Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | #undef DEBUG |
| 2 | |
| 3 | /* |
| 4 | * ARM performance counter support. |
| 5 | * |
| 6 | * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles |
| 7 | * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> |
| 8 | * |
| 9 | * This code is based on the sparc64 perf event code, which is in turn based |
| 10 | * on the x86 code. |
| 11 | */ |
| 12 | #define pr_fmt(fmt) "hw perfevents: " fmt |
| 13 | |
| 14 | #include <linux/bitmap.h> |
| 15 | #include <linux/cpumask.h> |
| 16 | #include <linux/cpu_pm.h> |
| 17 | #include <linux/export.h> |
| 18 | #include <linux/kernel.h> |
| 19 | #include <linux/perf/arm_pmu.h> |
| 20 | #include <linux/slab.h> |
| 21 | #include <linux/sched/clock.h> |
| 22 | #include <linux/spinlock.h> |
| 23 | #include <linux/irq.h> |
| 24 | #include <linux/irqdesc.h> |
| 25 | |
| 26 | #include <asm/irq_regs.h> |
| 27 | |
| 28 | static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); |
| 29 | static DEFINE_PER_CPU(int, cpu_irq); |
| 30 | |
| 31 | static inline u64 arm_pmu_event_max_period(struct perf_event *event) |
| 32 | { |
| 33 | if (event->hw.flags & ARMPMU_EVT_64BIT) |
| 34 | return GENMASK_ULL(63, 0); |
| 35 | else |
| 36 | return GENMASK_ULL(31, 0); |
| 37 | } |
| 38 | |
| 39 | static int |
| 40 | armpmu_map_cache_event(const unsigned (*cache_map) |
| 41 | [PERF_COUNT_HW_CACHE_MAX] |
| 42 | [PERF_COUNT_HW_CACHE_OP_MAX] |
| 43 | [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| 44 | u64 config) |
| 45 | { |
| 46 | unsigned int cache_type, cache_op, cache_result, ret; |
| 47 | |
| 48 | cache_type = (config >> 0) & 0xff; |
| 49 | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) |
| 50 | return -EINVAL; |
| 51 | |
| 52 | cache_op = (config >> 8) & 0xff; |
| 53 | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) |
| 54 | return -EINVAL; |
| 55 | |
| 56 | cache_result = (config >> 16) & 0xff; |
| 57 | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| 58 | return -EINVAL; |
| 59 | |
| 60 | if (!cache_map) |
| 61 | return -ENOENT; |
| 62 | |
| 63 | ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; |
| 64 | |
| 65 | if (ret == CACHE_OP_UNSUPPORTED) |
| 66 | return -ENOENT; |
| 67 | |
| 68 | return ret; |
| 69 | } |
| 70 | |
| 71 | static int |
| 72 | armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) |
| 73 | { |
| 74 | int mapping; |
| 75 | |
| 76 | if (config >= PERF_COUNT_HW_MAX) |
| 77 | return -EINVAL; |
| 78 | |
| 79 | if (!event_map) |
| 80 | return -ENOENT; |
| 81 | |
| 82 | mapping = (*event_map)[config]; |
| 83 | return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; |
| 84 | } |
| 85 | |
| 86 | static int |
| 87 | armpmu_map_raw_event(u32 raw_event_mask, u64 config) |
| 88 | { |
| 89 | return (int)(config & raw_event_mask); |
| 90 | } |
| 91 | |
| 92 | int |
| 93 | armpmu_map_event(struct perf_event *event, |
| 94 | const unsigned (*event_map)[PERF_COUNT_HW_MAX], |
| 95 | const unsigned (*cache_map) |
| 96 | [PERF_COUNT_HW_CACHE_MAX] |
| 97 | [PERF_COUNT_HW_CACHE_OP_MAX] |
| 98 | [PERF_COUNT_HW_CACHE_RESULT_MAX], |
| 99 | u32 raw_event_mask) |
| 100 | { |
| 101 | u64 config = event->attr.config; |
| 102 | int type = event->attr.type; |
| 103 | |
| 104 | if (type == event->pmu->type) |
| 105 | return armpmu_map_raw_event(raw_event_mask, config); |
| 106 | |
| 107 | switch (type) { |
| 108 | case PERF_TYPE_HARDWARE: |
| 109 | return armpmu_map_hw_event(event_map, config); |
| 110 | case PERF_TYPE_HW_CACHE: |
| 111 | return armpmu_map_cache_event(cache_map, config); |
| 112 | case PERF_TYPE_RAW: |
