blob: 811427e53126b5fefead9597880c2eb7ab8eb809 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21#include <linux/slab.h>
22#include <linux/delay.h>
23#include <linux/blkdev.h>
24#include <linux/module.h>
25#include <linux/seq_file.h>
26#include <linux/ratelimit.h>
27#include <linux/kthread.h>
28#include <trace/events/block.h>
29#include "md.h"
30#include "raid10.h"
31#include "raid0.h"
32#include "md-bitmap.h"
33
34/*
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
44 *
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
53 *
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
57 *
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
73 */
74
75/*
76 * Number of guaranteed r10bios in case of extreme VM load:
77 */
78#define NR_RAID10_BIOS 256
79
80/* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84 */
85#define IO_BLOCKED ((struct bio *)1)
86/* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
89 */
90#define IO_MADE_GOOD ((struct bio *)2)
91
92#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93
94/* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
97 */
98static int max_queued_requests = 1024;
99
100static void allow_barrier(struct r10conf *conf);
101static void lower_barrier(struct r10conf *conf);
102static int _enough(struct r10conf *conf, int previous, int ignore);
103static int enough(struct r10conf *conf, int ignore);
104static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107static void end_reshape_write(struct bio *bio);
108static void end_reshape(struct r10conf *conf);
109
110#define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112
113#include "raid1-10.c"
114
115/*
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
118 */
119static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120{
121 return get_resync_pages(bio)->raid_bio;
122}
123
124static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125{
126 struct r10conf *conf = data;
127 int size = offsetof(struct r10bio, devs[conf->copies]);
128
129 /* allocate a r10bio with room for raid_disks entries in the
130 * bios array */
131 return kzalloc(size, gfp_flags);
132}
133
134static void r10bio_pool_free(void *r10_bio, void *data)
135{
136 kfree(r10_bio);
137}
138
139#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140/* amount of memory to reserve for resync requests */
141#define RESYNC_WINDOW (1024*1024)
142/* maximum number of concurrent requests, memory permitting */
143#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146
147/*
148 * When performing a resync, we need to read and compare, so
149 * we need as many pages are there are copies.
150 * When performing a recovery, we need 2 bios, one for read,
151 * one for write (we recover only one drive per r10buf)
152 *
153 */
154static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155{
156 struct r10conf *conf = data;
157 struct r10bio *r10_bio;
158 struct bio *bio;
159 int j;
160 int nalloc, nalloc_rp;
161 struct resync_pages *rps;
162
163 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 if (!r10_bio)
165 return NULL;
166
167 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 nalloc = conf->copies; /* resync */
170 else
171 nalloc = 2; /* recovery */
172
173 /* allocate once for all bios */
174 if (!conf->have_replacement)
175 nalloc_rp = nalloc;
176 else
177 nalloc_rp = nalloc * 2;
178 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
179 if (!rps)
180 goto out_free_r10bio;
181
182 /*
183 * Allocate bios.
184 */
185 for (j = nalloc ; j-- ; ) {
186 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 if (!bio)
188 goto out_free_bio;
189 r10_bio->devs[j].bio = bio;
190 if (!conf->have_replacement)
191 continue;
192 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 if (!bio)
194 goto out_free_bio;
195 r10_bio->devs[j].repl_bio = bio;
196 }
197 /*
198 * Allocate RESYNC_PAGES data pages and attach them
199 * where needed.
200 */
201 for (j = 0; j < nalloc; j++) {
202 struct bio *rbio = r10_bio->devs[j].repl_bio;
203 struct resync_pages *rp, *rp_repl;
204
205 rp = &rps[j];
206 if (rbio)
207 rp_repl = &rps[nalloc + j];
208
209 bio = r10_bio->devs[j].bio;
210
211 if (!j || test_bit(MD_RECOVERY_SYNC,
212 &conf->mddev->recovery)) {
213 if (resync_alloc_pages(rp, gfp_flags))
214 goto out_free_pages;
215 } else {
216 memcpy(rp, &rps[0], sizeof(*rp));
217 resync_get_all_pages(rp);
218 }
219
220 rp->raid_bio = r10_bio;
221 bio->bi_private = rp;
222 if (rbio) {
223 memcpy(rp_repl, rp, sizeof(*rp));
224 rbio->bi_private = rp_repl;
225 }
226 }
227
228 return r10_bio;
229
230out_free_pages:
231 while (--j >= 0)
232 resync_free_pages(&rps[j * 2]);
233
234 j = 0;
235out_free_bio:
236 for ( ; j < nalloc; j++) {
237 if (r10_bio->devs[j].bio)
238 bio_put(r10_bio->devs[j].bio);
239 if (r10_bio->devs[j].repl_bio)
240 bio_put(r10_bio->devs[j].repl_bio);
241 }
242 kfree(rps);
243out_free_r10bio:
244 r10bio_pool_free(r10_bio, conf);
245 return NULL;
246}
247
248static void r10buf_pool_free(void *__r10_bio, void *data)
249{
250 struct r10conf *conf = data;
251 struct r10bio *r10bio = __r10_bio;
252 int j;
253 struct resync_pages *rp = NULL;
254
255 for (j = conf->copies; j--; ) {
256 struct bio *bio = r10bio->devs[j].bio;
257
258 if (bio) {
259 rp = get_resync_pages(bio);
260 resync_free_pages(rp);
261 bio_put(bio);
262 }
263
264 bio = r10bio->devs[j].repl_bio;
265 if (bio)
266 bio_put(bio);
267 }
268
269 /* resync pages array stored in the 1st bio's .bi_private */
270 kfree(rp);
271
272 r10bio_pool_free(r10bio, conf);
273}
274
275static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
276{
277 int i;
278
279 for (i = 0; i < conf->copies; i++) {
280 struct bio **bio = & r10_bio->devs[i].bio;
281 if (!BIO_SPECIAL(*bio))
282 bio_put(*bio);
283 *bio = NULL;
284 bio = &r10_bio->devs[i].repl_bio;
285 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286 bio_put(*bio);
287 *bio = NULL;
288 }
289}
290
291static void free_r10bio(struct r10bio *r10_bio)
292{
293 struct r10conf *conf = r10_bio->mddev->private;
294
295 put_all_bios(conf, r10_bio);
296 mempool_free(r10_bio, &conf->r10bio_pool);
297}
298
299static void put_buf(struct r10bio *r10_bio)
300{
301 struct r10conf *conf = r10_bio->mddev->private;
302
303 mempool_free(r10_bio, &conf->r10buf_pool);
304
305 lower_barrier(conf);
306}
307
308static void reschedule_retry(struct r10bio *r10_bio)
309{
310 unsigned long flags;
311 struct mddev *mddev = r10_bio->mddev;
312 struct r10conf *conf = mddev->private;
313
314 spin_lock_irqsave(&conf->device_lock, flags);
315 list_add(&r10_bio->retry_list, &conf->retry_list);
316 conf->nr_queued ++;
317 spin_unlock_irqrestore(&conf->device_lock, flags);
318
319 /* wake up frozen array... */
320 wake_up(&conf->wait_barrier);
321
322 md_wakeup_thread(mddev->thread);
323}
324
325/*
326 * raid_end_bio_io() is called when we have finished servicing a mirrored
327 * operation and are ready to return a success/failure code to the buffer
328 * cache layer.
329 */
330static void raid_end_bio_io(struct r10bio *r10_bio)
331{
332 struct bio *bio = r10_bio->master_bio;
333 struct r10conf *conf = r10_bio->mddev->private;
334
335 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
336 bio->bi_status = BLK_STS_IOERR;
337
338 bio_endio(bio);
339 /*
340 * Wake up any possible resync thread that waits for the device
341 * to go idle.
342 */
343 allow_barrier(conf);
344
345 free_r10bio(r10_bio);
346}
347
348/*
349 * Update disk head position estimator based on IRQ completion info.
350 */
351static inline void update_head_pos(int slot, struct r10bio *r10_bio)
352{
353 struct r10conf *conf = r10_bio->mddev->private;
354
355 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356 r10_bio->devs[slot].addr + (r10_bio->sectors);
357}
358
359/*
360 * Find the disk number which triggered given bio
361 */
362static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
363 struct bio *bio, int *slotp, int *replp)
364{
365 int slot;
366 int repl = 0;
367
368 for (slot = 0; slot < conf->copies; slot++) {
369 if (r10_bio->devs[slot].bio == bio)
370 break;
371 if (r10_bio->devs[slot].repl_bio == bio) {
372 repl = 1;
373 break;
374 }
375 }
376
377 BUG_ON(slot == conf->copies);
378 update_head_pos(slot, r10_bio);
379
380 if (slotp)
381 *slotp = slot;
382 if (replp)
383 *replp = repl;
384 return r10_bio->devs[slot].devnum;
385}
386
387static void raid10_end_read_request(struct bio *bio)
388{
389 int uptodate = !bio->bi_status;
390 struct r10bio *r10_bio = bio->bi_private;
391 int slot;
392 struct md_rdev *rdev;
393 struct r10conf *conf = r10_bio->mddev->private;
394
395 slot = r10_bio->read_slot;
396 rdev = r10_bio->devs[slot].rdev;
397 /*
398 * this branch is our 'one mirror IO has finished' event handler:
399 */
400 update_head_pos(slot, r10_bio);
401
402 if (uptodate) {
403 /*
404 * Set R10BIO_Uptodate in our master bio, so that
405 * we will return a good error code to the higher
406 * levels even if IO on some other mirrored buffer fails.
407 *
408 * The 'master' represents the composite IO operation to
409 * user-side. So if something waits for IO, then it will
410 * wait for the 'master' bio.
411 */
412 set_bit(R10BIO_Uptodate, &r10_bio->state);
413 } else {
414 /* If all other devices that store this block have
415 * failed, we want to return the error upwards rather
416 * than fail the last device. Here we redefine
417 * "uptodate" to mean "Don't want to retry"
418 */
419 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420 rdev->raid_disk))
421 uptodate = 1;
422 }
423 if (uptodate) {
424 raid_end_bio_io(r10_bio);
425 rdev_dec_pending(rdev, conf->mddev);
426 } else {
427 /*
428 * oops, read error - keep the refcount on the rdev
429 */
430 char b[BDEVNAME_SIZE];
431 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
432 mdname(conf->mddev),
433 bdevname(rdev->bdev, b),
434 (unsigned long long)r10_bio->sector);
435 set_bit(R10BIO_ReadError, &r10_bio->state);
436 reschedule_retry(r10_bio);
437 }
438}
439
440static void close_write(struct r10bio *r10_bio)
441{
442 /* clear the bitmap if all writes complete successfully */
443 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444 r10_bio->sectors,
445 !test_bit(R10BIO_Degraded, &r10_bio->state),
446 0);
447 md_write_end(r10_bio->mddev);
448}
449
450static void one_write_done(struct r10bio *r10_bio)
451{
452 if (atomic_dec_and_test(&r10_bio->remaining)) {
453 if (test_bit(R10BIO_WriteError, &r10_bio->state))
454 reschedule_retry(r10_bio);
455 else {
456 close_write(r10_bio);
457 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458 reschedule_retry(r10_bio);
459 else
460 raid_end_bio_io(r10_bio);
461 }
462 }
463}
464
465static void raid10_end_write_request(struct bio *bio)
466{
467 struct r10bio *r10_bio = bio->bi_private;
468 int dev;
469 int dec_rdev = 1;
470 struct r10conf *conf = r10_bio->mddev->private;
471 int slot, repl;
472 struct md_rdev *rdev = NULL;
473 struct bio *to_put = NULL;
474 bool discard_error;
475
476 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
477
478 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
479
480 if (repl)
481 rdev = conf->mirrors[dev].replacement;
482 if (!rdev) {
483 smp_rmb();
484 repl = 0;
485 rdev = conf->mirrors[dev].rdev;
486 }
487 /*
488 * this branch is our 'one mirror IO has finished' event handler:
489 */
490 if (bio->bi_status && !discard_error) {
491 if (repl)
492 /* Never record new bad blocks to replacement,
493 * just fail it.
494 */
495 md_error(rdev->mddev, rdev);
496 else {
497 set_bit(WriteErrorSeen, &rdev->flags);
498 if (!test_and_set_bit(WantReplacement, &rdev->flags))
499 set_bit(MD_RECOVERY_NEEDED,
500 &rdev->mddev->recovery);
501
502 dec_rdev = 0;
503 if (test_bit(FailFast, &rdev->flags) &&
504 (bio->bi_opf & MD_FAILFAST)) {
505 md_error(rdev->mddev, rdev);
506 if (!test_bit(Faulty, &rdev->flags))
507 /* This is the only remaining device,
508 * We need to retry the write without
509 * FailFast
510 */
511 set_bit(R10BIO_WriteError, &r10_bio->state);
512 else {
513 r10_bio->devs[slot].bio = NULL;
514 to_put = bio;
515 dec_rdev = 1;
516 }
517 } else
518 set_bit(R10BIO_WriteError, &r10_bio->state);
519 }
520 } else {
521 /*
522 * Set R10BIO_Uptodate in our master bio, so that
523 * we will return a good error code for to the higher
524 * levels even if IO on some other mirrored buffer fails.
525 *
526 * The 'master' represents the composite IO operation to
527 * user-side. So if something waits for IO, then it will
528 * wait for the 'master' bio.
529 */
530 sector_t first_bad;
531 int bad_sectors;
532
533 /*
534 * Do not set R10BIO_Uptodate if the current device is
535 * rebuilding or Faulty. This is because we cannot use
536 * such device for properly reading the data back (we could
537 * potentially use it, if the current write would have felt
538 * before rdev->recovery_offset, but for simplicity we don't
539 * check this here.
540 */
541 if (test_bit(In_sync, &rdev->flags) &&
542 !test_bit(Faulty, &rdev->flags))
543 set_bit(R10BIO_Uptodate, &r10_bio->state);
544
545 /* Maybe we can clear some bad blocks. */
546 if (is_badblock(rdev,
547 r10_bio->devs[slot].addr,
548 r10_bio->sectors,
549 &first_bad, &bad_sectors) && !discard_error) {
550 bio_put(bio);
551 if (repl)
552 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553 else
554 r10_bio->devs[slot].bio = IO_MADE_GOOD;
555 dec_rdev = 0;
556 set_bit(R10BIO_MadeGood, &r10_bio->state);
557 }
558 }
559
560 /*
561 *
562 * Let's see if all mirrored write operations have finished
563 * already.
564 */
565 one_write_done(r10_bio);
566 if (dec_rdev)
567 rdev_dec_pending(rdev, conf->mddev);
568 if (to_put)
569 bio_put(to_put);
570}
571
572/*
573 * RAID10 layout manager
574 * As well as the chunksize and raid_disks count, there are two
575 * parameters: near_copies and far_copies.
576 * near_copies * far_copies must be <= raid_disks.
577 * Normally one of these will be 1.
578 * If both are 1, we get raid0.
579 * If near_copies == raid_disks, we get raid1.
580 *
581 * Chunks are laid out in raid0 style with near_copies copies of the
582 * first chunk, followed by near_copies copies of the next chunk and
583 * so on.
584 * If far_copies > 1, then after 1/far_copies of the array has been assigned
585 * as described above, we start again with a device offset of near_copies.
586 * So we effectively have another copy of the whole array further down all
587 * the drives, but with blocks on different drives.
588 * With this layout, and block is never stored twice on the one device.
589 *
590 * raid10_find_phys finds the sector offset of a given virtual sector
591 * on each device that it is on.
592 *
593 * raid10_find_virt does the reverse mapping, from a device and a
594 * sector offset to a virtual address
595 */
596
597static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
598{
599 int n,f;
600 sector_t sector;
601 sector_t chunk;
602 sector_t stripe;
603 int dev;
604 int slot = 0;
605 int last_far_set_start, last_far_set_size;
606
607 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608 last_far_set_start *= geo->far_set_size;
609
610 last_far_set_size = geo->far_set_size;
611 last_far_set_size += (geo->raid_disks % geo->far_set_size);
612
613 /* now calculate first sector/dev */
614 chunk = r10bio->sector >> geo->chunk_shift;
615 sector = r10bio->sector & geo->chunk_mask;
616
617 chunk *= geo->near_copies;
618 stripe = chunk;
619 dev = sector_div(stripe, geo->raid_disks);
620 if (geo->far_offset)
621 stripe *= geo->far_copies;
622
623 sector += stripe << geo->chunk_shift;
624
625 /* and calculate all the others */
626 for (n = 0; n < geo->near_copies; n++) {
627 int d = dev;
628 int set;
629 sector_t s = sector;
630 r10bio->devs[slot].devnum = d;
631 r10bio->devs[slot].addr = s;
632 slot++;
633
634 for (f = 1; f < geo->far_copies; f++) {
635 set = d / geo->far_set_size;
636 d += geo->near_copies;
637
638 if ((geo->raid_disks % geo->far_set_size) &&
639 (d > last_far_set_start)) {
640 d -= last_far_set_start;
641 d %= last_far_set_size;
642 d += last_far_set_start;
643 } else {
644 d %= geo->far_set_size;
645 d += geo->far_set_size * set;
646 }
647 s += geo->stride;
648 r10bio->devs[slot].devnum = d;
649 r10bio->devs[slot].addr = s;
650 slot++;
651 }
652 dev++;
653 if (dev >= geo->raid_disks) {
654 dev = 0;
655 sector += (geo->chunk_mask + 1);
656 }
657 }
658}
659
660static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661{
662 struct geom *geo = &conf->geo;
663
664 if (conf->reshape_progress != MaxSector &&
665 ((r10bio->sector >= conf->reshape_progress) !=
666 conf->mddev->reshape_backwards)) {
667 set_bit(R10BIO_Previous, &r10bio->state);
668 geo = &conf->prev;
669 } else
670 clear_bit(R10BIO_Previous, &r10bio->state);
671
672 __raid10_find_phys(geo, r10bio);
673}
674
675static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
676{
677 sector_t offset, chunk, vchunk;
678 /* Never use conf->prev as this is only called during resync
679 * or recovery, so reshape isn't happening
680 */
681 struct geom *geo = &conf->geo;
682 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683 int far_set_size = geo->far_set_size;
684 int last_far_set_start;
685
686 if (geo->raid_disks % geo->far_set_size) {
687 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688 last_far_set_start *= geo->far_set_size;
689
690 if (dev >= last_far_set_start) {
691 far_set_size = geo->far_set_size;
692 far_set_size += (geo->raid_disks % geo->far_set_size);
693 far_set_start = last_far_set_start;
694 }
695 }
696
697 offset = sector & geo->chunk_mask;
698 if (geo->far_offset) {
699 int fc;
700 chunk = sector >> geo->chunk_shift;
701 fc = sector_div(chunk, geo->far_copies);
702 dev -= fc * geo->near_copies;
703 if (dev < far_set_start)
704 dev += far_set_size;
705 } else {
706 while (sector >= geo->stride) {
707 sector -= geo->stride;
708 if (dev < (geo->near_copies + far_set_start))
709 dev += far_set_size - geo->near_copies;
710 else
711 dev -= geo->near_copies;
712 }
713 chunk = sector >> geo->chunk_shift;
714 }
715 vchunk = chunk * geo->raid_disks + dev;
716 sector_div(vchunk, geo->near_copies);
717 return (vchunk << geo->chunk_shift) + offset;
718}
719
720/*
721 * This routine returns the disk from which the requested read should
722 * be done. There is a per-array 'next expected sequential IO' sector
723 * number - if this matches on the next IO then we use the last disk.
