 return ERR_PTR(-ENAMETOOLONG);
5744
5745 ret = btrfs_inode_by_name(dir, dentry, &location);
5746 if (ret < 0)
5747 return ERR_PTR(ret);
5748
5749 if (location.type == BTRFS_INODE_ITEM_KEY) {
5750 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5751 return inode;
5752 }
5753
5754 index = srcu_read_lock(&fs_info->subvol_srcu);
5755 ret = fixup_tree_root_location(fs_info, dir, dentry,
5756 &location, &sub_root);
5757 if (ret < 0) {
5758 if (ret != -ENOENT)
5759 inode = ERR_PTR(ret);
5760 else
5761 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5762 } else {
5763 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5764 }
5765 srcu_read_unlock(&fs_info->subvol_srcu, index);
5766
5767 if (!IS_ERR(inode) && root != sub_root) {
5768 down_read(&fs_info->cleanup_work_sem);
5769 if (!sb_rdonly(inode->i_sb))
5770 ret = btrfs_orphan_cleanup(sub_root);
5771 up_read(&fs_info->cleanup_work_sem);
5772 if (ret) {
5773 iput(inode);
5774 inode = ERR_PTR(ret);
5775 }
5776 }
5777
5778 return inode;
5779}
5780
5781static int btrfs_dentry_delete(const struct dentry *dentry)
5782{
5783 struct btrfs_root *root;
5784 struct inode *inode = d_inode(dentry);
5785
5786 if (!inode && !IS_ROOT(dentry))
5787 inode = d_inode(dentry->d_parent);
5788
5789 if (inode) {
5790 root = BTRFS_I(inode)->root;
5791 if (btrfs_root_refs(&root->root_item) == 0)
5792 return 1;
5793
5794 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5795 return 1;
5796 }
5797 return 0;
5798}
5799
5800static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5801 unsigned int flags)
5802{
5803 struct inode *inode;
5804
5805 inode = btrfs_lookup_dentry(dir, dentry);
5806 if (IS_ERR(inode)) {
5807 if (PTR_ERR(inode) == -ENOENT)
5808 inode = NULL;
5809 else
5810 return ERR_CAST(inode);
5811 }
5812
5813 return d_splice_alias(inode, dentry);
5814}
5815
5816unsigned char btrfs_filetype_table[] = {
5817 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5818};
5819
5820/*
5821 * All this infrastructure exists because dir_emit can fault, and we are holding
5822 * the tree lock when doing readdir. For now just allocate a buffer and copy
5823 * our information into that, and then dir_emit from the buffer. This is
5824 * similar to what NFS does, only we don't keep the buffer around in pagecache
5825 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5826 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5827 * tree lock.
5828 */
5829static int btrfs_opendir(struct inode *inode, struct file *file)
5830{
5831 struct btrfs_file_private *private;
5832
5833 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5834 if (!private)
5835 return -ENOMEM;
5836 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5837 if (!private->filldir_buf) {
5838 kfree(private);
5839 return -ENOMEM;
5840 }
5841 file->private_data = private;
5842 return 0;
5843}
5844
5845struct dir_entry {
5846 u64 ino;
5847 u64 offset;
5848 unsigned type;
5849 int name_len;
5850};
5851
5852static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5853{
5854 while (entries--) {
5855 struct dir_entry *entry = addr;
5856 char *name = (char *)(entry + 1);
5857
5858 ctx->pos = get_unaligned(&entry->offset);
5859 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5860 get_unaligned(&entry->ino),
5861 get_unaligned(&entry->type)))
5862 return 1;
5863 addr += sizeof(struct dir_entry) +
5864 get_unaligned(&entry->name_len);
5865 ctx->pos++;
5866 }
5867 return 0;
5868}
5869
5870static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5871{
5872 struct inode *inode = file_inode(file);
5873 struct btrfs_root *root = BTRFS_I(inode)->root;
5874 struct btrfs_file_private *private = file->private_data;
5875 struct btrfs_dir_item *di;
5876 struct btrfs_key key;
5877 struct btrfs_key found_key;
5878 struct btrfs_path *path;
5879 void *addr;
5880 struct list_head ins_list;
5881 struct list_head del_list;
5882 int ret;
5883 struct extent_buffer *leaf;
5884 int slot;
5885 char *name_ptr;
5886 int name_len;
5887 int entries = 0;
5888 int total_len = 0;
5889 bool put = false;
5890 struct btrfs_key location;
5891
5892 if (!dir_emit_dots(file, ctx))
5893 return 0;
5894
5895 path = btrfs_alloc_path();
5896 if (!path)
5897 return -ENOMEM;
5898
5899 addr = private->filldir_buf;
5900 path->reada = READA_FORWARD;
5901
5902 INIT_LIST_HEAD(&ins_list);
5903 INIT_LIST_HEAD(&del_list);
5904 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5905
5906again:
5907 key.type = BTRFS_DIR_INDEX_KEY;
5908 key.offset = ctx->pos;
5909 key.objectid = btrfs_ino(BTRFS_I(inode));
5910
5911 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5912 if (ret < 0)
5913 goto err;
5914
5915 while (1) {
5916 struct dir_entry *entry;
5917
5918 leaf = path->nodes[0];
5919 slot = path->slots[0];
5920 if (slot >= btrfs_header_nritems(leaf)) {
5921 ret = btrfs_next_leaf(root, path);
5922 if (ret < 0)
5923 goto err;
5924 else if (ret > 0)
5925 break;
5926 continue;
5927 }
5928
5929 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5930
5931 if (found_key.objectid != key.objectid)
5932 break;
5933 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5934 break;
5935 if (found_key.offset < ctx->pos)
5936 goto next;
5937 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5938 goto next;
5939 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5940 name_len = btrfs_dir_name_len(leaf, di);
5941 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5942 PAGE_SIZE) {
5943 btrfs_release_path(path);
5944 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5945 if (ret)
5946 goto nopos;
5947 addr = private->filldir_buf;
5948 entries = 0;
5949 total_len = 0;
5950 goto again;
5951 }
5952
5953 entry = addr;
5954 put_unaligned(name_len, &entry->name_len);
5955 name_ptr = (char *)(entry + 1);
5956 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5957 name_len);
5958 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5959 &entry->type);
5960 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5961 put_unaligned(location.objectid, &entry->ino);
5962 put_unaligned(found_key.offset, &entry->offset);
5963 entries++;
5964 addr += sizeof(struct dir_entry) + name_len;
5965 total_len += sizeof(struct dir_entry) + name_len;
5966next:
5967 path->slots[0]++;
5968 }
5969 btrfs_release_path(path);
5970
5971 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5972 if (ret)
5973 goto nopos;
5974
5975 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5976 if (ret)
5977 goto nopos;
5978
5979 /*
5980 * Stop new entries from being returned after we return the last
5981 * entry.
5982 *
5983 * New directory entries are assigned a strictly increasing
5984 * offset. This means that new entries created during readdir
5985 * are *guaranteed* to be seen in the future by that readdir.
5986 * This has broken buggy programs which operate on names as
5987 * they're returned by readdir. Until we re-use freed offsets
5988 * we have this hack to stop new entries from being returned
5989 * under the assumption that they'll never reach this huge
5990 * offset.
5991 *
5992 * This is being careful not to overflow 32bit loff_t unless the
5993 * last entry requires it because doing so has broken 32bit apps
5994 * in the past.
5995 */
5996 if (ctx->pos >= INT_MAX)
5997 ctx->pos = LLONG_MAX;
5998 else
5999 ctx->pos = INT_MAX;
6000nopos:
6001 ret = 0;
6002err:
6003 if (put)
6004 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
6005 btrfs_free_path(path);
6006 return ret;
6007}
6008
6009/*
6010 * This is somewhat expensive, updating the tree every time the
6011 * inode changes. But, it is most likely to find the inode in cache.
6012 * FIXME, needs more benchmarking...there are no reasons other than performance
6013 * to keep or drop this code.
6014 */
6015static int btrfs_dirty_inode(struct inode *inode)
6016{
6017 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6018 struct btrfs_root *root = BTRFS_I(inode)->root;
6019 struct btrfs_trans_handle *trans;
6020 int ret;
6021
6022 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6023 return 0;
6024
6025 trans = btrfs_join_transaction(root);
6026 if (IS_ERR(trans))
6027 return PTR_ERR(trans);
6028
6029 ret = btrfs_update_inode(trans, root, inode);
6030 if (ret && ret == -ENOSPC) {
6031 /* whoops, lets try again with the full transaction */
6032 btrfs_end_transaction(trans);
6033 trans = btrfs_start_transaction(root, 1);
6034 if (IS_ERR(trans))
6035 return PTR_ERR(trans);
6036
6037 ret = btrfs_update_inode(trans, root, inode);
6038 }
6039 btrfs_end_transaction(trans);
6040 if (BTRFS_I(inode)->delayed_node)
6041 btrfs_balance_delayed_items(fs_info);
6042
6043 return ret;
6044}
6045
6046/*
6047 * This is a copy of file_update_time. We need this so we can return error on
6048 * ENOSPC for updating the inode in the case of file write and mmap writes.
6049 */
6050static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
6051 int flags)
6052{
6053 struct btrfs_root *root = BTRFS_I(inode)->root;
6054 bool dirty = flags & ~S_VERSION;
6055
6056 if (btrfs_root_readonly(root))
6057 return -EROFS;
6058
6059 if (flags & S_VERSION)
6060 dirty |= inode_maybe_inc_iversion(inode, dirty);
6061 if (flags & S_CTIME)
6062 inode->i_ctime = *now;
6063 if (flags & S_MTIME)
6064 inode->i_mtime = *now;
6065 if (flags & S_ATIME)
6066 inode->i_atime = *now;
6067 return dirty ? btrfs_dirty_inode(inode) : 0;
6068}
6069
6070/*
6071 * find the highest existing sequence number in a directory
6072 * and then set the in-memory index_cnt variable to reflect
6073 * free sequence numbers
6074 */
6075static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
6076{
6077 struct btrfs_root *root = inode->root;
6078 struct btrfs_key key, found_key;
6079 struct btrfs_path *path;
6080 struct extent_buffer *leaf;
6081 int ret;
6082
6083 key.objectid = btrfs_ino(inode);
6084 key.type = BTRFS_DIR_INDEX_KEY;
6085 key.offset = (u64)-1;
6086
6087 path = btrfs_alloc_path();
6088 if (!path)
6089 return -ENOMEM;
6090
6091 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6092 if (ret < 0)
6093 goto out;
6094 /* FIXME: we should be able to handle this */
6095 if (ret == 0)
6096 goto out;
6097 ret = 0;
6098
6099 /*
6100 * MAGIC NUMBER EXPLANATION:
6101 * since we search a directory based on f_pos we have to start at 2
6102 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6103 * else has to start at 2
6104 */
6105 if (path->slots[0] == 0) {
6106 inode->index_cnt = 2;
6107 goto out;
6108 }
6109
6110 path->slots[0]--;
6111
6112 leaf = path->nodes[0];
6113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6114
6115 if (found_key.objectid != btrfs_ino(inode) ||
6116 found_key.type != BTRFS_DIR_INDEX_KEY) {
6117 inode->index_cnt = 2;
6118 goto out;
6119 }
6120
6121 inode->index_cnt = found_key.offset + 1;
6122out:
6123 btrfs_free_path(path);
6124 return ret;
6125}
6126
6127/*
6128 * helper to find a free sequence number in a given directory. This current
6129 * code is very simple, later versions will do smarter things in the btree
6130 */
6131int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
6132{
6133 int ret = 0;
6134
6135 if (dir->index_cnt == (u64)-1) {
6136 ret = btrfs_inode_delayed_dir_index_count(dir);
6137 if (ret) {
6138 ret = btrfs_set_inode_index_count(dir);
6139 if (ret)
6140 return ret;
6141 }
6142 }
6143
6144 *index = dir->index_cnt;
6145 dir->index_cnt++;
6146
6147 return ret;
6148}
6149
6150static int btrfs_insert_inode_locked(struct inode *inode)
6151{
6152 struct btrfs_iget_args args;
6153 args.location = &BTRFS_I(inode)->location;
6154 args.root = BTRFS_I(inode)->root;
6155
6156 return insert_inode_locked4(inode,
6157 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6158 btrfs_find_actor, &args);
6159}
6160
6161/*
6162 * Inherit flags from the parent inode.
6163 *
6164 * Currently only the compression flags and the cow flags are inherited.
6165 */
6166static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6167{
6168 unsigned int flags;
6169
6170 if (!dir)
6171 return;
6172
6173 flags = BTRFS_I(dir)->flags;
6174
6175 if (flags & BTRFS_INODE_NOCOMPRESS) {
6176 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6177 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6178 } else if (flags & BTRFS_INODE_COMPRESS) {
6179 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6180 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6181 }
6182
6183 if (flags & BTRFS_INODE_NODATACOW) {
6184 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6185 if (S_ISREG(inode->i_mode))
6186 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6187 }
6188
6189 btrfs_sync_inode_flags_to_i_flags(inode);
6190}
6191
6192static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6193 struct btrfs_root *root,
6194 struct inode *dir,
6195 const char *name, int name_len,
6196 u64 ref_objectid, u64 objectid,
6197 umode_t mode, u64 *index)
6198{
6199 struct btrfs_fs_info *fs_info = root->fs_info;
6200 struct inode *inode;
6201 struct btrfs_inode_item *inode_item;
6202 struct btrfs_key *location;
6203 struct btrfs_path *path;
6204 struct btrfs_inode_ref *ref;
6205 struct btrfs_key key[2];
6206 u32 sizes[2];
6207 int nitems = name ? 2 : 1;
6208 unsigned long ptr;
6209 int ret;
6210
6211 path = btrfs_alloc_path();
6212 if (!path)
6213 return ERR_PTR(-ENOMEM);
6214
6215 inode = new_inode(fs_info->sb);
6216 if (!inode) {
6217 btrfs_free_path(path);
6218 return ERR_PTR(-ENOMEM);
6219 }
6220
6221 /*
6222 * O_TMPFILE, set link count to 0, so that after this point,
6223 * we fill in an inode item with the correct link count.
6224 */
6225 if (!name)
6226 set_nlink(inode, 0);
6227
6228 /*
6229 * we have to initialize this early, so we can reclaim the inode
6230 * number if we fail afterwards in this function.
6231 */
6232 inode->i_ino = objectid;
6233
6234 if (dir && name) {
6235 trace_btrfs_inode_request(dir);
6236
6237 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
6238 if (ret) {
6239 btrfs_free_path(path);
6240 iput(inode);
6241 return ERR_PTR(ret);
6242 }
6243 } else if (dir) {
6244 *index = 0;
6245 }
6246 /*
6247 * index_cnt is ignored for everything but a dir,
6248 * btrfs_set_inode_index_count has an explanation for the magic
6249 * number
6250 */
6251 BTRFS_I(inode)->index_cnt = 2;
6252 BTRFS_I(inode)->dir_index = *index;
6253 BTRFS_I(inode)->root = root;
6254 BTRFS_I(inode)->generation = trans->transid;
6255 inode->i_generation = BTRFS_I(inode)->generation;
6256
6257 /*
6258 * We could have gotten an inode number from somebody who was fsynced
6259 * and then removed in this same transaction, so let's just set full
6260 * sync since it will be a full sync anyway and this will blow away the
6261 * old info in the log.
6262 */
6263 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6264
6265 key[0].objectid = objectid;
6266 key[0].type = BTRFS_INODE_ITEM_KEY;
6267 key[0].offset = 0;
6268
6269 sizes[0] = sizeof(struct btrfs_inode_item);
6270
6271 if (name) {
6272 /*
6273 * Start new inodes with an inode_ref. This is slightly more
6274 * efficient for small numbers of hard links since they will
6275 * be packed into one item. Extended refs will kick in if we
6276 * add more hard links than can fit in the ref item.
6277 */
6278 key[1].objectid = objectid;
6279 key[1].type = BTRFS_INODE_REF_KEY;
6280 key[1].offset = ref_objectid;
6281
6282 sizes[1] = name_len + sizeof(*ref);
6283 }
6284
6285 location = &BTRFS_I(inode)->location;
6286 location->objectid = objectid;
6287 location->offset = 0;
6288 location->type = BTRFS_INODE_ITEM_KEY;
6289
6290 ret = btrfs_insert_inode_locked(inode);
6291 if (ret < 0) {
6292 iput(inode);
6293 goto fail;
6294 }
6295
6296 path->leave_spinning = 1;
6297 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6298 if (ret != 0)
6299 goto fail_unlock;
6300
6301 inode_init_owner(inode, dir, mode);
6302 inode_set_bytes(inode, 0);
6303
6304 inode->i_mtime = current_time(inode);
6305 inode->i_atime = inode->i_mtime;
6306 inode->i_ctime = inode->i_mtime;
6307 BTRFS_I(inode)->i_otime = inode->i_mtime;
6308
6309 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6310 struct btrfs_inode_item);
6311 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6312 sizeof(*inode_item));
6313 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6314
6315 if (name) {
6316 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6317 struct btrfs_inode_ref);
6318 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6319 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6320 ptr = (unsigned long)(ref + 1);
6321 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6322 }
6323
6324 btrfs_mark_buffer_dirty(path->nodes[0]);
6325 btrfs_free_path(path);
6326
6327 btrfs_inherit_iflags(inode, dir);
6328
6329 if (S_ISREG(mode)) {
6330 if (btrfs_test_opt(fs_info, NODATASUM))
6331 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6332 if (btrfs_test_opt(fs_info, NODATACOW))
6333 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6334 BTRFS_INODE_NODATASUM;
6335 }
6336
6337 inode_tree_add(inode);
6338
6339 trace_btrfs_inode_new(inode);
6340 btrfs_set_inode_last_trans(trans, inode);
6341
6342 btrfs_update_root_times(trans, root);
6343
6344 ret = btrfs_inode_inherit_props(trans, inode, dir);
6345 if (ret)
6346 btrfs_err(fs_info,
6347 "error inheriting props for ino %llu (root %llu): %d",
6348 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6349
6350 return inode;
6351
6352fail_unlock:
6353 discard_new_inode(inode);
6354fail:
6355 if (dir && name)
6356 BTRFS_I(dir)->index_cnt--;
6357 btrfs_free_path(path);
6358 return ERR_PTR(ret);
6359}
6360
6361static inline u8 btrfs_inode_type(struct inode *inode)
6362{
6363 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6364}
6365
6366/*
6367 * utility function to add 'inode' into 'parent_inode' with
6368 * a give name and a given sequence number.
6369 * if 'add_backref' is true, also insert a backref from the
6370 * inode to the parent directory.