| 113 | return armpmu_map_raw_event(raw_event_mask, config); |
| 114 | } |
| 115 | |
| 116 | return -ENOENT; |
| 117 | } |
| 118 | |
| 119 | int armpmu_event_set_period(struct perf_event *event) |
| 120 | { |
| 121 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 122 | struct hw_perf_event *hwc = &event->hw; |
| 123 | s64 left = local64_read(&hwc->period_left); |
| 124 | s64 period = hwc->sample_period; |
| 125 | u64 max_period; |
| 126 | int ret = 0; |
| 127 | |
| 128 | max_period = arm_pmu_event_max_period(event); |
| 129 | if (unlikely(left <= -period)) { |
| 130 | left = period; |
| 131 | local64_set(&hwc->period_left, left); |
| 132 | hwc->last_period = period; |
| 133 | ret = 1; |
| 134 | } |
| 135 | |
| 136 | if (unlikely(left <= 0)) { |
| 137 | left += period; |
| 138 | local64_set(&hwc->period_left, left); |
| 139 | hwc->last_period = period; |
| 140 | ret = 1; |
| 141 | } |
| 142 | |
| 143 | /* |
| 144 | * Limit the maximum period to prevent the counter value |
| 145 | * from overtaking the one we are about to program. In |
| 146 | * effect we are reducing max_period to account for |
| 147 | * interrupt latency (and we are being very conservative). |
| 148 | */ |
| 149 | if (left > (max_period >> 1)) |
| 150 | left = (max_period >> 1); |
| 151 | |
| 152 | local64_set(&hwc->prev_count, (u64)-left); |
| 153 | |
| 154 | armpmu->write_counter(event, (u64)(-left) & max_period); |
| 155 | |
| 156 | perf_event_update_userpage(event); |
| 157 | |
| 158 | return ret; |
| 159 | } |
| 160 | |
| 161 | u64 armpmu_event_update(struct perf_event *event) |
| 162 | { |
| 163 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 164 | struct hw_perf_event *hwc = &event->hw; |
| 165 | u64 delta, prev_raw_count, new_raw_count; |
| 166 | u64 max_period = arm_pmu_event_max_period(event); |
| 167 | |
| 168 | again: |
| 169 | prev_raw_count = local64_read(&hwc->prev_count); |
| 170 | new_raw_count = armpmu->read_counter(event); |
| 171 | |
| 172 | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| 173 | new_raw_count) != prev_raw_count) |
| 174 | goto again; |
| 175 | |
| 176 | delta = (new_raw_count - prev_raw_count) & max_period; |
| 177 | |
| 178 | local64_add(delta, &event->count); |
| 179 | local64_sub(delta, &hwc->period_left); |
| 180 | |
| 181 | return new_raw_count; |
| 182 | } |
| 183 | |
| 184 | static void |
| 185 | armpmu_read(struct perf_event *event) |
| 186 | { |
| 187 | armpmu_event_update(event); |
| 188 | } |
| 189 | |
| 190 | static void |
| 191 | armpmu_stop(struct perf_event *event, int flags) |
| 192 | { |
| 193 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 194 | struct hw_perf_event *hwc = &event->hw; |
| 195 | |
| 196 | /* |
| 197 | * ARM pmu always has to update the counter, so ignore |
| 198 | * PERF_EF_UPDATE, see comments in armpmu_start(). |
| 199 | */ |
| 200 | if (!(hwc->state & PERF_HES_STOPPED)) { |
| 201 | armpmu->disable(event); |
| 202 | armpmu_event_update(event); |
| 203 | hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| 204 | } |
| 205 | } |
| 206 | |
| 207 | static void armpmu_start(struct perf_event *event, int flags) |
| 208 | { |
| 209 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 210 | struct hw_perf_event *hwc = &event->hw; |
| 211 | |
| 212 | /* |
| 213 | * ARM pmu always has to reprogram the period, so ignore |
| 214 | * PERF_EF_RELOAD, see the comment below. |
| 215 | */ |
| 216 | if (flags & PERF_EF_RELOAD) |
| 217 | WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); |
| 218 | |
| 219 | hwc->state = 0; |
| 220 | /* |
| 221 | * Set the period again. Some counters can't be stopped, so when we |
