Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * tm6000-input.c - driver for TM5600/TM6000/TM6010 USB video capture devices |
| 3 | * |
| 4 | * Copyright (C) 2010 Stefan Ringel <stefan.ringel@arcor.de> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify |
| 7 | * it under the terms of the GNU General Public License as published by |
| 8 | * the Free Software Foundation version 2 |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/init.h> |
| 18 | #include <linux/delay.h> |
| 19 | |
| 20 | #include <linux/input.h> |
| 21 | #include <linux/usb.h> |
| 22 | |
| 23 | #include <media/rc-core.h> |
| 24 | |
| 25 | #include "tm6000.h" |
| 26 | #include "tm6000-regs.h" |
| 27 | |
| 28 | static unsigned int ir_debug; |
| 29 | module_param(ir_debug, int, 0644); |
| 30 | MODULE_PARM_DESC(ir_debug, "debug message level"); |
| 31 | |
| 32 | static unsigned int enable_ir = 1; |
| 33 | module_param(enable_ir, int, 0644); |
| 34 | MODULE_PARM_DESC(enable_ir, "enable ir (default is enable)"); |
| 35 | |
| 36 | static unsigned int ir_clock_mhz = 12; |
| 37 | module_param(ir_clock_mhz, int, 0644); |
| 38 | MODULE_PARM_DESC(ir_clock_mhz, "ir clock, in MHz"); |
| 39 | |
| 40 | #define URB_SUBMIT_DELAY 100 /* ms - Delay to submit an URB request on retrial and init */ |
| 41 | #define URB_INT_LED_DELAY 100 /* ms - Delay to turn led on again on int mode */ |
| 42 | |
| 43 | #undef dprintk |
| 44 | |
| 45 | #define dprintk(level, fmt, arg...) do {\ |
| 46 | if (ir_debug >= level) \ |
| 47 | printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \ |
| 48 | } while (0) |
| 49 | |
| 50 | struct tm6000_ir_poll_result { |
| 51 | u16 rc_data; |
| 52 | }; |
| 53 | |
| 54 | struct tm6000_IR { |
| 55 | struct tm6000_core *dev; |
| 56 | struct rc_dev *rc; |
| 57 | char name[32]; |
| 58 | char phys[32]; |
| 59 | |
| 60 | /* poll expernal decoder */ |
| 61 | int polling; |
| 62 | struct delayed_work work; |
| 63 | u8 wait:1; |
| 64 | u8 pwled:2; |
| 65 | u8 submit_urb:1; |
| 66 | struct urb *int_urb; |
| 67 | |
| 68 | /* IR device properties */ |
| 69 | u64 rc_proto; |
| 70 | }; |
| 71 | |
| 72 | void tm6000_ir_wait(struct tm6000_core *dev, u8 state) |
| 73 | { |
| 74 | struct tm6000_IR *ir = dev->ir; |
| 75 | |
| 76 | if (!dev->ir) |
| 77 | return; |
| 78 | |
| 79 | dprintk(2, "%s: %i\n",__func__, ir->wait); |
| 80 | |
| 81 | if (state) |
| 82 | ir->wait = 1; |
| 83 | else |
| 84 | ir->wait = 0; |
| 85 | } |
| 86 | |
| 87 | static int tm6000_ir_config(struct tm6000_IR *ir) |
| 88 | { |
| 89 | struct tm6000_core *dev = ir->dev; |
| 90 | u32 pulse = 0, leader = 0; |
| 91 | |
| 92 | dprintk(2, "%s\n",__func__); |
| 93 | |
| 94 | /* |
| 95 | * The IR decoder supports RC-5 or NEC, with a configurable timing. |
| 96 | * The timing configuration there is not that accurate, as it uses |
| 97 | * approximate values. The NEC spec mentions a 562.5 unit period, |
| 98 | * and RC-5 uses a 888.8 period. |
| 99 | * Currently, driver assumes a clock provided by a 12 MHz XTAL, but |
| 100 | * a modprobe parameter can adjust it. |
| 101 | * Adjustments are required for other timings. |
| 102 | * It seems that the 900ms timing for NEC is used to detect a RC-5 |