6371 */
6372int btrfs_add_link(struct btrfs_trans_handle *trans,
6373 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6374 const char *name, int name_len, int add_backref, u64 index)
6375{
6376 int ret = 0;
6377 struct btrfs_key key;
6378 struct btrfs_root *root = parent_inode->root;
6379 u64 ino = btrfs_ino(inode);
6380 u64 parent_ino = btrfs_ino(parent_inode);
6381
6382 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6383 memcpy(&key, &inode->root->root_key, sizeof(key));
6384 } else {
6385 key.objectid = ino;
6386 key.type = BTRFS_INODE_ITEM_KEY;
6387 key.offset = 0;
6388 }
6389
6390 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6391 ret = btrfs_add_root_ref(trans, key.objectid,
6392 root->root_key.objectid, parent_ino,
6393 index, name, name_len);
6394 } else if (add_backref) {
6395 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6396 parent_ino, index);
6397 }
6398
6399 /* Nothing to clean up yet */
6400 if (ret)
6401 return ret;
6402
6403 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6404 parent_inode, &key,
6405 btrfs_inode_type(&inode->vfs_inode), index);
6406 if (ret == -EEXIST || ret == -EOVERFLOW)
6407 goto fail_dir_item;
6408 else if (ret) {
6409 btrfs_abort_transaction(trans, ret);
6410 return ret;
6411 }
6412
6413 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6414 name_len * 2);
6415 inode_inc_iversion(&parent_inode->vfs_inode);
6416 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6417 current_time(&parent_inode->vfs_inode);
6418 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6419 if (ret)
6420 btrfs_abort_transaction(trans, ret);
6421 return ret;
6422
6423fail_dir_item:
6424 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6425 u64 local_index;
6426 int err;
6427 err = btrfs_del_root_ref(trans, key.objectid,
6428 root->root_key.objectid, parent_ino,
6429 &local_index, name, name_len);
6430
6431 } else if (add_backref) {
6432 u64 local_index;
6433 int err;
6434
6435 err = btrfs_del_inode_ref(trans, root, name, name_len,
6436 ino, parent_ino, &local_index);
6437 }
6438 return ret;
6439}
6440
6441static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6442 struct btrfs_inode *dir, struct dentry *dentry,
6443 struct btrfs_inode *inode, int backref, u64 index)
6444{
6445 int err = btrfs_add_link(trans, dir, inode,
6446 dentry->d_name.name, dentry->d_name.len,
6447 backref, index);
6448 if (err > 0)
6449 err = -EEXIST;
6450 return err;
6451}
6452
6453static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6454 umode_t mode, dev_t rdev)
6455{
6456 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6457 struct btrfs_trans_handle *trans;
6458 struct btrfs_root *root = BTRFS_I(dir)->root;
6459 struct inode *inode = NULL;
6460 int err;
6461 u64 objectid;
6462 u64 index = 0;
6463
6464 /*
6465 * 2 for inode item and ref
6466 * 2 for dir items
6467 * 1 for xattr if selinux is on
6468 */
6469 trans = btrfs_start_transaction(root, 5);
6470 if (IS_ERR(trans))
6471 return PTR_ERR(trans);
6472
6473 err = btrfs_find_free_ino(root, &objectid);
6474 if (err)
6475 goto out_unlock;
6476
6477 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6478 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6479 mode, &index);
6480 if (IS_ERR(inode)) {
6481 err = PTR_ERR(inode);
6482 inode = NULL;
6483 goto out_unlock;
6484 }
6485
6486 /*
6487 * If the active LSM wants to access the inode during
6488 * d_instantiate it needs these. Smack checks to see
6489 * if the filesystem supports xattrs by looking at the
6490 * ops vector.
6491 */
6492 inode->i_op = &btrfs_special_inode_operations;
6493 init_special_inode(inode, inode->i_mode, rdev);
6494
6495 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6496 if (err)
6497 goto out_unlock;
6498
6499 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6500 0, index);
6501 if (err)
6502 goto out_unlock;
6503
6504 btrfs_update_inode(trans, root, inode);
6505 d_instantiate_new(dentry, inode);
6506
6507out_unlock:
6508 btrfs_end_transaction(trans);
6509 btrfs_btree_balance_dirty(fs_info);
6510 if (err && inode) {
6511 inode_dec_link_count(inode);
6512 discard_new_inode(inode);
6513 }
6514 return err;
6515}
6516
6517static int btrfs_create(struct inode *dir, struct dentry *dentry,
6518 umode_t mode, bool excl)
6519{
6520 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6521 struct btrfs_trans_handle *trans;
6522 struct btrfs_root *root = BTRFS_I(dir)->root;
6523 struct inode *inode = NULL;
6524 int err;
6525 u64 objectid;
6526 u64 index = 0;
6527
6528 /*
6529 * 2 for inode item and ref
6530 * 2 for dir items
6531 * 1 for xattr if selinux is on
6532 */
6533 trans = btrfs_start_transaction(root, 5);
6534 if (IS_ERR(trans))
6535 return PTR_ERR(trans);
6536
6537 err = btrfs_find_free_ino(root, &objectid);
6538 if (err)
6539 goto out_unlock;
6540
6541 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6542 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6543 mode, &index);
6544 if (IS_ERR(inode)) {
6545 err = PTR_ERR(inode);
6546 inode = NULL;
6547 goto out_unlock;
6548 }
6549 /*
6550 * If the active LSM wants to access the inode during
6551 * d_instantiate it needs these. Smack checks to see
6552 * if the filesystem supports xattrs by looking at the
6553 * ops vector.
6554 */
6555 inode->i_fop = &btrfs_file_operations;
6556 inode->i_op = &btrfs_file_inode_operations;
6557 inode->i_mapping->a_ops = &btrfs_aops;
6558
6559 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6560 if (err)
6561 goto out_unlock;
6562
6563 err = btrfs_update_inode(trans, root, inode);
6564 if (err)
6565 goto out_unlock;
6566
6567 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6568 0, index);
6569 if (err)
6570 goto out_unlock;
6571
6572 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6573 d_instantiate_new(dentry, inode);
6574
6575out_unlock:
6576 btrfs_end_transaction(trans);
6577 if (err && inode) {
6578 inode_dec_link_count(inode);
6579 discard_new_inode(inode);
6580 }
6581 btrfs_btree_balance_dirty(fs_info);
6582 return err;
6583}
6584
6585static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6586 struct dentry *dentry)
6587{
6588 struct btrfs_trans_handle *trans = NULL;
6589 struct btrfs_root *root = BTRFS_I(dir)->root;
6590 struct inode *inode = d_inode(old_dentry);
6591 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6592 u64 index;
6593 int err;
6594 int drop_inode = 0;
6595
6596 /* do not allow sys_link's with other subvols of the same device */
6597 if (root->objectid != BTRFS_I(inode)->root->objectid)
6598 return -EXDEV;
6599
6600 if (inode->i_nlink >= BTRFS_LINK_MAX)
6601 return -EMLINK;
6602
6603 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6604 if (err)
6605 goto fail;
6606
6607 /*
6608 * 2 items for inode and inode ref
6609 * 2 items for dir items
6610 * 1 item for parent inode
6611 * 1 item for orphan item deletion if O_TMPFILE
6612 */
6613 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6614 if (IS_ERR(trans)) {
6615 err = PTR_ERR(trans);
6616 trans = NULL;
6617 goto fail;
6618 }
6619
6620 /* There are several dir indexes for this inode, clear the cache. */
6621 BTRFS_I(inode)->dir_index = 0ULL;
6622 inc_nlink(inode);
6623 inode_inc_iversion(inode);
6624 inode->i_ctime = current_time(inode);
6625 ihold(inode);
6626 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6627
6628 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6629 1, index);
6630
6631 if (err) {
6632 drop_inode = 1;
6633 } else {
6634 struct dentry *parent = dentry->d_parent;
6635 int ret;
6636
6637 err = btrfs_update_inode(trans, root, inode);
6638 if (err)
6639 goto fail;
6640 if (inode->i_nlink == 1) {
6641 /*
6642 * If new hard link count is 1, it's a file created
6643 * with open(2) O_TMPFILE flag.
6644 */
6645 err = btrfs_orphan_del(trans, BTRFS_I(inode));
6646 if (err)
6647 goto fail;
6648 }
6649 d_instantiate(dentry, inode);
6650 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6651 true, NULL);
6652 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6653 err = btrfs_commit_transaction(trans);
6654 trans = NULL;
6655 }
6656 }
6657
6658fail:
6659 if (trans)
6660 btrfs_end_transaction(trans);
6661 if (drop_inode) {
6662 inode_dec_link_count(inode);
6663 iput(inode);
6664 }
6665 btrfs_btree_balance_dirty(fs_info);
6666 return err;
6667}
6668
6669static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6670{
6671 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6672 struct inode *inode = NULL;
6673 struct btrfs_trans_handle *trans;
6674 struct btrfs_root *root = BTRFS_I(dir)->root;
6675 int err = 0;
6676 int drop_on_err = 0;
6677 u64 objectid = 0;
6678 u64 index = 0;
6679
6680 /*
6681 * 2 items for inode and ref
6682 * 2 items for dir items
6683 * 1 for xattr if selinux is on
6684 */
6685 trans = btrfs_start_transaction(root, 5);
6686 if (IS_ERR(trans))
6687 return PTR_ERR(trans);
6688
6689 err = btrfs_find_free_ino(root, &objectid);
6690 if (err)
6691 goto out_fail;
6692
6693 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6694 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6695 S_IFDIR | mode, &index);
6696 if (IS_ERR(inode)) {
6697 err = PTR_ERR(inode);
6698 inode = NULL;
6699 goto out_fail;
6700 }
6701
6702 drop_on_err = 1;
6703 /* these must be set before we unlock the inode */
6704 inode->i_op = &btrfs_dir_inode_operations;
6705 inode->i_fop = &btrfs_dir_file_operations;
6706
6707 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6708 if (err)
6709 goto out_fail;
6710
6711 btrfs_i_size_write(BTRFS_I(inode), 0);
6712 err = btrfs_update_inode(trans, root, inode);
6713 if (err)
6714 goto out_fail;
6715
6716 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6717 dentry->d_name.name,
6718 dentry->d_name.len, 0, index);
6719 if (err)
6720 goto out_fail;
6721
6722 d_instantiate_new(dentry, inode);
6723 drop_on_err = 0;
6724
6725out_fail:
6726 btrfs_end_transaction(trans);
6727 if (err && inode) {
6728 inode_dec_link_count(inode);
6729 discard_new_inode(inode);
6730 }
6731 btrfs_btree_balance_dirty(fs_info);
6732 return err;
6733}
6734
6735static noinline int uncompress_inline(struct btrfs_path *path,
6736 struct page *page,
6737 size_t pg_offset, u64 extent_offset,
6738 struct btrfs_file_extent_item *item)
6739{
6740 int ret;
6741 struct extent_buffer *leaf = path->nodes[0];
6742 char *tmp;
6743 size_t max_size;
6744 unsigned long inline_size;
6745 unsigned long ptr;
6746 int compress_type;
6747
6748 WARN_ON(pg_offset != 0);
6749 compress_type = btrfs_file_extent_compression(leaf, item);
6750 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6751 inline_size = btrfs_file_extent_inline_item_len(leaf,
6752 btrfs_item_nr(path->slots[0]));
6753 tmp = kmalloc(inline_size, GFP_NOFS);
6754 if (!tmp)
6755 return -ENOMEM;
6756 ptr = btrfs_file_extent_inline_start(item);
6757
6758 read_extent_buffer(leaf, tmp, ptr, inline_size);
6759
6760 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6761 ret = btrfs_decompress(compress_type, tmp, page,
6762 extent_offset, inline_size, max_size);
6763
6764 /*
6765 * decompression code contains a memset to fill in any space between the end
6766 * of the uncompressed data and the end of max_size in case the decompressed
6767 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6768 * the end of an inline extent and the beginning of the next block, so we
6769 * cover that region here.
6770 */
6771
6772 if (max_size + pg_offset < PAGE_SIZE) {
6773 char *map = kmap(page);
6774 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6775 kunmap(page);
6776 }
6777 kfree(tmp);
6778 return ret;
6779}
6780
6781/*
6782 * a bit scary, this does extent mapping from logical file offset to the disk.
6783 * the ugly parts come from merging extents from the disk with the in-ram
6784 * representation. This gets more complex because of the data=ordered code,
6785 * where the in-ram extents might be locked pending data=ordered completion.
6786 *
6787 * This also copies inline extents directly into the page.
6788 */
6789struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6790 struct page *page,
6791 size_t pg_offset, u64 start, u64 len,
6792 int create)
6793{
6794 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6795 int ret;
6796 int err = 0;
6797 u64 extent_start = 0;
6798 u64 extent_end = 0;
6799 u64 objectid = btrfs_ino(inode);
6800 u32 found_type;
6801 struct btrfs_path *path = NULL;
6802 struct btrfs_root *root = inode->root;
6803 struct btrfs_file_extent_item *item;
6804 struct extent_buffer *leaf;
6805 struct btrfs_key found_key;
6806 struct extent_map *em = NULL;
6807 struct extent_map_tree *em_tree = &inode->extent_tree;
6808 struct extent_io_tree *io_tree = &inode->io_tree;
6809 const bool new_inline = !page || create;
6810
6811 read_lock(&em_tree->lock);
6812 em = lookup_extent_mapping(em_tree, start, len);
6813 if (em)
6814 em->bdev = fs_info->fs_devices->latest_bdev;
6815 read_unlock(&em_tree->lock);
6816
6817 if (em) {
6818 if (em->start > start || em->start + em->len <= start)
6819 free_extent_map(em);
6820 else if (em->block_start == EXTENT_MAP_INLINE && page)
6821 free_extent_map(em);
6822 else
6823 goto out;
6824 }
6825 em = alloc_extent_map();
6826 if (!em) {
6827 err = -ENOMEM;
6828 goto out;
6829 }
6830 em->bdev = fs_info->fs_devices->latest_bdev;
6831 em->start = EXTENT_MAP_HOLE;
6832 em->orig_start = EXTENT_MAP_HOLE;
6833 em->len = (u64)-1;
6834 em->block_len = (u64)-1;
6835
6836 if (!path) {
6837 path = btrfs_alloc_path();
6838 if (!path) {
6839 err = -ENOMEM;
6840 goto out;
6841 }
6842 /*
6843 * Chances are we'll be called again, so go ahead and do
6844 * readahead
6845 */
6846 path->reada = READA_FORWARD;
6847 }
6848
6849 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6850 if (ret < 0) {
6851 err = ret;
6852 goto out;
6853 }
6854
6855 if (ret != 0) {
6856 if (path->slots[0] == 0)
6857 goto not_found;
6858 path->slots[0]--;
6859 }
6860
6861 leaf = path->nodes[0];
6862 item = btrfs_item_ptr(leaf, path->slots[0],
6863 struct btrfs_file_extent_item);
6864 /* are we inside the extent that was found? */
6865 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6866 found_type = found_key.type;
6867 if (found_key.objectid != objectid ||
6868 found_type != BTRFS_EXTENT_DATA_KEY) {
6869 /*
6870 * If we backup past the first extent we want to move forward
6871 * and see if there is an extent in front of us, otherwise we'll
6872 * say there is a hole for our whole search range which can
6873 * cause problems.
6874 */
6875 extent_end = start;
6876 goto next;
6877 }
6878
6879 found_type = btrfs_file_extent_type(leaf, item);
6880 extent_start = found_key.offset;
6881 if (found_type == BTRFS_FILE_EXTENT_REG ||
6882 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6883 extent_end = extent_start +
6884 btrfs_file_extent_num_bytes(leaf, item);
6885
6886 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6887 extent_start);
6888 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6889 size_t size;
6890
6891 size = btrfs_file_extent_ram_bytes(leaf, item);
6892 extent_end = ALIGN(extent_start + size,
6893 fs_info->sectorsize);
6894
6895 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6896 path->slots[0],
6897 extent_start);
6898 }
6899next:
6900 if (start >= extent_end) {
6901 path->slots[0]++;
6902 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6903 ret = btrfs_next_leaf(root, path);
6904 if (ret < 0) {
6905 err = ret;
6906 goto out;
6907 }
6908 if (ret > 0)
6909 goto not_found;
6910 leaf = path->nodes[0];
6911 }
6912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6913 if (found_key.objectid != objectid ||
6914 found_key.type != BTRFS_EXTENT_DATA_KEY)
6915 goto not_found;
6916 if (start + len <= found_key.offset)
6917 goto not_found;
6918 if (start > found_key.offset)
6919 goto next;
6920 em->start = start;
6921 em->orig_start = start;
6922 em->len = found_key.offset - start;
6923 goto not_found_em;
6924 }
6925
6926 btrfs_extent_item_to_extent_map(inode, path, item,
6927 new_inline, em);
6928
6929 if (found_type == BTRFS_FILE_EXTENT_REG ||
6930 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6931 goto insert;
6932 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6933 unsigned long ptr;
6934 char *map;
6935 size_t size;
6936 size_t extent_offset;
6937 size_t copy_size;
6938
6939 if (new_inline)
6940 goto out;
6941
6942 size = btrfs_file_extent_ram_bytes(leaf, item);
6943 extent_offset = page_offset(page) + pg_offset - extent_start;
6944 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6945 size - extent_offset);
6946 em->start = extent_start + extent_offset;
6947 em->len = ALIGN(copy_size, fs_info->sectorsize);
6948 em->orig_block_len = em->len;
6949 em->orig_start = em->start;
6950 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6951 if (!PageUptodate(page)) {
6952 if (btrfs_file_extent_compression(leaf, item) !=
6953 BTRFS_COMPRESS_NONE) {
6954 ret = uncompress_inline(path, page, pg_offset,
6955 extent_offset, item);
6956 if (ret) {
6957 err = ret;
6958 goto out;
6959 }
6960 } else {
6961 map = kmap(page);
6962 read_extent_buffer(leaf, map + pg_offset, ptr,
6963 copy_size);
6964 if (pg_offset + copy_size < PAGE_SIZE) {
6965 memset(map + pg_offset + copy_size, 0,
6966 PAGE_SIZE - pg_offset -
6967 copy_size);
6968 }
6969 kunmap(page);
6970 }
6971 flush_dcache_page(page);
6972 }
6973 set_extent_uptodate(io_tree, em->start,
6974 extent_map_end(em) - 1, NULL, GFP_NOFS);
6975 goto insert;
6976 }
6977not_found:
6978 em->start = start;
6979 em->orig_start = start;
6980 em->len = len;
6981not_found_em:
6982 em->block_start = EXTENT_MAP_HOLE;
6983insert:
6984 btrfs_release_path(path);
6985 if (em->start > start || extent_map_end(em) <= start) {
6986 btrfs_err(fs_info,
6987 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6988 em->start, em->len, start, len);
6989 err = -EIO;
6990 goto out;
6991 }
6992
6993 err = 0;
6994 write_lock(&em_tree->lock);
6995 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6996 write_unlock(&em_tree->lock);
6997out:
6998
6999 trace_btrfs_get_extent(root, inode, em);
7000
7001 btrfs_free_path(path);
7002 if (err) {
7003 free_extent_map(em);
7004 return ERR_PTR(err);
7005 }
7006 BUG_ON(!em); /* Error is always set */
7007 return em;
7008}
7009
7010struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7011 struct page *page,
7012 size_t pg_offset, u64 start, u64 len,
7013 int create)
7014{
7015 struct extent_map *em;
7016 struct extent_map *hole_em = NULL;
7017 u64 range_start = start;
7018 u64 end;
7019 u64 found;
7020 u64 found_end;
7021 int err = 0;
7022
7023 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7024 if (IS_ERR(em))
7025 return em;
7026 /*
7027 * If our em maps to:
7028 * - a hole or
7029 * - a pre-alloc extent,
7030 * there might actually be delalloc bytes behind it.