| 222 | * were stopped we simply disabled the IRQ source and the counter |
| 223 | * may have been left counting. If we don't do this step then we may |
| 224 | * get an interrupt too soon or *way* too late if the overflow has |
| 225 | * happened since disabling. |
| 226 | */ |
| 227 | armpmu_event_set_period(event); |
| 228 | armpmu->enable(event); |
| 229 | } |
| 230 | |
| 231 | static void |
| 232 | armpmu_del(struct perf_event *event, int flags) |
| 233 | { |
| 234 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 235 | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| 236 | struct hw_perf_event *hwc = &event->hw; |
| 237 | int idx = hwc->idx; |
| 238 | |
| 239 | armpmu_stop(event, PERF_EF_UPDATE); |
| 240 | hw_events->events[idx] = NULL; |
| 241 | armpmu->clear_event_idx(hw_events, event); |
| 242 | perf_event_update_userpage(event); |
| 243 | /* Clear the allocated counter */ |
| 244 | hwc->idx = -1; |
| 245 | } |
| 246 | |
| 247 | static int |
| 248 | armpmu_add(struct perf_event *event, int flags) |
| 249 | { |
| 250 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 251 | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| 252 | struct hw_perf_event *hwc = &event->hw; |
| 253 | int idx; |
| 254 | |
| 255 | /* An event following a process won't be stopped earlier */ |
| 256 | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| 257 | return -ENOENT; |
| 258 | |
| 259 | /* If we don't have a space for the counter then finish early. */ |
| 260 | idx = armpmu->get_event_idx(hw_events, event); |
| 261 | if (idx < 0) |
| 262 | return idx; |
| 263 | |
| 264 | /* |
| 265 | * If there is an event in the counter we are going to use then make |
| 266 | * sure it is disabled. |
| 267 | */ |
| 268 | event->hw.idx = idx; |
| 269 | armpmu->disable(event); |
| 270 | hw_events->events[idx] = event; |
| 271 | |
| 272 | hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; |
| 273 | if (flags & PERF_EF_START) |
| 274 | armpmu_start(event, PERF_EF_RELOAD); |
| 275 | |
| 276 | /* Propagate our changes to the userspace mapping. */ |
| 277 | perf_event_update_userpage(event); |
| 278 | |
| 279 | return 0; |
| 280 | } |
| 281 | |
| 282 | static int |
| 283 | validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, |
| 284 | struct perf_event *event) |
| 285 | { |
| 286 | struct arm_pmu *armpmu; |
| 287 | |
| 288 | if (is_software_event(event)) |
| 289 | return 1; |
| 290 | |
| 291 | /* |
| 292 | * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The |
| 293 | * core perf code won't check that the pmu->ctx == leader->ctx |
| 294 | * until after pmu->event_init(event). |
| 295 | */ |
| 296 | if (event->pmu != pmu) |
| 297 | return 0; |
| 298 | |
| 299 | if (event->state < PERF_EVENT_STATE_OFF) |
| 300 | return 1; |
| 301 | |
| 302 | if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) |
| 303 | return 1; |
| 304 | |
| 305 | armpmu = to_arm_pmu(event->pmu); |
| 306 | return armpmu->get_event_idx(hw_events, event) >= 0; |
| 307 | } |
| 308 | |
| 309 | static int |
| 310 | validate_group(struct perf_event *event) |
| 311 | { |
| 312 | struct perf_event *sibling, *leader = event->group_leader; |
| 313 | struct pmu_hw_events fake_pmu; |
| 314 | |
| 315 | /* |
| 316 | * Initialise the fake PMU. We only need to populate the |
| 317 | * used_mask for the purposes of validation. |
| 318 | */ |
| 319 | memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); |
| 320 | |
| 321 | if (!validate_event(event->pmu, &fake_pmu, leader)) |
| 322 | return -EINVAL; |
| 323 | |
| 324 | for_each_sibling_event(sibling, leader) { |
| 325 | if (!validate_event(event->pmu, &fake_pmu, sibling)) |