| 103 | * IR, in order to discard such decoding |
| 104 | */ |
| 105 | |
| 106 | switch (ir->rc_proto) { |
| 107 | case RC_PROTO_BIT_NEC: |
| 108 | leader = 900; /* ms */ |
| 109 | pulse = 700; /* ms - the actual value would be 562 */ |
| 110 | break; |
| 111 | default: |
| 112 | case RC_PROTO_BIT_RC5: |
| 113 | leader = 900; /* ms - from the NEC decoding */ |
| 114 | pulse = 1780; /* ms - The actual value would be 1776 */ |
| 115 | break; |
| 116 | } |
| 117 | |
| 118 | pulse = ir_clock_mhz * pulse; |
| 119 | leader = ir_clock_mhz * leader; |
| 120 | if (ir->rc_proto == RC_PROTO_BIT_NEC) |
| 121 | leader = leader | 0x8000; |
| 122 | |
| 123 | dprintk(2, "%s: %s, %d MHz, leader = 0x%04x, pulse = 0x%06x \n", |
| 124 | __func__, |
| 125 | (ir->rc_proto == RC_PROTO_BIT_NEC) ? "NEC" : "RC-5", |
| 126 | ir_clock_mhz, leader, pulse); |
| 127 | |
| 128 | /* Remote WAKEUP = enable, normal mode, from IR decoder output */ |
| 129 | tm6000_set_reg(dev, TM6010_REQ07_RE5_REMOTE_WAKEUP, 0xfe); |
| 130 | |
| 131 | /* Enable IR reception on non-busrt mode */ |
| 132 | tm6000_set_reg(dev, TM6010_REQ07_RD8_IR, 0x2f); |
| 133 | |
| 134 | /* IR_WKUP_SEL = Low byte in decoded IR data */ |
| 135 | tm6000_set_reg(dev, TM6010_REQ07_RDA_IR_WAKEUP_SEL, 0xff); |
| 136 | /* IR_WKU_ADD code */ |
| 137 | tm6000_set_reg(dev, TM6010_REQ07_RDB_IR_WAKEUP_ADD, 0xff); |
| 138 | |
| 139 | tm6000_set_reg(dev, TM6010_REQ07_RDC_IR_LEADER1, leader >> 8); |
| 140 | tm6000_set_reg(dev, TM6010_REQ07_RDD_IR_LEADER0, leader); |
| 141 | |
| 142 | tm6000_set_reg(dev, TM6010_REQ07_RDE_IR_PULSE_CNT1, pulse >> 8); |
| 143 | tm6000_set_reg(dev, TM6010_REQ07_RDF_IR_PULSE_CNT0, pulse); |
| 144 | |
| 145 | if (!ir->polling) |
| 146 | tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 0); |
| 147 | else |
| 148 | tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 1); |
| 149 | msleep(10); |
| 150 | |
| 151 | /* Shows that IR is working via the LED */ |
| 152 | tm6000_flash_led(dev, 0); |
| 153 | msleep(100); |
| 154 | tm6000_flash_led(dev, 1); |
| 155 | ir->pwled = 1; |
| 156 | |
| 157 | return 0; |
| 158 | } |
| 159 | |
| 160 | static void tm6000_ir_keydown(struct tm6000_IR *ir, |
| 161 | const char *buf, unsigned int len) |
| 162 | { |
| 163 | u8 device, command; |
| 164 | u32 scancode; |
| 165 | enum rc_proto protocol; |
| 166 | |
| 167 | if (len < 1) |
| 168 | return; |
| 169 | |
| 170 | command = buf[0]; |
| 171 | device = (len > 1 ? buf[1] : 0x0); |
| 172 | switch (ir->rc_proto) { |
| 173 | case RC_PROTO_BIT_RC5: |
| 174 | protocol = RC_PROTO_RC5; |
| 175 | scancode = RC_SCANCODE_RC5(device, command); |
| 176 | break; |
| 177 | case RC_PROTO_BIT_NEC: |
| 178 | protocol = RC_PROTO_NEC; |
| 179 | scancode = RC_SCANCODE_NEC(device, command); |
| 180 | break; |
| 181 | default: |
| 182 | protocol = RC_PROTO_OTHER; |
| 183 | scancode = RC_SCANCODE_OTHER(device << 8 | command); |
| 184 | break; |
| 185 | } |
| 186 | |
| 187 | dprintk(1, "%s, protocol: 0x%04x, scancode: 0x%08x\n", |
| 188 | __func__, protocol, scancode); |
| 189 | rc_keydown(ir->rc, protocol, scancode, 0); |
| 190 | } |
| 191 | |
| 192 | static void tm6000_ir_urb_received(struct urb *urb) |
| 193 | { |
| 194 | struct tm6000_core *dev = urb->context; |