7031 */
7032 if (em->block_start != EXTENT_MAP_HOLE &&
7033 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7034 return em;
7035 else
7036 hole_em = em;
7037
7038 /* check to see if we've wrapped (len == -1 or similar) */
7039 end = start + len;
7040 if (end < start)
7041 end = (u64)-1;
7042 else
7043 end -= 1;
7044
7045 em = NULL;
7046
7047 /* ok, we didn't find anything, lets look for delalloc */
7048 found = count_range_bits(&inode->io_tree, &range_start,
7049 end, len, EXTENT_DELALLOC, 1);
7050 found_end = range_start + found;
7051 if (found_end < range_start)
7052 found_end = (u64)-1;
7053
7054 /*
7055 * we didn't find anything useful, return
7056 * the original results from get_extent()
7057 */
7058 if (range_start > end || found_end <= start) {
7059 em = hole_em;
7060 hole_em = NULL;
7061 goto out;
7062 }
7063
7064 /* adjust the range_start to make sure it doesn't
7065 * go backwards from the start they passed in
7066 */
7067 range_start = max(start, range_start);
7068 found = found_end - range_start;
7069
7070 if (found > 0) {
7071 u64 hole_start = start;
7072 u64 hole_len = len;
7073
7074 em = alloc_extent_map();
7075 if (!em) {
7076 err = -ENOMEM;
7077 goto out;
7078 }
7079 /*
7080 * when btrfs_get_extent can't find anything it
7081 * returns one huge hole
7082 *
7083 * make sure what it found really fits our range, and
7084 * adjust to make sure it is based on the start from
7085 * the caller
7086 */
7087 if (hole_em) {
7088 u64 calc_end = extent_map_end(hole_em);
7089
7090 if (calc_end <= start || (hole_em->start > end)) {
7091 free_extent_map(hole_em);
7092 hole_em = NULL;
7093 } else {
7094 hole_start = max(hole_em->start, start);
7095 hole_len = calc_end - hole_start;
7096 }
7097 }
7098 em->bdev = NULL;
7099 if (hole_em && range_start > hole_start) {
7100 /* our hole starts before our delalloc, so we
7101 * have to return just the parts of the hole
7102 * that go until the delalloc starts
7103 */
7104 em->len = min(hole_len,
7105 range_start - hole_start);
7106 em->start = hole_start;
7107 em->orig_start = hole_start;
7108 /*
7109 * don't adjust block start at all,
7110 * it is fixed at EXTENT_MAP_HOLE
7111 */
7112 em->block_start = hole_em->block_start;
7113 em->block_len = hole_len;
7114 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7115 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7116 } else {
7117 em->start = range_start;
7118 em->len = found;
7119 em->orig_start = range_start;
7120 em->block_start = EXTENT_MAP_DELALLOC;
7121 em->block_len = found;
7122 }
7123 } else {
7124 return hole_em;
7125 }
7126out:
7127
7128 free_extent_map(hole_em);
7129 if (err) {
7130 free_extent_map(em);
7131 return ERR_PTR(err);
7132 }
7133 return em;
7134}
7135
7136static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7137 const u64 start,
7138 const u64 len,
7139 const u64 orig_start,
7140 const u64 block_start,
7141 const u64 block_len,
7142 const u64 orig_block_len,
7143 const u64 ram_bytes,
7144 const int type)
7145{
7146 struct extent_map *em = NULL;
7147 int ret;
7148
7149 if (type != BTRFS_ORDERED_NOCOW) {
7150 em = create_io_em(inode, start, len, orig_start,
7151 block_start, block_len, orig_block_len,
7152 ram_bytes,
7153 BTRFS_COMPRESS_NONE, /* compress_type */
7154 type);
7155 if (IS_ERR(em))
7156 goto out;
7157 }
7158 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7159 len, block_len, type);
7160 if (ret) {
7161 if (em) {
7162 free_extent_map(em);
7163 btrfs_drop_extent_cache(BTRFS_I(inode), start,
7164 start + len - 1, 0);
7165 }
7166 em = ERR_PTR(ret);
7167 }
7168 out:
7169
7170 return em;
7171}
7172
7173static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7174 u64 start, u64 len)
7175{
7176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7177 struct btrfs_root *root = BTRFS_I(inode)->root;
7178 struct extent_map *em;
7179 struct btrfs_key ins;
7180 u64 alloc_hint;
7181 int ret;
7182
7183 alloc_hint = get_extent_allocation_hint(inode, start, len);
7184 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
7185 0, alloc_hint, &ins, 1, 1);
7186 if (ret)
7187 return ERR_PTR(ret);
7188
7189 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7190 ins.objectid, ins.offset, ins.offset,
7191 ins.offset, BTRFS_ORDERED_REGULAR);
7192 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
7193 if (IS_ERR(em))
7194 btrfs_free_reserved_extent(fs_info, ins.objectid,
7195 ins.offset, 1);
7196
7197 return em;
7198}
7199
7200/*
7201 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7202 * block must be cow'd
7203 */
7204noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7205 u64 *orig_start, u64 *orig_block_len,
7206 u64 *ram_bytes)
7207{
7208 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7209 struct btrfs_path *path;
7210 int ret;
7211 struct extent_buffer *leaf;
7212 struct btrfs_root *root = BTRFS_I(inode)->root;
7213 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7214 struct btrfs_file_extent_item *fi;
7215 struct btrfs_key key;
7216 u64 disk_bytenr;
7217 u64 backref_offset;
7218 u64 extent_end;
7219 u64 num_bytes;
7220 int slot;
7221 int found_type;
7222 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7223
7224 path = btrfs_alloc_path();
7225 if (!path)
7226 return -ENOMEM;
7227
7228 ret = btrfs_lookup_file_extent(NULL, root, path,
7229 btrfs_ino(BTRFS_I(inode)), offset, 0);
7230 if (ret < 0)
7231 goto out;
7232
7233 slot = path->slots[0];
7234 if (ret == 1) {
7235 if (slot == 0) {
7236 /* can't find the item, must cow */
7237 ret = 0;
7238 goto out;
7239 }
7240 slot--;
7241 }
7242 ret = 0;
7243 leaf = path->nodes[0];
7244 btrfs_item_key_to_cpu(leaf, &key, slot);
7245 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
7246 key.type != BTRFS_EXTENT_DATA_KEY) {
7247 /* not our file or wrong item type, must cow */
7248 goto out;
7249 }
7250
7251 if (key.offset > offset) {
7252 /* Wrong offset, must cow */
7253 goto out;
7254 }
7255
7256 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7257 found_type = btrfs_file_extent_type(leaf, fi);
7258 if (found_type != BTRFS_FILE_EXTENT_REG &&
7259 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7260 /* not a regular extent, must cow */
7261 goto out;
7262 }
7263
7264 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7265 goto out;
7266
7267 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7268 if (extent_end <= offset)
7269 goto out;
7270
7271 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7272 if (disk_bytenr == 0)
7273 goto out;
7274
7275 if (btrfs_file_extent_compression(leaf, fi) ||
7276 btrfs_file_extent_encryption(leaf, fi) ||
7277 btrfs_file_extent_other_encoding(leaf, fi))
7278 goto out;
7279
7280 /*
7281 * Do the same check as in btrfs_cross_ref_exist but without the
7282 * unnecessary search.
7283 */
7284 if (btrfs_file_extent_generation(leaf, fi) <=
7285 btrfs_root_last_snapshot(&root->root_item))
7286 goto out;
7287
7288 backref_offset = btrfs_file_extent_offset(leaf, fi);
7289
7290 if (orig_start) {
7291 *orig_start = key.offset - backref_offset;
7292 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7293 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7294 }
7295
7296 if (btrfs_extent_readonly(fs_info, disk_bytenr))
7297 goto out;
7298
7299 num_bytes = min(offset + *len, extent_end) - offset;
7300 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7301 u64 range_end;
7302
7303 range_end = round_up(offset + num_bytes,
7304 root->fs_info->sectorsize) - 1;
7305 ret = test_range_bit(io_tree, offset, range_end,
7306 EXTENT_DELALLOC, 0, NULL);
7307 if (ret) {
7308 ret = -EAGAIN;
7309 goto out;
7310 }
7311 }
7312
7313 btrfs_release_path(path);
7314
7315 /*
7316 * look for other files referencing this extent, if we
7317 * find any we must cow
7318 */
7319
7320 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7321 key.offset - backref_offset, disk_bytenr);
7322 if (ret) {
7323 ret = 0;
7324 goto out;
7325 }
7326
7327 /*
7328 * adjust disk_bytenr and num_bytes to cover just the bytes
7329 * in this extent we are about to write. If there
7330 * are any csums in that range we have to cow in order
7331 * to keep the csums correct
7332 */
7333 disk_bytenr += backref_offset;
7334 disk_bytenr += offset - key.offset;
7335 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7336 goto out;
7337 /*
7338 * all of the above have passed, it is safe to overwrite this extent
7339 * without cow
7340 */
7341 *len = num_bytes;
7342 ret = 1;
7343out:
7344 btrfs_free_path(path);
7345 return ret;
7346}
7347
7348static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7349 struct extent_state **cached_state, int writing)
7350{
7351 struct btrfs_ordered_extent *ordered;
7352 int ret = 0;
7353
7354 while (1) {
7355 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7356 cached_state);
7357 /*
7358 * We're concerned with the entire range that we're going to be
7359 * doing DIO to, so we need to make sure there's no ordered
7360 * extents in this range.
7361 */
7362 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7363 lockend - lockstart + 1);
7364
7365 /*
7366 * We need to make sure there are no buffered pages in this
7367 * range either, we could have raced between the invalidate in
7368 * generic_file_direct_write and locking the extent. The
7369 * invalidate needs to happen so that reads after a write do not
7370 * get stale data.
7371 */
7372 if (!ordered &&
7373 (!writing || !filemap_range_has_page(inode->i_mapping,
7374 lockstart, lockend)))
7375 break;
7376
7377 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7378 cached_state);
7379
7380 if (ordered) {
7381 /*
7382 * If we are doing a DIO read and the ordered extent we
7383 * found is for a buffered write, we can not wait for it
7384 * to complete and retry, because if we do so we can
7385 * deadlock with concurrent buffered writes on page
7386 * locks. This happens only if our DIO read covers more
7387 * than one extent map, if at this point has already
7388 * created an ordered extent for a previous extent map
7389 * and locked its range in the inode's io tree, and a
7390 * concurrent write against that previous extent map's
7391 * range and this range started (we unlock the ranges
7392 * in the io tree only when the bios complete and
7393 * buffered writes always lock pages before attempting
7394 * to lock range in the io tree).
7395 */
7396 if (writing ||
7397 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7398 btrfs_start_ordered_extent(inode, ordered, 1);
7399 else
7400 ret = -ENOTBLK;
7401 btrfs_put_ordered_extent(ordered);
7402 } else {
7403 /*
7404 * We could trigger writeback for this range (and wait
7405 * for it to complete) and then invalidate the pages for
7406 * this range (through invalidate_inode_pages2_range()),
7407 * but that can lead us to a deadlock with a concurrent
7408 * call to readpages() (a buffered read or a defrag call
7409 * triggered a readahead) on a page lock due to an
7410 * ordered dio extent we created before but did not have
7411 * yet a corresponding bio submitted (whence it can not
7412 * complete), which makes readpages() wait for that
7413 * ordered extent to complete while holding a lock on
7414 * that page.
7415 */
7416 ret = -ENOTBLK;
7417 }
7418
7419 if (ret)
7420 break;
7421
7422 cond_resched();
7423 }
7424
7425 return ret;
7426}
7427
7428/* The callers of this must take lock_extent() */
7429static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7430 u64 orig_start, u64 block_start,
7431 u64 block_len, u64 orig_block_len,
7432 u64 ram_bytes, int compress_type,
7433 int type)
7434{
7435 struct extent_map_tree *em_tree;
7436 struct extent_map *em;
7437 struct btrfs_root *root = BTRFS_I(inode)->root;
7438 int ret;
7439
7440 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7441 type == BTRFS_ORDERED_COMPRESSED ||
7442 type == BTRFS_ORDERED_NOCOW ||
7443 type == BTRFS_ORDERED_REGULAR);
7444
7445 em_tree = &BTRFS_I(inode)->extent_tree;
7446 em = alloc_extent_map();
7447 if (!em)
7448 return ERR_PTR(-ENOMEM);
7449
7450 em->start = start;
7451 em->orig_start = orig_start;
7452 em->len = len;
7453 em->block_len = block_len;
7454 em->block_start = block_start;
7455 em->bdev = root->fs_info->fs_devices->latest_bdev;
7456 em->orig_block_len = orig_block_len;
7457 em->ram_bytes = ram_bytes;
7458 em->generation = -1;
7459 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7460 if (type == BTRFS_ORDERED_PREALLOC) {
7461 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7462 } else if (type == BTRFS_ORDERED_COMPRESSED) {
7463 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7464 em->compress_type = compress_type;
7465 }
7466
7467 do {
7468 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7469 em->start + em->len - 1, 0);
7470 write_lock(&em_tree->lock);
7471 ret = add_extent_mapping(em_tree, em, 1);
7472 write_unlock(&em_tree->lock);
7473 /*
7474 * The caller has taken lock_extent(), who could race with us
7475 * to add em?
7476 */
7477 } while (ret == -EEXIST);
7478
7479 if (ret) {
7480 free_extent_map(em);
7481 return ERR_PTR(ret);
7482 }
7483
7484 /* em got 2 refs now, callers needs to do free_extent_map once. */
7485 return em;
7486}
7487
7488
7489static int btrfs_get_blocks_direct_read(struct extent_map *em,
7490 struct buffer_head *bh_result,
7491 struct inode *inode,
7492 u64 start, u64 len)
7493{
7494 if (em->block_start == EXTENT_MAP_HOLE ||
7495 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7496 return -ENOENT;
7497
7498 len = min(len, em->len - (start - em->start));
7499
7500 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7501 inode->i_blkbits;
7502 bh_result->b_size = len;
7503 bh_result->b_bdev = em->bdev;
7504 set_buffer_mapped(bh_result);
7505
7506 return 0;
7507}
7508
7509static int btrfs_get_blocks_direct_write(struct extent_map **map,
7510 struct buffer_head *bh_result,
7511 struct inode *inode,
7512 struct btrfs_dio_data *dio_data,
7513 u64 start, u64 len)
7514{
7515 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7516 struct extent_map *em = *map;
7517 int ret = 0;
7518
7519 /*
7520 * We don't allocate a new extent in the following cases
7521 *
7522 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7523 * existing extent.
7524 * 2) The extent is marked as PREALLOC. We're good to go here and can
7525 * just use the extent.
7526 *
7527 */
7528 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7529 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7530 em->block_start != EXTENT_MAP_HOLE)) {
7531 int type;
7532 u64 block_start, orig_start, orig_block_len, ram_bytes;
7533
7534 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7535 type = BTRFS_ORDERED_PREALLOC;
7536 else
7537 type = BTRFS_ORDERED_NOCOW;
7538 len = min(len, em->len - (start - em->start));
7539 block_start = em->block_start + (start - em->start);
7540
7541 if (can_nocow_extent(inode, start, &len, &orig_start,
7542 &orig_block_len, &ram_bytes) == 1 &&
7543 btrfs_inc_nocow_writers(fs_info, block_start)) {
7544 struct extent_map *em2;
7545
7546 em2 = btrfs_create_dio_extent(inode, start, len,
7547 orig_start, block_start,
7548 len, orig_block_len,
7549 ram_bytes, type);
7550 btrfs_dec_nocow_writers(fs_info, block_start);
7551 if (type == BTRFS_ORDERED_PREALLOC) {
7552 free_extent_map(em);
7553 *map = em = em2;
7554 }
7555
7556 if (em2 && IS_ERR(em2)) {
7557 ret = PTR_ERR(em2);
7558 goto out;
7559 }
7560 /*
7561 * For inode marked NODATACOW or extent marked PREALLOC,
7562 * use the existing or preallocated extent, so does not
7563 * need to adjust btrfs_space_info's bytes_may_use.
7564 */
7565 btrfs_free_reserved_data_space_noquota(inode, start,
7566 len);
7567 goto skip_cow;
7568 }
7569 }
7570
7571 /* this will cow the extent */
7572 len = bh_result->b_size;
7573 free_extent_map(em);
7574 *map = em = btrfs_new_extent_direct(inode, start, len);
7575 if (IS_ERR(em)) {
7576 ret = PTR_ERR(em);
7577 goto out;
7578 }
7579
7580 len = min(len, em->len - (start - em->start));
7581
7582skip_cow:
7583 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7584 inode->i_blkbits;
7585 bh_result->b_size = len;
7586 bh_result->b_bdev = em->bdev;
7587 set_buffer_mapped(bh_result);
7588
7589 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7590 set_buffer_new(bh_result);
7591
7592 /*
7593 * Need to update the i_size under the extent lock so buffered
7594 * readers will get the updated i_size when we unlock.
7595 */
7596 if (!dio_data->overwrite && start + len > i_size_read(inode))
7597 i_size_write(inode, start + len);
7598
7599 WARN_ON(dio_data->reserve < len);
7600 dio_data->reserve -= len;
7601 dio_data->unsubmitted_oe_range_end = start + len;
7602 current->journal_info = dio_data;
7603out:
7604 return ret;
7605}
7606
7607static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7608 struct buffer_head *bh_result, int create)
7609{
7610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7611 struct extent_map *em;
7612 struct extent_state *cached_state = NULL;
7613 struct btrfs_dio_data *dio_data = NULL;
7614 u64 start = iblock << inode->i_blkbits;
7615 u64 lockstart, lockend;
7616 u64 len = bh_result->b_size;
7617 int unlock_bits = EXTENT_LOCKED;
7618 int ret = 0;
7619
7620 if (create)
7621 unlock_bits |= EXTENT_DIRTY;
7622 else
7623 len = min_t(u64, len, fs_info->sectorsize);
7624
7625 lockstart = start;
7626 lockend = start + len - 1;
7627
7628 if (current->journal_info) {
7629 /*
7630 * Need to pull our outstanding extents and set journal_info to NULL so
7631 * that anything that needs to check if there's a transaction doesn't get
7632 * confused.