724 * There is also a per-disk 'last know head position' sector that is
725 * maintained from IRQ contexts, both the normal and the resync IO
726 * completion handlers update this position correctly. If there is no
727 * perfect sequential match then we pick the disk whose head is closest.
728 *
729 * If there are 2 mirrors in the same 2 devices, performance degrades
730 * because position is mirror, not device based.
731 *
732 * The rdev for the device selected will have nr_pending incremented.
733 */
734
735/*
736 * FIXME: possibly should rethink readbalancing and do it differently
737 * depending on near_copies / far_copies geometry.
738 */
739static struct md_rdev *read_balance(struct r10conf *conf,
740 struct r10bio *r10_bio,
741 int *max_sectors)
742{
743 const sector_t this_sector = r10_bio->sector;
744 int disk, slot;
745 int sectors = r10_bio->sectors;
746 int best_good_sectors;
747 sector_t new_distance, best_dist;
748 struct md_rdev *best_rdev, *rdev = NULL;
749 int do_balance;
750 int best_slot;
751 struct geom *geo = &conf->geo;
752
753 raid10_find_phys(conf, r10_bio);
754 rcu_read_lock();
755 best_slot = -1;
756 best_rdev = NULL;
757 best_dist = MaxSector;
758 best_good_sectors = 0;
759 do_balance = 1;
760 clear_bit(R10BIO_FailFast, &r10_bio->state);
761 /*
762 * Check if we can balance. We can balance on the whole
763 * device if no resync is going on (recovery is ok), or below
764 * the resync window. We take the first readable disk when
765 * above the resync window.
766 */
767 if ((conf->mddev->recovery_cp < MaxSector
768 && (this_sector + sectors >= conf->next_resync)) ||
769 (mddev_is_clustered(conf->mddev) &&
770 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771 this_sector + sectors)))
772 do_balance = 0;
773
774 for (slot = 0; slot < conf->copies ; slot++) {
775 sector_t first_bad;
776 int bad_sectors;
777 sector_t dev_sector;
778
779 if (r10_bio->devs[slot].bio == IO_BLOCKED)
780 continue;
781 disk = r10_bio->devs[slot].devnum;
782 rdev = rcu_dereference(conf->mirrors[disk].replacement);
783 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 rdev = rcu_dereference(conf->mirrors[disk].rdev);
786 if (rdev == NULL ||
787 test_bit(Faulty, &rdev->flags))
788 continue;
789 if (!test_bit(In_sync, &rdev->flags) &&
790 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
791 continue;
792
793 dev_sector = r10_bio->devs[slot].addr;
794 if (is_badblock(rdev, dev_sector, sectors,
795 &first_bad, &bad_sectors)) {
796 if (best_dist < MaxSector)
797 /* Already have a better slot */
798 continue;
799 if (first_bad <= dev_sector) {
800 /* Cannot read here. If this is the
801 * 'primary' device, then we must not read
802 * beyond 'bad_sectors' from another device.
803 */
804 bad_sectors -= (dev_sector - first_bad);
805 if (!do_balance && sectors > bad_sectors)
806 sectors = bad_sectors;
807 if (best_good_sectors > sectors)
808 best_good_sectors = sectors;
809 } else {
810 sector_t good_sectors =
811 first_bad - dev_sector;
812 if (good_sectors > best_good_sectors) {
813 best_good_sectors = good_sectors;
814 best_slot = slot;
815 best_rdev = rdev;
816 }
817 if (!do_balance)
818 /* Must read from here */
819 break;
820 }
821 continue;
822 } else
823 best_good_sectors = sectors;
824
825 if (!do_balance)
826 break;
827
828 if (best_slot >= 0)
829 /* At least 2 disks to choose from so failfast is OK */
830 set_bit(R10BIO_FailFast, &r10_bio->state);
831 /* This optimisation is debatable, and completely destroys
832 * sequential read speed for 'far copies' arrays. So only
833 * keep it for 'near' arrays, and review those later.
834 */
835 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
836 new_distance = 0;
837
838 /* for far > 1 always use the lowest address */
839 else if (geo->far_copies > 1)
840 new_distance = r10_bio->devs[slot].addr;
841 else
842 new_distance = abs(r10_bio->devs[slot].addr -
843 conf->mirrors[disk].head_position);
844 if (new_distance < best_dist) {
845 best_dist = new_distance;
846 best_slot = slot;
847 best_rdev = rdev;
848 }
849 }
850 if (slot >= conf->copies) {
851 slot = best_slot;
852 rdev = best_rdev;
853 }
854
855 if (slot >= 0) {
856 atomic_inc(&rdev->nr_pending);
857 r10_bio->read_slot = slot;
858 } else
859 rdev = NULL;
860 rcu_read_unlock();
861 *max_sectors = best_good_sectors;
862
863 return rdev;
864}
865
866static int raid10_congested(struct mddev *mddev, int bits)
867{
868 struct r10conf *conf = mddev->private;
869 int i, ret = 0;
870
871 if ((bits & (1 << WB_async_congested)) &&
872 conf->pending_count >= max_queued_requests)
873 return 1;
874
875 rcu_read_lock();
876 for (i = 0;
877 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878 && ret == 0;
879 i++) {
880 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
881 if (rdev && !test_bit(Faulty, &rdev->flags)) {
882 struct request_queue *q = bdev_get_queue(rdev->bdev);
883
884 ret |= bdi_congested(q->backing_dev_info, bits);
885 }
886 }
887 rcu_read_unlock();
888 return ret;
889}
890
891static void flush_pending_writes(struct r10conf *conf)
892{
893 /* Any writes that have been queued but are awaiting
894 * bitmap updates get flushed here.
895 */
896 spin_lock_irq(&conf->device_lock);
897
898 if (conf->pending_bio_list.head) {
899 struct blk_plug plug;
900 struct bio *bio;
901
902 bio = bio_list_get(&conf->pending_bio_list);
903 conf->pending_count = 0;
904 spin_unlock_irq(&conf->device_lock);
905
906 /*
907 * As this is called in a wait_event() loop (see freeze_array),
908 * current->state might be TASK_UNINTERRUPTIBLE which will
909 * cause a warning when we prepare to wait again. As it is
910 * rare that this path is taken, it is perfectly safe to force
911 * us to go around the wait_event() loop again, so the warning
912 * is a false-positive. Silence the warning by resetting
913 * thread state
914 */
915 __set_current_state(TASK_RUNNING);
916
917 blk_start_plug(&plug);
918 /* flush any pending bitmap writes to disk
919 * before proceeding w/ I/O */
920 md_bitmap_unplug(conf->mddev->bitmap);
921 wake_up(&conf->wait_barrier);
922
923 while (bio) { /* submit pending writes */
924 struct bio *next = bio->bi_next;
925 struct md_rdev *rdev = (void*)bio->bi_disk;
926 bio->bi_next = NULL;
927 bio_set_dev(bio, rdev->bdev);
928 if (test_bit(Faulty, &rdev->flags)) {
929 bio_io_error(bio);
930 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
931 !blk_queue_discard(bio->bi_disk->queue)))
932 /* Just ignore it */
933 bio_endio(bio);
934 else
935 generic_make_request(bio);
936 bio = next;
937 }
938 blk_finish_plug(&plug);
939 } else
940 spin_unlock_irq(&conf->device_lock);
941}
942
943/* Barriers....
944 * Sometimes we need to suspend IO while we do something else,
945 * either some resync/recovery, or reconfigure the array.
946 * To do this we raise a 'barrier'.
947 * The 'barrier' is a counter that can be raised multiple times
948 * to count how many activities are happening which preclude
949 * normal IO.
950 * We can only raise the barrier if there is no pending IO.
951 * i.e. if nr_pending == 0.
952 * We choose only to raise the barrier if no-one is waiting for the
953 * barrier to go down. This means that as soon as an IO request
954 * is ready, no other operations which require a barrier will start
955 * until the IO request has had a chance.
956 *
957 * So: regular IO calls 'wait_barrier'. When that returns there
958 * is no backgroup IO happening, It must arrange to call
959 * allow_barrier when it has finished its IO.
960 * backgroup IO calls must call raise_barrier. Once that returns
961 * there is no normal IO happeing. It must arrange to call
962 * lower_barrier when the particular background IO completes.
963 */
964
965static void raise_barrier(struct r10conf *conf, int force)
966{
967 BUG_ON(force && !conf->barrier);
968 spin_lock_irq(&conf->resync_lock);
969
970 /* Wait until no block IO is waiting (unless 'force') */
971 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
972 conf->resync_lock);
973
974 /* block any new IO from starting */
975 conf->barrier++;
976
977 /* Now wait for all pending IO to complete */
978 wait_event_lock_irq(conf->wait_barrier,
979 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
980 conf->resync_lock);
981
982 spin_unlock_irq(&conf->resync_lock);
983}
984
985static void lower_barrier(struct r10conf *conf)
986{
987 unsigned long flags;
988 spin_lock_irqsave(&conf->resync_lock, flags);
989 conf->barrier--;
990 spin_unlock_irqrestore(&conf->resync_lock, flags);
991 wake_up(&conf->wait_barrier);
992}
993
994static void wait_barrier(struct r10conf *conf)
995{
996 spin_lock_irq(&conf->resync_lock);
997 if (conf->barrier) {
998 conf->nr_waiting++;
999 /* Wait for the barrier to drop.
1000 * However if there are already pending
1001 * requests (preventing the barrier from
1002 * rising completely), and the
1003 * pre-process bio queue isn't empty,
1004 * then don't wait, as we need to empty
1005 * that queue to get the nr_pending
1006 * count down.
1007 */
1008 raid10_log(conf->mddev, "wait barrier");
1009 wait_event_lock_irq(conf->wait_barrier,
1010 !conf->barrier ||
1011 (atomic_read(&conf->nr_pending) &&
1012 current->bio_list &&
1013 (!bio_list_empty(&current->bio_list[0]) ||
1014 !bio_list_empty(&current->bio_list[1]))),
1015 conf->resync_lock);
1016 conf->nr_waiting--;
1017 if (!conf->nr_waiting)
1018 wake_up(&conf->wait_barrier);
1019 }
1020 atomic_inc(&conf->nr_pending);
1021 spin_unlock_irq(&conf->resync_lock);
1022}
1023
1024static void allow_barrier(struct r10conf *conf)
1025{
1026 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027 (conf->array_freeze_pending))
1028 wake_up(&conf->wait_barrier);
1029}
1030
1031static void freeze_array(struct r10conf *conf, int extra)
1032{
1033 /* stop syncio and normal IO and wait for everything to
1034 * go quiet.
1035 * We increment barrier and nr_waiting, and then
1036 * wait until nr_pending match nr_queued+extra
1037 * This is called in the context of one normal IO request
1038 * that has failed. Thus any sync request that might be pending
1039 * will be blocked by nr_pending, and we need to wait for
1040 * pending IO requests to complete or be queued for re-try.
1041 * Thus the number queued (nr_queued) plus this request (extra)
1042 * must match the number of pending IOs (nr_pending) before
1043 * we continue.
1044 */
1045 spin_lock_irq(&conf->resync_lock);
1046 conf->array_freeze_pending++;
1047 conf->barrier++;
1048 conf->nr_waiting++;
1049 wait_event_lock_irq_cmd(conf->wait_barrier,
1050 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1051 conf->resync_lock,
1052 flush_pending_writes(conf));
1053
1054 conf->array_freeze_pending--;
1055 spin_unlock_irq(&conf->resync_lock);
1056}
1057
1058static void unfreeze_array(struct r10conf *conf)
1059{
1060 /* reverse the effect of the freeze */
1061 spin_lock_irq(&conf->resync_lock);
1062 conf->barrier--;
1063 conf->nr_waiting--;
1064 wake_up(&conf->wait_barrier);
1065 spin_unlock_irq(&conf->resync_lock);
1066}
1067
1068static sector_t choose_data_offset(struct r10bio *r10_bio,
1069 struct md_rdev *rdev)
1070{
1071 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072 test_bit(R10BIO_Previous, &r10_bio->state))
1073 return rdev->data_offset;
1074 else
1075 return rdev->new_data_offset;
1076}
1077
1078struct raid10_plug_cb {
1079 struct blk_plug_cb cb;
1080 struct bio_list pending;
1081 int pending_cnt;
1082};
1083
1084static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085{
1086 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087 cb);
1088 struct mddev *mddev = plug->cb.data;
1089 struct r10conf *conf = mddev->private;
1090 struct bio *bio;
1091
1092 if (from_schedule || current->bio_list) {
1093 spin_lock_irq(&conf->device_lock);
1094 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 conf->pending_count += plug->pending_cnt;
1096 spin_unlock_irq(&conf->device_lock);
1097 wake_up(&conf->wait_barrier);
1098 md_wakeup_thread(mddev->thread);
1099 kfree(plug);
1100 return;
1101 }
1102
1103 /* we aren't scheduling, so we can do the write-out directly. */
1104 bio = bio_list_get(&plug->pending);
1105 md_bitmap_unplug(mddev->bitmap);
1106 wake_up(&conf->wait_barrier);
1107
1108 while (bio) { /* submit pending writes */
1109 struct bio *next = bio->bi_next;
1110 struct md_rdev *rdev = (void*)bio->bi_disk;
1111 bio->bi_next = NULL;
1112 bio_set_dev(bio, rdev->bdev);
1113 if (test_bit(Faulty, &rdev->flags)) {
1114 bio_io_error(bio);
1115 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1116 !blk_queue_discard(bio->bi_disk->queue)))
1117 /* Just ignore it */
1118 bio_endio(bio);
1119 else
1120 generic_make_request(bio);
1121 bio = next;
1122 }
1123 kfree(plug);
1124}
1125
1126static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127 struct r10bio *r10_bio)
1128{
1129 struct r10conf *conf = mddev->private;
1130 struct bio *read_bio;
1131 const int op = bio_op(bio);
1132 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1133 int max_sectors;
1134 sector_t sectors;
1135 struct md_rdev *rdev;
1136 char b[BDEVNAME_SIZE];
1137 int slot = r10_bio->read_slot;
1138 struct md_rdev *err_rdev = NULL;
1139 gfp_t gfp = GFP_NOIO;
1140
1141 if (r10_bio->devs[slot].rdev) {
1142 /*
1143 * This is an error retry, but we cannot
1144 * safely dereference the rdev in the r10_bio,
1145 * we must use the one in conf.
1146 * If it has already been disconnected (unlikely)
1147 * we lose the device name in error messages.
1148 */
1149 int disk;
1150 /*
1151 * As we are blocking raid10, it is a little safer to
1152 * use __GFP_HIGH.
1153 */
1154 gfp = GFP_NOIO | __GFP_HIGH;
1155
1156 rcu_read_lock();
1157 disk = r10_bio->devs[slot].devnum;
1158 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159 if (err_rdev)
1160 bdevname(err_rdev->bdev, b);
1161 else {
1162 strcpy(b, "???");
1163 /* This never gets dereferenced */
1164 err_rdev = r10_bio->devs[slot].rdev;
1165 }
1166 rcu_read_unlock();
1167 }
1168 /*
1169 * Register the new request and wait if the reconstruction
1170 * thread has put up a bar for new requests.
1171 * Continue immediately if no resync is active currently.
1172 */
1173 wait_barrier(conf);
1174
1175 sectors = r10_bio->sectors;
1176 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177 bio->bi_iter.bi_sector < conf->reshape_progress &&
1178 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179 /*
1180 * IO spans the reshape position. Need to wait for reshape to
1181 * pass
1182 */
1183 raid10_log(conf->mddev, "wait reshape");
1184 allow_barrier(conf);
1185 wait_event(conf->wait_barrier,
1186 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187 conf->reshape_progress >= bio->bi_iter.bi_sector +
1188 sectors);
1189 wait_barrier(conf);
1190 }
1191
1192 rdev = read_balance(conf, r10_bio, &max_sectors);
1193 if (!rdev) {
1194 if (err_rdev) {
1195 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196 mdname(mddev), b,
1197 (unsigned long long)r10_bio->sector);
1198 }
1199 raid_end_bio_io(r10_bio);
1200 return;
1201 }
1202 if (err_rdev)
1203 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204 mdname(mddev),
1205 bdevname(rdev->bdev, b),
1206 (unsigned long long)r10_bio->sector);
1207 if (max_sectors < bio_sectors(bio)) {
1208 struct bio *split = bio_split(bio, max_sectors,
1209 gfp, &conf->bio_split);
1210 bio_chain(split, bio);
1211 generic_make_request(bio);
1212 bio = split;
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = max_sectors;
1215 }
1216 slot = r10_bio->read_slot;
1217
1218 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1219
1220 r10_bio->devs[slot].bio = read_bio;
1221 r10_bio->devs[slot].rdev = rdev;
1222
1223 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1224 choose_data_offset(r10_bio, rdev);
1225 bio_set_dev(read_bio, rdev->bdev);
1226 read_bio->bi_end_io = raid10_end_read_request;
1227 bio_set_op_attrs(read_bio, op, do_sync);
1228 if (test_bit(FailFast, &rdev->flags) &&
1229 test_bit(R10BIO_FailFast, &r10_bio->state))
1230 read_bio->bi_opf |= MD_FAILFAST;
1231 read_bio->bi_private = r10_bio;
1232
1233 if (mddev->gendisk)
1234 trace_block_bio_remap(read_bio->bi_disk->queue,
1235 read_bio, disk_devt(mddev->gendisk),
1236 r10_bio->sector);
1237 generic_make_request(read_bio);
1238 return;
1239}
1240
1241static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1242 struct bio *bio, bool replacement,
1243 int n_copy)
1244{
1245 const int op = bio_op(bio);
1246 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1247 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1248 unsigned long flags;
1249 struct blk_plug_cb *cb;
1250 struct raid10_plug_cb *plug = NULL;
1251 struct r10conf *conf = mddev->private;
1252 struct md_rdev *rdev;
1253 int devnum = r10_bio->devs[n_copy].devnum;
1254 struct bio *mbio;
1255
1256 if (replacement) {
1257 rdev = conf->mirrors[devnum].replacement;
1258 if (rdev == NULL) {
1259 /* Replacement just got moved to main 'rdev' */
1260 smp_mb();
1261 rdev = conf->mirrors[devnum].rdev;
1262 }
1263 } else
1264 rdev = conf->mirrors[devnum].rdev;
1265
1266 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1267 if (replacement)
1268 r10_bio->devs[n_copy].repl_bio = mbio;
1269 else
1270 r10_bio->devs[n_copy].bio = mbio;
1271
1272 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1273 choose_data_offset(r10_bio, rdev));
1274 bio_set_dev(mbio, rdev->bdev);
1275 mbio->bi_end_io = raid10_end_write_request;
1276 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1277 if (!replacement && test_bit(FailFast,
1278 &conf->mirrors[devnum].rdev->flags)
1279 && enough(conf, devnum))
1280 mbio->bi_opf |= MD_FAILFAST;
1281 mbio->bi_private = r10_bio;
1282
1283 if (conf->mddev->gendisk)
1284 trace_block_bio_remap(mbio->bi_disk->queue,
1285 mbio, disk_devt(conf->mddev->gendisk),
1286 r10_bio->sector);
1287 /* flush_pending_writes() needs access to the rdev so...*/
1288 mbio->bi_disk = (void *)rdev;
1289
1290 atomic_inc(&r10_bio->remaining);
1291
1292 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1293 if (cb)
1294 plug = container_of(cb, struct raid10_plug_cb, cb);
1295 else
1296 plug = NULL;
1297 if (plug) {
1298 bio_list_add(&plug->pending, mbio);
1299 plug->pending_cnt++;
1300 } else {
1301 spin_lock_irqsave(&conf->device_lock, flags);
1302 bio_list_add(&conf->pending_bio_list, mbio);
1303 conf->pending_count++;
1304 spin_unlock_irqrestore(&conf->device_lock, flags);
1305 md_wakeup_thread(mddev->thread);
1306 }
1307}
1308
1309static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1310 struct r10bio *r10_bio)
1311{
1312 struct r10conf *conf = mddev->private;
1313 int i;
1314 struct md_rdev *blocked_rdev;
1315 sector_t sectors;
1316 int max_sectors;
1317
1318 if ((mddev_is_clustered(mddev) &&
1319 md_cluster_ops->area_resyncing(mddev, WRITE,
1320 bio->bi_iter.bi_sector,
1321 bio_end_sector(bio)))) {
1322 DEFINE_WAIT(w);
1323 for (;;) {
1324 prepare_to_wait(&conf->wait_barrier,
1325 &w, TASK_IDLE);
1326 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1327 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1328 break;
1329 schedule();
1330 }
1331 finish_wait(&conf->wait_barrier, &w);
1332 }
1333
1334 /*
1335 * Register the new request and wait if the reconstruction
1336 * thread has put up a bar for new requests.