| 195 | struct tm6000_IR *ir = dev->ir; |
| 196 | char *buf; |
| 197 | |
| 198 | dprintk(2, "%s\n",__func__); |
| 199 | if (urb->status < 0 || urb->actual_length <= 0) { |
| 200 | printk(KERN_INFO "tm6000: IR URB failure: status: %i, length %i\n", |
| 201 | urb->status, urb->actual_length); |
| 202 | ir->submit_urb = 1; |
| 203 | schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY)); |
| 204 | return; |
| 205 | } |
| 206 | buf = urb->transfer_buffer; |
| 207 | |
| 208 | if (ir_debug) |
| 209 | print_hex_dump(KERN_DEBUG, "tm6000: IR data: ", |
| 210 | DUMP_PREFIX_OFFSET,16, 1, |
| 211 | buf, urb->actual_length, false); |
| 212 | |
| 213 | tm6000_ir_keydown(ir, urb->transfer_buffer, urb->actual_length); |
| 214 | |
| 215 | usb_submit_urb(urb, GFP_ATOMIC); |
| 216 | /* |
| 217 | * Flash the led. We can't do it here, as it is running on IRQ context. |
| 218 | * So, use the scheduler to do it, in a few ms. |
| 219 | */ |
| 220 | ir->pwled = 2; |
| 221 | schedule_delayed_work(&ir->work, msecs_to_jiffies(10)); |
| 222 | } |
| 223 | |
| 224 | static void tm6000_ir_handle_key(struct work_struct *work) |
| 225 | { |
| 226 | struct tm6000_IR *ir = container_of(work, struct tm6000_IR, work.work); |
| 227 | struct tm6000_core *dev = ir->dev; |
| 228 | int rc; |
| 229 | u8 buf[2]; |
| 230 | |
| 231 | if (ir->wait) |
| 232 | return; |
| 233 | |
| 234 | dprintk(3, "%s\n",__func__); |
| 235 | |
| 236 | rc = tm6000_read_write_usb(dev, USB_DIR_IN | |
| 237 | USB_TYPE_VENDOR | USB_RECIP_DEVICE, |
| 238 | REQ_02_GET_IR_CODE, 0, 0, buf, 2); |
| 239 | if (rc < 0) |
| 240 | return; |
| 241 | |
| 242 | /* Check if something was read */ |
| 243 | if ((buf[0] & 0xff) == 0xff) { |
| 244 | if (!ir->pwled) { |
| 245 | tm6000_flash_led(dev, 1); |
| 246 | ir->pwled = 1; |
| 247 | } |
| 248 | return; |
| 249 | } |
| 250 | |
| 251 | tm6000_ir_keydown(ir, buf, rc); |
| 252 | tm6000_flash_led(dev, 0); |
| 253 | ir->pwled = 0; |
| 254 | |
| 255 | /* Re-schedule polling */ |
| 256 | schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling)); |
| 257 | } |
| 258 | |
| 259 | static void tm6000_ir_int_work(struct work_struct *work) |
| 260 | { |
| 261 | struct tm6000_IR *ir = container_of(work, struct tm6000_IR, work.work); |
| 262 | struct tm6000_core *dev = ir->dev; |
| 263 | int rc; |
| 264 | |
| 265 | dprintk(3, "%s, submit_urb = %d, pwled = %d\n",__func__, ir->submit_urb, |
| 266 | ir->pwled); |
| 267 | |
| 268 | if (ir->submit_urb) { |
| 269 | dprintk(3, "Resubmit urb\n"); |
| 270 | tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 0); |
| 271 | |
| 272 | rc = usb_submit_urb(ir->int_urb, GFP_ATOMIC); |
| 273 | if (rc < 0) { |
| 274 | printk(KERN_ERR "tm6000: Can't submit an IR interrupt. Error %i\n", |
| 275 | rc); |
| 276 | /* Retry in 100 ms */ |
| 277 | schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY)); |
| 278 | return; |
| 279 | } |
| 280 | ir->submit_urb = 0; |
| 281 | } |
| 282 | |
| 283 | /* Led is enabled only if USB submit doesn't fail */ |
| 284 | if (ir->pwled == 2) { |
| 285 | tm6000_flash_led(dev, 0); |
| 286 | ir->pwled = 0; |
| 287 | schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_INT_LED_DELAY)); |