7633 */
7634 dio_data = current->journal_info;
7635 current->journal_info = NULL;
7636 }
7637
7638 /*
7639 * If this errors out it's because we couldn't invalidate pagecache for
7640 * this range and we need to fallback to buffered.
7641 */
7642 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7643 create)) {
7644 ret = -ENOTBLK;
7645 goto err;
7646 }
7647
7648 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
7649 if (IS_ERR(em)) {
7650 ret = PTR_ERR(em);
7651 goto unlock_err;
7652 }
7653
7654 /*
7655 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7656 * io. INLINE is special, and we could probably kludge it in here, but
7657 * it's still buffered so for safety lets just fall back to the generic
7658 * buffered path.
7659 *
7660 * For COMPRESSED we _have_ to read the entire extent in so we can
7661 * decompress it, so there will be buffering required no matter what we
7662 * do, so go ahead and fallback to buffered.
7663 *
7664 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7665 * to buffered IO. Don't blame me, this is the price we pay for using
7666 * the generic code.
7667 */
7668 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7669 em->block_start == EXTENT_MAP_INLINE) {
7670 free_extent_map(em);
7671 ret = -ENOTBLK;
7672 goto unlock_err;
7673 }
7674
7675 if (create) {
7676 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7677 dio_data, start, len);
7678 if (ret < 0)
7679 goto unlock_err;
7680
7681 /* clear and unlock the entire range */
7682 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7683 unlock_bits, 1, 0, &cached_state);
7684 } else {
7685 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7686 start, len);
7687 /* Can be negative only if we read from a hole */
7688 if (ret < 0) {
7689 ret = 0;
7690 free_extent_map(em);
7691 goto unlock_err;
7692 }
7693 /*
7694 * We need to unlock only the end area that we aren't using.
7695 * The rest is going to be unlocked by the endio routine.
7696 */
7697 lockstart = start + bh_result->b_size;
7698 if (lockstart < lockend) {
7699 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7700 lockend, unlock_bits, 1, 0,
7701 &cached_state);
7702 } else {
7703 free_extent_state(cached_state);
7704 }
7705 }
7706
7707 free_extent_map(em);
7708
7709 return 0;
7710
7711unlock_err:
7712 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7713 unlock_bits, 1, 0, &cached_state);
7714err:
7715 if (dio_data)
7716 current->journal_info = dio_data;
7717 return ret;
7718}
7719
7720static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7721 struct bio *bio,
7722 int mirror_num)
7723{
7724 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7725 blk_status_t ret;
7726
7727 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7728
7729 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
7730 if (ret)
7731 return ret;
7732
7733 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
7734
7735 return ret;
7736}
7737
7738static int btrfs_check_dio_repairable(struct inode *inode,
7739 struct bio *failed_bio,
7740 struct io_failure_record *failrec,
7741 int failed_mirror)
7742{
7743 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7744 int num_copies;
7745
7746 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7747 if (num_copies == 1) {
7748 /*
7749 * we only have a single copy of the data, so don't bother with
7750 * all the retry and error correction code that follows. no
7751 * matter what the error is, it is very likely to persist.
7752 */
7753 btrfs_debug(fs_info,
7754 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7755 num_copies, failrec->this_mirror, failed_mirror);
7756 return 0;
7757 }
7758
7759 failrec->failed_mirror = failed_mirror;
7760 failrec->this_mirror++;
7761 if (failrec->this_mirror == failed_mirror)
7762 failrec->this_mirror++;
7763
7764 if (failrec->this_mirror > num_copies) {
7765 btrfs_debug(fs_info,
7766 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7767 num_copies, failrec->this_mirror, failed_mirror);
7768 return 0;
7769 }
7770
7771 return 1;
7772}
7773
7774static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7775 struct page *page, unsigned int pgoff,
7776 u64 start, u64 end, int failed_mirror,
7777 bio_end_io_t *repair_endio, void *repair_arg)
7778{
7779 struct io_failure_record *failrec;
7780 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7781 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7782 struct bio *bio;
7783 int isector;
7784 unsigned int read_mode = 0;
7785 int segs;
7786 int ret;
7787 blk_status_t status;
7788 struct bio_vec bvec;
7789
7790 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7791
7792 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7793 if (ret)
7794 return errno_to_blk_status(ret);
7795
7796 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7797 failed_mirror);
7798 if (!ret) {
7799 free_io_failure(failure_tree, io_tree, failrec);
7800 return BLK_STS_IOERR;
7801 }
7802
7803 segs = bio_segments(failed_bio);
7804 bio_get_first_bvec(failed_bio, &bvec);
7805 if (segs > 1 ||
7806 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
7807 read_mode |= REQ_FAILFAST_DEV;
7808
7809 isector = start - btrfs_io_bio(failed_bio)->logical;
7810 isector >>= inode->i_sb->s_blocksize_bits;
7811 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7812 pgoff, isector, repair_endio, repair_arg);
7813 bio->bi_opf = REQ_OP_READ | read_mode;
7814
7815 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7816 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7817 read_mode, failrec->this_mirror, failrec->in_validation);
7818
7819 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7820 if (status) {
7821 free_io_failure(failure_tree, io_tree, failrec);
7822 bio_put(bio);
7823 }
7824
7825 return status;
7826}
7827
7828struct btrfs_retry_complete {
7829 struct completion done;
7830 struct inode *inode;
7831 u64 start;
7832 int uptodate;
7833};
7834
7835static void btrfs_retry_endio_nocsum(struct bio *bio)
7836{
7837 struct btrfs_retry_complete *done = bio->bi_private;
7838 struct inode *inode = done->inode;
7839 struct bio_vec *bvec;
7840 struct extent_io_tree *io_tree, *failure_tree;
7841 int i;
7842
7843 if (bio->bi_status)
7844 goto end;
7845
7846 ASSERT(bio->bi_vcnt == 1);
7847 io_tree = &BTRFS_I(inode)->io_tree;
7848 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7849 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
7850
7851 done->uptodate = 1;
7852 ASSERT(!bio_flagged(bio, BIO_CLONED));
7853 bio_for_each_segment_all(bvec, bio, i)
7854 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7855 io_tree, done->start, bvec->bv_page,
7856 btrfs_ino(BTRFS_I(inode)), 0);
7857end:
7858 complete(&done->done);
7859 bio_put(bio);
7860}
7861
7862static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7863 struct btrfs_io_bio *io_bio)
7864{
7865 struct btrfs_fs_info *fs_info;
7866 struct bio_vec bvec;
7867 struct bvec_iter iter;
7868 struct btrfs_retry_complete done;
7869 u64 start;
7870 unsigned int pgoff;
7871 u32 sectorsize;
7872 int nr_sectors;
7873 blk_status_t ret;
7874 blk_status_t err = BLK_STS_OK;
7875
7876 fs_info = BTRFS_I(inode)->root->fs_info;
7877 sectorsize = fs_info->sectorsize;
7878
7879 start = io_bio->logical;
7880 done.inode = inode;
7881 io_bio->bio.bi_iter = io_bio->iter;
7882
7883 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7884 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7885 pgoff = bvec.bv_offset;
7886
7887next_block_or_try_again:
7888 done.uptodate = 0;
7889 done.start = start;
7890 init_completion(&done.done);
7891
7892 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7893 pgoff, start, start + sectorsize - 1,
7894 io_bio->mirror_num,
7895 btrfs_retry_endio_nocsum, &done);
7896 if (ret) {
7897 err = ret;
7898 goto next;
7899 }
7900
7901 wait_for_completion_io(&done.done);
7902
7903 if (!done.uptodate) {
7904 /* We might have another mirror, so try again */
7905 goto next_block_or_try_again;
7906 }
7907
7908next:
7909 start += sectorsize;
7910
7911 nr_sectors--;
7912 if (nr_sectors) {
7913 pgoff += sectorsize;
7914 ASSERT(pgoff < PAGE_SIZE);
7915 goto next_block_or_try_again;
7916 }
7917 }
7918
7919 return err;
7920}
7921
7922static void btrfs_retry_endio(struct bio *bio)
7923{
7924 struct btrfs_retry_complete *done = bio->bi_private;
7925 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7926 struct extent_io_tree *io_tree, *failure_tree;
7927 struct inode *inode = done->inode;
7928 struct bio_vec *bvec;
7929 int uptodate;
7930 int ret;
7931 int i;
7932
7933 if (bio->bi_status)
7934 goto end;
7935
7936 uptodate = 1;
7937
7938 ASSERT(bio->bi_vcnt == 1);
7939 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
7940
7941 io_tree = &BTRFS_I(inode)->io_tree;
7942 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7943
7944 ASSERT(!bio_flagged(bio, BIO_CLONED));
7945 bio_for_each_segment_all(bvec, bio, i) {
7946 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7947 bvec->bv_offset, done->start,
7948 bvec->bv_len);
7949 if (!ret)
7950 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7951 failure_tree, io_tree, done->start,
7952 bvec->bv_page,
7953 btrfs_ino(BTRFS_I(inode)),
7954 bvec->bv_offset);
7955 else
7956 uptodate = 0;
7957 }
7958
7959 done->uptodate = uptodate;
7960end:
7961 complete(&done->done);
7962 bio_put(bio);
7963}
7964
7965static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7966 struct btrfs_io_bio *io_bio, blk_status_t err)
7967{
7968 struct btrfs_fs_info *fs_info;
7969 struct bio_vec bvec;
7970 struct bvec_iter iter;
7971 struct btrfs_retry_complete done;
7972 u64 start;
7973 u64 offset = 0;
7974 u32 sectorsize;
7975 int nr_sectors;
7976 unsigned int pgoff;
7977 int csum_pos;
7978 bool uptodate = (err == 0);
7979 int ret;
7980 blk_status_t status;
7981
7982 fs_info = BTRFS_I(inode)->root->fs_info;
7983 sectorsize = fs_info->sectorsize;
7984
7985 err = BLK_STS_OK;
7986 start = io_bio->logical;
7987 done.inode = inode;
7988 io_bio->bio.bi_iter = io_bio->iter;
7989
7990 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7991 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7992
7993 pgoff = bvec.bv_offset;
7994next_block:
7995 if (uptodate) {
7996 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7997 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7998 bvec.bv_page, pgoff, start, sectorsize);
7999 if (likely(!ret))
8000 goto next;
8001 }
8002try_again:
8003 done.uptodate = 0;
8004 done.start = start;
8005 init_completion(&done.done);
8006
8007 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8008 pgoff, start, start + sectorsize - 1,
8009 io_bio->mirror_num, btrfs_retry_endio,
8010 &done);
8011 if (status) {
8012 err = status;
8013 goto next;
8014 }
8015
8016 wait_for_completion_io(&done.done);
8017
8018 if (!done.uptodate) {
8019 /* We might have another mirror, so try again */
8020 goto try_again;
8021 }
8022next:
8023 offset += sectorsize;
8024 start += sectorsize;
8025
8026 ASSERT(nr_sectors);
8027
8028 nr_sectors--;
8029 if (nr_sectors) {
8030 pgoff += sectorsize;
8031 ASSERT(pgoff < PAGE_SIZE);
8032 goto next_block;
8033 }
8034 }
8035
8036 return err;
8037}
8038
8039static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8040 struct btrfs_io_bio *io_bio, blk_status_t err)
8041{
8042 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8043
8044 if (skip_csum) {
8045 if (unlikely(err))
8046 return __btrfs_correct_data_nocsum(inode, io_bio);
8047 else
8048 return BLK_STS_OK;
8049 } else {
8050 return __btrfs_subio_endio_read(inode, io_bio, err);
8051 }
8052}
8053
8054static void btrfs_endio_direct_read(struct bio *bio)
8055{
8056 struct btrfs_dio_private *dip = bio->bi_private;
8057 struct inode *inode = dip->inode;
8058 struct bio *dio_bio;
8059 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8060 blk_status_t err = bio->bi_status;
8061
8062 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8063 err = btrfs_subio_endio_read(inode, io_bio, err);
8064
8065 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8066 dip->logical_offset + dip->bytes - 1);
8067 dio_bio = dip->dio_bio;
8068
8069 kfree(dip);
8070
8071 dio_bio->bi_status = err;
8072 dio_end_io(dio_bio);
8073
8074 if (io_bio->end_io)
8075 io_bio->end_io(io_bio, blk_status_to_errno(err));
8076 bio_put(bio);
8077}
8078
8079static void __endio_write_update_ordered(struct inode *inode,
8080 const u64 offset, const u64 bytes,
8081 const bool uptodate)
8082{
8083 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8084 struct btrfs_ordered_extent *ordered = NULL;
8085 struct btrfs_workqueue *wq;
8086 btrfs_work_func_t func;
8087 u64 ordered_offset = offset;
8088 u64 ordered_bytes = bytes;
8089 u64 last_offset;
8090
8091 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8092 wq = fs_info->endio_freespace_worker;
8093 func = btrfs_freespace_write_helper;
8094 } else {
8095 wq = fs_info->endio_write_workers;
8096 func = btrfs_endio_write_helper;
8097 }
8098
8099 while (ordered_offset < offset + bytes) {
8100 last_offset = ordered_offset;
8101 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8102 &ordered_offset,
8103 ordered_bytes,
8104 uptodate)) {
8105 btrfs_init_work(&ordered->work, func,
8106 finish_ordered_fn,
8107 NULL, NULL);
8108 btrfs_queue_work(wq, &ordered->work);
8109 }
8110 /*
8111 * If btrfs_dec_test_ordered_pending does not find any ordered
8112 * extent in the range, we can exit.
8113 */
8114 if (ordered_offset == last_offset)
8115 return;
8116 /*
8117 * Our bio might span multiple ordered extents. In this case
8118 * we keep goin until we have accounted the whole dio.
8119 */
8120 if (ordered_offset < offset + bytes) {
8121 ordered_bytes = offset + bytes - ordered_offset;
8122 ordered = NULL;
8123 }
8124 }
8125}
8126
8127static void btrfs_endio_direct_write(struct bio *bio)
8128{
8129 struct btrfs_dio_private *dip = bio->bi_private;
8130 struct bio *dio_bio = dip->dio_bio;
8131
8132 __endio_write_update_ordered(dip->inode, dip->logical_offset,
8133 dip->bytes, !bio->bi_status);
8134
8135 kfree(dip);
8136
8137 dio_bio->bi_status = bio->bi_status;
8138 dio_end_io(dio_bio);
8139 bio_put(bio);
8140}
8141
8142static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
8143 struct bio *bio, u64 offset)
8144{
8145 struct inode *inode = private_data;
8146 blk_status_t ret;
8147 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
8148 BUG_ON(ret); /* -ENOMEM */
8149 return 0;
8150}
8151
8152static void btrfs_end_dio_bio(struct bio *bio)
8153{
8154 struct btrfs_dio_private *dip = bio->bi_private;
8155 blk_status_t err = bio->bi_status;
8156
8157 if (err)
8158 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8159 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8160 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8161 bio->bi_opf,
8162 (unsigned long long)bio->bi_iter.bi_sector,
8163 bio->bi_iter.bi_size, err);
8164
8165 if (dip->subio_endio)
8166 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8167
8168 if (err) {
8169 /*
8170 * We want to perceive the errors flag being set before
8171 * decrementing the reference count. We don't need a barrier
8172 * since atomic operations with a return value are fully
8173 * ordered as per atomic_t.txt
8174 */
8175 dip->errors = 1;
8176 }
8177
8178 /* if there are more bios still pending for this dio, just exit */
8179 if (!atomic_dec_and_test(&dip->pending_bios))
8180 goto out;
8181
8182 if (dip->errors) {
8183 bio_io_error(dip->orig_bio);
8184 } else {
8185 dip->dio_bio->bi_status = BLK_STS_OK;
8186 bio_endio(dip->orig_bio);
8187 }
8188out:
8189 bio_put(bio);
8190}
8191
8192static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
8193 struct btrfs_dio_private *dip,
8194 struct bio *bio,
8195 u64 file_offset)
8196{
8197 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8198 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8199 blk_status_t ret;
8200
8201 /*
8202 * We load all the csum data we need when we submit
8203 * the first bio to reduce the csum tree search and
8204 * contention.
8205 */
8206 if (dip->logical_offset == file_offset) {
8207 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
8208 file_offset);
8209 if (ret)
8210 return ret;
8211 }
8212
8213 if (bio == dip->orig_bio)
8214 return 0;
8215
8216 file_offset -= dip->logical_offset;
8217 file_offset >>= inode->i_sb->s_blocksize_bits;
8218 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8219
8220 return 0;
8221}
8222
8223static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8224 struct inode *inode, u64 file_offset, int async_submit)
8225{
8226 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8227 struct btrfs_dio_private *dip = bio->bi_private;
8228 bool write = bio_op(bio) == REQ_OP_WRITE;
8229 blk_status_t ret;
8230
8231 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8232 if (async_submit)
8233 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8234
8235 if (!write) {
8236 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
8237 if (ret)
8238 goto err;
8239 }
8240
8241 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
8242 goto map;
8243
8244 if (write && async_submit) {
8245 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8246 file_offset, inode,
8247 btrfs_submit_bio_start_direct_io);
8248 goto err;
8249 } else if (write) {
8250 /*
8251 * If we aren't doing async submit, calculate the csum of the
8252 * bio now.
8253 */
8254 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
8255 if (ret)
8256 goto err;
8257 } else {
8258 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
8259 file_offset);
8260 if (ret)
8261 goto err;
8262 }
8263map:
8264 ret = btrfs_map_bio(fs_info, bio, 0, 0);
8265err:
8266 return ret;
8267}
8268
8269static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
8270{
8271 struct inode *inode = dip->inode;
8272 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8273 struct bio *bio;
8274 struct bio *orig_bio = dip->orig_bio;
8275 u64 start_sector = orig_bio->bi_iter.bi_sector;
8276 u64 file_offset = dip->logical_offset;
8277 u64 map_length;
8278 int async_submit = 0;
8279 u64 submit_len;
8280 int clone_offset = 0;
8281 int clone_len;
8282 int ret;
8283 blk_status_t status;
8284
8285 map_length = orig_bio->bi_iter.bi_size;
8286 submit_len = map_length;
8287 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8288 &map_length, NULL, 0);
8289 if (ret)
8290 return -EIO;
8291
8292 if (map_length >= submit_len) {
8293 bio = orig_bio;
8294 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8295 goto submit;
8296 }
8297
8298 /* async crcs make it difficult to collect full stripe writes. */
8299 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8300 async_submit = 0;
8301 else
8302 async_submit = 1;
8303
8304 /* bio split */
8305 ASSERT(map_length <= INT_MAX);
8306 atomic_inc(&dip->pending_bios);
8307 do {
8308 clone_len = min_t(int, submit_len, map_length);
8309
8310 /*
8311 * This will never fail as it's passing GPF_NOFS and
8312 * the allocation is backed by btrfs_bioset.