| 326 | return -EINVAL; |
| 327 | } |
| 328 | |
| 329 | if (!validate_event(event->pmu, &fake_pmu, event)) |
| 330 | return -EINVAL; |
| 331 | |
| 332 | return 0; |
| 333 | } |
| 334 | |
| 335 | static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) |
| 336 | { |
| 337 | struct arm_pmu *armpmu; |
| 338 | int ret; |
| 339 | u64 start_clock, finish_clock; |
| 340 | |
| 341 | /* |
| 342 | * we request the IRQ with a (possibly percpu) struct arm_pmu**, but |
| 343 | * the handlers expect a struct arm_pmu*. The percpu_irq framework will |
| 344 | * do any necessary shifting, we just need to perform the first |
| 345 | * dereference. |
| 346 | */ |
| 347 | armpmu = *(void **)dev; |
| 348 | if (WARN_ON_ONCE(!armpmu)) |
| 349 | return IRQ_NONE; |
| 350 | |
| 351 | start_clock = sched_clock(); |
| 352 | ret = armpmu->handle_irq(armpmu); |
| 353 | finish_clock = sched_clock(); |
| 354 | |
| 355 | perf_sample_event_took(finish_clock - start_clock); |
| 356 | return ret; |
| 357 | } |
| 358 | |
| 359 | static int |
| 360 | event_requires_mode_exclusion(struct perf_event_attr *attr) |
| 361 | { |
| 362 | return attr->exclude_idle || attr->exclude_user || |
| 363 | attr->exclude_kernel || attr->exclude_hv; |
| 364 | } |
| 365 | |
| 366 | static int |
| 367 | __hw_perf_event_init(struct perf_event *event) |
| 368 | { |
| 369 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 370 | struct hw_perf_event *hwc = &event->hw; |
| 371 | int mapping; |
| 372 | |
| 373 | hwc->flags = 0; |
| 374 | mapping = armpmu->map_event(event); |
| 375 | |
| 376 | if (mapping < 0) { |
| 377 | pr_debug("event %x:%llx not supported\n", event->attr.type, |
| 378 | event->attr.config); |
| 379 | return mapping; |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * We don't assign an index until we actually place the event onto |
| 384 | * hardware. Use -1 to signify that we haven't decided where to put it |
| 385 | * yet. For SMP systems, each core has it's own PMU so we can't do any |
| 386 | * clever allocation or constraints checking at this point. |
| 387 | */ |
| 388 | hwc->idx = -1; |
| 389 | hwc->config_base = 0; |
| 390 | hwc->config = 0; |
| 391 | hwc->event_base = 0; |
| 392 | |
| 393 | /* |
| 394 | * Check whether we need to exclude the counter from certain modes. |
| 395 | */ |
| 396 | if ((!armpmu->set_event_filter || |
| 397 | armpmu->set_event_filter(hwc, &event->attr)) && |
| 398 | event_requires_mode_exclusion(&event->attr)) { |
| 399 | pr_debug("ARM performance counters do not support " |
| 400 | "mode exclusion\n"); |
| 401 | return -EOPNOTSUPP; |
| 402 | } |
| 403 | |
| 404 | /* |
| 405 | * Store the event encoding into the config_base field. |
| 406 | */ |
| 407 | hwc->config_base |= (unsigned long)mapping; |
| 408 | |
| 409 | if (!is_sampling_event(event)) { |
| 410 | /* |
| 411 | * For non-sampling runs, limit the sample_period to half |
| 412 | * of the counter width. That way, the new counter value |
| 413 | * is far less likely to overtake the previous one unless |
| 414 | * you have some serious IRQ latency issues. |
| 415 | */ |
| 416 | hwc->sample_period = arm_pmu_event_max_period(event) >> 1; |
| 417 | hwc->last_period = hwc->sample_period; |
| 418 | local64_set(&hwc->period_left, hwc->sample_period); |
| 419 | } |
| 420 | |
| 421 | if (event->group_leader != event) { |
| 422 | if (validate_group(event) != 0) |
| 423 | return -EINVAL; |
| 424 | } |
| 425 | |
| 426 | return 0; |
| 427 | } |
| 428 | |
| 429 | static int armpmu_event_init(struct perf_event *event) |
| 430 | { |
| 431 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 432 | |