1337 * Continue immediately if no resync is active currently.
1338 */
1339 wait_barrier(conf);
1340
1341 sectors = r10_bio->sectors;
1342 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1343 bio->bi_iter.bi_sector < conf->reshape_progress &&
1344 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1345 /*
1346 * IO spans the reshape position. Need to wait for reshape to
1347 * pass
1348 */
1349 raid10_log(conf->mddev, "wait reshape");
1350 allow_barrier(conf);
1351 wait_event(conf->wait_barrier,
1352 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1353 conf->reshape_progress >= bio->bi_iter.bi_sector +
1354 sectors);
1355 wait_barrier(conf);
1356 }
1357
1358 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1359 (mddev->reshape_backwards
1360 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1361 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1362 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1363 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1364 /* Need to update reshape_position in metadata */
1365 mddev->reshape_position = conf->reshape_progress;
1366 set_mask_bits(&mddev->sb_flags, 0,
1367 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1368 md_wakeup_thread(mddev->thread);
1369 raid10_log(conf->mddev, "wait reshape metadata");
1370 wait_event(mddev->sb_wait,
1371 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1372
1373 conf->reshape_safe = mddev->reshape_position;
1374 }
1375
1376 if (conf->pending_count >= max_queued_requests) {
1377 md_wakeup_thread(mddev->thread);
1378 raid10_log(mddev, "wait queued");
1379 wait_event(conf->wait_barrier,
1380 conf->pending_count < max_queued_requests);
1381 }
1382 /* first select target devices under rcu_lock and
1383 * inc refcount on their rdev. Record them by setting
1384 * bios[x] to bio
1385 * If there are known/acknowledged bad blocks on any device
1386 * on which we have seen a write error, we want to avoid
1387 * writing to those blocks. This potentially requires several
1388 * writes to write around the bad blocks. Each set of writes
1389 * gets its own r10_bio with a set of bios attached.
1390 */
1391
1392 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1393 raid10_find_phys(conf, r10_bio);
1394retry_write:
1395 blocked_rdev = NULL;
1396 rcu_read_lock();
1397 max_sectors = r10_bio->sectors;
1398
1399 for (i = 0; i < conf->copies; i++) {
1400 int d = r10_bio->devs[i].devnum;
1401 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1402 struct md_rdev *rrdev = rcu_dereference(
1403 conf->mirrors[d].replacement);
1404 if (rdev == rrdev)
1405 rrdev = NULL;
1406 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1407 atomic_inc(&rdev->nr_pending);
1408 blocked_rdev = rdev;
1409 break;
1410 }
1411 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1412 atomic_inc(&rrdev->nr_pending);
1413 blocked_rdev = rrdev;
1414 break;
1415 }
1416 if (rdev && (test_bit(Faulty, &rdev->flags)))
1417 rdev = NULL;
1418 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1419 rrdev = NULL;
1420
1421 r10_bio->devs[i].bio = NULL;
1422 r10_bio->devs[i].repl_bio = NULL;
1423
1424 if (!rdev && !rrdev) {
1425 set_bit(R10BIO_Degraded, &r10_bio->state);
1426 continue;
1427 }
1428 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1429 sector_t first_bad;
1430 sector_t dev_sector = r10_bio->devs[i].addr;
1431 int bad_sectors;
1432 int is_bad;
1433
1434 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1435 &first_bad, &bad_sectors);
1436 if (is_bad < 0) {
1437 /* Mustn't write here until the bad block
1438 * is acknowledged
1439 */
1440 atomic_inc(&rdev->nr_pending);
1441 set_bit(BlockedBadBlocks, &rdev->flags);
1442 blocked_rdev = rdev;
1443 break;
1444 }
1445 if (is_bad && first_bad <= dev_sector) {
1446 /* Cannot write here at all */
1447 bad_sectors -= (dev_sector - first_bad);
1448 if (bad_sectors < max_sectors)
1449 /* Mustn't write more than bad_sectors
1450 * to other devices yet
1451 */
1452 max_sectors = bad_sectors;
1453 /* We don't set R10BIO_Degraded as that
1454 * only applies if the disk is missing,
1455 * so it might be re-added, and we want to
1456 * know to recover this chunk.
1457 * In this case the device is here, and the
1458 * fact that this chunk is not in-sync is
1459 * recorded in the bad block log.
1460 */
1461 continue;
1462 }
1463 if (is_bad) {
1464 int good_sectors = first_bad - dev_sector;
1465 if (good_sectors < max_sectors)
1466 max_sectors = good_sectors;
1467 }
1468 }
1469 if (rdev) {
1470 r10_bio->devs[i].bio = bio;
1471 atomic_inc(&rdev->nr_pending);
1472 }
1473 if (rrdev) {
1474 r10_bio->devs[i].repl_bio = bio;
1475 atomic_inc(&rrdev->nr_pending);
1476 }
1477 }
1478 rcu_read_unlock();
1479
1480 if (unlikely(blocked_rdev)) {
1481 /* Have to wait for this device to get unblocked, then retry */
1482 int j;
1483 int d;
1484
1485 for (j = 0; j < i; j++) {
1486 if (r10_bio->devs[j].bio) {
1487 d = r10_bio->devs[j].devnum;
1488 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1489 }
1490 if (r10_bio->devs[j].repl_bio) {
1491 struct md_rdev *rdev;
1492 d = r10_bio->devs[j].devnum;
1493 rdev = conf->mirrors[d].replacement;
1494 if (!rdev) {
1495 /* Race with remove_disk */
1496 smp_mb();
1497 rdev = conf->mirrors[d].rdev;
1498 }
1499 rdev_dec_pending(rdev, mddev);
1500 }
1501 }
1502 allow_barrier(conf);
1503 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1504 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1505 wait_barrier(conf);
1506 goto retry_write;
1507 }
1508
1509 if (max_sectors < r10_bio->sectors)
1510 r10_bio->sectors = max_sectors;
1511
1512 if (r10_bio->sectors < bio_sectors(bio)) {
1513 struct bio *split = bio_split(bio, r10_bio->sectors,
1514 GFP_NOIO, &conf->bio_split);
1515 bio_chain(split, bio);
1516 generic_make_request(bio);
1517 bio = split;
1518 r10_bio->master_bio = bio;
1519 }
1520
1521 atomic_set(&r10_bio->remaining, 1);
1522 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1523
1524 for (i = 0; i < conf->copies; i++) {
1525 if (r10_bio->devs[i].bio)
1526 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1527 if (r10_bio->devs[i].repl_bio)
1528 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1529 }
1530 one_write_done(r10_bio);
1531}
1532
1533static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1534{
1535 struct r10conf *conf = mddev->private;
1536 struct r10bio *r10_bio;
1537
1538 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1539
1540 r10_bio->master_bio = bio;
1541 r10_bio->sectors = sectors;
1542
1543 r10_bio->mddev = mddev;
1544 r10_bio->sector = bio->bi_iter.bi_sector;
1545 r10_bio->state = 0;
1546 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1547
1548 if (bio_data_dir(bio) == READ)
1549 raid10_read_request(mddev, bio, r10_bio);
1550 else
1551 raid10_write_request(mddev, bio, r10_bio);
1552}
1553
1554static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1555{
1556 struct r10conf *conf = mddev->private;
1557 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1558 int chunk_sects = chunk_mask + 1;
1559 int sectors = bio_sectors(bio);
1560
1561 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1562 md_flush_request(mddev, bio);
1563 return true;
1564 }
1565
1566 if (!md_write_start(mddev, bio))
1567 return false;
1568
1569 /*
1570 * If this request crosses a chunk boundary, we need to split
1571 * it.
1572 */
1573 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1574 sectors > chunk_sects
1575 && (conf->geo.near_copies < conf->geo.raid_disks
1576 || conf->prev.near_copies <
1577 conf->prev.raid_disks)))
1578 sectors = chunk_sects -
1579 (bio->bi_iter.bi_sector &
1580 (chunk_sects - 1));
1581 __make_request(mddev, bio, sectors);
1582
1583 /* In case raid10d snuck in to freeze_array */
1584 wake_up(&conf->wait_barrier);
1585 return true;
1586}
1587
1588static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1589{
1590 struct r10conf *conf = mddev->private;
1591 int i;
1592
1593 if (conf->geo.near_copies < conf->geo.raid_disks)
1594 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1595 if (conf->geo.near_copies > 1)
1596 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597 if (conf->geo.far_copies > 1) {
1598 if (conf->geo.far_offset)
1599 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1600 else
1601 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1602 if (conf->geo.far_set_size != conf->geo.raid_disks)
1603 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1604 }
1605 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1606 conf->geo.raid_disks - mddev->degraded);
1607 rcu_read_lock();
1608 for (i = 0; i < conf->geo.raid_disks; i++) {
1609 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1610 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1611 }
1612 rcu_read_unlock();
1613 seq_printf(seq, "]");
1614}
1615
1616/* check if there are enough drives for
1617 * every block to appear on atleast one.
1618 * Don't consider the device numbered 'ignore'
1619 * as we might be about to remove it.
1620 */
1621static int _enough(struct r10conf *conf, int previous, int ignore)
1622{
1623 int first = 0;
1624 int has_enough = 0;
1625 int disks, ncopies;
1626 if (previous) {
1627 disks = conf->prev.raid_disks;
1628 ncopies = conf->prev.near_copies;
1629 } else {
1630 disks = conf->geo.raid_disks;
1631 ncopies = conf->geo.near_copies;
1632 }
1633
1634 rcu_read_lock();
1635 do {
1636 int n = conf->copies;
1637 int cnt = 0;
1638 int this = first;
1639 while (n--) {
1640 struct md_rdev *rdev;
1641 if (this != ignore &&
1642 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1643 test_bit(In_sync, &rdev->flags))
1644 cnt++;
1645 this = (this+1) % disks;
1646 }
1647 if (cnt == 0)
1648 goto out;
1649 first = (first + ncopies) % disks;
1650 } while (first != 0);
1651 has_enough = 1;
1652out:
1653 rcu_read_unlock();
1654 return has_enough;
1655}
1656
1657static int enough(struct r10conf *conf, int ignore)
1658{
1659 /* when calling 'enough', both 'prev' and 'geo' must
1660 * be stable.
1661 * This is ensured if ->reconfig_mutex or ->device_lock
1662 * is held.
1663 */
1664 return _enough(conf, 0, ignore) &&
1665 _enough(conf, 1, ignore);
1666}
1667
1668static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1669{
1670 char b[BDEVNAME_SIZE];
1671 struct r10conf *conf = mddev->private;
1672 unsigned long flags;
1673
1674 /*
1675 * If it is not operational, then we have already marked it as dead
1676 * else if it is the last working disks, ignore the error, let the
1677 * next level up know.
1678 * else mark the drive as failed
1679 */
1680 spin_lock_irqsave(&conf->device_lock, flags);
1681 if (test_bit(In_sync, &rdev->flags)
1682 && !enough(conf, rdev->raid_disk)) {
1683 /*
1684 * Don't fail the drive, just return an IO error.
1685 */
1686 spin_unlock_irqrestore(&conf->device_lock, flags);
1687 return;
1688 }
1689 if (test_and_clear_bit(In_sync, &rdev->flags))
1690 mddev->degraded++;
1691 /*
1692 * If recovery is running, make sure it aborts.
1693 */
1694 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1695 set_bit(Blocked, &rdev->flags);
1696 set_bit(Faulty, &rdev->flags);
1697 set_mask_bits(&mddev->sb_flags, 0,
1698 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1699 spin_unlock_irqrestore(&conf->device_lock, flags);
1700 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1701 "md/raid10:%s: Operation continuing on %d devices.\n",
1702 mdname(mddev), bdevname(rdev->bdev, b),
1703 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1704}
1705
1706static void print_conf(struct r10conf *conf)
1707{
1708 int i;
1709 struct md_rdev *rdev;
1710
1711 pr_debug("RAID10 conf printout:\n");
1712 if (!conf) {
1713 pr_debug("(!conf)\n");
1714 return;
1715 }
1716 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1717 conf->geo.raid_disks);
1718
1719 /* This is only called with ->reconfix_mutex held, so
1720 * rcu protection of rdev is not needed */
1721 for (i = 0; i < conf->geo.raid_disks; i++) {
1722 char b[BDEVNAME_SIZE];
1723 rdev = conf->mirrors[i].rdev;
1724 if (rdev)
1725 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1726 i, !test_bit(In_sync, &rdev->flags),
1727 !test_bit(Faulty, &rdev->flags),
1728 bdevname(rdev->bdev,b));
1729 }
1730}
1731
1732static void close_sync(struct r10conf *conf)
1733{
1734 wait_barrier(conf);
1735 allow_barrier(conf);
1736
1737 mempool_exit(&conf->r10buf_pool);
1738}
1739
1740static int raid10_spare_active(struct mddev *mddev)
1741{
1742 int i;
1743 struct r10conf *conf = mddev->private;
1744 struct raid10_info *tmp;
1745 int count = 0;
1746 unsigned long flags;
1747
1748 /*
1749 * Find all non-in_sync disks within the RAID10 configuration
1750 * and mark them in_sync
1751 */
1752 for (i = 0; i < conf->geo.raid_disks; i++) {
1753 tmp = conf->mirrors + i;
1754 if (tmp->replacement
1755 && tmp->replacement->recovery_offset == MaxSector
1756 && !test_bit(Faulty, &tmp->replacement->flags)
1757 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1758 /* Replacement has just become active */
1759 if (!tmp->rdev
1760 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1761 count++;
1762 if (tmp->rdev) {
1763 /* Replaced device not technically faulty,
1764 * but we need to be sure it gets removed
1765 * and never re-added.
1766 */
1767 set_bit(Faulty, &tmp->rdev->flags);
1768 sysfs_notify_dirent_safe(
1769 tmp->rdev->sysfs_state);
1770 }
1771 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1772 } else if (tmp->rdev
1773 && tmp->rdev->recovery_offset == MaxSector
1774 && !test_bit(Faulty, &tmp->rdev->flags)
1775 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1776 count++;
1777 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1778 }
1779 }
1780 spin_lock_irqsave(&conf->device_lock, flags);
1781 mddev->degraded -= count;
1782 spin_unlock_irqrestore(&conf->device_lock, flags);
1783
1784 print_conf(conf);
1785 return count;
1786}
1787
1788static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1789{
1790 struct r10conf *conf = mddev->private;
1791 int err = -EEXIST;
1792 int mirror;
1793 int first = 0;
1794 int last = conf->geo.raid_disks - 1;
1795
1796 if (mddev->recovery_cp < MaxSector)
1797 /* only hot-add to in-sync arrays, as recovery is
1798 * very different from resync
1799 */
1800 return -EBUSY;
1801 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1802 return -EINVAL;
1803
1804 if (md_integrity_add_rdev(rdev, mddev))
1805 return -ENXIO;
1806
1807 if (rdev->raid_disk >= 0)
1808 first = last = rdev->raid_disk;
1809
1810 if (rdev->saved_raid_disk >= first &&
1811 rdev->saved_raid_disk < conf->geo.raid_disks &&
1812 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1813 mirror = rdev->saved_raid_disk;
1814 else
1815 mirror = first;
1816 for ( ; mirror <= last ; mirror++) {
1817 struct raid10_info *p = &conf->mirrors[mirror];
1818 if (p->recovery_disabled == mddev->recovery_disabled)
1819 continue;
1820 if (p->rdev) {
1821 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1822 p->replacement != NULL)
1823 continue;
1824 clear_bit(In_sync, &rdev->flags);
1825 set_bit(Replacement, &rdev->flags);
1826 rdev->raid_disk = mirror;
1827 err = 0;
1828 if (mddev->gendisk)
1829 disk_stack_limits(mddev->gendisk, rdev->bdev,
1830 rdev->data_offset << 9);
1831 conf->fullsync = 1;
1832 rcu_assign_pointer(p->replacement, rdev);
1833 break;
1834 }
1835
1836 if (mddev->gendisk)
1837 disk_stack_limits(mddev->gendisk, rdev->bdev,
1838 rdev->data_offset << 9);
1839
1840 p->head_position = 0;
1841 p->recovery_disabled = mddev->recovery_disabled - 1;
1842 rdev->raid_disk = mirror;
1843 err = 0;
1844 if (rdev->saved_raid_disk != mirror)
1845 conf->fullsync = 1;
1846 rcu_assign_pointer(p->rdev, rdev);
1847 break;
1848 }
1849 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1850 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1851
1852 print_conf(conf);
1853 return err;
1854}
1855
1856static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1857{
1858 struct r10conf *conf = mddev->private;
1859 int err = 0;
1860 int number = rdev->raid_disk;
1861 struct md_rdev **rdevp;
1862 struct raid10_info *p = conf->mirrors + number;
1863
1864 print_conf(conf);
1865 if (rdev == p->rdev)
1866 rdevp = &p->rdev;
1867 else if (rdev == p->replacement)
1868 rdevp = &p->replacement;
1869 else
1870 return 0;
1871
1872 if (test_bit(In_sync, &rdev->flags) ||
1873 atomic_read(&rdev->nr_pending)) {
1874 err = -EBUSY;
1875 goto abort;
1876 }
1877 /* Only remove non-faulty devices if recovery
1878 * is not possible.
1879 */
1880 if (!test_bit(Faulty, &rdev->flags) &&
1881 mddev->recovery_disabled != p->recovery_disabled &&
1882 (!p->replacement || p->replacement == rdev) &&
1883 number < conf->geo.raid_disks &&
1884 enough(conf, -1)) {
1885 err = -EBUSY;
1886 goto abort;
1887 }
1888 *rdevp = NULL;
1889 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1890 synchronize_rcu();
1891 if (atomic_read(&rdev->nr_pending)) {
1892 /* lost the race, try later */
1893 err = -EBUSY;
1894 *rdevp = rdev;
1895 goto abort;
1896 }
1897 }
1898 if (p->replacement) {
1899 /* We must have just cleared 'rdev' */
1900 p->rdev = p->replacement;
1901 clear_bit(Replacement, &p->replacement->flags);
1902 smp_mb(); /* Make sure other CPUs may see both as identical
1903 * but will never see neither -- if they are careful.