8313 */
8314 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
8315 clone_len);
8316 bio->bi_private = dip;
8317 bio->bi_end_io = btrfs_end_dio_bio;
8318 btrfs_io_bio(bio)->logical = file_offset;
8319
8320 ASSERT(submit_len >= clone_len);
8321 submit_len -= clone_len;
8322 if (submit_len == 0)
8323 break;
8324
8325 /*
8326 * Increase the count before we submit the bio so we know
8327 * the end IO handler won't happen before we increase the
8328 * count. Otherwise, the dip might get freed before we're
8329 * done setting it up.
8330 */
8331 atomic_inc(&dip->pending_bios);
8332
8333 status = btrfs_submit_dio_bio(bio, inode, file_offset,
8334 async_submit);
8335 if (status) {
8336 bio_put(bio);
8337 atomic_dec(&dip->pending_bios);
8338 goto out_err;
8339 }
8340
8341 clone_offset += clone_len;
8342 start_sector += clone_len >> 9;
8343 file_offset += clone_len;
8344
8345 map_length = submit_len;
8346 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8347 start_sector << 9, &map_length, NULL, 0);
8348 if (ret)
8349 goto out_err;
8350 } while (submit_len > 0);
8351
8352submit:
8353 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
8354 if (!status)
8355 return 0;
8356
8357 bio_put(bio);
8358out_err:
8359 dip->errors = 1;
8360 /*
8361 * Before atomic variable goto zero, we must make sure dip->errors is
8362 * perceived to be set. This ordering is ensured by the fact that an
8363 * atomic operations with a return value are fully ordered as per
8364 * atomic_t.txt
8365 */
8366 if (atomic_dec_and_test(&dip->pending_bios))
8367 bio_io_error(dip->orig_bio);
8368
8369 /* bio_end_io() will handle error, so we needn't return it */
8370 return 0;
8371}
8372
8373static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8374 loff_t file_offset)
8375{
8376 struct btrfs_dio_private *dip = NULL;
8377 struct bio *bio = NULL;
8378 struct btrfs_io_bio *io_bio;
8379 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8380 int ret = 0;
8381
8382 bio = btrfs_bio_clone(dio_bio);
8383
8384 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8385 if (!dip) {
8386 ret = -ENOMEM;
8387 goto free_ordered;
8388 }
8389
8390 dip->private = dio_bio->bi_private;
8391 dip->inode = inode;
8392 dip->logical_offset = file_offset;
8393 dip->bytes = dio_bio->bi_iter.bi_size;
8394 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8395 bio->bi_private = dip;
8396 dip->orig_bio = bio;
8397 dip->dio_bio = dio_bio;
8398 atomic_set(&dip->pending_bios, 0);
8399 io_bio = btrfs_io_bio(bio);
8400 io_bio->logical = file_offset;
8401
8402 if (write) {
8403 bio->bi_end_io = btrfs_endio_direct_write;
8404 } else {
8405 bio->bi_end_io = btrfs_endio_direct_read;
8406 dip->subio_endio = btrfs_subio_endio_read;
8407 }
8408
8409 /*
8410 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8411 * even if we fail to submit a bio, because in such case we do the
8412 * corresponding error handling below and it must not be done a second
8413 * time by btrfs_direct_IO().
8414 */
8415 if (write) {
8416 struct btrfs_dio_data *dio_data = current->journal_info;
8417
8418 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8419 dip->bytes;
8420 dio_data->unsubmitted_oe_range_start =
8421 dio_data->unsubmitted_oe_range_end;
8422 }
8423
8424 ret = btrfs_submit_direct_hook(dip);
8425 if (!ret)
8426 return;
8427
8428 if (io_bio->end_io)
8429 io_bio->end_io(io_bio, ret);
8430
8431free_ordered:
8432 /*
8433 * If we arrived here it means either we failed to submit the dip
8434 * or we either failed to clone the dio_bio or failed to allocate the
8435 * dip. If we cloned the dio_bio and allocated the dip, we can just
8436 * call bio_endio against our io_bio so that we get proper resource
8437 * cleanup if we fail to submit the dip, otherwise, we must do the
8438 * same as btrfs_endio_direct_[write|read] because we can't call these
8439 * callbacks - they require an allocated dip and a clone of dio_bio.
8440 */
8441 if (bio && dip) {
8442 bio_io_error(bio);
8443 /*
8444 * The end io callbacks free our dip, do the final put on bio
8445 * and all the cleanup and final put for dio_bio (through
8446 * dio_end_io()).
8447 */
8448 dip = NULL;
8449 bio = NULL;
8450 } else {
8451 if (write)
8452 __endio_write_update_ordered(inode,
8453 file_offset,
8454 dio_bio->bi_iter.bi_size,
8455 false);
8456 else
8457 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8458 file_offset + dio_bio->bi_iter.bi_size - 1);
8459
8460 dio_bio->bi_status = BLK_STS_IOERR;
8461 /*
8462 * Releases and cleans up our dio_bio, no need to bio_put()
8463 * nor bio_endio()/bio_io_error() against dio_bio.
8464 */
8465 dio_end_io(dio_bio);
8466 }
8467 if (bio)
8468 bio_put(bio);
8469 kfree(dip);
8470}
8471
8472static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8473 const struct iov_iter *iter, loff_t offset)
8474{
8475 int seg;
8476 int i;
8477 unsigned int blocksize_mask = fs_info->sectorsize - 1;
8478 ssize_t retval = -EINVAL;
8479
8480 if (offset & blocksize_mask)
8481 goto out;
8482
8483 if (iov_iter_alignment(iter) & blocksize_mask)
8484 goto out;
8485
8486 /* If this is a write we don't need to check anymore */
8487 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8488 return 0;
8489 /*
8490 * Check to make sure we don't have duplicate iov_base's in this
8491 * iovec, if so return EINVAL, otherwise we'll get csum errors
8492 * when reading back.
8493 */
8494 for (seg = 0; seg < iter->nr_segs; seg++) {
8495 for (i = seg + 1; i < iter->nr_segs; i++) {
8496 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8497 goto out;
8498 }
8499 }
8500 retval = 0;
8501out:
8502 return retval;
8503}
8504
8505static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8506{
8507 struct file *file = iocb->ki_filp;
8508 struct inode *inode = file->f_mapping->host;
8509 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8510 struct btrfs_dio_data dio_data = { 0 };
8511 struct extent_changeset *data_reserved = NULL;
8512 loff_t offset = iocb->ki_pos;
8513 size_t count = 0;
8514 int flags = 0;
8515 bool wakeup = true;
8516 bool relock = false;
8517 ssize_t ret;
8518
8519 if (check_direct_IO(fs_info, iter, offset))
8520 return 0;
8521
8522 inode_dio_begin(inode);
8523
8524 /*
8525 * The generic stuff only does filemap_write_and_wait_range, which
8526 * isn't enough if we've written compressed pages to this area, so
8527 * we need to flush the dirty pages again to make absolutely sure
8528 * that any outstanding dirty pages are on disk.
8529 */
8530 count = iov_iter_count(iter);
8531 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8532 &BTRFS_I(inode)->runtime_flags))
8533 filemap_fdatawrite_range(inode->i_mapping, offset,
8534 offset + count - 1);
8535
8536 if (iov_iter_rw(iter) == WRITE) {
8537 /*
8538 * If the write DIO is beyond the EOF, we need update
8539 * the isize, but it is protected by i_mutex. So we can
8540 * not unlock the i_mutex at this case.
8541 */
8542 if (offset + count <= inode->i_size) {
8543 dio_data.overwrite = 1;
8544 inode_unlock(inode);
8545 relock = true;
8546 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8547 ret = -EAGAIN;
8548 goto out;
8549 }
8550 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8551 offset, count);
8552 if (ret)
8553 goto out;
8554
8555 /*
8556 * We need to know how many extents we reserved so that we can
8557 * do the accounting properly if we go over the number we
8558 * originally calculated. Abuse current->journal_info for this.
8559 */
8560 dio_data.reserve = round_up(count,
8561 fs_info->sectorsize);
8562 dio_data.unsubmitted_oe_range_start = (u64)offset;
8563 dio_data.unsubmitted_oe_range_end = (u64)offset;
8564 current->journal_info = &dio_data;
8565 down_read(&BTRFS_I(inode)->dio_sem);
8566 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8567 &BTRFS_I(inode)->runtime_flags)) {
8568 inode_dio_end(inode);
8569 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8570 wakeup = false;
8571 }
8572
8573 ret = __blockdev_direct_IO(iocb, inode,
8574 fs_info->fs_devices->latest_bdev,
8575 iter, btrfs_get_blocks_direct, NULL,
8576 btrfs_submit_direct, flags);
8577 if (iov_iter_rw(iter) == WRITE) {
8578 up_read(&BTRFS_I(inode)->dio_sem);
8579 current->journal_info = NULL;
8580 if (ret < 0 && ret != -EIOCBQUEUED) {
8581 if (dio_data.reserve)
8582 btrfs_delalloc_release_space(inode, data_reserved,
8583 offset, dio_data.reserve, true);
8584 /*
8585 * On error we might have left some ordered extents
8586 * without submitting corresponding bios for them, so
8587 * cleanup them up to avoid other tasks getting them
8588 * and waiting for them to complete forever.
8589 */
8590 if (dio_data.unsubmitted_oe_range_start <
8591 dio_data.unsubmitted_oe_range_end)
8592 __endio_write_update_ordered(inode,
8593 dio_data.unsubmitted_oe_range_start,
8594 dio_data.unsubmitted_oe_range_end -
8595 dio_data.unsubmitted_oe_range_start,
8596 false);
8597 } else if (ret >= 0 && (size_t)ret < count)
8598 btrfs_delalloc_release_space(inode, data_reserved,
8599 offset, count - (size_t)ret, true);
8600 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
8601 }
8602out:
8603 if (wakeup)
8604 inode_dio_end(inode);
8605 if (relock)
8606 inode_lock(inode);
8607
8608 extent_changeset_free(data_reserved);
8609 return ret;
8610}
8611
8612#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8613
8614static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8615 __u64 start, __u64 len)
8616{
8617 int ret;
8618
8619 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8620 if (ret)
8621 return ret;
8622
8623 return extent_fiemap(inode, fieinfo, start, len);
8624}
8625
8626int btrfs_readpage(struct file *file, struct page *page)
8627{
8628 struct extent_io_tree *tree;
8629 tree = &BTRFS_I(page->mapping->host)->io_tree;
8630 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8631}
8632
8633static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8634{
8635 struct inode *inode = page->mapping->host;
8636 int ret;
8637
8638 if (current->flags & PF_MEMALLOC) {
8639 redirty_page_for_writepage(wbc, page);
8640 unlock_page(page);
8641 return 0;
8642 }
8643
8644 /*
8645 * If we are under memory pressure we will call this directly from the
8646 * VM, we need to make sure we have the inode referenced for the ordered
8647 * extent. If not just return like we didn't do anything.
8648 */
8649 if (!igrab(inode)) {
8650 redirty_page_for_writepage(wbc, page);
8651 return AOP_WRITEPAGE_ACTIVATE;
8652 }
8653 ret = extent_write_full_page(page, wbc);
8654 btrfs_add_delayed_iput(inode);
8655 return ret;
8656}
8657
8658static int btrfs_writepages(struct address_space *mapping,
8659 struct writeback_control *wbc)
8660{
8661 return extent_writepages(mapping, wbc);
8662}
8663
8664static int
8665btrfs_readpages(struct file *file, struct address_space *mapping,
8666 struct list_head *pages, unsigned nr_pages)
8667{
8668 return extent_readpages(mapping, pages, nr_pages);
8669}
8670
8671static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8672{
8673 int ret = try_release_extent_mapping(page, gfp_flags);
8674 if (ret == 1) {
8675 ClearPagePrivate(page);
8676 set_page_private(page, 0);
8677 put_page(page);
8678 }
8679 return ret;
8680}
8681
8682static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8683{
8684 if (PageWriteback(page) || PageDirty(page))
8685 return 0;
8686 return __btrfs_releasepage(page, gfp_flags);
8687}
8688
8689static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8690 unsigned int length)
8691{
8692 struct inode *inode = page->mapping->host;
8693 struct extent_io_tree *tree;
8694 struct btrfs_ordered_extent *ordered;
8695 struct extent_state *cached_state = NULL;
8696 u64 page_start = page_offset(page);
8697 u64 page_end = page_start + PAGE_SIZE - 1;
8698 u64 start;
8699 u64 end;
8700 int inode_evicting = inode->i_state & I_FREEING;
8701
8702 /*
8703 * we have the page locked, so new writeback can't start,
8704 * and the dirty bit won't be cleared while we are here.
8705 *
8706 * Wait for IO on this page so that we can safely clear
8707 * the PagePrivate2 bit and do ordered accounting
8708 */
8709 wait_on_page_writeback(page);
8710
8711 tree = &BTRFS_I(inode)->io_tree;
8712 if (offset) {
8713 btrfs_releasepage(page, GFP_NOFS);
8714 return;
8715 }
8716
8717 if (!inode_evicting)
8718 lock_extent_bits(tree, page_start, page_end, &cached_state);
8719again:
8720 start = page_start;
8721 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8722 page_end - start + 1);
8723 if (ordered) {
8724 end = min(page_end, ordered->file_offset + ordered->len - 1);
8725 /*
8726 * IO on this page will never be started, so we need
8727 * to account for any ordered extents now
8728 */
8729 if (!inode_evicting)
8730 clear_extent_bit(tree, start, end,
8731 EXTENT_DIRTY | EXTENT_DELALLOC |
8732 EXTENT_DELALLOC_NEW |
8733 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8734 EXTENT_DEFRAG, 1, 0, &cached_state);
8735 /*
8736 * whoever cleared the private bit is responsible
8737 * for the finish_ordered_io
8738 */
8739 if (TestClearPagePrivate2(page)) {
8740 struct btrfs_ordered_inode_tree *tree;
8741 u64 new_len;
8742
8743 tree = &BTRFS_I(inode)->ordered_tree;
8744
8745 spin_lock_irq(&tree->lock);
8746 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8747 new_len = start - ordered->file_offset;
8748 if (new_len < ordered->truncated_len)
8749 ordered->truncated_len = new_len;
8750 spin_unlock_irq(&tree->lock);
8751
8752 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8753 start,
8754 end - start + 1, 1))
8755 btrfs_finish_ordered_io(ordered);
8756 }
8757 btrfs_put_ordered_extent(ordered);
8758 if (!inode_evicting) {
8759 cached_state = NULL;
8760 lock_extent_bits(tree, start, end,
8761 &cached_state);
8762 }
8763
8764 start = end + 1;
8765 if (start < page_end)
8766 goto again;
8767 }
8768
8769 /*
8770 * Qgroup reserved space handler
8771 * Page here will be either
8772 * 1) Already written to disk
8773 * In this case, its reserved space is released from data rsv map
8774 * and will be freed by delayed_ref handler finally.
8775 * So even we call qgroup_free_data(), it won't decrease reserved
8776 * space.
8777 * 2) Not written to disk
8778 * This means the reserved space should be freed here. However,
8779 * if a truncate invalidates the page (by clearing PageDirty)
8780 * and the page is accounted for while allocating extent
8781 * in btrfs_check_data_free_space() we let delayed_ref to
8782 * free the entire extent.
8783 */
8784 if (PageDirty(page))
8785 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8786 if (!inode_evicting) {
8787 clear_extent_bit(tree, page_start, page_end,
8788 EXTENT_LOCKED | EXTENT_DIRTY |
8789 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8790 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8791 &cached_state);
8792
8793 __btrfs_releasepage(page, GFP_NOFS);
8794 }
8795
8796 ClearPageChecked(page);
8797 if (PagePrivate(page)) {
8798 ClearPagePrivate(page);
8799 set_page_private(page, 0);
8800 put_page(page);
8801 }
8802}
8803
8804/*
8805 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8806 * called from a page fault handler when a page is first dirtied. Hence we must
8807 * be careful to check for EOF conditions here. We set the page up correctly
8808 * for a written page which means we get ENOSPC checking when writing into
8809 * holes and correct delalloc and unwritten extent mapping on filesystems that
8810 * support these features.
8811 *
8812 * We are not allowed to take the i_mutex here so we have to play games to
8813 * protect against truncate races as the page could now be beyond EOF. Because
8814 * truncate_setsize() writes the inode size before removing pages, once we have
8815 * the page lock we can determine safely if the page is beyond EOF. If it is not
8816 * beyond EOF, then the page is guaranteed safe against truncation until we
8817 * unlock the page.
8818 */
8819vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8820{
8821 struct page *page = vmf->page;
8822 struct inode *inode = file_inode(vmf->vma->vm_file);
8823 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8824 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8825 struct btrfs_ordered_extent *ordered;
8826 struct extent_state *cached_state = NULL;
8827 struct extent_changeset *data_reserved = NULL;
8828 char *kaddr;
8829 unsigned long zero_start;
8830 loff_t size;
8831 vm_fault_t ret;
8832 int ret2;
8833 int reserved = 0;
8834 u64 reserved_space;
8835 u64 page_start;
8836 u64 page_end;
8837 u64 end;
8838
8839 reserved_space = PAGE_SIZE;
8840
8841 sb_start_pagefault(inode->i_sb);
8842 page_start = page_offset(page);
8843 page_end = page_start + PAGE_SIZE - 1;
8844 end = page_end;
8845
8846 /*
8847 * Reserving delalloc space after obtaining the page lock can lead to
8848 * deadlock. For example, if a dirty page is locked by this function
8849 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8850 * dirty page write out, then the btrfs_writepage() function could
8851 * end up waiting indefinitely to get a lock on the page currently
8852 * being processed by btrfs_page_mkwrite() function.