| 433 | /* |
| 434 | * Reject CPU-affine events for CPUs that are of a different class to |
| 435 | * that which this PMU handles. Process-following events (where |
| 436 | * event->cpu == -1) can be migrated between CPUs, and thus we have to |
| 437 | * reject them later (in armpmu_add) if they're scheduled on a |
| 438 | * different class of CPU. |
| 439 | */ |
| 440 | if (event->cpu != -1 && |
| 441 | !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) |
| 442 | return -ENOENT; |
| 443 | |
| 444 | /* does not support taken branch sampling */ |
| 445 | if (has_branch_stack(event)) |
| 446 | return -EOPNOTSUPP; |
| 447 | |
| 448 | if (armpmu->map_event(event) == -ENOENT) |
| 449 | return -ENOENT; |
| 450 | |
| 451 | return __hw_perf_event_init(event); |
| 452 | } |
| 453 | |
| 454 | static void armpmu_enable(struct pmu *pmu) |
| 455 | { |
| 456 | struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| 457 | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| 458 | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); |
| 459 | |
| 460 | /* For task-bound events we may be called on other CPUs */ |
| 461 | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| 462 | return; |
| 463 | |
| 464 | if (enabled) |
| 465 | armpmu->start(armpmu); |
| 466 | } |
| 467 | |
| 468 | static void armpmu_disable(struct pmu *pmu) |
| 469 | { |
| 470 | struct arm_pmu *armpmu = to_arm_pmu(pmu); |
| 471 | |
| 472 | /* For task-bound events we may be called on other CPUs */ |
| 473 | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| 474 | return; |
| 475 | |
| 476 | armpmu->stop(armpmu); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * In heterogeneous systems, events are specific to a particular |
| 481 | * microarchitecture, and aren't suitable for another. Thus, only match CPUs of |
| 482 | * the same microarchitecture. |
| 483 | */ |
| 484 | static int armpmu_filter_match(struct perf_event *event) |
| 485 | { |
| 486 | struct arm_pmu *armpmu = to_arm_pmu(event->pmu); |
| 487 | unsigned int cpu = smp_processor_id(); |
| 488 | int ret; |
| 489 | |
| 490 | ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); |
| 491 | if (ret && armpmu->filter_match) |
| 492 | return armpmu->filter_match(event); |
| 493 | |
| 494 | return ret; |
| 495 | } |
| 496 | |
| 497 | static ssize_t armpmu_cpumask_show(struct device *dev, |
| 498 | struct device_attribute *attr, char *buf) |
| 499 | { |
| 500 | struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); |
| 501 | return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); |
| 502 | } |
| 503 | |
| 504 | static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); |
| 505 | |
| 506 | static struct attribute *armpmu_common_attrs[] = { |
| 507 | &dev_attr_cpus.attr, |
| 508 | NULL, |
| 509 | }; |
| 510 | |
| 511 | static struct attribute_group armpmu_common_attr_group = { |
| 512 | .attrs = armpmu_common_attrs, |
| 513 | }; |
| 514 | |
| 515 | /* Set at runtime when we know what CPU type we are. */ |
| 516 | static struct arm_pmu *__oprofile_cpu_pmu; |
| 517 | |
| 518 | /* |
| 519 | * Despite the names, these two functions are CPU-specific and are used |
| 520 | * by the OProfile/perf code. |
| 521 | */ |
| 522 | const char *perf_pmu_name(void) |
| 523 | { |
| 524 | if (!__oprofile_cpu_pmu) |
| 525 | return NULL; |
| 526 | |
| 527 | return __oprofile_cpu_pmu->name; |
| 528 | } |
| 529 | EXPORT_SYMBOL_GPL(perf_pmu_name); |
| 530 | |
| 531 | int perf_num_counters(void) |
| 532 | { |
| 533 | int max_events = 0; |
| 534 | |
| 535 | if (__oprofile_cpu_pmu != NULL) |
| 536 | max_events = __oprofile_cpu_pmu->num_events; |