1904 */
1905 p->replacement = NULL;
1906 }
1907
1908 clear_bit(WantReplacement, &rdev->flags);
1909 err = md_integrity_register(mddev);
1910
1911abort:
1912
1913 print_conf(conf);
1914 return err;
1915}
1916
1917static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1918{
1919 struct r10conf *conf = r10_bio->mddev->private;
1920
1921 if (!bio->bi_status)
1922 set_bit(R10BIO_Uptodate, &r10_bio->state);
1923 else
1924 /* The write handler will notice the lack of
1925 * R10BIO_Uptodate and record any errors etc
1926 */
1927 atomic_add(r10_bio->sectors,
1928 &conf->mirrors[d].rdev->corrected_errors);
1929
1930 /* for reconstruct, we always reschedule after a read.
1931 * for resync, only after all reads
1932 */
1933 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1934 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1935 atomic_dec_and_test(&r10_bio->remaining)) {
1936 /* we have read all the blocks,
1937 * do the comparison in process context in raid10d
1938 */
1939 reschedule_retry(r10_bio);
1940 }
1941}
1942
1943static void end_sync_read(struct bio *bio)
1944{
1945 struct r10bio *r10_bio = get_resync_r10bio(bio);
1946 struct r10conf *conf = r10_bio->mddev->private;
1947 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1948
1949 __end_sync_read(r10_bio, bio, d);
1950}
1951
1952static void end_reshape_read(struct bio *bio)
1953{
1954 /* reshape read bio isn't allocated from r10buf_pool */
1955 struct r10bio *r10_bio = bio->bi_private;
1956
1957 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1958}
1959
1960static void end_sync_request(struct r10bio *r10_bio)
1961{
1962 struct mddev *mddev = r10_bio->mddev;
1963
1964 while (atomic_dec_and_test(&r10_bio->remaining)) {
1965 if (r10_bio->master_bio == NULL) {
1966 /* the primary of several recovery bios */
1967 sector_t s = r10_bio->sectors;
1968 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1969 test_bit(R10BIO_WriteError, &r10_bio->state))
1970 reschedule_retry(r10_bio);
1971 else
1972 put_buf(r10_bio);
1973 md_done_sync(mddev, s, 1);
1974 break;
1975 } else {
1976 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1977 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1978 test_bit(R10BIO_WriteError, &r10_bio->state))
1979 reschedule_retry(r10_bio);
1980 else
1981 put_buf(r10_bio);
1982 r10_bio = r10_bio2;
1983 }
1984 }
1985}
1986
1987static void end_sync_write(struct bio *bio)
1988{
1989 struct r10bio *r10_bio = get_resync_r10bio(bio);
1990 struct mddev *mddev = r10_bio->mddev;
1991 struct r10conf *conf = mddev->private;
1992 int d;
1993 sector_t first_bad;
1994 int bad_sectors;
1995 int slot;
1996 int repl;
1997 struct md_rdev *rdev = NULL;
1998
1999 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2000 if (repl)
2001 rdev = conf->mirrors[d].replacement;
2002 else
2003 rdev = conf->mirrors[d].rdev;
2004
2005 if (bio->bi_status) {
2006 if (repl)
2007 md_error(mddev, rdev);
2008 else {
2009 set_bit(WriteErrorSeen, &rdev->flags);
2010 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2011 set_bit(MD_RECOVERY_NEEDED,
2012 &rdev->mddev->recovery);
2013 set_bit(R10BIO_WriteError, &r10_bio->state);
2014 }
2015 } else if (is_badblock(rdev,
2016 r10_bio->devs[slot].addr,
2017 r10_bio->sectors,
2018 &first_bad, &bad_sectors))
2019 set_bit(R10BIO_MadeGood, &r10_bio->state);
2020
2021 rdev_dec_pending(rdev, mddev);
2022
2023 end_sync_request(r10_bio);
2024}
2025
2026/*
2027 * Note: sync and recover and handled very differently for raid10
2028 * This code is for resync.
2029 * For resync, we read through virtual addresses and read all blocks.
2030 * If there is any error, we schedule a write. The lowest numbered
2031 * drive is authoritative.
2032 * However requests come for physical address, so we need to map.
2033 * For every physical address there are raid_disks/copies virtual addresses,
2034 * which is always are least one, but is not necessarly an integer.
2035 * This means that a physical address can span multiple chunks, so we may
2036 * have to submit multiple io requests for a single sync request.
2037 */
2038/*
2039 * We check if all blocks are in-sync and only write to blocks that
2040 * aren't in sync
2041 */
2042static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2043{
2044 struct r10conf *conf = mddev->private;
2045 int i, first;
2046 struct bio *tbio, *fbio;
2047 int vcnt;
2048 struct page **tpages, **fpages;
2049
2050 atomic_set(&r10_bio->remaining, 1);
2051
2052 /* find the first device with a block */
2053 for (i=0; i<conf->copies; i++)
2054 if (!r10_bio->devs[i].bio->bi_status)
2055 break;
2056
2057 if (i == conf->copies)
2058 goto done;
2059
2060 first = i;
2061 fbio = r10_bio->devs[i].bio;
2062 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2063 fbio->bi_iter.bi_idx = 0;
2064 fpages = get_resync_pages(fbio)->pages;
2065
2066 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2067 /* now find blocks with errors */
2068 for (i=0 ; i < conf->copies ; i++) {
2069 int j, d;
2070 struct md_rdev *rdev;
2071 struct resync_pages *rp;
2072
2073 tbio = r10_bio->devs[i].bio;
2074
2075 if (tbio->bi_end_io != end_sync_read)
2076 continue;
2077 if (i == first)
2078 continue;
2079
2080 tpages = get_resync_pages(tbio)->pages;
2081 d = r10_bio->devs[i].devnum;
2082 rdev = conf->mirrors[d].rdev;
2083 if (!r10_bio->devs[i].bio->bi_status) {
2084 /* We know that the bi_io_vec layout is the same for
2085 * both 'first' and 'i', so we just compare them.
2086 * All vec entries are PAGE_SIZE;
2087 */
2088 int sectors = r10_bio->sectors;
2089 for (j = 0; j < vcnt; j++) {
2090 int len = PAGE_SIZE;
2091 if (sectors < (len / 512))
2092 len = sectors * 512;
2093 if (memcmp(page_address(fpages[j]),
2094 page_address(tpages[j]),
2095 len))
2096 break;
2097 sectors -= len/512;
2098 }
2099 if (j == vcnt)
2100 continue;
2101 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2102 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2103 /* Don't fix anything. */
2104 continue;
2105 } else if (test_bit(FailFast, &rdev->flags)) {
2106 /* Just give up on this device */
2107 md_error(rdev->mddev, rdev);
2108 continue;
2109 }
2110 /* Ok, we need to write this bio, either to correct an
2111 * inconsistency or to correct an unreadable block.
2112 * First we need to fixup bv_offset, bv_len and
2113 * bi_vecs, as the read request might have corrupted these
2114 */
2115 rp = get_resync_pages(tbio);
2116 bio_reset(tbio);
2117
2118 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2119
2120 rp->raid_bio = r10_bio;
2121 tbio->bi_private = rp;
2122 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2123 tbio->bi_end_io = end_sync_write;
2124 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2125
2126 bio_copy_data(tbio, fbio);
2127
2128 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2129 atomic_inc(&r10_bio->remaining);
2130 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2131
2132 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2133 tbio->bi_opf |= MD_FAILFAST;
2134 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2135 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2136 generic_make_request(tbio);
2137 }
2138
2139 /* Now write out to any replacement devices
2140 * that are active
2141 */
2142 for (i = 0; i < conf->copies; i++) {
2143 int d;
2144
2145 tbio = r10_bio->devs[i].repl_bio;
2146 if (!tbio || !tbio->bi_end_io)
2147 continue;
2148 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2149 && r10_bio->devs[i].bio != fbio)
2150 bio_copy_data(tbio, fbio);
2151 d = r10_bio->devs[i].devnum;
2152 atomic_inc(&r10_bio->remaining);
2153 md_sync_acct(conf->mirrors[d].replacement->bdev,
2154 bio_sectors(tbio));
2155 generic_make_request(tbio);
2156 }
2157
2158done:
2159 if (atomic_dec_and_test(&r10_bio->remaining)) {
2160 md_done_sync(mddev, r10_bio->sectors, 1);
2161 put_buf(r10_bio);
2162 }
2163}
2164
2165/*
2166 * Now for the recovery code.
2167 * Recovery happens across physical sectors.
2168 * We recover all non-is_sync drives by finding the virtual address of
2169 * each, and then choose a working drive that also has that virt address.
2170 * There is a separate r10_bio for each non-in_sync drive.
2171 * Only the first two slots are in use. The first for reading,
2172 * The second for writing.
2173 *
2174 */
2175static void fix_recovery_read_error(struct r10bio *r10_bio)
2176{
2177 /* We got a read error during recovery.
2178 * We repeat the read in smaller page-sized sections.
2179 * If a read succeeds, write it to the new device or record
2180 * a bad block if we cannot.
2181 * If a read fails, record a bad block on both old and
2182 * new devices.
2183 */
2184 struct mddev *mddev = r10_bio->mddev;
2185 struct r10conf *conf = mddev->private;
2186 struct bio *bio = r10_bio->devs[0].bio;
2187 sector_t sect = 0;
2188 int sectors = r10_bio->sectors;
2189 int idx = 0;
2190 int dr = r10_bio->devs[0].devnum;
2191 int dw = r10_bio->devs[1].devnum;
2192 struct page **pages = get_resync_pages(bio)->pages;
2193
2194 while (sectors) {
2195 int s = sectors;
2196 struct md_rdev *rdev;
2197 sector_t addr;
2198 int ok;
2199
2200 if (s > (PAGE_SIZE>>9))
2201 s = PAGE_SIZE >> 9;
2202
2203 rdev = conf->mirrors[dr].rdev;
2204 addr = r10_bio->devs[0].addr + sect,
2205 ok = sync_page_io(rdev,
2206 addr,
2207 s << 9,
2208 pages[idx],
2209 REQ_OP_READ, 0, false);
2210 if (ok) {
2211 rdev = conf->mirrors[dw].rdev;
2212 addr = r10_bio->devs[1].addr + sect;
2213 ok = sync_page_io(rdev,
2214 addr,
2215 s << 9,
2216 pages[idx],
2217 REQ_OP_WRITE, 0, false);
2218 if (!ok) {
2219 set_bit(WriteErrorSeen, &rdev->flags);
2220 if (!test_and_set_bit(WantReplacement,
2221 &rdev->flags))
2222 set_bit(MD_RECOVERY_NEEDED,
2223 &rdev->mddev->recovery);
2224 }
2225 }
2226 if (!ok) {
2227 /* We don't worry if we cannot set a bad block -
2228 * it really is bad so there is no loss in not
2229 * recording it yet
2230 */
2231 rdev_set_badblocks(rdev, addr, s, 0);
2232
2233 if (rdev != conf->mirrors[dw].rdev) {
2234 /* need bad block on destination too */
2235 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2236 addr = r10_bio->devs[1].addr + sect;
2237 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2238 if (!ok) {
2239 /* just abort the recovery */
2240 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2241 mdname(mddev));
2242
2243 conf->mirrors[dw].recovery_disabled
2244 = mddev->recovery_disabled;
2245 set_bit(MD_RECOVERY_INTR,
2246 &mddev->recovery);
2247 break;
2248 }
2249 }
2250 }
2251
2252 sectors -= s;
2253 sect += s;
2254 idx++;
2255 }
2256}
2257
2258static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2259{
2260 struct r10conf *conf = mddev->private;
2261 int d;
2262 struct bio *wbio, *wbio2;
2263
2264 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2265 fix_recovery_read_error(r10_bio);
2266 end_sync_request(r10_bio);
2267 return;
2268 }
2269
2270 /*
2271 * share the pages with the first bio
2272 * and submit the write request
2273 */
2274 d = r10_bio->devs[1].devnum;
2275 wbio = r10_bio->devs[1].bio;
2276 wbio2 = r10_bio->devs[1].repl_bio;
2277 /* Need to test wbio2->bi_end_io before we call
2278 * generic_make_request as if the former is NULL,
2279 * the latter is free to free wbio2.
2280 */
2281 if (wbio2 && !wbio2->bi_end_io)
2282 wbio2 = NULL;
2283 if (wbio->bi_end_io) {
2284 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2285 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2286 generic_make_request(wbio);
2287 }
2288 if (wbio2) {
2289 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2290 md_sync_acct(conf->mirrors[d].replacement->bdev,
2291 bio_sectors(wbio2));
2292 generic_make_request(wbio2);
2293 }
2294}
2295
2296/*
2297 * Used by fix_read_error() to decay the per rdev read_errors.
2298 * We halve the read error count for every hour that has elapsed
2299 * since the last recorded read error.
2300 *
2301 */
2302static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2303{
2304 long cur_time_mon;
2305 unsigned long hours_since_last;
2306 unsigned int read_errors = atomic_read(&rdev->read_errors);
2307
2308 cur_time_mon = ktime_get_seconds();
2309
2310 if (rdev->last_read_error == 0) {
2311 /* first time we've seen a read error */
2312 rdev->last_read_error = cur_time_mon;
2313 return;
2314 }
2315
2316 hours_since_last = (long)(cur_time_mon -
2317 rdev->last_read_error) / 3600;
2318
2319 rdev->last_read_error = cur_time_mon;
2320
2321 /*
2322 * if hours_since_last is > the number of bits in read_errors
2323 * just set read errors to 0. We do this to avoid
2324 * overflowing the shift of read_errors by hours_since_last.
2325 */
2326 if (hours_since_last >= 8 * sizeof(read_errors))
2327 atomic_set(&rdev->read_errors, 0);
2328 else
2329 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2330}
2331
2332static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2333 int sectors, struct page *page, int rw)
2334{
2335 sector_t first_bad;
2336 int bad_sectors;
2337
2338 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2339 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2340 return -1;
2341 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2342 /* success */
2343 return 1;
2344 if (rw == WRITE) {
2345 set_bit(WriteErrorSeen, &rdev->flags);
2346 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2347 set_bit(MD_RECOVERY_NEEDED,
2348 &rdev->mddev->recovery);
2349 }
2350 /* need to record an error - either for the block or the device */
2351 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2352 md_error(rdev->mddev, rdev);
2353 return 0;
2354}
2355
2356/*
2357 * This is a kernel thread which:
2358 *
2359 * 1. Retries failed read operations on working mirrors.
2360 * 2. Updates the raid superblock when problems encounter.
2361 * 3. Performs writes following reads for array synchronising.
2362 */
2363
2364static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2365{
2366 int sect = 0; /* Offset from r10_bio->sector */
2367 int sectors = r10_bio->sectors;
2368 struct md_rdev *rdev;
2369 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2370 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2371
2372 /* still own a reference to this rdev, so it cannot
2373 * have been cleared recently.
2374 */
2375 rdev = conf->mirrors[d].rdev;
2376
2377 if (test_bit(Faulty, &rdev->flags))
2378 /* drive has already been failed, just ignore any
2379 more fix_read_error() attempts */
2380 return;
2381
2382 check_decay_read_errors(mddev, rdev);
2383 atomic_inc(&rdev->read_errors);
2384 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2385 char b[BDEVNAME_SIZE];
2386 bdevname(rdev->bdev, b);
2387
2388 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2389 mdname(mddev), b,
2390 atomic_read(&rdev->read_errors), max_read_errors);
2391 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2392 mdname(mddev), b);
2393 md_error(mddev, rdev);
2394 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2395 return;
2396 }
2397
2398 while(sectors) {
2399 int s = sectors;
2400 int sl = r10_bio->read_slot;
2401 int success = 0;
2402 int start;
2403
2404 if (s > (PAGE_SIZE>>9))
2405 s = PAGE_SIZE >> 9;
2406
2407 rcu_read_lock();
2408 do {
2409 sector_t first_bad;
2410 int bad_sectors;
2411
2412 d = r10_bio->devs[sl].devnum;
2413 rdev = rcu_dereference(conf->mirrors[d].rdev);
2414 if (rdev &&
2415 test_bit(In_sync, &rdev->flags) &&
2416 !test_bit(Faulty, &rdev->flags) &&
2417 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2418 &first_bad, &bad_sectors) == 0) {
2419 atomic_inc(&rdev->nr_pending);
2420 rcu_read_unlock();
2421 success = sync_page_io(rdev,
2422 r10_bio->devs[sl].addr +
2423 sect,
2424 s<<9,
2425 conf->tmppage,
2426 REQ_OP_READ, 0, false);
2427 rdev_dec_pending(rdev, mddev);
2428 rcu_read_lock();
2429 if (success)
2430 break;
2431 }
2432 sl++;
2433 if (sl == conf->copies)
2434 sl = 0;
2435 } while (!success && sl != r10_bio->read_slot);
2436 rcu_read_unlock();
2437
2438 if (!success) {
2439 /* Cannot read from anywhere, just mark the block
2440 * as bad on the first device to discourage future
2441 * reads.
2442 */
2443 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2444 rdev = conf->mirrors[dn].rdev;
2445
2446 if (!rdev_set_badblocks(
2447 rdev,
2448 r10_bio->devs[r10_bio->read_slot].addr
2449 + sect,
2450 s, 0)) {
2451 md_error(mddev, rdev);
2452 r10_bio->devs[r10_bio->read_slot].bio
2453 = IO_BLOCKED;
2454 }
2455 break;
2456 }
2457
2458 start = sl;
2459 /* write it back and re-read */
2460 rcu_read_lock();
2461 while (sl != r10_bio->read_slot) {
2462 char b[BDEVNAME_SIZE];
2463
2464 if (sl==0)
2465 sl = conf->copies;
2466 sl--;
2467 d = r10_bio->devs[sl].devnum;
2468 rdev = rcu_dereference(conf->mirrors[d].rdev);
2469 if (!rdev ||
2470 test_bit(Faulty, &rdev->flags) ||
2471 !test_bit(In_sync, &rdev->flags))
2472 continue;
2473
2474 atomic_inc(&rdev->nr_pending);
2475 rcu_read_unlock();
2476 if (r10_sync_page_io(rdev,
2477 r10_bio->devs[sl].addr +
2478 sect,
2479 s, conf->tmppage, WRITE)
2480 == 0) {
2481 /* Well, this device is dead */
2482 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2483 mdname(mddev), s,
2484 (unsigned long long)(
2485 sect +
2486 choose_data_offset(r10_bio,
2487 rdev)),
2488 bdevname(rdev->bdev, b));
2489 pr_notice("md/raid10:%s: %s: failing drive\n",
2490 mdname(mddev),
2491 bdevname(rdev->bdev, b));
2492 }
2493 rdev_dec_pending(rdev, mddev);
2494 rcu_read_lock();
2495 }
2496 sl = start;
2497 while (sl != r10_bio->read_slot) {
2498 char b[BDEVNAME_SIZE];
2499
2500 if (sl==0)
2501 sl = conf->copies;
2502 sl--;
2503 d = r10_bio->devs[sl].devnum;
2504 rdev = rcu_dereference(conf->mirrors[d].rdev);
2505 if (!rdev ||
2506 test_bit(Faulty, &rdev->flags) ||
2507 !test_bit(In_sync, &rdev->flags))
2508 continue;
2509
2510 atomic_inc(&rdev->nr_pending);
2511 rcu_read_unlock();
2512 switch (r10_sync_page_io(rdev,
2513 r10_bio->devs[sl].addr +
2514 sect,
2515 s, conf->tmppage,
2516 READ)) {
2517 case 0:
2518 /* Well, this device is dead */
2519 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2520 mdname(mddev), s,
2521 (unsigned long long)(
2522 sect +
2523 choose_data_offset(r10_bio, rdev)),
2524 bdevname(rdev->bdev, b));
2525 pr_notice("md/raid10:%s: %s: failing drive\n",
2526 mdname(mddev),
2527 bdevname(rdev->bdev, b));
2528 break;
2529 case 1:
2530 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2531 mdname(mddev), s,
2532 (unsigned long long)(
2533 sect +
2534 choose_data_offset(r10_bio, rdev)),
2535 bdevname(rdev->bdev, b));
2536 atomic_add(s, &rdev->corrected_errors);
2537 }
2538
2539 rdev_dec_pending(rdev, mddev);
2540 rcu_read_lock();
2541 }
2542 rcu_read_unlock();
2543
2544 sectors -= s;
2545 sect += s;
2546 }
2547}
2548
2549static int narrow_write_error(struct r10bio *r10_bio, int i)
2550{
2551 struct bio *bio = r10_bio->master_bio;
2552 struct mddev *mddev = r10_bio->mddev;
2553 struct r10conf *conf = mddev->private;
2554 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2555 /* bio has the data to be written to slot 'i' where
2556 * we just recently had a write error.