| 288 | } else if (!ir->pwled) { |
| 289 | tm6000_flash_led(dev, 1); |
| 290 | ir->pwled = 1; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | static int tm6000_ir_start(struct rc_dev *rc) |
| 295 | { |
| 296 | struct tm6000_IR *ir = rc->priv; |
| 297 | |
| 298 | dprintk(2, "%s\n",__func__); |
| 299 | |
| 300 | schedule_delayed_work(&ir->work, 0); |
| 301 | |
| 302 | return 0; |
| 303 | } |
| 304 | |
| 305 | static void tm6000_ir_stop(struct rc_dev *rc) |
| 306 | { |
| 307 | struct tm6000_IR *ir = rc->priv; |
| 308 | |
| 309 | dprintk(2, "%s\n",__func__); |
| 310 | |
| 311 | cancel_delayed_work_sync(&ir->work); |
| 312 | } |
| 313 | |
| 314 | static int tm6000_ir_change_protocol(struct rc_dev *rc, u64 *rc_proto) |
| 315 | { |
| 316 | struct tm6000_IR *ir = rc->priv; |
| 317 | |
| 318 | if (!ir) |
| 319 | return 0; |
| 320 | |
| 321 | dprintk(2, "%s\n",__func__); |
| 322 | |
| 323 | ir->rc_proto = *rc_proto; |
| 324 | |
| 325 | tm6000_ir_config(ir); |
| 326 | /* TODO */ |
| 327 | return 0; |
| 328 | } |
| 329 | |
| 330 | static int __tm6000_ir_int_start(struct rc_dev *rc) |
| 331 | { |
| 332 | struct tm6000_IR *ir = rc->priv; |
| 333 | struct tm6000_core *dev; |
| 334 | int pipe, size; |
| 335 | int err = -ENOMEM; |
| 336 | |
| 337 | if (!ir) |
| 338 | return -ENODEV; |
| 339 | dev = ir->dev; |
| 340 | |
| 341 | dprintk(2, "%s\n",__func__); |
| 342 | |
| 343 | ir->int_urb = usb_alloc_urb(0, GFP_ATOMIC); |
| 344 | if (!ir->int_urb) |
| 345 | return -ENOMEM; |
| 346 | |
| 347 | pipe = usb_rcvintpipe(dev->udev, |
| 348 | dev->int_in.endp->desc.bEndpointAddress |
| 349 | & USB_ENDPOINT_NUMBER_MASK); |
| 350 | |
| 351 | size = usb_maxpacket(dev->udev, pipe, usb_pipeout(pipe)); |
| 352 | dprintk(1, "IR max size: %d\n", size); |
| 353 | |
| 354 | ir->int_urb->transfer_buffer = kzalloc(size, GFP_ATOMIC); |
| 355 | if (!ir->int_urb->transfer_buffer) { |
| 356 | usb_free_urb(ir->int_urb); |
| 357 | return err; |
| 358 | } |
| 359 | dprintk(1, "int interval: %d\n", dev->int_in.endp->desc.bInterval); |
| 360 | |
| 361 | usb_fill_int_urb(ir->int_urb, dev->udev, pipe, |
| 362 | ir->int_urb->transfer_buffer, size, |
| 363 | tm6000_ir_urb_received, dev, |
| 364 | dev->int_in.endp->desc.bInterval); |
| 365 | |
| 366 | ir->submit_urb = 1; |
| 367 | schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY)); |
| 368 | |
| 369 | return 0; |
| 370 | } |
| 371 | |
| 372 | static void __tm6000_ir_int_stop(struct rc_dev *rc) |
| 373 | { |
| 374 | struct tm6000_IR *ir = rc->priv; |
| 375 | |
| 376 | if (!ir || !ir->int_urb) |
| 377 | return; |
| 378 | |
| 379 | dprintk(2, "%s\n",__func__); |
| 380 | |
| 381 | usb_kill_urb(ir->int_urb); |
| 382 | kfree(ir->int_urb->transfer_buffer); |
| 383 | usb_free_urb(ir->int_urb); |
| 384 | ir->int_urb = NULL; |
| 385 | } |
| 386 | |
| 387 | int tm6000_ir_int_start(struct tm6000_core *dev) |
| 388 | { |
| 389 | struct tm6000_IR *ir = dev->ir; |
| 390 | |
| 391 | if (!ir) |
| 392 | return 0; |
| 393 | |
| 394 | return __tm6000_ir_int_start(ir->rc); |
| 395 | } |
| 396 | |
| 397 | void tm6000_ir_int_stop(struct tm6000_core *dev) |
| 398 | { |
| 399 | struct tm6000_IR *ir = dev->ir; |
| 400 | |
| 401 | if (!ir || !ir->rc) |
| 402 | return; |