8853 */
8854 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8855 reserved_space);
8856 if (!ret2) {
8857 ret2 = file_update_time(vmf->vma->vm_file);
8858 reserved = 1;
8859 }
8860 if (ret2) {
8861 ret = vmf_error(ret2);
8862 if (reserved)
8863 goto out;
8864 goto out_noreserve;
8865 }
8866
8867 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8868again:
8869 lock_page(page);
8870 size = i_size_read(inode);
8871
8872 if ((page->mapping != inode->i_mapping) ||
8873 (page_start >= size)) {
8874 /* page got truncated out from underneath us */
8875 goto out_unlock;
8876 }
8877 wait_on_page_writeback(page);
8878
8879 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8880 set_page_extent_mapped(page);
8881
8882 /*
8883 * we can't set the delalloc bits if there are pending ordered
8884 * extents. Drop our locks and wait for them to finish
8885 */
8886 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8887 PAGE_SIZE);
8888 if (ordered) {
8889 unlock_extent_cached(io_tree, page_start, page_end,
8890 &cached_state);
8891 unlock_page(page);
8892 btrfs_start_ordered_extent(inode, ordered, 1);
8893 btrfs_put_ordered_extent(ordered);
8894 goto again;
8895 }
8896
8897 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8898 reserved_space = round_up(size - page_start,
8899 fs_info->sectorsize);
8900 if (reserved_space < PAGE_SIZE) {
8901 end = page_start + reserved_space - 1;
8902 btrfs_delalloc_release_space(inode, data_reserved,
8903 page_start, PAGE_SIZE - reserved_space,
8904 true);
8905 }
8906 }
8907
8908 /*
8909 * page_mkwrite gets called when the page is firstly dirtied after it's
8910 * faulted in, but write(2) could also dirty a page and set delalloc
8911 * bits, thus in this case for space account reason, we still need to
8912 * clear any delalloc bits within this page range since we have to
8913 * reserve data&meta space before lock_page() (see above comments).
8914 */
8915 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8916 EXTENT_DIRTY | EXTENT_DELALLOC |
8917 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8918 0, 0, &cached_state);
8919
8920 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8921 &cached_state, 0);
8922 if (ret2) {
8923 unlock_extent_cached(io_tree, page_start, page_end,
8924 &cached_state);
8925 ret = VM_FAULT_SIGBUS;
8926 goto out_unlock;
8927 }
8928 ret2 = 0;
8929
8930 /* page is wholly or partially inside EOF */
8931 if (page_start + PAGE_SIZE > size)
8932 zero_start = size & ~PAGE_MASK;
8933 else
8934 zero_start = PAGE_SIZE;
8935
8936 if (zero_start != PAGE_SIZE) {
8937 kaddr = kmap(page);
8938 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8939 flush_dcache_page(page);
8940 kunmap(page);
8941 }
8942 ClearPageChecked(page);
8943 set_page_dirty(page);
8944 SetPageUptodate(page);
8945
8946 BTRFS_I(inode)->last_trans = fs_info->generation;
8947 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8948 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8949
8950 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8951
8952 if (!ret2) {
8953 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
8954 sb_end_pagefault(inode->i_sb);
8955 extent_changeset_free(data_reserved);
8956 return VM_FAULT_LOCKED;
8957 }
8958
8959out_unlock:
8960 unlock_page(page);
8961out:
8962 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
8963 btrfs_delalloc_release_space(inode, data_reserved, page_start,
8964 reserved_space, (ret != 0));
8965out_noreserve:
8966 sb_end_pagefault(inode->i_sb);
8967 extent_changeset_free(data_reserved);
8968 return ret;
8969}
8970
8971static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8972{
8973 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8974 struct btrfs_root *root = BTRFS_I(inode)->root;
8975 struct btrfs_block_rsv *rsv;
8976 int ret;
8977 struct btrfs_trans_handle *trans;
8978 u64 mask = fs_info->sectorsize - 1;
8979 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
8980
8981 if (!skip_writeback) {
8982 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8983 (u64)-1);
8984 if (ret)
8985 return ret;
8986 }
8987
8988 /*
8989 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8990 * things going on here:
8991 *
8992 * 1) We need to reserve space to update our inode.
8993 *
8994 * 2) We need to have something to cache all the space that is going to
8995 * be free'd up by the truncate operation, but also have some slack
8996 * space reserved in case it uses space during the truncate (thank you
8997 * very much snapshotting).
8998 *
8999 * And we need these to be separate. The fact is we can use a lot of
9000 * space doing the truncate, and we have no earthly idea how much space
9001 * we will use, so we need the truncate reservation to be separate so it
9002 * doesn't end up using space reserved for updating the inode. We also
9003 * need to be able to stop the transaction and start a new one, which
9004 * means we need to be able to update the inode several times, and we
9005 * have no idea of knowing how many times that will be, so we can't just
9006 * reserve 1 item for the entirety of the operation, so that has to be
9007 * done separately as well.
9008 *
9009 * So that leaves us with
9010 *
9011 * 1) rsv - for the truncate reservation, which we will steal from the
9012 * transaction reservation.
9013 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
9014 * updating the inode.
9015 */
9016 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
9017 if (!rsv)
9018 return -ENOMEM;
9019 rsv->size = min_size;
9020 rsv->failfast = 1;
9021
9022 /*
9023 * 1 for the truncate slack space
9024 * 1 for updating the inode.
9025 */
9026 trans = btrfs_start_transaction(root, 2);
9027 if (IS_ERR(trans)) {
9028 ret = PTR_ERR(trans);
9029 goto out;
9030 }
9031
9032 /* Migrate the slack space for the truncate to our reserve */
9033 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
9034 min_size, 0);
9035 BUG_ON(ret);
9036
9037 /*
9038 * So if we truncate and then write and fsync we normally would just
9039 * write the extents that changed, which is a problem if we need to
9040 * first truncate that entire inode. So set this flag so we write out
9041 * all of the extents in the inode to the sync log so we're completely
9042 * safe.
9043 */
9044 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9045 trans->block_rsv = rsv;
9046
9047 while (1) {
9048 ret = btrfs_truncate_inode_items(trans, root, inode,
9049 inode->i_size,
9050 BTRFS_EXTENT_DATA_KEY);
9051 trans->block_rsv = &fs_info->trans_block_rsv;
9052 if (ret != -ENOSPC && ret != -EAGAIN)
9053 break;
9054
9055 ret = btrfs_update_inode(trans, root, inode);
9056 if (ret)
9057 break;
9058
9059 btrfs_end_transaction(trans);
9060 btrfs_btree_balance_dirty(fs_info);
9061
9062 trans = btrfs_start_transaction(root, 2);
9063 if (IS_ERR(trans)) {
9064 ret = PTR_ERR(trans);
9065 trans = NULL;
9066 break;
9067 }
9068
9069 btrfs_block_rsv_release(fs_info, rsv, -1);
9070 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
9071 rsv, min_size, 0);
9072 BUG_ON(ret); /* shouldn't happen */
9073 trans->block_rsv = rsv;
9074 }
9075
9076 /*
9077 * We can't call btrfs_truncate_block inside a trans handle as we could
9078 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9079 * we've truncated everything except the last little bit, and can do
9080 * btrfs_truncate_block and then update the disk_i_size.
9081 */
9082 if (ret == NEED_TRUNCATE_BLOCK) {
9083 btrfs_end_transaction(trans);
9084 btrfs_btree_balance_dirty(fs_info);
9085
9086 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9087 if (ret)
9088 goto out;
9089 trans = btrfs_start_transaction(root, 1);
9090 if (IS_ERR(trans)) {
9091 ret = PTR_ERR(trans);
9092 goto out;
9093 }
9094 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9095 }
9096
9097 if (trans) {
9098 int ret2;
9099
9100 trans->block_rsv = &fs_info->trans_block_rsv;
9101 ret2 = btrfs_update_inode(trans, root, inode);
9102 if (ret2 && !ret)
9103 ret = ret2;
9104
9105 ret2 = btrfs_end_transaction(trans);
9106 if (ret2 && !ret)
9107 ret = ret2;
9108 btrfs_btree_balance_dirty(fs_info);
9109 }
9110out:
9111 btrfs_free_block_rsv(fs_info, rsv);
9112
9113 return ret;
9114}
9115
9116/*
9117 * create a new subvolume directory/inode (helper for the ioctl).
9118 */
9119int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9120 struct btrfs_root *new_root,
9121 struct btrfs_root *parent_root,
9122 u64 new_dirid)
9123{
9124 struct inode *inode;
9125 int err;
9126 u64 index = 0;
9127
9128 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9129 new_dirid, new_dirid,
9130 S_IFDIR | (~current_umask() & S_IRWXUGO),
9131 &index);
9132 if (IS_ERR(inode))
9133 return PTR_ERR(inode);
9134 inode->i_op = &btrfs_dir_inode_operations;
9135 inode->i_fop = &btrfs_dir_file_operations;
9136
9137 set_nlink(inode, 1);
9138 btrfs_i_size_write(BTRFS_I(inode), 0);
9139 unlock_new_inode(inode);
9140
9141 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9142 if (err)
9143 btrfs_err(new_root->fs_info,
9144 "error inheriting subvolume %llu properties: %d",
9145 new_root->root_key.objectid, err);
9146
9147 err = btrfs_update_inode(trans, new_root, inode);
9148
9149 iput(inode);
9150 return err;
9151}
9152
9153struct inode *btrfs_alloc_inode(struct super_block *sb)
9154{
9155 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
9156 struct btrfs_inode *ei;
9157 struct inode *inode;
9158
9159 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
9160 if (!ei)
9161 return NULL;
9162
9163 ei->root = NULL;
9164 ei->generation = 0;
9165 ei->last_trans = 0;
9166 ei->last_sub_trans = 0;
9167 ei->logged_trans = 0;
9168 ei->delalloc_bytes = 0;
9169 ei->new_delalloc_bytes = 0;
9170 ei->defrag_bytes = 0;
9171 ei->disk_i_size = 0;
9172 ei->flags = 0;
9173 ei->csum_bytes = 0;
9174 ei->index_cnt = (u64)-1;
9175 ei->dir_index = 0;
9176 ei->last_unlink_trans = 0;
9177 ei->last_log_commit = 0;
9178
9179 spin_lock_init(&ei->lock);
9180 ei->outstanding_extents = 0;
9181 if (sb->s_magic != BTRFS_TEST_MAGIC)
9182 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9183 BTRFS_BLOCK_RSV_DELALLOC);
9184 ei->runtime_flags = 0;
9185 ei->prop_compress = BTRFS_COMPRESS_NONE;
9186 ei->defrag_compress = BTRFS_COMPRESS_NONE;
9187
9188 ei->delayed_node = NULL;
9189
9190 ei->i_otime.tv_sec = 0;
9191 ei->i_otime.tv_nsec = 0;
9192
9193 inode = &ei->vfs_inode;
9194 extent_map_tree_init(&ei->extent_tree);
9195 extent_io_tree_init(&ei->io_tree, inode);
9196 extent_io_tree_init(&ei->io_failure_tree, inode);
9197 ei->io_tree.track_uptodate = 1;
9198 ei->io_failure_tree.track_uptodate = 1;
9199 atomic_set(&ei->sync_writers, 0);
9200 mutex_init(&ei->log_mutex);
9201 mutex_init(&ei->delalloc_mutex);
9202 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9203 INIT_LIST_HEAD(&ei->delalloc_inodes);
9204 INIT_LIST_HEAD(&ei->delayed_iput);
9205 RB_CLEAR_NODE(&ei->rb_node);
9206 init_rwsem(&ei->dio_sem);
9207
9208 return inode;
9209}
9210
9211#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9212void btrfs_test_destroy_inode(struct inode *inode)
9213{
9214 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9215 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9216}
9217#endif
9218
9219static void btrfs_i_callback(struct rcu_head *head)
9220{
9221 struct inode *inode = container_of(head, struct inode, i_rcu);
9222 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9223}
9224
9225void btrfs_destroy_inode(struct inode *inode)
9226{
9227 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9228 struct btrfs_ordered_extent *ordered;
9229 struct btrfs_root *root = BTRFS_I(inode)->root;
9230
9231 WARN_ON(!hlist_empty(&inode->i_dentry));
9232 WARN_ON(inode->i_data.nrpages);
9233 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9234 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9235 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9236 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9237 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
9238 WARN_ON(BTRFS_I(inode)->csum_bytes);
9239 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9240
9241 /*
9242 * This can happen where we create an inode, but somebody else also
9243 * created the same inode and we need to destroy the one we already
9244 * created.
9245 */
9246 if (!root)
9247 goto free;
9248
9249 while (1) {
9250 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9251 if (!ordered)
9252 break;
9253 else {
9254 btrfs_err(fs_info,
9255 "found ordered extent %llu %llu on inode cleanup",
9256 ordered->file_offset, ordered->len);
9257 btrfs_remove_ordered_extent(inode, ordered);
9258 btrfs_put_ordered_extent(ordered);
9259 btrfs_put_ordered_extent(ordered);
9260 }
9261 }
9262 btrfs_qgroup_check_reserved_leak(inode);
9263 inode_tree_del(inode);
9264 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
9265free:
9266 call_rcu(&inode->i_rcu, btrfs_i_callback);
9267}
9268
9269int btrfs_drop_inode(struct inode *inode)
9270{
9271 struct btrfs_root *root = BTRFS_I(inode)->root;
9272
9273 if (root == NULL)
9274 return 1;
9275
9276 /* the snap/subvol tree is on deleting */
9277 if (btrfs_root_refs(&root->root_item) == 0)
9278 return 1;
9279 else
9280 return generic_drop_inode(inode);
9281}
9282
9283static void init_once(void *foo)
9284{
9285 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9286
9287 inode_init_once(&ei->vfs_inode);
9288}
9289
9290void __cold btrfs_destroy_cachep(void)
9291{
9292 /*
9293 * Make sure all delayed rcu free inodes are flushed before we
9294 * destroy cache.
9295 */
9296 rcu_barrier();
9297 kmem_cache_destroy(btrfs_inode_cachep);
9298 kmem_cache_destroy(btrfs_trans_handle_cachep);
9299 kmem_cache_destroy(btrfs_path_cachep);
9300 kmem_cache_destroy(btrfs_free_space_cachep);
9301}
9302
9303int __init btrfs_init_cachep(void)
9304{
9305 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9306 sizeof(struct btrfs_inode), 0,
9307 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9308 init_once);
9309 if (!btrfs_inode_cachep)
9310 goto fail;
9311
9312 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9313 sizeof(struct btrfs_trans_handle), 0,
9314 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9315 if (!btrfs_trans_handle_cachep)
9316 goto fail;
9317
9318 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9319 sizeof(struct btrfs_path), 0,
9320 SLAB_MEM_SPREAD, NULL);
9321 if (!btrfs_path_cachep)
9322 goto fail;
9323
9324 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9325 sizeof(struct btrfs_free_space), 0,
9326 SLAB_MEM_SPREAD, NULL);
9327 if (!btrfs_free_space_cachep)
9328 goto fail;
9329
9330 return 0;
9331fail:
9332 btrfs_destroy_cachep();
9333 return -ENOMEM;
9334}
9335
9336static int btrfs_getattr(const struct path *path, struct kstat *stat,
9337 u32 request_mask, unsigned int flags)
9338{
9339 u64 delalloc_bytes;
9340 struct inode *inode = d_inode(path->dentry);
9341 u32 blocksize = inode->i_sb->s_blocksize;
9342 u32 bi_flags = BTRFS_I(inode)->flags;
9343
9344 stat->result_mask |= STATX_BTIME;
9345 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9346 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9347 if (bi_flags & BTRFS_INODE_APPEND)
9348 stat->attributes |= STATX_ATTR_APPEND;
9349 if (bi_flags & BTRFS_INODE_COMPRESS)
9350 stat->attributes |= STATX_ATTR_COMPRESSED;
9351 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9352 stat->attributes |= STATX_ATTR_IMMUTABLE;
9353 if (bi_flags & BTRFS_INODE_NODUMP)
9354 stat->attributes |= STATX_ATTR_NODUMP;
9355
9356 stat->attributes_mask |= (STATX_ATTR_APPEND |
9357 STATX_ATTR_COMPRESSED |
9358 STATX_ATTR_IMMUTABLE |
9359 STATX_ATTR_NODUMP);
9360
9361 generic_fillattr(inode, stat);
9362 stat->dev = BTRFS_I(inode)->root->anon_dev;
9363
9364 spin_lock(&BTRFS_I(inode)->lock);
9365 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
9366 spin_unlock(&BTRFS_I(inode)->lock);
9367 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9368 ALIGN(delalloc_bytes, blocksize)) >> 9;
9369 return 0;
9370}
9371
9372static int btrfs_rename_exchange(struct inode *old_dir,
9373 struct dentry *old_dentry,
9374 struct inode *new_dir,
9375 struct dentry *new_dentry)
9376{
9377 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9378 struct btrfs_trans_handle *trans;
9379 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9380 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9381 struct inode *new_inode = new_dentry->d_inode;
9382 struct inode *old_inode = old_dentry->d_inode;
9383 struct timespec64 ctime = current_time(old_inode);
9384 struct dentry *parent;
9385 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9386 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
9387 u64 old_idx = 0;
9388 u64 new_idx = 0;
9389 u64 root_objectid;
9390 int ret;
9391 bool root_log_pinned = false;
9392 bool dest_log_pinned = false;
9393 struct btrfs_log_ctx ctx_root;
9394 struct btrfs_log_ctx ctx_dest;
9395 bool sync_log_root = false;
9396 bool sync_log_dest = false;
9397 bool commit_transaction = false;
9398
9399 /* we only allow rename subvolume link between subvolumes */
9400 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9401 return -EXDEV;
9402
9403 btrfs_init_log_ctx(&ctx_root, old_inode);
9404 btrfs_init_log_ctx(&ctx_dest, new_inode);
9405
9406 /* close the race window with snapshot create/destroy ioctl */
9407 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9408 down_read(&fs_info->subvol_sem);
9409 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9410 down_read(&fs_info->subvol_sem);
9411
9412 /*
9413 * We want to reserve the absolute worst case amount of items. So if
9414 * both inodes are subvols and we need to unlink them then that would
9415 * require 4 item modifications, but if they are both normal inodes it
9416 * would require 5 item modifications, so we'll assume their normal
9417 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9418 * should cover the worst case number of items we'll modify.
9419 */
9420 trans = btrfs_start_transaction(root, 12);
9421 if (IS_ERR(trans)) {
9422 ret = PTR_ERR(trans);
9423 goto out_notrans;
9424 }
9425
9426 /*
9427 * We need to find a free sequence number both in the source and
9428 * in the destination directory for the exchange.