2557 * We repeatedly clone the bio and trim down to one block,
2558 * then try the write. Where the write fails we record
2559 * a bad block.
2560 * It is conceivable that the bio doesn't exactly align with
2561 * blocks. We must handle this.
2562 *
2563 * We currently own a reference to the rdev.
2564 */
2565
2566 int block_sectors;
2567 sector_t sector;
2568 int sectors;
2569 int sect_to_write = r10_bio->sectors;
2570 int ok = 1;
2571
2572 if (rdev->badblocks.shift < 0)
2573 return 0;
2574
2575 block_sectors = roundup(1 << rdev->badblocks.shift,
2576 bdev_logical_block_size(rdev->bdev) >> 9);
2577 sector = r10_bio->sector;
2578 sectors = ((r10_bio->sector + block_sectors)
2579 & ~(sector_t)(block_sectors - 1))
2580 - sector;
2581
2582 while (sect_to_write) {
2583 struct bio *wbio;
2584 sector_t wsector;
2585 if (sectors > sect_to_write)
2586 sectors = sect_to_write;
2587 /* Write at 'sector' for 'sectors' */
2588 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2589 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2590 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2591 wbio->bi_iter.bi_sector = wsector +
2592 choose_data_offset(r10_bio, rdev);
2593 bio_set_dev(wbio, rdev->bdev);
2594 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2595
2596 if (submit_bio_wait(wbio) < 0)
2597 /* Failure! */
2598 ok = rdev_set_badblocks(rdev, wsector,
2599 sectors, 0)
2600 && ok;
2601
2602 bio_put(wbio);
2603 sect_to_write -= sectors;
2604 sector += sectors;
2605 sectors = block_sectors;
2606 }
2607 return ok;
2608}
2609
2610static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2611{
2612 int slot = r10_bio->read_slot;
2613 struct bio *bio;
2614 struct r10conf *conf = mddev->private;
2615 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2616
2617 /* we got a read error. Maybe the drive is bad. Maybe just
2618 * the block and we can fix it.
2619 * We freeze all other IO, and try reading the block from
2620 * other devices. When we find one, we re-write
2621 * and check it that fixes the read error.
2622 * This is all done synchronously while the array is
2623 * frozen.
2624 */
2625 bio = r10_bio->devs[slot].bio;
2626 bio_put(bio);
2627 r10_bio->devs[slot].bio = NULL;
2628
2629 if (mddev->ro)
2630 r10_bio->devs[slot].bio = IO_BLOCKED;
2631 else if (!test_bit(FailFast, &rdev->flags)) {
2632 freeze_array(conf, 1);
2633 fix_read_error(conf, mddev, r10_bio);
2634 unfreeze_array(conf);
2635 } else
2636 md_error(mddev, rdev);
2637
2638 rdev_dec_pending(rdev, mddev);
2639 allow_barrier(conf);
2640 r10_bio->state = 0;
2641 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2642}
2643
2644static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2645{
2646 /* Some sort of write request has finished and it
2647 * succeeded in writing where we thought there was a
2648 * bad block. So forget the bad block.
2649 * Or possibly if failed and we need to record
2650 * a bad block.
2651 */
2652 int m;
2653 struct md_rdev *rdev;
2654
2655 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2656 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2657 for (m = 0; m < conf->copies; m++) {
2658 int dev = r10_bio->devs[m].devnum;
2659 rdev = conf->mirrors[dev].rdev;
2660 if (r10_bio->devs[m].bio == NULL ||
2661 r10_bio->devs[m].bio->bi_end_io == NULL)
2662 continue;
2663 if (!r10_bio->devs[m].bio->bi_status) {
2664 rdev_clear_badblocks(
2665 rdev,
2666 r10_bio->devs[m].addr,
2667 r10_bio->sectors, 0);
2668 } else {
2669 if (!rdev_set_badblocks(
2670 rdev,
2671 r10_bio->devs[m].addr,
2672 r10_bio->sectors, 0))
2673 md_error(conf->mddev, rdev);
2674 }
2675 rdev = conf->mirrors[dev].replacement;
2676 if (r10_bio->devs[m].repl_bio == NULL ||
2677 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2678 continue;
2679
2680 if (!r10_bio->devs[m].repl_bio->bi_status) {
2681 rdev_clear_badblocks(
2682 rdev,
2683 r10_bio->devs[m].addr,
2684 r10_bio->sectors, 0);
2685 } else {
2686 if (!rdev_set_badblocks(
2687 rdev,
2688 r10_bio->devs[m].addr,
2689 r10_bio->sectors, 0))
2690 md_error(conf->mddev, rdev);
2691 }
2692 }
2693 put_buf(r10_bio);
2694 } else {
2695 bool fail = false;
2696 for (m = 0; m < conf->copies; m++) {
2697 int dev = r10_bio->devs[m].devnum;
2698 struct bio *bio = r10_bio->devs[m].bio;
2699 rdev = conf->mirrors[dev].rdev;
2700 if (bio == IO_MADE_GOOD) {
2701 rdev_clear_badblocks(
2702 rdev,
2703 r10_bio->devs[m].addr,
2704 r10_bio->sectors, 0);
2705 rdev_dec_pending(rdev, conf->mddev);
2706 } else if (bio != NULL && bio->bi_status) {
2707 fail = true;
2708 if (!narrow_write_error(r10_bio, m)) {
2709 md_error(conf->mddev, rdev);
2710 set_bit(R10BIO_Degraded,
2711 &r10_bio->state);
2712 }
2713 rdev_dec_pending(rdev, conf->mddev);
2714 }
2715 bio = r10_bio->devs[m].repl_bio;
2716 rdev = conf->mirrors[dev].replacement;
2717 if (rdev && bio == IO_MADE_GOOD) {
2718 rdev_clear_badblocks(
2719 rdev,
2720 r10_bio->devs[m].addr,
2721 r10_bio->sectors, 0);
2722 rdev_dec_pending(rdev, conf->mddev);
2723 }
2724 }
2725 if (fail) {
2726 spin_lock_irq(&conf->device_lock);
2727 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2728 conf->nr_queued++;
2729 spin_unlock_irq(&conf->device_lock);
2730 /*
2731 * In case freeze_array() is waiting for condition
2732 * nr_pending == nr_queued + extra to be true.
2733 */
2734 wake_up(&conf->wait_barrier);
2735 md_wakeup_thread(conf->mddev->thread);
2736 } else {
2737 if (test_bit(R10BIO_WriteError,
2738 &r10_bio->state))
2739 close_write(r10_bio);
2740 raid_end_bio_io(r10_bio);
2741 }
2742 }
2743}
2744
2745static void raid10d(struct md_thread *thread)
2746{
2747 struct mddev *mddev = thread->mddev;
2748 struct r10bio *r10_bio;
2749 unsigned long flags;
2750 struct r10conf *conf = mddev->private;
2751 struct list_head *head = &conf->retry_list;
2752 struct blk_plug plug;
2753
2754 md_check_recovery(mddev);
2755
2756 if (!list_empty_careful(&conf->bio_end_io_list) &&
2757 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2758 LIST_HEAD(tmp);
2759 spin_lock_irqsave(&conf->device_lock, flags);
2760 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2761 while (!list_empty(&conf->bio_end_io_list)) {
2762 list_move(conf->bio_end_io_list.prev, &tmp);
2763 conf->nr_queued--;
2764 }
2765 }
2766 spin_unlock_irqrestore(&conf->device_lock, flags);
2767 while (!list_empty(&tmp)) {
2768 r10_bio = list_first_entry(&tmp, struct r10bio,
2769 retry_list);
2770 list_del(&r10_bio->retry_list);
2771 if (mddev->degraded)
2772 set_bit(R10BIO_Degraded, &r10_bio->state);
2773
2774 if (test_bit(R10BIO_WriteError,
2775 &r10_bio->state))
2776 close_write(r10_bio);
2777 raid_end_bio_io(r10_bio);
2778 }
2779 }
2780
2781 blk_start_plug(&plug);
2782 for (;;) {
2783
2784 flush_pending_writes(conf);
2785
2786 spin_lock_irqsave(&conf->device_lock, flags);
2787 if (list_empty(head)) {
2788 spin_unlock_irqrestore(&conf->device_lock, flags);
2789 break;
2790 }
2791 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2792 list_del(head->prev);
2793 conf->nr_queued--;
2794 spin_unlock_irqrestore(&conf->device_lock, flags);
2795
2796 mddev = r10_bio->mddev;
2797 conf = mddev->private;
2798 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2799 test_bit(R10BIO_WriteError, &r10_bio->state))
2800 handle_write_completed(conf, r10_bio);
2801 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2802 reshape_request_write(mddev, r10_bio);
2803 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2804 sync_request_write(mddev, r10_bio);
2805 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2806 recovery_request_write(mddev, r10_bio);
2807 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2808 handle_read_error(mddev, r10_bio);
2809 else
2810 WARN_ON_ONCE(1);
2811
2812 cond_resched();
2813 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2814 md_check_recovery(mddev);
2815 }
2816 blk_finish_plug(&plug);
2817}
2818
2819static int init_resync(struct r10conf *conf)
2820{
2821 int ret, buffs, i;
2822
2823 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2824 BUG_ON(mempool_initialized(&conf->r10buf_pool));
2825 conf->have_replacement = 0;
2826 for (i = 0; i < conf->geo.raid_disks; i++)
2827 if (conf->mirrors[i].replacement)
2828 conf->have_replacement = 1;
2829 ret = mempool_init(&conf->r10buf_pool, buffs,
2830 r10buf_pool_alloc, r10buf_pool_free, conf);
2831 if (ret)
2832 return ret;
2833 conf->next_resync = 0;
2834 return 0;
2835}
2836
2837static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2838{
2839 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2840 struct rsync_pages *rp;
2841 struct bio *bio;
2842 int nalloc;
2843 int i;
2844
2845 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2846 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2847 nalloc = conf->copies; /* resync */
2848 else
2849 nalloc = 2; /* recovery */
2850
2851 for (i = 0; i < nalloc; i++) {
2852 bio = r10bio->devs[i].bio;
2853 rp = bio->bi_private;
2854 bio_reset(bio);
2855 bio->bi_private = rp;
2856 bio = r10bio->devs[i].repl_bio;
2857 if (bio) {
2858 rp = bio->bi_private;
2859 bio_reset(bio);
2860 bio->bi_private = rp;
2861 }
2862 }
2863 return r10bio;
2864}
2865
2866/*
2867 * Set cluster_sync_high since we need other nodes to add the
2868 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2869 */
2870static void raid10_set_cluster_sync_high(struct r10conf *conf)
2871{
2872 sector_t window_size;
2873 int extra_chunk, chunks;
2874
2875 /*
2876 * First, here we define "stripe" as a unit which across
2877 * all member devices one time, so we get chunks by use
2878 * raid_disks / near_copies. Otherwise, if near_copies is
2879 * close to raid_disks, then resync window could increases
2880 * linearly with the increase of raid_disks, which means
2881 * we will suspend a really large IO window while it is not
2882 * necessary. If raid_disks is not divisible by near_copies,
2883 * an extra chunk is needed to ensure the whole "stripe" is
2884 * covered.
2885 */
2886
2887 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2888 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2889 extra_chunk = 0;
2890 else
2891 extra_chunk = 1;
2892 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2893
2894 /*
2895 * At least use a 32M window to align with raid1's resync window
2896 */
2897 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2898 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2899
2900 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2901}
2902
2903/*
2904 * perform a "sync" on one "block"
2905 *
2906 * We need to make sure that no normal I/O request - particularly write
2907 * requests - conflict with active sync requests.
2908 *
2909 * This is achieved by tracking pending requests and a 'barrier' concept
2910 * that can be installed to exclude normal IO requests.
2911 *
2912 * Resync and recovery are handled very differently.
2913 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2914 *
2915 * For resync, we iterate over virtual addresses, read all copies,
2916 * and update if there are differences. If only one copy is live,
2917 * skip it.
2918 * For recovery, we iterate over physical addresses, read a good
2919 * value for each non-in_sync drive, and over-write.
2920 *
2921 * So, for recovery we may have several outstanding complex requests for a
2922 * given address, one for each out-of-sync device. We model this by allocating
2923 * a number of r10_bio structures, one for each out-of-sync device.
2924 * As we setup these structures, we collect all bio's together into a list
2925 * which we then process collectively to add pages, and then process again
2926 * to pass to generic_make_request.
2927 *
2928 * The r10_bio structures are linked using a borrowed master_bio pointer.
2929 * This link is counted in ->remaining. When the r10_bio that points to NULL
2930 * has its remaining count decremented to 0, the whole complex operation
2931 * is complete.
2932 *
2933 */
2934
2935static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2936 int *skipped)
2937{
2938 struct r10conf *conf = mddev->private;
2939 struct r10bio *r10_bio;
2940 struct bio *biolist = NULL, *bio;
2941 sector_t max_sector, nr_sectors;
2942 int i;
2943 int max_sync;
2944 sector_t sync_blocks;
2945 sector_t sectors_skipped = 0;
2946 int chunks_skipped = 0;
2947 sector_t chunk_mask = conf->geo.chunk_mask;
2948 int page_idx = 0;
2949
2950 if (!mempool_initialized(&conf->r10buf_pool))
2951 if (init_resync(conf))
2952 return 0;
2953
2954 /*
2955 * Allow skipping a full rebuild for incremental assembly
2956 * of a clean array, like RAID1 does.
2957 */
2958 if (mddev->bitmap == NULL &&
2959 mddev->recovery_cp == MaxSector &&
2960 mddev->reshape_position == MaxSector &&
2961 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2962 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2963 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2964 conf->fullsync == 0) {
2965 *skipped = 1;
2966 return mddev->dev_sectors - sector_nr;
2967 }
2968
2969 skipped:
2970 max_sector = mddev->dev_sectors;
2971 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2972 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2973 max_sector = mddev->resync_max_sectors;
2974 if (sector_nr >= max_sector) {
2975 conf->cluster_sync_low = 0;
2976 conf->cluster_sync_high = 0;
2977
2978 /* If we aborted, we need to abort the
2979 * sync on the 'current' bitmap chucks (there can
2980 * be several when recovering multiple devices).
2981 * as we may have started syncing it but not finished.
2982 * We can find the current address in
2983 * mddev->curr_resync, but for recovery,
2984 * we need to convert that to several
2985 * virtual addresses.
2986 */
2987 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2988 end_reshape(conf);
2989 close_sync(conf);
2990 return 0;
2991 }
2992
2993 if (mddev->curr_resync < max_sector) { /* aborted */
2994 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2995 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2996 &sync_blocks, 1);
2997 else for (i = 0; i < conf->geo.raid_disks; i++) {
2998 sector_t sect =
2999 raid10_find_virt(conf, mddev->curr_resync, i);
3000 md_bitmap_end_sync(mddev->bitmap, sect,
3001 &sync_blocks, 1);
3002 }
3003 } else {
3004 /* completed sync */
3005 if ((!mddev->bitmap || conf->fullsync)
3006 && conf->have_replacement
3007 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3008 /* Completed a full sync so the replacements
3009 * are now fully recovered.
3010 */
3011 rcu_read_lock();
3012 for (i = 0; i < conf->geo.raid_disks; i++) {
3013 struct md_rdev *rdev =
3014 rcu_dereference(conf->mirrors[i].replacement);
3015 if (rdev)
3016 rdev->recovery_offset = MaxSector;
3017 }
3018 rcu_read_unlock();
3019 }
3020 conf->fullsync = 0;
3021 }
3022 md_bitmap_close_sync(mddev->bitmap);
3023 close_sync(conf);
3024 *skipped = 1;
3025 return sectors_skipped;
3026 }
3027
3028 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3029 return reshape_request(mddev, sector_nr, skipped);
3030
3031 if (chunks_skipped >= conf->geo.raid_disks) {
3032 /* if there has been nothing to do on any drive,
3033 * then there is nothing to do at all..
3034 */
3035 *skipped = 1;
3036 return (max_sector - sector_nr) + sectors_skipped;
3037 }
3038
3039 if (max_sector > mddev->resync_max)
3040 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3041
3042 /* make sure whole request will fit in a chunk - if chunks
3043 * are meaningful
3044 */
3045 if (conf->geo.near_copies < conf->geo.raid_disks &&
3046 max_sector > (sector_nr | chunk_mask))
3047 max_sector = (sector_nr | chunk_mask) + 1;
3048
3049 /*
3050 * If there is non-resync activity waiting for a turn, then let it
3051 * though before starting on this new sync request.
3052 */
3053 if (conf->nr_waiting)
3054 schedule_timeout_uninterruptible(1);
3055
3056 /* Again, very different code for resync and recovery.
3057 * Both must result in an r10bio with a list of bios that
3058 * have bi_end_io, bi_sector, bi_disk set,
3059 * and bi_private set to the r10bio.
3060 * For recovery, we may actually create several r10bios
3061 * with 2 bios in each, that correspond to the bios in the main one.
3062 * In this case, the subordinate r10bios link back through a
3063 * borrowed master_bio pointer, and the counter in the master
3064 * includes a ref from each subordinate.
3065 */
3066 /* First, we decide what to do and set ->bi_end_io
3067 * To end_sync_read if we want to read, and
3068 * end_sync_write if we will want to write.
3069 */
3070
3071 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3072 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3073 /* recovery... the complicated one */
3074 int j;
3075 r10_bio = NULL;
3076
3077 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3078 int still_degraded;
3079 struct r10bio *rb2;
3080 sector_t sect;
3081 int must_sync;
3082 int any_working;
3083 struct raid10_info *mirror = &conf->mirrors[i];
3084 struct md_rdev *mrdev, *mreplace;
3085
3086 rcu_read_lock();
3087 mrdev = rcu_dereference(mirror->rdev);
3088 mreplace = rcu_dereference(mirror->replacement);
3089
3090 if ((mrdev == NULL ||
3091 test_bit(Faulty, &mrdev->flags) ||
3092 test_bit(In_sync, &mrdev->flags)) &&
3093 (mreplace == NULL ||
3094 test_bit(Faulty, &mreplace->flags))) {
3095 rcu_read_unlock();
3096 continue;
3097 }
3098
3099 still_degraded = 0;
3100 /* want to reconstruct this device */
3101 rb2 = r10_bio;
3102 sect = raid10_find_virt(conf, sector_nr, i);
3103 if (sect >= mddev->resync_max_sectors) {
3104 /* last stripe is not complete - don't
3105 * try to recover this sector.