| 537 | |
| 538 | return max_events; |
| 539 | } |
| 540 | EXPORT_SYMBOL_GPL(perf_num_counters); |
| 541 | |
| 542 | static int armpmu_count_irq_users(const int irq) |
| 543 | { |
| 544 | int cpu, count = 0; |
| 545 | |
| 546 | for_each_possible_cpu(cpu) { |
| 547 | if (per_cpu(cpu_irq, cpu) == irq) |
| 548 | count++; |
| 549 | } |
| 550 | |
| 551 | return count; |
| 552 | } |
| 553 | |
| 554 | void armpmu_free_irq(int irq, int cpu) |
| 555 | { |
| 556 | if (per_cpu(cpu_irq, cpu) == 0) |
| 557 | return; |
| 558 | if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) |
| 559 | return; |
| 560 | |
| 561 | if (!irq_is_percpu_devid(irq)) |
| 562 | free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu)); |
| 563 | else if (armpmu_count_irq_users(irq) == 1) |
| 564 | free_percpu_irq(irq, &cpu_armpmu); |
| 565 | |
| 566 | per_cpu(cpu_irq, cpu) = 0; |
| 567 | } |
| 568 | |
| 569 | int armpmu_request_irq(int irq, int cpu) |
| 570 | { |
| 571 | int err = 0; |
| 572 | const irq_handler_t handler = armpmu_dispatch_irq; |
| 573 | if (!irq) |
| 574 | return 0; |
| 575 | |
| 576 | if (!irq_is_percpu_devid(irq)) { |
| 577 | unsigned long irq_flags; |
| 578 | |
| 579 | err = irq_force_affinity(irq, cpumask_of(cpu)); |
| 580 | |
| 581 | if (err && num_possible_cpus() > 1) { |
| 582 | pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", |
| 583 | irq, cpu); |
| 584 | goto err_out; |
| 585 | } |
| 586 | |
| 587 | irq_flags = IRQF_PERCPU | |
| 588 | IRQF_NOBALANCING | |
| 589 | IRQF_NO_THREAD; |
| 590 | |
| 591 | irq_set_status_flags(irq, IRQ_NOAUTOEN); |
| 592 | err = request_irq(irq, handler, irq_flags, "arm-pmu", |
| 593 | per_cpu_ptr(&cpu_armpmu, cpu)); |
| 594 | } else if (armpmu_count_irq_users(irq) == 0) { |
| 595 | err = request_percpu_irq(irq, handler, "arm-pmu", |
| 596 | &cpu_armpmu); |
| 597 | } |
| 598 | |
| 599 | if (err) |
| 600 | goto err_out; |
| 601 | |
| 602 | per_cpu(cpu_irq, cpu) = irq; |
| 603 | return 0; |
| 604 | |
| 605 | err_out: |
| 606 | pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); |
| 607 | return err; |
| 608 | } |
| 609 | |
| 610 | static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) |
| 611 | { |
| 612 | struct pmu_hw_events __percpu *hw_events = pmu->hw_events; |
| 613 | return per_cpu(hw_events->irq, cpu); |
| 614 | } |
| 615 | |
| 616 | /* |
| 617 | * PMU hardware loses all context when a CPU goes offline. |
| 618 | * When a CPU is hotplugged back in, since some hardware registers are |
| 619 | * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading |
| 620 | * junk values out of them. |
| 621 | */ |
| 622 | static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) |
| 623 | { |
| 624 | struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); |
| 625 | int irq; |
| 626 | |
| 627 | if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) |
| 628 | return 0; |
| 629 | if (pmu->reset) |
| 630 | pmu->reset(pmu); |
| 631 | |
| 632 | per_cpu(cpu_armpmu, cpu) = pmu; |
| 633 | |
| 634 | irq = armpmu_get_cpu_irq(pmu, cpu); |
| 635 | if (irq) { |
| 636 | if (irq_is_percpu_devid(irq)) |
| 637 | enable_percpu_irq(irq, IRQ_TYPE_NONE); |
| 638 | else |
| 639 | enable_irq(irq); |
| 640 | } |
| 641 | |
| 642 | return 0; |
| 643 | } |
| 644 | |
| 645 | static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) |
| 646 | { |
| 647 | struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); |
| 648 | int irq; |
| 649 | |
| 650 | if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) |
| 651 | return 0; |
| 652 | |
| 653 | irq = armpmu_get_cpu_irq(pmu, cpu); |
| 654 | if (irq) { |