| 403 | |
| 404 | __tm6000_ir_int_stop(ir->rc); |
| 405 | } |
| 406 | |
| 407 | int tm6000_ir_init(struct tm6000_core *dev) |
| 408 | { |
| 409 | struct tm6000_IR *ir; |
| 410 | struct rc_dev *rc; |
| 411 | int err = -ENOMEM; |
| 412 | u64 rc_proto; |
| 413 | |
| 414 | if (!enable_ir) |
| 415 | return -ENODEV; |
| 416 | |
| 417 | if (!dev->caps.has_remote) |
| 418 | return 0; |
| 419 | |
| 420 | if (!dev->ir_codes) |
| 421 | return 0; |
| 422 | |
| 423 | ir = kzalloc(sizeof(*ir), GFP_ATOMIC); |
| 424 | rc = rc_allocate_device(RC_DRIVER_SCANCODE); |
| 425 | if (!ir || !rc) |
| 426 | goto out; |
| 427 | |
| 428 | dprintk(2, "%s\n", __func__); |
| 429 | |
| 430 | /* record handles to ourself */ |
| 431 | ir->dev = dev; |
| 432 | dev->ir = ir; |
| 433 | ir->rc = rc; |
| 434 | |
| 435 | /* input setup */ |
| 436 | rc->allowed_protocols = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_NEC; |
| 437 | /* Needed, in order to support NEC remotes with 24 or 32 bits */ |
| 438 | rc->scancode_mask = 0xffff; |
| 439 | rc->priv = ir; |
| 440 | rc->change_protocol = tm6000_ir_change_protocol; |
| 441 | if (dev->int_in.endp) { |
| 442 | rc->open = __tm6000_ir_int_start; |
| 443 | rc->close = __tm6000_ir_int_stop; |
| 444 | INIT_DELAYED_WORK(&ir->work, tm6000_ir_int_work); |
| 445 | } else { |
| 446 | rc->open = tm6000_ir_start; |
| 447 | rc->close = tm6000_ir_stop; |
| 448 | ir->polling = 50; |
| 449 | INIT_DELAYED_WORK(&ir->work, tm6000_ir_handle_key); |
| 450 | } |
| 451 | |
| 452 | snprintf(ir->name, sizeof(ir->name), "tm5600/60x0 IR (%s)", |
| 453 | dev->name); |
| 454 | |
| 455 | usb_make_path(dev->udev, ir->phys, sizeof(ir->phys)); |
| 456 | strlcat(ir->phys, "/input0", sizeof(ir->phys)); |
| 457 | |
| 458 | rc_proto = RC_PROTO_BIT_UNKNOWN; |
| 459 | tm6000_ir_change_protocol(rc, &rc_proto); |
| 460 | |
| 461 | rc->device_name = ir->name; |
| 462 | rc->input_phys = ir->phys; |
| 463 | rc->input_id.bustype = BUS_USB; |
| 464 | rc->input_id.version = 1; |
| 465 | rc->input_id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor); |
| 466 | rc->input_id.product = le16_to_cpu(dev->udev->descriptor.idProduct); |
| 467 | rc->map_name = dev->ir_codes; |
| 468 | rc->driver_name = "tm6000"; |
| 469 | rc->dev.parent = &dev->udev->dev; |
| 470 | |
| 471 | /* ir register */ |
| 472 | err = rc_register_device(rc); |
| 473 | if (err) |
| 474 | goto out; |
| 475 | |
| 476 | return 0; |
| 477 | |
| 478 | out: |
| 479 | dev->ir = NULL; |
| 480 | rc_free_device(rc); |
| 481 | kfree(ir); |
| 482 | return err; |
| 483 | } |
| 484 | |
| 485 | int tm6000_ir_fini(struct tm6000_core *dev) |
| 486 | { |
| 487 | struct tm6000_IR *ir = dev->ir; |
| 488 | |
| 489 | /* skip detach on non attached board */ |
| 490 | |
| 491 | if (!ir) |
| 492 | return 0; |
| 493 | |
| 494 | dprintk(2, "%s\n",__func__); |
| 495 | |
| 496 | if (!ir->polling) |
| 497 | __tm6000_ir_int_stop(ir->rc); |
| 498 | |
| 499 | tm6000_ir_stop(ir->rc); |
| 500 | |
| 501 | /* Turn off the led */ |
| 502 | tm6000_flash_led(dev, 0); |
| 503 | ir->pwled = 0; |
| 504 | |
| 505 | rc_unregister_device(ir->rc); |
| 506 | |
| 507 | kfree(ir); |
| 508 | dev->ir = NULL; |
| 509 | |
| 510 | return 0; |
| 511 | } |