3106 */
3107 rcu_read_unlock();
3108 continue;
3109 }
3110 if (mreplace && test_bit(Faulty, &mreplace->flags))
3111 mreplace = NULL;
3112 /* Unless we are doing a full sync, or a replacement
3113 * we only need to recover the block if it is set in
3114 * the bitmap
3115 */
3116 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3117 &sync_blocks, 1);
3118 if (sync_blocks < max_sync)
3119 max_sync = sync_blocks;
3120 if (!must_sync &&
3121 mreplace == NULL &&
3122 !conf->fullsync) {
3123 /* yep, skip the sync_blocks here, but don't assume
3124 * that there will never be anything to do here
3125 */
3126 chunks_skipped = -1;
3127 rcu_read_unlock();
3128 continue;
3129 }
3130 atomic_inc(&mrdev->nr_pending);
3131 if (mreplace)
3132 atomic_inc(&mreplace->nr_pending);
3133 rcu_read_unlock();
3134
3135 r10_bio = raid10_alloc_init_r10buf(conf);
3136 r10_bio->state = 0;
3137 raise_barrier(conf, rb2 != NULL);
3138 atomic_set(&r10_bio->remaining, 0);
3139
3140 r10_bio->master_bio = (struct bio*)rb2;
3141 if (rb2)
3142 atomic_inc(&rb2->remaining);
3143 r10_bio->mddev = mddev;
3144 set_bit(R10BIO_IsRecover, &r10_bio->state);
3145 r10_bio->sector = sect;
3146
3147 raid10_find_phys(conf, r10_bio);
3148
3149 /* Need to check if the array will still be
3150 * degraded
3151 */
3152 rcu_read_lock();
3153 for (j = 0; j < conf->geo.raid_disks; j++) {
3154 struct md_rdev *rdev = rcu_dereference(
3155 conf->mirrors[j].rdev);
3156 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3157 still_degraded = 1;
3158 break;
3159 }
3160 }
3161
3162 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3163 &sync_blocks, still_degraded);
3164
3165 any_working = 0;
3166 for (j=0; j<conf->copies;j++) {
3167 int k;
3168 int d = r10_bio->devs[j].devnum;
3169 sector_t from_addr, to_addr;
3170 struct md_rdev *rdev =
3171 rcu_dereference(conf->mirrors[d].rdev);
3172 sector_t sector, first_bad;
3173 int bad_sectors;
3174 if (!rdev ||
3175 !test_bit(In_sync, &rdev->flags))
3176 continue;
3177 /* This is where we read from */
3178 any_working = 1;
3179 sector = r10_bio->devs[j].addr;
3180
3181 if (is_badblock(rdev, sector, max_sync,
3182 &first_bad, &bad_sectors)) {
3183 if (first_bad > sector)
3184 max_sync = first_bad - sector;
3185 else {
3186 bad_sectors -= (sector
3187 - first_bad);
3188 if (max_sync > bad_sectors)
3189 max_sync = bad_sectors;
3190 continue;
3191 }
3192 }
3193 bio = r10_bio->devs[0].bio;
3194 bio->bi_next = biolist;
3195 biolist = bio;
3196 bio->bi_end_io = end_sync_read;
3197 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3198 if (test_bit(FailFast, &rdev->flags))
3199 bio->bi_opf |= MD_FAILFAST;
3200 from_addr = r10_bio->devs[j].addr;
3201 bio->bi_iter.bi_sector = from_addr +
3202 rdev->data_offset;
3203 bio_set_dev(bio, rdev->bdev);
3204 atomic_inc(&rdev->nr_pending);
3205 /* and we write to 'i' (if not in_sync) */
3206
3207 for (k=0; k<conf->copies; k++)
3208 if (r10_bio->devs[k].devnum == i)
3209 break;
3210 BUG_ON(k == conf->copies);
3211 to_addr = r10_bio->devs[k].addr;
3212 r10_bio->devs[0].devnum = d;
3213 r10_bio->devs[0].addr = from_addr;
3214 r10_bio->devs[1].devnum = i;
3215 r10_bio->devs[1].addr = to_addr;
3216
3217 if (!test_bit(In_sync, &mrdev->flags)) {
3218 bio = r10_bio->devs[1].bio;
3219 bio->bi_next = biolist;
3220 biolist = bio;
3221 bio->bi_end_io = end_sync_write;
3222 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3223 bio->bi_iter.bi_sector = to_addr
3224 + mrdev->data_offset;
3225 bio_set_dev(bio, mrdev->bdev);
3226 atomic_inc(&r10_bio->remaining);
3227 } else
3228 r10_bio->devs[1].bio->bi_end_io = NULL;
3229
3230 /* and maybe write to replacement */
3231 bio = r10_bio->devs[1].repl_bio;
3232 if (bio)
3233 bio->bi_end_io = NULL;
3234 /* Note: if mreplace != NULL, then bio
3235 * cannot be NULL as r10buf_pool_alloc will
3236 * have allocated it.
3237 * So the second test here is pointless.
3238 * But it keeps semantic-checkers happy, and
3239 * this comment keeps human reviewers
3240 * happy.
3241 */
3242 if (mreplace == NULL || bio == NULL ||
3243 test_bit(Faulty, &mreplace->flags))
3244 break;
3245 bio->bi_next = biolist;
3246 biolist = bio;
3247 bio->bi_end_io = end_sync_write;
3248 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3249 bio->bi_iter.bi_sector = to_addr +
3250 mreplace->data_offset;
3251 bio_set_dev(bio, mreplace->bdev);
3252 atomic_inc(&r10_bio->remaining);
3253 break;
3254 }
3255 rcu_read_unlock();
3256 if (j == conf->copies) {
3257 /* Cannot recover, so abort the recovery or
3258 * record a bad block */
3259 if (any_working) {
3260 /* problem is that there are bad blocks
3261 * on other device(s)
3262 */
3263 int k;
3264 for (k = 0; k < conf->copies; k++)
3265 if (r10_bio->devs[k].devnum == i)
3266 break;
3267 if (!test_bit(In_sync,
3268 &mrdev->flags)
3269 && !rdev_set_badblocks(
3270 mrdev,
3271 r10_bio->devs[k].addr,
3272 max_sync, 0))
3273 any_working = 0;
3274 if (mreplace &&
3275 !rdev_set_badblocks(
3276 mreplace,
3277 r10_bio->devs[k].addr,
3278 max_sync, 0))
3279 any_working = 0;
3280 }
3281 if (!any_working) {
3282 if (!test_and_set_bit(MD_RECOVERY_INTR,
3283 &mddev->recovery))
3284 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3285 mdname(mddev));
3286 mirror->recovery_disabled
3287 = mddev->recovery_disabled;
3288 }
3289 put_buf(r10_bio);
3290 if (rb2)
3291 atomic_dec(&rb2->remaining);
3292 r10_bio = rb2;
3293 rdev_dec_pending(mrdev, mddev);
3294 if (mreplace)
3295 rdev_dec_pending(mreplace, mddev);
3296 break;
3297 }
3298 rdev_dec_pending(mrdev, mddev);
3299 if (mreplace)
3300 rdev_dec_pending(mreplace, mddev);
3301 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3302 /* Only want this if there is elsewhere to
3303 * read from. 'j' is currently the first
3304 * readable copy.
3305 */
3306 int targets = 1;
3307 for (; j < conf->copies; j++) {
3308 int d = r10_bio->devs[j].devnum;
3309 if (conf->mirrors[d].rdev &&
3310 test_bit(In_sync,
3311 &conf->mirrors[d].rdev->flags))
3312 targets++;
3313 }
3314 if (targets == 1)
3315 r10_bio->devs[0].bio->bi_opf
3316 &= ~MD_FAILFAST;
3317 }
3318 }
3319 if (biolist == NULL) {
3320 while (r10_bio) {
3321 struct r10bio *rb2 = r10_bio;
3322 r10_bio = (struct r10bio*) rb2->master_bio;
3323 rb2->master_bio = NULL;
3324 put_buf(rb2);
3325 }
3326 goto giveup;
3327 }
3328 } else {
3329 /* resync. Schedule a read for every block at this virt offset */
3330 int count = 0;
3331
3332 /*
3333 * Since curr_resync_completed could probably not update in
3334 * time, and we will set cluster_sync_low based on it.
3335 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3336 * safety reason, which ensures curr_resync_completed is
3337 * updated in bitmap_cond_end_sync.
3338 */
3339 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3340 mddev_is_clustered(mddev) &&
3341 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3342
3343 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3344 &sync_blocks, mddev->degraded) &&
3345 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3346 &mddev->recovery)) {
3347 /* We can skip this block */
3348 *skipped = 1;
3349 return sync_blocks + sectors_skipped;
3350 }
3351 if (sync_blocks < max_sync)
3352 max_sync = sync_blocks;
3353 r10_bio = raid10_alloc_init_r10buf(conf);
3354 r10_bio->state = 0;
3355
3356 r10_bio->mddev = mddev;
3357 atomic_set(&r10_bio->remaining, 0);
3358 raise_barrier(conf, 0);
3359 conf->next_resync = sector_nr;
3360
3361 r10_bio->master_bio = NULL;
3362 r10_bio->sector = sector_nr;
3363 set_bit(R10BIO_IsSync, &r10_bio->state);
3364 raid10_find_phys(conf, r10_bio);
3365 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3366
3367 for (i = 0; i < conf->copies; i++) {
3368 int d = r10_bio->devs[i].devnum;
3369 sector_t first_bad, sector;
3370 int bad_sectors;
3371 struct md_rdev *rdev;
3372
3373 if (r10_bio->devs[i].repl_bio)
3374 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3375
3376 bio = r10_bio->devs[i].bio;
3377 bio->bi_status = BLK_STS_IOERR;
3378 rcu_read_lock();
3379 rdev = rcu_dereference(conf->mirrors[d].rdev);
3380 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3381 rcu_read_unlock();
3382 continue;
3383 }
3384 sector = r10_bio->devs[i].addr;
3385 if (is_badblock(rdev, sector, max_sync,
3386 &first_bad, &bad_sectors)) {
3387 if (first_bad > sector)
3388 max_sync = first_bad - sector;
3389 else {
3390 bad_sectors -= (sector - first_bad);
3391 if (max_sync > bad_sectors)
3392 max_sync = bad_sectors;
3393 rcu_read_unlock();
3394 continue;
3395 }
3396 }
3397 atomic_inc(&rdev->nr_pending);
3398 atomic_inc(&r10_bio->remaining);
3399 bio->bi_next = biolist;
3400 biolist = bio;
3401 bio->bi_end_io = end_sync_read;
3402 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3403 if (test_bit(FailFast, &rdev->flags))
3404 bio->bi_opf |= MD_FAILFAST;
3405 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3406 bio_set_dev(bio, rdev->bdev);
3407 count++;
3408
3409 rdev = rcu_dereference(conf->mirrors[d].replacement);
3410 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3411 rcu_read_unlock();
3412 continue;
3413 }
3414 atomic_inc(&rdev->nr_pending);
3415
3416 /* Need to set up for writing to the replacement */
3417 bio = r10_bio->devs[i].repl_bio;
3418 bio->bi_status = BLK_STS_IOERR;
3419
3420 sector = r10_bio->devs[i].addr;
3421 bio->bi_next = biolist;
3422 biolist = bio;
3423 bio->bi_end_io = end_sync_write;
3424 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3425 if (test_bit(FailFast, &rdev->flags))
3426 bio->bi_opf |= MD_FAILFAST;
3427 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3428 bio_set_dev(bio, rdev->bdev);
3429 count++;
3430 rcu_read_unlock();
3431 }
3432
3433 if (count < 2) {
3434 for (i=0; i<conf->copies; i++) {
3435 int d = r10_bio->devs[i].devnum;
3436 if (r10_bio->devs[i].bio->bi_end_io)
3437 rdev_dec_pending(conf->mirrors[d].rdev,
3438 mddev);
3439 if (r10_bio->devs[i].repl_bio &&
3440 r10_bio->devs[i].repl_bio->bi_end_io)
3441 rdev_dec_pending(
3442 conf->mirrors[d].replacement,
3443 mddev);
3444 }
3445 put_buf(r10_bio);
3446 biolist = NULL;
3447 goto giveup;
3448 }
3449 }
3450
3451 nr_sectors = 0;
3452 if (sector_nr + max_sync < max_sector)
3453 max_sector = sector_nr + max_sync;
3454 do {
3455 struct page *page;
3456 int len = PAGE_SIZE;
3457 if (sector_nr + (len>>9) > max_sector)
3458 len = (max_sector - sector_nr) << 9;
3459 if (len == 0)
3460 break;
3461 for (bio= biolist ; bio ; bio=bio->bi_next) {
3462 struct resync_pages *rp = get_resync_pages(bio);
3463 page = resync_fetch_page(rp, page_idx);
3464 /*
3465 * won't fail because the vec table is big enough
3466 * to hold all these pages
3467 */
3468 bio_add_page(bio, page, len, 0);
3469 }
3470 nr_sectors += len>>9;
3471 sector_nr += len>>9;
3472 } while (++page_idx < RESYNC_PAGES);
3473 r10_bio->sectors = nr_sectors;
3474
3475 if (mddev_is_clustered(mddev) &&
3476 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3477 /* It is resync not recovery */
3478 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3479 conf->cluster_sync_low = mddev->curr_resync_completed;
3480 raid10_set_cluster_sync_high(conf);
3481 /* Send resync message */
3482 md_cluster_ops->resync_info_update(mddev,
3483 conf->cluster_sync_low,
3484 conf->cluster_sync_high);
3485 }
3486 } else if (mddev_is_clustered(mddev)) {
3487 /* This is recovery not resync */
3488 sector_t sect_va1, sect_va2;
3489 bool broadcast_msg = false;
3490
3491 for (i = 0; i < conf->geo.raid_disks; i++) {
3492 /*
3493 * sector_nr is a device address for recovery, so we
3494 * need translate it to array address before compare
3495 * with cluster_sync_high.
3496 */
3497 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3498
3499 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3500 broadcast_msg = true;
3501 /*
3502 * curr_resync_completed is similar as
3503 * sector_nr, so make the translation too.
3504 */
3505 sect_va2 = raid10_find_virt(conf,
3506 mddev->curr_resync_completed, i);
3507
3508 if (conf->cluster_sync_low == 0 ||
3509 conf->cluster_sync_low > sect_va2)
3510 conf->cluster_sync_low = sect_va2;
3511 }
3512 }
3513 if (broadcast_msg) {
3514 raid10_set_cluster_sync_high(conf);
3515 md_cluster_ops->resync_info_update(mddev,
3516 conf->cluster_sync_low,
3517 conf->cluster_sync_high);
3518 }
3519 }
3520
3521 while (biolist) {
3522 bio = biolist;
3523 biolist = biolist->bi_next;
3524
3525 bio->bi_next = NULL;
3526 r10_bio = get_resync_r10bio(bio);
3527 r10_bio->sectors = nr_sectors;
3528
3529 if (bio->bi_end_io == end_sync_read) {
3530 md_sync_acct_bio(bio, nr_sectors);
3531 bio->bi_status = 0;
3532 generic_make_request(bio);
3533 }
3534 }
3535
3536 if (sectors_skipped)
3537 /* pretend they weren't skipped, it makes
3538 * no important difference in this case
3539 */
3540 md_done_sync(mddev, sectors_skipped, 1);
3541
3542 return sectors_skipped + nr_sectors;
3543 giveup:
3544 /* There is nowhere to write, so all non-sync
3545 * drives must be failed or in resync, all drives
3546 * have a bad block, so try the next chunk...
3547 */
3548 if (sector_nr + max_sync < max_sector)
3549 max_sector = sector_nr + max_sync;
3550
3551 sectors_skipped += (max_sector - sector_nr);
3552 chunks_skipped ++;
3553 sector_nr = max_sector;
3554 goto skipped;
3555}
3556
3557static sector_t
3558raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3559{
3560 sector_t size;
3561 struct r10conf *conf = mddev->private;
3562
3563 if (!raid_disks)
3564 raid_disks = min(conf->geo.raid_disks,
3565 conf->prev.raid_disks);
3566 if (!sectors)
3567 sectors = conf->dev_sectors;
3568
3569 size = sectors >> conf->geo.chunk_shift;
3570 sector_div(size, conf->geo.far_copies);
3571 size = size * raid_disks;
3572 sector_div(size, conf->geo.near_copies);
3573
3574 return size << conf->geo.chunk_shift;
3575}
3576
3577static void calc_sectors(struct r10conf *conf, sector_t size)
3578{
3579 /* Calculate the number of sectors-per-device that will
3580 * actually be used, and set conf->dev_sectors and
3581 * conf->stride
3582 */
3583
3584 size = size >> conf->geo.chunk_shift;
3585 sector_div(size, conf->geo.far_copies);
3586 size = size * conf->geo.raid_disks;
3587 sector_div(size, conf->geo.near_copies);
3588 /* 'size' is now the number of chunks in the array */
3589 /* calculate "used chunks per device" */
3590 size = size * conf->copies;
3591
3592 /* We need to round up when dividing by raid_disks to
3593 * get the stride size.