| 655 | if (irq_is_percpu_devid(irq)) |
| 656 | disable_percpu_irq(irq); |
| 657 | else |
| 658 | disable_irq_nosync(irq); |
| 659 | } |
| 660 | |
| 661 | per_cpu(cpu_armpmu, cpu) = NULL; |
| 662 | |
| 663 | return 0; |
| 664 | } |
| 665 | |
| 666 | #ifdef CONFIG_CPU_PM |
| 667 | static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) |
| 668 | { |
| 669 | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| 670 | struct perf_event *event; |
| 671 | int idx; |
| 672 | |
| 673 | for (idx = 0; idx < armpmu->num_events; idx++) { |
| 674 | event = hw_events->events[idx]; |
| 675 | if (!event) |
| 676 | continue; |
| 677 | |
| 678 | switch (cmd) { |
| 679 | case CPU_PM_ENTER: |
| 680 | /* |
| 681 | * Stop and update the counter |
| 682 | */ |
| 683 | armpmu_stop(event, PERF_EF_UPDATE); |
| 684 | break; |
| 685 | case CPU_PM_EXIT: |
| 686 | case CPU_PM_ENTER_FAILED: |
| 687 | /* |
| 688 | * Restore and enable the counter. |
| 689 | * armpmu_start() indirectly calls |
| 690 | * |
| 691 | * perf_event_update_userpage() |
| 692 | * |
| 693 | * that requires RCU read locking to be functional, |
| 694 | * wrap the call within RCU_NONIDLE to make the |
| 695 | * RCU subsystem aware this cpu is not idle from |
| 696 | * an RCU perspective for the armpmu_start() call |
| 697 | * duration. |
| 698 | */ |
| 699 | RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); |
| 700 | break; |
| 701 | default: |
| 702 | break; |
| 703 | } |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, |
| 708 | void *v) |
| 709 | { |
| 710 | struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); |
| 711 | struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); |
| 712 | int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); |
| 713 | |
| 714 | if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) |
| 715 | return NOTIFY_DONE; |
| 716 | |
| 717 | /* |
| 718 | * Always reset the PMU registers on power-up even if |
| 719 | * there are no events running. |
| 720 | */ |
| 721 | if (cmd == CPU_PM_EXIT && armpmu->reset) |
| 722 | armpmu->reset(armpmu); |
| 723 | |
| 724 | if (!enabled) |
| 725 | return NOTIFY_OK; |
| 726 | |
| 727 | switch (cmd) { |
| 728 | case CPU_PM_ENTER: |
| 729 | armpmu->stop(armpmu); |
| 730 | cpu_pm_pmu_setup(armpmu, cmd); |
| 731 | break; |
| 732 | case CPU_PM_EXIT: |
| 733 | cpu_pm_pmu_setup(armpmu, cmd); |
| 734 | case CPU_PM_ENTER_FAILED: |
| 735 | armpmu->start(armpmu); |
| 736 | break; |
| 737 | default: |
| 738 | return NOTIFY_DONE; |
| 739 | } |
| 740 | |
| 741 | return NOTIFY_OK; |
| 742 | } |
| 743 | |
| 744 | static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) |
| 745 | { |
| 746 | cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; |
| 747 | return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); |
| 748 | } |
| 749 | |
| 750 | static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) |
| 751 | { |
| 752 | cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); |
| 753 | } |
| 754 | #else |
| 755 | static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } |
| 756 | static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } |
| 757 | #endif |
| 758 | |
| 759 | static int cpu_pmu_init(struct arm_pmu *cpu_pmu) |
| 760 | { |
| 761 | int err; |
| 762 | |
| 763 | err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, |
| 764 | &cpu_pmu->node); |
| 765 | if (err) |
| 766 | goto out; |
| 767 | |
| 768 | err = cpu_pm_pmu_register(cpu_pmu); |
| 769 | if (err) |
| 770 | goto out_unregister; |
| 771 | |
| 772 | return 0; |
| 773 | |
| 774 | out_unregister: |
| 775 | cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, |