9429 */
9430 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
9431 if (ret)
9432 goto out_fail;
9433 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
9434 if (ret)
9435 goto out_fail;
9436
9437 BTRFS_I(old_inode)->dir_index = 0ULL;
9438 BTRFS_I(new_inode)->dir_index = 0ULL;
9439
9440 /* Reference for the source. */
9441 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9442 /* force full log commit if subvolume involved. */
9443 btrfs_set_log_full_commit(fs_info, trans);
9444 } else {
9445 btrfs_pin_log_trans(root);
9446 root_log_pinned = true;
9447 ret = btrfs_insert_inode_ref(trans, dest,
9448 new_dentry->d_name.name,
9449 new_dentry->d_name.len,
9450 old_ino,
9451 btrfs_ino(BTRFS_I(new_dir)),
9452 old_idx);
9453 if (ret)
9454 goto out_fail;
9455 }
9456
9457 /* And now for the dest. */
9458 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9459 /* force full log commit if subvolume involved. */
9460 btrfs_set_log_full_commit(fs_info, trans);
9461 } else {
9462 btrfs_pin_log_trans(dest);
9463 dest_log_pinned = true;
9464 ret = btrfs_insert_inode_ref(trans, root,
9465 old_dentry->d_name.name,
9466 old_dentry->d_name.len,
9467 new_ino,
9468 btrfs_ino(BTRFS_I(old_dir)),
9469 new_idx);
9470 if (ret)
9471 goto out_fail;
9472 }
9473
9474 /* Update inode version and ctime/mtime. */
9475 inode_inc_iversion(old_dir);
9476 inode_inc_iversion(new_dir);
9477 inode_inc_iversion(old_inode);
9478 inode_inc_iversion(new_inode);
9479 old_dir->i_ctime = old_dir->i_mtime = ctime;
9480 new_dir->i_ctime = new_dir->i_mtime = ctime;
9481 old_inode->i_ctime = ctime;
9482 new_inode->i_ctime = ctime;
9483
9484 if (old_dentry->d_parent != new_dentry->d_parent) {
9485 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9486 BTRFS_I(old_inode), 1);
9487 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9488 BTRFS_I(new_inode), 1);
9489 }
9490
9491 /* src is a subvolume */
9492 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9493 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9494 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9495 old_dentry->d_name.name,
9496 old_dentry->d_name.len);
9497 } else { /* src is an inode */
9498 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9499 BTRFS_I(old_dentry->d_inode),
9500 old_dentry->d_name.name,
9501 old_dentry->d_name.len);
9502 if (!ret)
9503 ret = btrfs_update_inode(trans, root, old_inode);
9504 }
9505 if (ret) {
9506 btrfs_abort_transaction(trans, ret);
9507 goto out_fail;
9508 }
9509
9510 /* dest is a subvolume */
9511 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9512 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9513 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9514 new_dentry->d_name.name,
9515 new_dentry->d_name.len);
9516 } else { /* dest is an inode */
9517 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9518 BTRFS_I(new_dentry->d_inode),
9519 new_dentry->d_name.name,
9520 new_dentry->d_name.len);
9521 if (!ret)
9522 ret = btrfs_update_inode(trans, dest, new_inode);
9523 }
9524 if (ret) {
9525 btrfs_abort_transaction(trans, ret);
9526 goto out_fail;
9527 }
9528
9529 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9530 new_dentry->d_name.name,
9531 new_dentry->d_name.len, 0, old_idx);
9532 if (ret) {
9533 btrfs_abort_transaction(trans, ret);
9534 goto out_fail;
9535 }
9536
9537 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
9538 old_dentry->d_name.name,
9539 old_dentry->d_name.len, 0, new_idx);
9540 if (ret) {
9541 btrfs_abort_transaction(trans, ret);
9542 goto out_fail;
9543 }
9544
9545 if (old_inode->i_nlink == 1)
9546 BTRFS_I(old_inode)->dir_index = old_idx;
9547 if (new_inode->i_nlink == 1)
9548 BTRFS_I(new_inode)->dir_index = new_idx;
9549
9550 if (root_log_pinned) {
9551 parent = new_dentry->d_parent;
9552 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9553 BTRFS_I(old_dir), parent,
9554 false, &ctx_root);
9555 if (ret == BTRFS_NEED_LOG_SYNC)
9556 sync_log_root = true;
9557 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9558 commit_transaction = true;
9559 ret = 0;
9560 btrfs_end_log_trans(root);
9561 root_log_pinned = false;
9562 }
9563 if (dest_log_pinned) {
9564 if (!commit_transaction) {
9565 parent = old_dentry->d_parent;
9566 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9567 BTRFS_I(new_dir), parent,
9568 false, &ctx_dest);
9569 if (ret == BTRFS_NEED_LOG_SYNC)
9570 sync_log_dest = true;
9571 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9572 commit_transaction = true;
9573 ret = 0;
9574 }
9575 btrfs_end_log_trans(dest);
9576 dest_log_pinned = false;
9577 }
9578out_fail:
9579 /*
9580 * If we have pinned a log and an error happened, we unpin tasks
9581 * trying to sync the log and force them to fallback to a transaction
9582 * commit if the log currently contains any of the inodes involved in
9583 * this rename operation (to ensure we do not persist a log with an
9584 * inconsistent state for any of these inodes or leading to any
9585 * inconsistencies when replayed). If the transaction was aborted, the
9586 * abortion reason is propagated to userspace when attempting to commit
9587 * the transaction. If the log does not contain any of these inodes, we
9588 * allow the tasks to sync it.
9589 */
9590 if (ret && (root_log_pinned || dest_log_pinned)) {
9591 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9592 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9593 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9594 (new_inode &&
9595 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9596 btrfs_set_log_full_commit(fs_info, trans);
9597
9598 if (root_log_pinned) {
9599 btrfs_end_log_trans(root);
9600 root_log_pinned = false;
9601 }
9602 if (dest_log_pinned) {
9603 btrfs_end_log_trans(dest);
9604 dest_log_pinned = false;
9605 }
9606 }
9607 if (!ret && sync_log_root && !commit_transaction) {
9608 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9609 &ctx_root);
9610 if (ret)
9611 commit_transaction = true;
9612 }
9613 if (!ret && sync_log_dest && !commit_transaction) {
9614 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9615 &ctx_dest);
9616 if (ret)
9617 commit_transaction = true;
9618 }
9619 if (commit_transaction) {
9620 ret = btrfs_commit_transaction(trans);
9621 } else {
9622 int ret2;
9623
9624 ret2 = btrfs_end_transaction(trans);
9625 ret = ret ? ret : ret2;
9626 }
9627out_notrans:
9628 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9629 up_read(&fs_info->subvol_sem);
9630 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9631 up_read(&fs_info->subvol_sem);
9632
9633 return ret;
9634}
9635
9636static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9637 struct btrfs_root *root,
9638 struct inode *dir,
9639 struct dentry *dentry)
9640{
9641 int ret;
9642 struct inode *inode;
9643 u64 objectid;
9644 u64 index;
9645
9646 ret = btrfs_find_free_ino(root, &objectid);
9647 if (ret)
9648 return ret;
9649
9650 inode = btrfs_new_inode(trans, root, dir,
9651 dentry->d_name.name,
9652 dentry->d_name.len,
9653 btrfs_ino(BTRFS_I(dir)),
9654 objectid,
9655 S_IFCHR | WHITEOUT_MODE,
9656 &index);
9657
9658 if (IS_ERR(inode)) {
9659 ret = PTR_ERR(inode);
9660 return ret;
9661 }
9662
9663 inode->i_op = &btrfs_special_inode_operations;
9664 init_special_inode(inode, inode->i_mode,
9665 WHITEOUT_DEV);
9666
9667 ret = btrfs_init_inode_security(trans, inode, dir,
9668 &dentry->d_name);
9669 if (ret)
9670 goto out;
9671
9672 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9673 BTRFS_I(inode), 0, index);
9674 if (ret)
9675 goto out;
9676
9677 ret = btrfs_update_inode(trans, root, inode);
9678out:
9679 unlock_new_inode(inode);
9680 if (ret)
9681 inode_dec_link_count(inode);
9682 iput(inode);
9683
9684 return ret;
9685}
9686
9687static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9688 struct inode *new_dir, struct dentry *new_dentry,
9689 unsigned int flags)
9690{
9691 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9692 struct btrfs_trans_handle *trans;
9693 unsigned int trans_num_items;
9694 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9695 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9696 struct inode *new_inode = d_inode(new_dentry);
9697 struct inode *old_inode = d_inode(old_dentry);
9698 u64 index = 0;
9699 u64 root_objectid;
9700 int ret;
9701 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9702 bool log_pinned = false;
9703 struct btrfs_log_ctx ctx;
9704 bool sync_log = false;
9705 bool commit_transaction = false;
9706
9707 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9708 return -EPERM;
9709
9710 /* we only allow rename subvolume link between subvolumes */
9711 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9712 return -EXDEV;
9713
9714 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9715 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9716 return -ENOTEMPTY;
9717
9718 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9719 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9720 return -ENOTEMPTY;
9721
9722
9723 /* check for collisions, even if the name isn't there */
9724 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9725 new_dentry->d_name.name,
9726 new_dentry->d_name.len);
9727
9728 if (ret) {
9729 if (ret == -EEXIST) {
9730 /* we shouldn't get
9731 * eexist without a new_inode */
9732 if (WARN_ON(!new_inode)) {
9733 return ret;
9734 }
9735 } else {
9736 /* maybe -EOVERFLOW */
9737 return ret;
9738 }
9739 }
9740 ret = 0;
9741
9742 /*
9743 * we're using rename to replace one file with another. Start IO on it
9744 * now so we don't add too much work to the end of the transaction
9745 */
9746 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9747 filemap_flush(old_inode->i_mapping);
9748
9749 /* close the racy window with snapshot create/destroy ioctl */
9750 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9751 down_read(&fs_info->subvol_sem);
9752 /*
9753 * We want to reserve the absolute worst case amount of items. So if
9754 * both inodes are subvols and we need to unlink them then that would
9755 * require 4 item modifications, but if they are both normal inodes it
9756 * would require 5 item modifications, so we'll assume they are normal
9757 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9758 * should cover the worst case number of items we'll modify.
9759 * If our rename has the whiteout flag, we need more 5 units for the
9760 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9761 * when selinux is enabled).
9762 */
9763 trans_num_items = 11;
9764 if (flags & RENAME_WHITEOUT)
9765 trans_num_items += 5;
9766 trans = btrfs_start_transaction(root, trans_num_items);
9767 if (IS_ERR(trans)) {
9768 ret = PTR_ERR(trans);
9769 goto out_notrans;
9770 }
9771
9772 if (dest != root)
9773 btrfs_record_root_in_trans(trans, dest);
9774
9775 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9776 if (ret)
9777 goto out_fail;
9778
9779 BTRFS_I(old_inode)->dir_index = 0ULL;
9780 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9781 /* force full log commit if subvolume involved. */
9782 btrfs_set_log_full_commit(fs_info, trans);
9783 } else {
9784 btrfs_pin_log_trans(root);
9785 log_pinned = true;
9786 ret = btrfs_insert_inode_ref(trans, dest,
9787 new_dentry->d_name.name,
9788 new_dentry->d_name.len,
9789 old_ino,
9790 btrfs_ino(BTRFS_I(new_dir)), index);
9791 if (ret)
9792 goto out_fail;
9793 }
9794
9795 inode_inc_iversion(old_dir);
9796 inode_inc_iversion(new_dir);
9797 inode_inc_iversion(old_inode);
9798 old_dir->i_ctime = old_dir->i_mtime =
9799 new_dir->i_ctime = new_dir->i_mtime =
9800 old_inode->i_ctime = current_time(old_dir);
9801
9802 if (old_dentry->d_parent != new_dentry->d_parent)
9803 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9804 BTRFS_I(old_inode), 1);
9805
9806 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9807 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9808 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
9809 old_dentry->d_name.name,
9810 old_dentry->d_name.len);
9811 } else {
9812 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9813 BTRFS_I(d_inode(old_dentry)),
9814 old_dentry->d_name.name,
9815 old_dentry->d_name.len);
9816 if (!ret)
9817 ret = btrfs_update_inode(trans, root, old_inode);
9818 }
9819 if (ret) {
9820 btrfs_abort_transaction(trans, ret);
9821 goto out_fail;
9822 }
9823
9824 if (new_inode) {
9825 inode_inc_iversion(new_inode);
9826 new_inode->i_ctime = current_time(new_inode);
9827 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9828 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9829 root_objectid = BTRFS_I(new_inode)->location.objectid;
9830 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
9831 new_dentry->d_name.name,
9832 new_dentry->d_name.len);
9833 BUG_ON(new_inode->i_nlink == 0);
9834 } else {
9835 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9836 BTRFS_I(d_inode(new_dentry)),
9837 new_dentry->d_name.name,
9838 new_dentry->d_name.len);
9839 }
9840 if (!ret && new_inode->i_nlink == 0)
9841 ret = btrfs_orphan_add(trans,
9842 BTRFS_I(d_inode(new_dentry)));
9843 if (ret) {
9844 btrfs_abort_transaction(trans, ret);
9845 goto out_fail;
9846 }
9847 }
9848
9849 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9850 new_dentry->d_name.name,
9851 new_dentry->d_name.len, 0, index);
9852 if (ret) {
9853 btrfs_abort_transaction(trans, ret);
9854 goto out_fail;
9855 }
9856
9857 if (old_inode->i_nlink == 1)
9858 BTRFS_I(old_inode)->dir_index = index;
9859
9860 if (log_pinned) {
9861 struct dentry *parent = new_dentry->d_parent;
9862
9863 btrfs_init_log_ctx(&ctx, old_inode);
9864 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9865 BTRFS_I(old_dir), parent,
9866 false, &ctx);
9867 if (ret == BTRFS_NEED_LOG_SYNC)
9868 sync_log = true;
9869 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9870 commit_transaction = true;
9871 ret = 0;
9872 btrfs_end_log_trans(root);
9873 log_pinned = false;
9874 }
9875
9876 if (flags & RENAME_WHITEOUT) {
9877 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9878 old_dentry);
9879
9880 if (ret) {
9881 btrfs_abort_transaction(trans, ret);
9882 goto out_fail;
9883 }
9884 }
9885out_fail:
9886 /*
9887 * If we have pinned the log and an error happened, we unpin tasks
9888 * trying to sync the log and force them to fallback to a transaction
9889 * commit if the log currently contains any of the inodes involved in
9890 * this rename operation (to ensure we do not persist a log with an
9891 * inconsistent state for any of these inodes or leading to any
9892 * inconsistencies when replayed). If the transaction was aborted, the
9893 * abortion reason is propagated to userspace when attempting to commit
9894 * the transaction. If the log does not contain any of these inodes, we
9895 * allow the tasks to sync it.
9896 */
9897 if (ret && log_pinned) {
9898 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9899 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9900 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9901 (new_inode &&
9902 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9903 btrfs_set_log_full_commit(fs_info, trans);
9904
9905 btrfs_end_log_trans(root);
9906 log_pinned = false;
9907 }
9908 if (!ret && sync_log) {
9909 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9910 if (ret)
9911 commit_transaction = true;
9912 }
9913 if (commit_transaction) {
9914 ret = btrfs_commit_transaction(trans);
9915 } else {
9916 int ret2;
9917
9918 ret2 = btrfs_end_transaction(trans);
9919 ret = ret ? ret : ret2;
9920 }
9921out_notrans:
9922 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9923 up_read(&fs_info->subvol_sem);
9924
9925 return ret;
9926}
9927
9928static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9929 struct inode *new_dir, struct dentry *new_dentry,
9930 unsigned int flags)
9931{
9932 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9933 return -EINVAL;
9934
9935 if (flags & RENAME_EXCHANGE)
9936 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9937 new_dentry);
9938
9939 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9940}
9941
9942struct btrfs_delalloc_work {
9943 struct inode *inode;
9944 struct completion completion;
9945 struct list_head list;
9946 struct btrfs_work work;
9947};
9948
9949static void btrfs_run_delalloc_work(struct btrfs_work *work)
9950{
9951 struct btrfs_delalloc_work *delalloc_work;
9952 struct inode *inode;
9953
9954 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9955 work);
9956 inode = delalloc_work->inode;
9957 filemap_flush(inode->i_mapping);
9958 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9959 &BTRFS_I(inode)->runtime_flags))
9960 filemap_flush(inode->i_mapping);
9961
9962 iput(inode);
9963 complete(&delalloc_work->completion);
9964}
9965
9966static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9967{
9968 struct btrfs_delalloc_work *work;
9969
9970 work = kmalloc(sizeof(*work), GFP_NOFS);
9971 if (!work)
9972 return NULL;
9973
9974 init_completion(&work->completion);
9975 INIT_LIST_HEAD(&work->list);
9976 work->inode = inode;
9977 WARN_ON_ONCE(!inode);
9978 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9979 btrfs_run_delalloc_work, NULL, NULL);
9980
9981 return work;
9982}
9983
9984/*
9985 * some fairly slow code that needs optimization. This walks the list
9986 * of all the inodes with pending delalloc and forces them to disk.