3594 */
3595 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3596
3597 conf->dev_sectors = size << conf->geo.chunk_shift;
3598
3599 if (conf->geo.far_offset)
3600 conf->geo.stride = 1 << conf->geo.chunk_shift;
3601 else {
3602 sector_div(size, conf->geo.far_copies);
3603 conf->geo.stride = size << conf->geo.chunk_shift;
3604 }
3605}
3606
3607enum geo_type {geo_new, geo_old, geo_start};
3608static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3609{
3610 int nc, fc, fo;
3611 int layout, chunk, disks;
3612 switch (new) {
3613 case geo_old:
3614 layout = mddev->layout;
3615 chunk = mddev->chunk_sectors;
3616 disks = mddev->raid_disks - mddev->delta_disks;
3617 break;
3618 case geo_new:
3619 layout = mddev->new_layout;
3620 chunk = mddev->new_chunk_sectors;
3621 disks = mddev->raid_disks;
3622 break;
3623 default: /* avoid 'may be unused' warnings */
3624 case geo_start: /* new when starting reshape - raid_disks not
3625 * updated yet. */
3626 layout = mddev->new_layout;
3627 chunk = mddev->new_chunk_sectors;
3628 disks = mddev->raid_disks + mddev->delta_disks;
3629 break;
3630 }
3631 if (layout >> 19)
3632 return -1;
3633 if (chunk < (PAGE_SIZE >> 9) ||
3634 !is_power_of_2(chunk))
3635 return -2;
3636 nc = layout & 255;
3637 fc = (layout >> 8) & 255;
3638 fo = layout & (1<<16);
3639 geo->raid_disks = disks;
3640 geo->near_copies = nc;
3641 geo->far_copies = fc;
3642 geo->far_offset = fo;
3643 switch (layout >> 17) {
3644 case 0: /* original layout. simple but not always optimal */
3645 geo->far_set_size = disks;
3646 break;
3647 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3648 * actually using this, but leave code here just in case.*/
3649 geo->far_set_size = disks/fc;
3650 WARN(geo->far_set_size < fc,
3651 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3652 break;
3653 case 2: /* "improved" layout fixed to match documentation */
3654 geo->far_set_size = fc * nc;
3655 break;
3656 default: /* Not a valid layout */
3657 return -1;
3658 }
3659 geo->chunk_mask = chunk - 1;
3660 geo->chunk_shift = ffz(~chunk);
3661 return nc*fc;
3662}
3663
3664static struct r10conf *setup_conf(struct mddev *mddev)
3665{
3666 struct r10conf *conf = NULL;
3667 int err = -EINVAL;
3668 struct geom geo;
3669 int copies;
3670
3671 copies = setup_geo(&geo, mddev, geo_new);
3672
3673 if (copies == -2) {
3674 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3675 mdname(mddev), PAGE_SIZE);
3676 goto out;
3677 }
3678
3679 if (copies < 2 || copies > mddev->raid_disks) {
3680 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3681 mdname(mddev), mddev->new_layout);
3682 goto out;
3683 }
3684
3685 err = -ENOMEM;
3686 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3687 if (!conf)
3688 goto out;
3689
3690 /* FIXME calc properly */
3691 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3692 sizeof(struct raid10_info),
3693 GFP_KERNEL);
3694 if (!conf->mirrors)
3695 goto out;
3696
3697 conf->tmppage = alloc_page(GFP_KERNEL);
3698 if (!conf->tmppage)
3699 goto out;
3700
3701 conf->geo = geo;
3702 conf->copies = copies;
3703 err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3704 r10bio_pool_free, conf);
3705 if (err)
3706 goto out;
3707
3708 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3709 if (err)
3710 goto out;
3711
3712 calc_sectors(conf, mddev->dev_sectors);
3713 if (mddev->reshape_position == MaxSector) {
3714 conf->prev = conf->geo;
3715 conf->reshape_progress = MaxSector;
3716 } else {
3717 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3718 err = -EINVAL;
3719 goto out;
3720 }
3721 conf->reshape_progress = mddev->reshape_position;
3722 if (conf->prev.far_offset)
3723 conf->prev.stride = 1 << conf->prev.chunk_shift;
3724 else
3725 /* far_copies must be 1 */
3726 conf->prev.stride = conf->dev_sectors;
3727 }
3728 conf->reshape_safe = conf->reshape_progress;
3729 spin_lock_init(&conf->device_lock);
3730 INIT_LIST_HEAD(&conf->retry_list);
3731 INIT_LIST_HEAD(&conf->bio_end_io_list);
3732
3733 spin_lock_init(&conf->resync_lock);
3734 init_waitqueue_head(&conf->wait_barrier);
3735 atomic_set(&conf->nr_pending, 0);
3736
3737 err = -ENOMEM;
3738 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3739 if (!conf->thread)
3740 goto out;
3741
3742 conf->mddev = mddev;
3743 return conf;
3744
3745 out:
3746 if (conf) {
3747 mempool_exit(&conf->r10bio_pool);
3748 kfree(conf->mirrors);
3749 safe_put_page(conf->tmppage);
3750 bioset_exit(&conf->bio_split);
3751 kfree(conf);
3752 }
3753 return ERR_PTR(err);
3754}
3755
3756static int raid10_run(struct mddev *mddev)
3757{
3758 struct r10conf *conf;
3759 int i, disk_idx, chunk_size;
3760 struct raid10_info *disk;
3761 struct md_rdev *rdev;
3762 sector_t size;
3763 sector_t min_offset_diff = 0;
3764 int first = 1;
3765 bool discard_supported = false;
3766
3767 if (mddev_init_writes_pending(mddev) < 0)
3768 return -ENOMEM;
3769
3770 if (mddev->private == NULL) {
3771 conf = setup_conf(mddev);
3772 if (IS_ERR(conf))
3773 return PTR_ERR(conf);
3774 mddev->private = conf;
3775 }
3776 conf = mddev->private;
3777 if (!conf)
3778 goto out;
3779
3780 if (mddev_is_clustered(conf->mddev)) {
3781 int fc, fo;
3782
3783 fc = (mddev->layout >> 8) & 255;
3784 fo = mddev->layout & (1<<16);
3785 if (fc > 1 || fo > 0) {
3786 pr_err("only near layout is supported by clustered"
3787 " raid10\n");
3788 goto out_free_conf;
3789 }
3790 }
3791
3792 mddev->thread = conf->thread;
3793 conf->thread = NULL;
3794
3795 chunk_size = mddev->chunk_sectors << 9;
3796 if (mddev->queue) {
3797 blk_queue_max_discard_sectors(mddev->queue,
3798 mddev->chunk_sectors);
3799 blk_queue_max_write_same_sectors(mddev->queue, 0);
3800 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3801 blk_queue_io_min(mddev->queue, chunk_size);
3802 if (conf->geo.raid_disks % conf->geo.near_copies)
3803 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3804 else
3805 blk_queue_io_opt(mddev->queue, chunk_size *
3806 (conf->geo.raid_disks / conf->geo.near_copies));
3807 }
3808
3809 rdev_for_each(rdev, mddev) {
3810 long long diff;
3811
3812 disk_idx = rdev->raid_disk;
3813 if (disk_idx < 0)
3814 continue;
3815 if (disk_idx >= conf->geo.raid_disks &&
3816 disk_idx >= conf->prev.raid_disks)
3817 continue;
3818 disk = conf->mirrors + disk_idx;
3819
3820 if (test_bit(Replacement, &rdev->flags)) {
3821 if (disk->replacement)
3822 goto out_free_conf;
3823 disk->replacement = rdev;
3824 } else {
3825 if (disk->rdev)
3826 goto out_free_conf;
3827 disk->rdev = rdev;
3828 }
3829 diff = (rdev->new_data_offset - rdev->data_offset);
3830 if (!mddev->reshape_backwards)
3831 diff = -diff;
3832 if (diff < 0)
3833 diff = 0;
3834 if (first || diff < min_offset_diff)
3835 min_offset_diff = diff;
3836
3837 if (mddev->gendisk)
3838 disk_stack_limits(mddev->gendisk, rdev->bdev,
3839 rdev->data_offset << 9);
3840
3841 disk->head_position = 0;
3842
3843 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3844 discard_supported = true;
3845 first = 0;
3846 }
3847
3848 if (mddev->queue) {
3849 if (discard_supported)
3850 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3851 mddev->queue);
3852 else
3853 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3854 mddev->queue);
3855 }
3856 /* need to check that every block has at least one working mirror */
3857 if (!enough(conf, -1)) {
3858 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3859 mdname(mddev));
3860 goto out_free_conf;
3861 }
3862
3863 if (conf->reshape_progress != MaxSector) {
3864 /* must ensure that shape change is supported */
3865 if (conf->geo.far_copies != 1 &&
3866 conf->geo.far_offset == 0)
3867 goto out_free_conf;
3868 if (conf->prev.far_copies != 1 &&
3869 conf->prev.far_offset == 0)
3870 goto out_free_conf;
3871 }
3872
3873 mddev->degraded = 0;
3874 for (i = 0;
3875 i < conf->geo.raid_disks
3876 || i < conf->prev.raid_disks;
3877 i++) {
3878
3879 disk = conf->mirrors + i;
3880
3881 if (!disk->rdev && disk->replacement) {
3882 /* The replacement is all we have - use it */
3883 disk->rdev = disk->replacement;
3884 disk->replacement = NULL;
3885 clear_bit(Replacement, &disk->rdev->flags);
3886 }
3887
3888 if (!disk->rdev ||
3889 !test_bit(In_sync, &disk->rdev->flags)) {
3890 disk->head_position = 0;
3891 mddev->degraded++;
3892 if (disk->rdev &&
3893 disk->rdev->saved_raid_disk < 0)
3894 conf->fullsync = 1;
3895 }
3896
3897 if (disk->replacement &&
3898 !test_bit(In_sync, &disk->replacement->flags) &&
3899 disk->replacement->saved_raid_disk < 0) {
3900 conf->fullsync = 1;
3901 }
3902
3903 disk->recovery_disabled = mddev->recovery_disabled - 1;
3904 }
3905
3906 if (mddev->recovery_cp != MaxSector)
3907 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3908 mdname(mddev));
3909 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3910 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3911 conf->geo.raid_disks);
3912 /*
3913 * Ok, everything is just fine now
3914 */
3915 mddev->dev_sectors = conf->dev_sectors;
3916 size = raid10_size(mddev, 0, 0);
3917 md_set_array_sectors(mddev, size);
3918 mddev->resync_max_sectors = size;
3919 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3920
3921 if (mddev->queue) {
3922 int stripe = conf->geo.raid_disks *
3923 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3924
3925 /* Calculate max read-ahead size.
3926 * We need to readahead at least twice a whole stripe....
3927 * maybe...
3928 */
3929 stripe /= conf->geo.near_copies;
3930 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3931 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3932 }
3933
3934 if (md_integrity_register(mddev))
3935 goto out_free_conf;
3936
3937 if (conf->reshape_progress != MaxSector) {
3938 unsigned long before_length, after_length;
3939
3940 before_length = ((1 << conf->prev.chunk_shift) *
3941 conf->prev.far_copies);
3942 after_length = ((1 << conf->geo.chunk_shift) *
3943 conf->geo.far_copies);
3944
3945 if (max(before_length, after_length) > min_offset_diff) {
3946 /* This cannot work */
3947 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3948 goto out_free_conf;
3949 }
3950 conf->offset_diff = min_offset_diff;
3951
3952 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3953 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3954 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3955 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3956 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3957 "reshape");
3958 }
3959
3960 return 0;
3961
3962out_free_conf:
3963 md_unregister_thread(&mddev->thread);
3964 mempool_exit(&conf->r10bio_pool);
3965 safe_put_page(conf->tmppage);
3966 kfree(conf->mirrors);
3967 kfree(conf);
3968 mddev->private = NULL;
3969out:
3970 return -EIO;
3971}
3972
3973static void raid10_free(struct mddev *mddev, void *priv)
3974{
3975 struct r10conf *conf = priv;
3976
3977 mempool_exit(&conf->r10bio_pool);
3978 safe_put_page(conf->tmppage);
3979 kfree(conf->mirrors);
3980 kfree(conf->mirrors_old);
3981 kfree(conf->mirrors_new);
3982 bioset_exit(&conf->bio_split);
3983 kfree(conf);
3984}
3985
3986static void raid10_quiesce(struct mddev *mddev, int quiesce)
3987{
3988 struct r10conf *conf = mddev->private;
3989
3990 if (quiesce)
3991 raise_barrier(conf, 0);
3992 else
3993 lower_barrier(conf);
3994}
3995
3996static int raid10_resize(struct mddev *mddev, sector_t sectors)
3997{
3998 /* Resize of 'far' arrays is not supported.
3999 * For 'near' and 'offset' arrays we can set the
4000 * number of sectors used to be an appropriate multiple
4001 * of the chunk size.
4002 * For 'offset', this is far_copies*chunksize.
4003 * For 'near' the multiplier is the LCM of
4004 * near_copies and raid_disks.
4005 * So if far_copies > 1 && !far_offset, fail.
4006 * Else find LCM(raid_disks, near_copy)*far_copies and
4007 * multiply by chunk_size. Then round to this number.
4008 * This is mostly done by raid10_size()
4009 */
4010 struct r10conf *conf = mddev->private;
4011 sector_t oldsize, size;
4012
4013 if (mddev->reshape_position != MaxSector)
4014 return -EBUSY;
4015
4016 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4017 return -EINVAL;
4018
4019 oldsize = raid10_size(mddev, 0, 0);
4020 size = raid10_size(mddev, sectors, 0);
4021 if (mddev->external_size &&
4022 mddev->array_sectors > size)
4023 return -EINVAL;
4024 if (mddev->bitmap) {
4025 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4026 if (ret)
4027 return ret;
4028 }
4029 md_set_array_sectors(mddev, size);
4030 if (sectors > mddev->dev_sectors &&
4031 mddev->recovery_cp > oldsize) {
4032 mddev->recovery_cp = oldsize;
4033 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4034 }
4035 calc_sectors(conf, sectors);
4036 mddev->dev_sectors = conf->dev_sectors;
4037 mddev->resync_max_sectors = size;
4038 return 0;
4039}
4040
4041static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4042{
4043 struct md_rdev *rdev;
4044 struct r10conf *conf;
4045
4046 if (mddev->degraded > 0) {
4047 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4048 mdname(mddev));
4049 return ERR_PTR(-EINVAL);
4050 }
4051 sector_div(size, devs);
4052
4053 /* Set new parameters */
4054 mddev->new_level = 10;
4055 /* new layout: far_copies = 1, near_copies = 2 */
4056 mddev->new_layout = (1<<8) + 2;
4057 mddev->new_chunk_sectors = mddev->chunk_sectors;
4058 mddev->delta_disks = mddev->raid_disks;
4059 mddev->raid_disks *= 2;
4060 /* make sure it will be not marked as dirty */
4061 mddev->recovery_cp = MaxSector;
4062 mddev->dev_sectors = size;
4063
4064 conf = setup_conf(mddev);
4065 if (!IS_ERR(conf)) {
4066 rdev_for_each(rdev, mddev)
4067 if (rdev->raid_disk >= 0) {
4068 rdev->new_raid_disk = rdev->raid_disk * 2;
4069 rdev->sectors = size;
4070 }
4071 conf->barrier = 1;
4072 }
4073
4074 return conf;
4075}
4076
4077static void *raid10_takeover(struct mddev *mddev)
4078{
4079 struct r0conf *raid0_conf;
4080
4081 /* raid10 can take over:
4082 * raid0 - providing it has only two drives
4083 */
4084 if (mddev->level == 0) {
4085 /* for raid0 takeover only one zone is supported */
4086 raid0_conf = mddev->private;
4087 if (raid0_conf->nr_strip_zones > 1) {
4088 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4089 mdname(mddev));
4090 return ERR_PTR(-EINVAL);
4091 }
4092 return raid10_takeover_raid0(mddev,
4093 raid0_conf->strip_zone->zone_end,
4094 raid0_conf->strip_zone->nb_dev);
4095 }
4096 return ERR_PTR(-EINVAL);
4097}
4098
4099static int raid10_check_reshape(struct mddev *mddev)
4100{
4101 /* Called when there is a request to change
4102 * - layout (to ->new_layout)
4103 * - chunk size (to ->new_chunk_sectors)
4104 * - raid_disks (by delta_disks)
4105 * or when trying to restart a reshape that was ongoing.
4106 *
4107 * We need to validate the request and possibly allocate
4108 * space if that might be an issue later.
4109 *
4110 * Currently we reject any reshape of a 'far' mode array,
4111 * allow chunk size to change if new is generally acceptable,
4112 * allow raid_disks to increase, and allow
4113 * a switch between 'near' mode and 'offset' mode.
4114 */
4115 struct r10conf *conf = mddev->private;
4116 struct geom geo;
4117
4118 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4119 return -EINVAL;
4120
4121 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4122 /* mustn't change number of copies */
4123 return -EINVAL;
4124 if (geo.far_copies > 1 && !geo.far_offset)
4125 /* Cannot switch to 'far' mode */
4126 return -EINVAL;
4127
4128 if (mddev->array_sectors & geo.chunk_mask)
4129 /* not factor of array size */
4130 return -EINVAL;
4131
4132 if (!enough(conf, -1))
4133 return -EINVAL;
4134
4135 kfree(conf->mirrors_new);
4136 conf->mirrors_new = NULL;
4137 if (mddev->delta_disks > 0) {
4138 /* allocate new 'mirrors' list */
4139 conf->mirrors_new =
4140 kcalloc(mddev->raid_disks + mddev->delta_disks,
4141 sizeof(struct raid10_info),
4142 GFP_KERNEL);
4143 if (!conf->mirrors_new)
4144 return -ENOMEM;
4145 }
4146 return 0;
4147}
4148
4149/*
4150 * Need to check if array has failed when deciding whether to:
4151 * - start an array
4152 * - remove non-faulty devices
4153 * - add a spare
4154 * - allow a reshape
4155 * This determination is simple when no reshape is happening.
4156 * However if there is a reshape, we need to carefully check
4157 * both the before and after sections.
4158 * This is because some failed devices may only affect one
4159 * of the two sections, and some non-in_sync devices may
4160 * be insync in the section most affected by failed devices.
4161 */
4162static int calc_degraded(struct r10conf *conf)
4163{
4164 int degraded, degraded2;
4165 int i;
4166
4167 rcu_read_lock();
4168 degraded = 0;
4169 /* 'prev' section first */
4170 for (i = 0; i < conf->prev.raid_disks; i++) {
4171 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4172 if (!rdev || test_bit(Faulty, &rdev->flags))
4173 degraded++;
4174 else if (!test_bit(In_sync, &rdev->flags))
4175 /* When we can reduce the number of devices in
4176 * an array, this might not contribute to
4177 * 'degraded'. It does now.
4178 */
4179 degraded++;
4180 }
4181 rcu_read_unlock();
4182 if (conf->geo.raid_disks == conf->prev.raid_disks)
4183 return degraded;
4184 rcu_read_lock();
4185 degraded2 = 0;
4186 for (i = 0; i < conf->geo.raid_disks; i++) {
4187 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4188 if (!rdev || test_bit(Faulty, &rdev->flags))
4189 degraded2++;
4190 else if (!test_bit(In_sync, &rdev->flags)) {
4191 /* If reshape is increasing the number of devices,
4192 * this section has already been recovered, so
4193 * it doesn't contribute to degraded.
4194 * else it does.
4195 */
4196 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4197 degraded2++;
4198 }
4199 }
4200 rcu_read_unlock();
4201 if (degraded2 > degraded)
4202 return degraded2;
4203 return degraded;
4204}
4205
4206static int raid10_start_reshape(struct mddev *mddev)
4207{
4208 /* A 'reshape' has been requested. This commits
4209 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4210 * This also checks if there are enough spares and adds them
4211 * to the array.
4212 * We currently require enough spares to make the final
4213 * array non-degraded. We also require that the difference
4214 * between old and new data_offset - on each device - is
4215 * enough that we never risk over-writing.