| 776 | &cpu_pmu->node); |
| 777 | out: |
| 778 | return err; |
| 779 | } |
| 780 | |
| 781 | static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) |
| 782 | { |
| 783 | cpu_pm_pmu_unregister(cpu_pmu); |
| 784 | cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, |
| 785 | &cpu_pmu->node); |
| 786 | } |
| 787 | |
| 788 | static struct arm_pmu *__armpmu_alloc(gfp_t flags) |
| 789 | { |
| 790 | struct arm_pmu *pmu; |
| 791 | int cpu; |
| 792 | |
| 793 | pmu = kzalloc(sizeof(*pmu), flags); |
| 794 | if (!pmu) { |
| 795 | pr_info("failed to allocate PMU device!\n"); |
| 796 | goto out; |
| 797 | } |
| 798 | |
| 799 | pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); |
| 800 | if (!pmu->hw_events) { |
| 801 | pr_info("failed to allocate per-cpu PMU data.\n"); |
| 802 | goto out_free_pmu; |
| 803 | } |
| 804 | |
| 805 | pmu->pmu = (struct pmu) { |
| 806 | .pmu_enable = armpmu_enable, |
| 807 | .pmu_disable = armpmu_disable, |
| 808 | .event_init = armpmu_event_init, |
| 809 | .add = armpmu_add, |
| 810 | .del = armpmu_del, |
| 811 | .start = armpmu_start, |
| 812 | .stop = armpmu_stop, |
| 813 | .read = armpmu_read, |
| 814 | .filter_match = armpmu_filter_match, |
| 815 | .attr_groups = pmu->attr_groups, |
| 816 | /* |
| 817 | * This is a CPU PMU potentially in a heterogeneous |
| 818 | * configuration (e.g. big.LITTLE). This is not an uncore PMU, |
| 819 | * and we have taken ctx sharing into account (e.g. with our |
| 820 | * pmu::filter_match callback and pmu::event_init group |
| 821 | * validation). |
| 822 | */ |
| 823 | .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS, |
| 824 | }; |
| 825 | |
| 826 | pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = |
| 827 | &armpmu_common_attr_group; |
| 828 | |
| 829 | for_each_possible_cpu(cpu) { |
| 830 | struct pmu_hw_events *events; |
| 831 | |
| 832 | events = per_cpu_ptr(pmu->hw_events, cpu); |
| 833 | raw_spin_lock_init(&events->pmu_lock); |
| 834 | events->percpu_pmu = pmu; |
| 835 | } |
| 836 | |
| 837 | return pmu; |
| 838 | |
| 839 | out_free_pmu: |
| 840 | kfree(pmu); |
| 841 | out: |
| 842 | return NULL; |
| 843 | } |
| 844 | |
| 845 | struct arm_pmu *armpmu_alloc(void) |
| 846 | { |
| 847 | return __armpmu_alloc(GFP_KERNEL); |
| 848 | } |
| 849 | |
| 850 | struct arm_pmu *armpmu_alloc_atomic(void) |
| 851 | { |
| 852 | return __armpmu_alloc(GFP_ATOMIC); |
| 853 | } |
| 854 | |
| 855 | |
| 856 | void armpmu_free(struct arm_pmu *pmu) |
| 857 | { |
| 858 | free_percpu(pmu->hw_events); |
| 859 | kfree(pmu); |
| 860 | } |
| 861 | |
| 862 | int armpmu_register(struct arm_pmu *pmu) |
| 863 | { |
| 864 | int ret; |
| 865 | |
| 866 | ret = cpu_pmu_init(pmu); |
| 867 | if (ret) |
| 868 | return ret; |
| 869 | |
| 870 | ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); |
| 871 | if (ret) |
| 872 | goto out_destroy; |
| 873 | |
| 874 | if (!__oprofile_cpu_pmu) |
| 875 | __oprofile_cpu_pmu = pmu; |
| 876 | |
| 877 | pr_info("enabled with %s PMU driver, %d counters available\n", |
| 878 | pmu->name, pmu->num_events); |
| 879 | |
| 880 | return 0; |
| 881 | |
| 882 | out_destroy: |
| 883 | cpu_pmu_destroy(pmu); |
| 884 | return ret; |
| 885 | } |
| 886 | |
| 887 | static int arm_pmu_hp_init(void) |
| 888 | { |
| 889 | int ret; |
| 890 | |
| 891 | ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, |
| 892 | "perf/arm/pmu:starting", |
| 893 | arm_perf_starting_cpu, |
| 894 | arm_perf_teardown_cpu); |
| 895 | if (ret) |
| 896 | pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", |
| 897 | ret); |
| 898 | return ret; |
| 899 | } |
| 900 | subsys_initcall(arm_pmu_hp_init); |