9987 */
9988static int start_delalloc_inodes(struct btrfs_root *root, int nr)
9989{
9990 struct btrfs_inode *binode;
9991 struct inode *inode;
9992 struct btrfs_delalloc_work *work, *next;
9993 struct list_head works;
9994 struct list_head splice;
9995 int ret = 0;
9996
9997 INIT_LIST_HEAD(&works);
9998 INIT_LIST_HEAD(&splice);
9999
10000 mutex_lock(&root->delalloc_mutex);
10001 spin_lock(&root->delalloc_lock);
10002 list_splice_init(&root->delalloc_inodes, &splice);
10003 while (!list_empty(&splice)) {
10004 binode = list_entry(splice.next, struct btrfs_inode,
10005 delalloc_inodes);
10006
10007 list_move_tail(&binode->delalloc_inodes,
10008 &root->delalloc_inodes);
10009 inode = igrab(&binode->vfs_inode);
10010 if (!inode) {
10011 cond_resched_lock(&root->delalloc_lock);
10012 continue;
10013 }
10014 spin_unlock(&root->delalloc_lock);
10015
10016 work = btrfs_alloc_delalloc_work(inode);
10017 if (!work) {
10018 iput(inode);
10019 ret = -ENOMEM;
10020 goto out;
10021 }
10022 list_add_tail(&work->list, &works);
10023 btrfs_queue_work(root->fs_info->flush_workers,
10024 &work->work);
10025 ret++;
10026 if (nr != -1 && ret >= nr)
10027 goto out;
10028 cond_resched();
10029 spin_lock(&root->delalloc_lock);
10030 }
10031 spin_unlock(&root->delalloc_lock);
10032
10033out:
10034 list_for_each_entry_safe(work, next, &works, list) {
10035 list_del_init(&work->list);
10036 wait_for_completion(&work->completion);
10037 kfree(work);
10038 }
10039
10040 if (!list_empty(&splice)) {
10041 spin_lock(&root->delalloc_lock);
10042 list_splice_tail(&splice, &root->delalloc_inodes);
10043 spin_unlock(&root->delalloc_lock);
10044 }
10045 mutex_unlock(&root->delalloc_mutex);
10046 return ret;
10047}
10048
10049int btrfs_start_delalloc_inodes(struct btrfs_root *root)
10050{
10051 struct btrfs_fs_info *fs_info = root->fs_info;
10052 int ret;
10053
10054 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10055 return -EROFS;
10056
10057 ret = start_delalloc_inodes(root, -1);
10058 if (ret > 0)
10059 ret = 0;
10060 return ret;
10061}
10062
10063int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
10064{
10065 struct btrfs_root *root;
10066 struct list_head splice;
10067 int ret;
10068
10069 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10070 return -EROFS;
10071
10072 INIT_LIST_HEAD(&splice);
10073
10074 mutex_lock(&fs_info->delalloc_root_mutex);
10075 spin_lock(&fs_info->delalloc_root_lock);
10076 list_splice_init(&fs_info->delalloc_roots, &splice);
10077 while (!list_empty(&splice) && nr) {
10078 root = list_first_entry(&splice, struct btrfs_root,
10079 delalloc_root);
10080 root = btrfs_grab_fs_root(root);
10081 BUG_ON(!root);
10082 list_move_tail(&root->delalloc_root,
10083 &fs_info->delalloc_roots);
10084 spin_unlock(&fs_info->delalloc_root_lock);
10085
10086 ret = start_delalloc_inodes(root, nr);
10087 btrfs_put_fs_root(root);
10088 if (ret < 0)
10089 goto out;
10090
10091 if (nr != -1) {
10092 nr -= ret;
10093 WARN_ON(nr < 0);
10094 }
10095 spin_lock(&fs_info->delalloc_root_lock);
10096 }
10097 spin_unlock(&fs_info->delalloc_root_lock);
10098
10099 ret = 0;
10100out:
10101 if (!list_empty(&splice)) {
10102 spin_lock(&fs_info->delalloc_root_lock);
10103 list_splice_tail(&splice, &fs_info->delalloc_roots);
10104 spin_unlock(&fs_info->delalloc_root_lock);
10105 }
10106 mutex_unlock(&fs_info->delalloc_root_mutex);
10107 return ret;
10108}
10109
10110static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10111 const char *symname)
10112{
10113 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10114 struct btrfs_trans_handle *trans;
10115 struct btrfs_root *root = BTRFS_I(dir)->root;
10116 struct btrfs_path *path;
10117 struct btrfs_key key;
10118 struct inode *inode = NULL;
10119 int err;
10120 u64 objectid;
10121 u64 index = 0;
10122 int name_len;
10123 int datasize;
10124 unsigned long ptr;
10125 struct btrfs_file_extent_item *ei;
10126 struct extent_buffer *leaf;
10127
10128 name_len = strlen(symname);
10129 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
10130 return -ENAMETOOLONG;
10131
10132 /*
10133 * 2 items for inode item and ref
10134 * 2 items for dir items
10135 * 1 item for updating parent inode item
10136 * 1 item for the inline extent item
10137 * 1 item for xattr if selinux is on
10138 */
10139 trans = btrfs_start_transaction(root, 7);
10140 if (IS_ERR(trans))
10141 return PTR_ERR(trans);
10142
10143 err = btrfs_find_free_ino(root, &objectid);
10144 if (err)
10145 goto out_unlock;
10146
10147 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10148 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10149 objectid, S_IFLNK|S_IRWXUGO, &index);
10150 if (IS_ERR(inode)) {
10151 err = PTR_ERR(inode);
10152 inode = NULL;
10153 goto out_unlock;
10154 }
10155
10156 /*
10157 * If the active LSM wants to access the inode during
10158 * d_instantiate it needs these. Smack checks to see
10159 * if the filesystem supports xattrs by looking at the
10160 * ops vector.
10161 */
10162 inode->i_fop = &btrfs_file_operations;
10163 inode->i_op = &btrfs_file_inode_operations;
10164 inode->i_mapping->a_ops = &btrfs_aops;
10165 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10166
10167 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10168 if (err)
10169 goto out_unlock;
10170
10171 path = btrfs_alloc_path();
10172 if (!path) {
10173 err = -ENOMEM;
10174 goto out_unlock;
10175 }
10176 key.objectid = btrfs_ino(BTRFS_I(inode));
10177 key.offset = 0;
10178 key.type = BTRFS_EXTENT_DATA_KEY;
10179 datasize = btrfs_file_extent_calc_inline_size(name_len);
10180 err = btrfs_insert_empty_item(trans, root, path, &key,
10181 datasize);
10182 if (err) {
10183 btrfs_free_path(path);
10184 goto out_unlock;
10185 }
10186 leaf = path->nodes[0];
10187 ei = btrfs_item_ptr(leaf, path->slots[0],
10188 struct btrfs_file_extent_item);
10189 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10190 btrfs_set_file_extent_type(leaf, ei,
10191 BTRFS_FILE_EXTENT_INLINE);
10192 btrfs_set_file_extent_encryption(leaf, ei, 0);
10193 btrfs_set_file_extent_compression(leaf, ei, 0);
10194 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10195 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10196
10197 ptr = btrfs_file_extent_inline_start(ei);
10198 write_extent_buffer(leaf, symname, ptr, name_len);
10199 btrfs_mark_buffer_dirty(leaf);
10200 btrfs_free_path(path);
10201
10202 inode->i_op = &btrfs_symlink_inode_operations;
10203 inode_nohighmem(inode);
10204 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10205 inode_set_bytes(inode, name_len);
10206 btrfs_i_size_write(BTRFS_I(inode), name_len);
10207 err = btrfs_update_inode(trans, root, inode);
10208 /*
10209 * Last step, add directory indexes for our symlink inode. This is the
10210 * last step to avoid extra cleanup of these indexes if an error happens
10211 * elsewhere above.
10212 */
10213 if (!err)
10214 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10215 BTRFS_I(inode), 0, index);
10216 if (err)
10217 goto out_unlock;
10218
10219 d_instantiate_new(dentry, inode);
10220
10221out_unlock:
10222 btrfs_end_transaction(trans);
10223 if (err && inode) {
10224 inode_dec_link_count(inode);
10225 discard_new_inode(inode);
10226 }
10227 btrfs_btree_balance_dirty(fs_info);
10228 return err;
10229}
10230
10231static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10232 u64 start, u64 num_bytes, u64 min_size,
10233 loff_t actual_len, u64 *alloc_hint,
10234 struct btrfs_trans_handle *trans)
10235{
10236 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
10237 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10238 struct extent_map *em;
10239 struct btrfs_root *root = BTRFS_I(inode)->root;
10240 struct btrfs_key ins;
10241 u64 cur_offset = start;
10242 u64 i_size;
10243 u64 cur_bytes;
10244 u64 last_alloc = (u64)-1;
10245 int ret = 0;
10246 bool own_trans = true;
10247 u64 end = start + num_bytes - 1;
10248
10249 if (trans)
10250 own_trans = false;
10251 while (num_bytes > 0) {
10252 if (own_trans) {
10253 trans = btrfs_start_transaction(root, 3);
10254 if (IS_ERR(trans)) {
10255 ret = PTR_ERR(trans);
10256 break;
10257 }
10258 }
10259
10260 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10261 cur_bytes = max(cur_bytes, min_size);
10262 /*
10263 * If we are severely fragmented we could end up with really
10264 * small allocations, so if the allocator is returning small
10265 * chunks lets make its job easier by only searching for those
10266 * sized chunks.
10267 */
10268 cur_bytes = min(cur_bytes, last_alloc);
10269 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10270 min_size, 0, *alloc_hint, &ins, 1, 0);
10271 if (ret) {
10272 if (own_trans)
10273 btrfs_end_transaction(trans);
10274 break;
10275 }
10276 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10277
10278 last_alloc = ins.offset;
10279 ret = insert_reserved_file_extent(trans, inode,
10280 cur_offset, ins.objectid,
10281 ins.offset, ins.offset,
10282 ins.offset, 0, 0, 0,
10283 BTRFS_FILE_EXTENT_PREALLOC);
10284 if (ret) {
10285 btrfs_free_reserved_extent(fs_info, ins.objectid,
10286 ins.offset, 0);
10287 btrfs_abort_transaction(trans, ret);
10288 if (own_trans)
10289 btrfs_end_transaction(trans);
10290 break;
10291 }
10292
10293 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10294 cur_offset + ins.offset -1, 0);
10295
10296 em = alloc_extent_map();
10297 if (!em) {
10298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10299 &BTRFS_I(inode)->runtime_flags);
10300 goto next;
10301 }
10302
10303 em->start = cur_offset;
10304 em->orig_start = cur_offset;
10305 em->len = ins.offset;
10306 em->block_start = ins.objectid;
10307 em->block_len = ins.offset;
10308 em->orig_block_len = ins.offset;
10309 em->ram_bytes = ins.offset;
10310 em->bdev = fs_info->fs_devices->latest_bdev;
10311 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10312 em->generation = trans->transid;
10313
10314 while (1) {
10315 write_lock(&em_tree->lock);
10316 ret = add_extent_mapping(em_tree, em, 1);
10317 write_unlock(&em_tree->lock);
10318 if (ret != -EEXIST)
10319 break;
10320 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
10321 cur_offset + ins.offset - 1,
10322 0);
10323 }
10324 free_extent_map(em);
10325next:
10326 num_bytes -= ins.offset;
10327 cur_offset += ins.offset;
10328 *alloc_hint = ins.objectid + ins.offset;
10329
10330 inode_inc_iversion(inode);
10331 inode->i_ctime = current_time(inode);
10332 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10333 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10334 (actual_len > inode->i_size) &&
10335 (cur_offset > inode->i_size)) {
10336 if (cur_offset > actual_len)
10337 i_size = actual_len;
10338 else
10339 i_size = cur_offset;
10340 i_size_write(inode, i_size);
10341 btrfs_ordered_update_i_size(inode, i_size, NULL);
10342 }
10343
10344 ret = btrfs_update_inode(trans, root, inode);
10345
10346 if (ret) {
10347 btrfs_abort_transaction(trans, ret);
10348 if (own_trans)
10349 btrfs_end_transaction(trans);
10350 break;
10351 }
10352
10353 if (own_trans)
10354 btrfs_end_transaction(trans);
10355 }
10356 if (cur_offset < end)
10357 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
10358 end - cur_offset + 1);
10359 return ret;
10360}
10361
10362int btrfs_prealloc_file_range(struct inode *inode, int mode,
10363 u64 start, u64 num_bytes, u64 min_size,
10364 loff_t actual_len, u64 *alloc_hint)
10365{
10366 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10367 min_size, actual_len, alloc_hint,
10368 NULL);
10369}
10370
10371int btrfs_prealloc_file_range_trans(struct inode *inode,
10372 struct btrfs_trans_handle *trans, int mode,
10373 u64 start, u64 num_bytes, u64 min_size,
10374 loff_t actual_len, u64 *alloc_hint)
10375{
10376 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10377 min_size, actual_len, alloc_hint, trans);
10378}
10379
10380static int btrfs_set_page_dirty(struct page *page)
10381{
10382 return __set_page_dirty_nobuffers(page);
10383}
10384
10385static int btrfs_permission(struct inode *inode, int mask)
10386{
10387 struct btrfs_root *root = BTRFS_I(inode)->root;
10388 umode_t mode = inode->i_mode;
10389
10390 if (mask & MAY_WRITE &&
10391 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10392 if (btrfs_root_readonly(root))
10393 return -EROFS;
10394 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10395 return -EACCES;
10396 }
10397 return generic_permission(inode, mask);
10398}
10399
10400static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10401{
10402 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
10403 struct btrfs_trans_handle *trans;
10404 struct btrfs_root *root = BTRFS_I(dir)->root;
10405 struct inode *inode = NULL;
10406 u64 objectid;
10407 u64 index;
10408 int ret = 0;
10409
10410 /*
10411 * 5 units required for adding orphan entry
10412 */
10413 trans = btrfs_start_transaction(root, 5);
10414 if (IS_ERR(trans))
10415 return PTR_ERR(trans);
10416
10417 ret = btrfs_find_free_ino(root, &objectid);
10418 if (ret)
10419 goto out;
10420
10421 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10422 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
10423 if (IS_ERR(inode)) {
10424 ret = PTR_ERR(inode);
10425 inode = NULL;
10426 goto out;
10427 }
10428
10429 inode->i_fop = &btrfs_file_operations;
10430 inode->i_op = &btrfs_file_inode_operations;
10431
10432 inode->i_mapping->a_ops = &btrfs_aops;
10433 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10434
10435 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10436 if (ret)
10437 goto out;
10438
10439 ret = btrfs_update_inode(trans, root, inode);
10440 if (ret)
10441 goto out;
10442 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10443 if (ret)
10444 goto out;
10445
10446 /*
10447 * We set number of links to 0 in btrfs_new_inode(), and here we set
10448 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10449 * through:
10450 *
10451 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10452 */
10453 set_nlink(inode, 1);
10454 d_tmpfile(dentry, inode);
10455 unlock_new_inode(inode);
10456 mark_inode_dirty(inode);
10457out:
10458 btrfs_end_transaction(trans);
10459 if (ret && inode)
10460 discard_new_inode(inode);
10461 btrfs_btree_balance_dirty(fs_info);
10462 return ret;
10463}
10464
10465__attribute__((const))
10466static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
10467{
10468 return -EAGAIN;
10469}
10470
10471static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10472 u64 start, u64 end)
10473{
10474 struct inode *inode = private_data;
10475 u64 isize;
10476
10477 isize = i_size_read(inode);
10478 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10479 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10480 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10481 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10482 }
10483}
10484
10485void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
10486{
10487 struct inode *inode = tree->private_data;
10488 unsigned long index = start >> PAGE_SHIFT;
10489 unsigned long end_index = end >> PAGE_SHIFT;
10490 struct page *page;
10491
10492 while (index <= end_index) {
10493 page = find_get_page(inode->i_mapping, index);
10494 ASSERT(page); /* Pages should be in the extent_io_tree */
10495 set_page_writeback(page);
10496 put_page(page);
10497 index++;
10498 }
10499}
10500
10501static const struct inode_operations btrfs_dir_inode_operations = {
10502 .getattr = btrfs_getattr,
10503 .lookup = btrfs_lookup,
10504 .create = btrfs_create,
10505 .unlink = btrfs_unlink,
10506 .link = btrfs_link,
10507 .mkdir = btrfs_mkdir,
10508 .rmdir = btrfs_rmdir,
10509 .rename = btrfs_rename2,
10510 .symlink = btrfs_symlink,
10511 .setattr = btrfs_setattr,
10512 .mknod = btrfs_mknod,
10513 .listxattr = btrfs_listxattr,
10514 .permission = btrfs_permission,
10515 .get_acl = btrfs_get_acl,
10516 .set_acl = btrfs_set_acl,
10517 .update_time = btrfs_update_time,
10518 .tmpfile = btrfs_tmpfile,
10519};
10520static const struct inode_operations btrfs_dir_ro_inode_operations = {
10521 .lookup = btrfs_lookup,
10522 .permission = btrfs_permission,
10523 .update_time = btrfs_update_time,
10524};
10525
10526static const struct file_operations btrfs_dir_file_operations = {
10527 .llseek = generic_file_llseek,
10528 .read = generic_read_dir,
10529 .iterate_shared = btrfs_real_readdir,
10530 .open = btrfs_opendir,
10531 .unlocked_ioctl = btrfs_ioctl,
10532#ifdef CONFIG_COMPAT
10533 .compat_ioctl = btrfs_compat_ioctl,
10534#endif
10535 .release = btrfs_release_file,
10536 .fsync = btrfs_sync_file,
10537};
10538
10539static const struct extent_io_ops btrfs_extent_io_ops = {
10540 /* mandatory callbacks */
10541 .submit_bio_hook = btrfs_submit_bio_hook,
10542 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10543 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
10544
10545 /* optional callbacks */
10546 .fill_delalloc = run_delalloc_range,
10547 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10548 .writepage_start_hook = btrfs_writepage_start_hook,
10549 .set_bit_hook = btrfs_set_bit_hook,
10550 .clear_bit_hook = btrfs_clear_bit_hook,
10551 .merge_extent_hook = btrfs_merge_extent_hook,
10552 .split_extent_hook = btrfs_split_extent_hook,
10553 .check_extent_io_range = btrfs_check_extent_io_range,
10554};
10555
10556/*
10557 * btrfs doesn't support the bmap operation because swapfiles
10558 * use bmap to make a mapping of extents in the file. They assume
10559 * these extents won't change over the life of the file and they
10560 * use the bmap result to do IO directly to the drive.
10561 *
10562 * the btrfs bmap call would return logical addresses that aren't
10563 * suitable for IO and they also will change frequently as COW
10564 * operations happen. So, swapfile + btrfs == corruption.
10565 *
10566 * For now we're avoiding this by dropping bmap.
10567 */
10568static const struct address_space_operations btrfs_aops = {
10569 .readpage = btrfs_readpage,
10570 .writepage = btrfs_writepage,
10571 .writepages = btrfs_writepages,
10572 .readpages = btrfs_readpages,
10573 .direct_IO = btrfs_direct_IO,
10574 .invalidatepage = btrfs_invalidatepage,
10575 .releasepage = btrfs_releasepage,
10576 .set_page_dirty = btrfs_set_page_dirty,
10577 .error_remove_page = generic_error_remove_page,
10578};
10579
10580static const struct address_space_operations btrfs_symlink_aops = {
10581 .readpage = btrfs_readpage,
10582 .writepage = btrfs_writepage,
10583 .invalidatepage = btrfs_invalidatepage,
10584 .releasepage = btrfs_releasepage,
10585};
10586
10587static const struct inode_operations btrfs_file_inode_operations = {
10588 .getattr = btrfs_getattr,
10589 .setattr = btrfs_setattr,
10590 .listxattr = btrfs_listxattr,
10591 .permission = btrfs_permission,
10592 .fiemap = btrfs_fiemap,
10593 .get_acl = btrfs_get_acl,
10594 .set_acl = btrfs_set_acl,
10595 .update_time = btrfs_update_time,
10596};
10597static const struct inode_operations btrfs_special_inode_operations = {
10598 .getattr = btrfs_getattr,
10599 .setattr = btrfs_setattr,
10600 .permission = btrfs_permission,
10601 .listxattr = btrfs_listxattr,
10602 .get_acl = btrfs_get_acl,
10603 .set_acl = btrfs_set_acl,
10604 .update_time = btrfs_update_time,
10605};
10606static const struct inode_operations btrfs_symlink_inode_operations = {
10607 .get_link = page_get_link,
10608 .getattr = btrfs_getattr,
10609 .setattr = btrfs_setattr,
10610 .permission = btrfs_permission,
10611 .listxattr = btrfs_listxattr,
10612 .update_time = btrfs_update_time,
10613};
10614
10615const struct dentry_operations btrfs_dentry_operations = {
10616 .d_delete = btrfs_dentry_delete,
10617};