4216 */
4217
4218 unsigned long before_length, after_length;
4219 sector_t min_offset_diff = 0;
4220 int first = 1;
4221 struct geom new;
4222 struct r10conf *conf = mddev->private;
4223 struct md_rdev *rdev;
4224 int spares = 0;
4225 int ret;
4226
4227 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4228 return -EBUSY;
4229
4230 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4231 return -EINVAL;
4232
4233 before_length = ((1 << conf->prev.chunk_shift) *
4234 conf->prev.far_copies);
4235 after_length = ((1 << conf->geo.chunk_shift) *
4236 conf->geo.far_copies);
4237
4238 rdev_for_each(rdev, mddev) {
4239 if (!test_bit(In_sync, &rdev->flags)
4240 && !test_bit(Faulty, &rdev->flags))
4241 spares++;
4242 if (rdev->raid_disk >= 0) {
4243 long long diff = (rdev->new_data_offset
4244 - rdev->data_offset);
4245 if (!mddev->reshape_backwards)
4246 diff = -diff;
4247 if (diff < 0)
4248 diff = 0;
4249 if (first || diff < min_offset_diff)
4250 min_offset_diff = diff;
4251 first = 0;
4252 }
4253 }
4254
4255 if (max(before_length, after_length) > min_offset_diff)
4256 return -EINVAL;
4257
4258 if (spares < mddev->delta_disks)
4259 return -EINVAL;
4260
4261 conf->offset_diff = min_offset_diff;
4262 spin_lock_irq(&conf->device_lock);
4263 if (conf->mirrors_new) {
4264 memcpy(conf->mirrors_new, conf->mirrors,
4265 sizeof(struct raid10_info)*conf->prev.raid_disks);
4266 smp_mb();
4267 kfree(conf->mirrors_old);
4268 conf->mirrors_old = conf->mirrors;
4269 conf->mirrors = conf->mirrors_new;
4270 conf->mirrors_new = NULL;
4271 }
4272 setup_geo(&conf->geo, mddev, geo_start);
4273 smp_mb();
4274 if (mddev->reshape_backwards) {
4275 sector_t size = raid10_size(mddev, 0, 0);
4276 if (size < mddev->array_sectors) {
4277 spin_unlock_irq(&conf->device_lock);
4278 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4279 mdname(mddev));
4280 return -EINVAL;
4281 }
4282 mddev->resync_max_sectors = size;
4283 conf->reshape_progress = size;
4284 } else
4285 conf->reshape_progress = 0;
4286 conf->reshape_safe = conf->reshape_progress;
4287 spin_unlock_irq(&conf->device_lock);
4288
4289 if (mddev->delta_disks && mddev->bitmap) {
4290 ret = md_bitmap_resize(mddev->bitmap,
4291 raid10_size(mddev, 0, conf->geo.raid_disks),
4292 0, 0);
4293 if (ret)
4294 goto abort;
4295 }
4296 if (mddev->delta_disks > 0) {
4297 rdev_for_each(rdev, mddev)
4298 if (rdev->raid_disk < 0 &&
4299 !test_bit(Faulty, &rdev->flags)) {
4300 if (raid10_add_disk(mddev, rdev) == 0) {
4301 if (rdev->raid_disk >=
4302 conf->prev.raid_disks)
4303 set_bit(In_sync, &rdev->flags);
4304 else
4305 rdev->recovery_offset = 0;
4306
4307 if (sysfs_link_rdev(mddev, rdev))
4308 /* Failure here is OK */;
4309 }
4310 } else if (rdev->raid_disk >= conf->prev.raid_disks
4311 && !test_bit(Faulty, &rdev->flags)) {
4312 /* This is a spare that was manually added */
4313 set_bit(In_sync, &rdev->flags);
4314 }
4315 }
4316 /* When a reshape changes the number of devices,
4317 * ->degraded is measured against the larger of the
4318 * pre and post numbers.
4319 */
4320 spin_lock_irq(&conf->device_lock);
4321 mddev->degraded = calc_degraded(conf);
4322 spin_unlock_irq(&conf->device_lock);
4323 mddev->raid_disks = conf->geo.raid_disks;
4324 mddev->reshape_position = conf->reshape_progress;
4325 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4326
4327 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4328 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4329 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4330 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4331 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4332
4333 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4334 "reshape");
4335 if (!mddev->sync_thread) {
4336 ret = -EAGAIN;
4337 goto abort;
4338 }
4339 conf->reshape_checkpoint = jiffies;
4340 md_wakeup_thread(mddev->sync_thread);
4341 md_new_event(mddev);
4342 return 0;
4343
4344abort:
4345 mddev->recovery = 0;
4346 spin_lock_irq(&conf->device_lock);
4347 conf->geo = conf->prev;
4348 mddev->raid_disks = conf->geo.raid_disks;
4349 rdev_for_each(rdev, mddev)
4350 rdev->new_data_offset = rdev->data_offset;
4351 smp_wmb();
4352 conf->reshape_progress = MaxSector;
4353 conf->reshape_safe = MaxSector;
4354 mddev->reshape_position = MaxSector;
4355 spin_unlock_irq(&conf->device_lock);
4356 return ret;
4357}
4358
4359/* Calculate the last device-address that could contain
4360 * any block from the chunk that includes the array-address 's'
4361 * and report the next address.
4362 * i.e. the address returned will be chunk-aligned and after
4363 * any data that is in the chunk containing 's'.
4364 */
4365static sector_t last_dev_address(sector_t s, struct geom *geo)
4366{
4367 s = (s | geo->chunk_mask) + 1;
4368 s >>= geo->chunk_shift;
4369 s *= geo->near_copies;
4370 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4371 s *= geo->far_copies;
4372 s <<= geo->chunk_shift;
4373 return s;
4374}
4375
4376/* Calculate the first device-address that could contain
4377 * any block from the chunk that includes the array-address 's'.
4378 * This too will be the start of a chunk
4379 */
4380static sector_t first_dev_address(sector_t s, struct geom *geo)
4381{
4382 s >>= geo->chunk_shift;
4383 s *= geo->near_copies;
4384 sector_div(s, geo->raid_disks);
4385 s *= geo->far_copies;
4386 s <<= geo->chunk_shift;
4387 return s;
4388}
4389
4390static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4391 int *skipped)
4392{
4393 /* We simply copy at most one chunk (smallest of old and new)
4394 * at a time, possibly less if that exceeds RESYNC_PAGES,
4395 * or we hit a bad block or something.
4396 * This might mean we pause for normal IO in the middle of
4397 * a chunk, but that is not a problem as mddev->reshape_position
4398 * can record any location.
4399 *
4400 * If we will want to write to a location that isn't
4401 * yet recorded as 'safe' (i.e. in metadata on disk) then
4402 * we need to flush all reshape requests and update the metadata.
4403 *
4404 * When reshaping forwards (e.g. to more devices), we interpret
4405 * 'safe' as the earliest block which might not have been copied
4406 * down yet. We divide this by previous stripe size and multiply
4407 * by previous stripe length to get lowest device offset that we
4408 * cannot write to yet.
4409 * We interpret 'sector_nr' as an address that we want to write to.
4410 * From this we use last_device_address() to find where we might
4411 * write to, and first_device_address on the 'safe' position.
4412 * If this 'next' write position is after the 'safe' position,
4413 * we must update the metadata to increase the 'safe' position.
4414 *
4415 * When reshaping backwards, we round in the opposite direction
4416 * and perform the reverse test: next write position must not be
4417 * less than current safe position.
4418 *
4419 * In all this the minimum difference in data offsets
4420 * (conf->offset_diff - always positive) allows a bit of slack,
4421 * so next can be after 'safe', but not by more than offset_diff
4422 *
4423 * We need to prepare all the bios here before we start any IO
4424 * to ensure the size we choose is acceptable to all devices.
4425 * The means one for each copy for write-out and an extra one for
4426 * read-in.
4427 * We store the read-in bio in ->master_bio and the others in
4428 * ->devs[x].bio and ->devs[x].repl_bio.
4429 */
4430 struct r10conf *conf = mddev->private;
4431 struct r10bio *r10_bio;
4432 sector_t next, safe, last;
4433 int max_sectors;
4434 int nr_sectors;
4435 int s;
4436 struct md_rdev *rdev;
4437 int need_flush = 0;
4438 struct bio *blist;
4439 struct bio *bio, *read_bio;
4440 int sectors_done = 0;
4441 struct page **pages;
4442
4443 if (sector_nr == 0) {
4444 /* If restarting in the middle, skip the initial sectors */
4445 if (mddev->reshape_backwards &&
4446 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4447 sector_nr = (raid10_size(mddev, 0, 0)
4448 - conf->reshape_progress);
4449 } else if (!mddev->reshape_backwards &&
4450 conf->reshape_progress > 0)
4451 sector_nr = conf->reshape_progress;
4452 if (sector_nr) {
4453 mddev->curr_resync_completed = sector_nr;
4454 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4455 *skipped = 1;
4456 return sector_nr;
4457 }
4458 }
4459
4460 /* We don't use sector_nr to track where we are up to
4461 * as that doesn't work well for ->reshape_backwards.
4462 * So just use ->reshape_progress.
4463 */
4464 if (mddev->reshape_backwards) {
4465 /* 'next' is the earliest device address that we might
4466 * write to for this chunk in the new layout
4467 */
4468 next = first_dev_address(conf->reshape_progress - 1,
4469 &conf->geo);
4470
4471 /* 'safe' is the last device address that we might read from
4472 * in the old layout after a restart
4473 */
4474 safe = last_dev_address(conf->reshape_safe - 1,
4475 &conf->prev);
4476
4477 if (next + conf->offset_diff < safe)
4478 need_flush = 1;
4479
4480 last = conf->reshape_progress - 1;
4481 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4482 & conf->prev.chunk_mask);
4483 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4484 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4485 } else {
4486 /* 'next' is after the last device address that we
4487 * might write to for this chunk in the new layout
4488 */
4489 next = last_dev_address(conf->reshape_progress, &conf->geo);
4490
4491 /* 'safe' is the earliest device address that we might
4492 * read from in the old layout after a restart
4493 */
4494 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4495
4496 /* Need to update metadata if 'next' might be beyond 'safe'
4497 * as that would possibly corrupt data
4498 */
4499 if (next > safe + conf->offset_diff)
4500 need_flush = 1;
4501
4502 sector_nr = conf->reshape_progress;
4503 last = sector_nr | (conf->geo.chunk_mask
4504 & conf->prev.chunk_mask);
4505
4506 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4507 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4508 }
4509
4510 if (need_flush ||
4511 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4512 /* Need to update reshape_position in metadata */
4513 wait_barrier(conf);
4514 mddev->reshape_position = conf->reshape_progress;
4515 if (mddev->reshape_backwards)
4516 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4517 - conf->reshape_progress;
4518 else
4519 mddev->curr_resync_completed = conf->reshape_progress;
4520 conf->reshape_checkpoint = jiffies;
4521 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4522 md_wakeup_thread(mddev->thread);
4523 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4524 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4525 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4526 allow_barrier(conf);
4527 return sectors_done;
4528 }
4529 conf->reshape_safe = mddev->reshape_position;
4530 allow_barrier(conf);
4531 }
4532
4533 raise_barrier(conf, 0);
4534read_more:
4535 /* Now schedule reads for blocks from sector_nr to last */
4536 r10_bio = raid10_alloc_init_r10buf(conf);
4537 r10_bio->state = 0;
4538 raise_barrier(conf, 1);
4539 atomic_set(&r10_bio->remaining, 0);
4540 r10_bio->mddev = mddev;
4541 r10_bio->sector = sector_nr;
4542 set_bit(R10BIO_IsReshape, &r10_bio->state);
4543 r10_bio->sectors = last - sector_nr + 1;
4544 rdev = read_balance(conf, r10_bio, &max_sectors);
4545 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4546
4547 if (!rdev) {
4548 /* Cannot read from here, so need to record bad blocks
4549 * on all the target devices.
4550 */
4551 // FIXME
4552 mempool_free(r10_bio, &conf->r10buf_pool);
4553 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4554 return sectors_done;
4555 }
4556
4557 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4558
4559 bio_set_dev(read_bio, rdev->bdev);
4560 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4561 + rdev->data_offset);
4562 read_bio->bi_private = r10_bio;
4563 read_bio->bi_end_io = end_reshape_read;
4564 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4565 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4566 read_bio->bi_status = 0;
4567 read_bio->bi_vcnt = 0;
4568 read_bio->bi_iter.bi_size = 0;
4569 r10_bio->master_bio = read_bio;
4570 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4571
4572 /* Now find the locations in the new layout */
4573 __raid10_find_phys(&conf->geo, r10_bio);
4574
4575 blist = read_bio;
4576 read_bio->bi_next = NULL;
4577
4578 rcu_read_lock();
4579 for (s = 0; s < conf->copies*2; s++) {
4580 struct bio *b;
4581 int d = r10_bio->devs[s/2].devnum;
4582 struct md_rdev *rdev2;
4583 if (s&1) {
4584 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4585 b = r10_bio->devs[s/2].repl_bio;
4586 } else {
4587 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4588 b = r10_bio->devs[s/2].bio;
4589 }
4590 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4591 continue;
4592
4593 bio_set_dev(b, rdev2->bdev);
4594 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4595 rdev2->new_data_offset;
4596 b->bi_end_io = end_reshape_write;
4597 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4598 b->bi_next = blist;
4599 blist = b;
4600 }
4601
4602 /* Now add as many pages as possible to all of these bios. */
4603
4604 nr_sectors = 0;
4605 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4606 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4607 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4608 int len = (max_sectors - s) << 9;
4609 if (len > PAGE_SIZE)
4610 len = PAGE_SIZE;
4611 for (bio = blist; bio ; bio = bio->bi_next) {
4612 /*
4613 * won't fail because the vec table is big enough
4614 * to hold all these pages
4615 */
4616 bio_add_page(bio, page, len, 0);
4617 }
4618 sector_nr += len >> 9;
4619 nr_sectors += len >> 9;
4620 }
4621 rcu_read_unlock();
4622 r10_bio->sectors = nr_sectors;
4623
4624 /* Now submit the read */
4625 md_sync_acct_bio(read_bio, r10_bio->sectors);
4626 atomic_inc(&r10_bio->remaining);
4627 read_bio->bi_next = NULL;
4628 generic_make_request(read_bio);
4629 sector_nr += nr_sectors;
4630 sectors_done += nr_sectors;
4631 if (sector_nr <= last)
4632 goto read_more;
4633
4634 lower_barrier(conf);
4635
4636 /* Now that we have done the whole section we can
4637 * update reshape_progress
4638 */
4639 if (mddev->reshape_backwards)
4640 conf->reshape_progress -= sectors_done;
4641 else
4642 conf->reshape_progress += sectors_done;
4643
4644 return sectors_done;
4645}
4646
4647static void end_reshape_request(struct r10bio *r10_bio);
4648static int handle_reshape_read_error(struct mddev *mddev,
4649 struct r10bio *r10_bio);
4650static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4651{
4652 /* Reshape read completed. Hopefully we have a block
4653 * to write out.
4654 * If we got a read error then we do sync 1-page reads from
4655 * elsewhere until we find the data - or give up.
4656 */
4657 struct r10conf *conf = mddev->private;
4658 int s;
4659
4660 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4661 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4662 /* Reshape has been aborted */
4663 md_done_sync(mddev, r10_bio->sectors, 0);
4664 return;
4665 }
4666
4667 /* We definitely have the data in the pages, schedule the
4668 * writes.
4669 */
4670 atomic_set(&r10_bio->remaining, 1);
4671 for (s = 0; s < conf->copies*2; s++) {
4672 struct bio *b;
4673 int d = r10_bio->devs[s/2].devnum;
4674 struct md_rdev *rdev;
4675 rcu_read_lock();
4676 if (s&1) {
4677 rdev = rcu_dereference(conf->mirrors[d].replacement);
4678 b = r10_bio->devs[s/2].repl_bio;
4679 } else {
4680 rdev = rcu_dereference(conf->mirrors[d].rdev);
4681 b = r10_bio->devs[s/2].bio;
4682 }
4683 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4684 rcu_read_unlock();
4685 continue;
4686 }
4687 atomic_inc(&rdev->nr_pending);
4688 rcu_read_unlock();
4689 md_sync_acct_bio(b, r10_bio->sectors);
4690 atomic_inc(&r10_bio->remaining);
4691 b->bi_next = NULL;
4692 generic_make_request(b);
4693 }
4694 end_reshape_request(r10_bio);
4695}
4696
4697static void end_reshape(struct r10conf *conf)
4698{
4699 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4700 return;
4701
4702 spin_lock_irq(&conf->device_lock);
4703 conf->prev = conf->geo;
4704 md_finish_reshape(conf->mddev);
4705 smp_wmb();
4706 conf->reshape_progress = MaxSector;
4707 conf->reshape_safe = MaxSector;
4708 spin_unlock_irq(&conf->device_lock);
4709
4710 /* read-ahead size must cover two whole stripes, which is
4711 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4712 */
4713 if (conf->mddev->queue) {
4714 int stripe = conf->geo.raid_disks *
4715 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4716 stripe /= conf->geo.near_copies;
4717 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4718 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4719 }
4720 conf->fullsync = 0;
4721}
4722
4723static int handle_reshape_read_error(struct mddev *mddev,
4724 struct r10bio *r10_bio)
4725{
4726 /* Use sync reads to get the blocks from somewhere else */
4727 int sectors = r10_bio->sectors;
4728 struct r10conf *conf = mddev->private;
4729 struct r10bio *r10b;
4730 int slot = 0;
4731 int idx = 0;
4732 struct page **pages;
4733
4734 r10b = kmalloc(sizeof(*r10b) +
4735 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4736 if (!r10b) {
4737 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4738 return -ENOMEM;
4739 }
4740
4741 /* reshape IOs share pages from .devs[0].bio */
4742 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4743
4744 r10b->sector = r10_bio->sector;
4745 __raid10_find_phys(&conf->prev, r10b);
4746
4747 while (sectors) {
4748 int s = sectors;
4749 int success = 0;
4750 int first_slot = slot;
4751
4752 if (s > (PAGE_SIZE >> 9))
4753 s = PAGE_SIZE >> 9;
4754
4755 rcu_read_lock();
4756 while (!success) {
4757 int d = r10b->devs[slot].devnum;
4758 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4759 sector_t addr;
4760 if (rdev == NULL ||
4761 test_bit(Faulty, &rdev->flags) ||
4762 !test_bit(In_sync, &rdev->flags))
4763 goto failed;
4764
4765 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4766 atomic_inc(&rdev->nr_pending);
4767 rcu_read_unlock();
4768 success = sync_page_io(rdev,
4769 addr,
4770 s << 9,
4771 pages[idx],
4772 REQ_OP_READ, 0, false);
4773 rdev_dec_pending(rdev, mddev);
4774 rcu_read_lock();
4775 if (success)
4776 break;
4777 failed:
4778 slot++;
4779 if (slot >= conf->copies)
4780 slot = 0;
4781 if (slot == first_slot)
4782 break;
4783 }
4784 rcu_read_unlock();
4785 if (!success) {
4786 /* couldn't read this block, must give up */
4787 set_bit(MD_RECOVERY_INTR,
4788 &mddev->recovery);
4789 kfree(r10b);
4790 return -EIO;
4791 }
4792 sectors -= s;
4793 idx++;
4794 }
4795 kfree(r10b);
4796 return 0;
4797}
4798
4799static void end_reshape_write(struct bio *bio)
4800{
4801 struct r10bio *r10_bio = get_resync_r10bio(bio);
4802 struct mddev *mddev = r10_bio->mddev;
4803 struct r10conf *conf = mddev->private;
4804 int d;
4805 int slot;
4806 int repl;
4807 struct md_rdev *rdev = NULL;
4808
4809 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4810 if (repl)
4811 rdev = conf->mirrors[d].replacement;
4812 if (!rdev) {
4813 smp_mb();
4814 rdev = conf->mirrors[d].rdev;
4815 }
4816
4817 if (bio->bi_status) {
4818 /* FIXME should record badblock */
4819 md_error(mddev, rdev);
4820 }
4821
4822 rdev_dec_pending(rdev, mddev);
4823 end_reshape_request(r10_bio);
4824}
4825
4826static void end_reshape_request(struct r10bio *r10_bio)
4827{
4828 if (!atomic_dec_and_test(&r10_bio->remaining))
4829 return;
4830 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4831 bio_put(r10_bio->master_bio);
4832 put_buf(r10_bio);
4833}
4834
4835static void raid10_finish_reshape(struct mddev *mddev)
4836{
4837 struct r10conf *conf = mddev->private;
4838
4839 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4840 return;
4841
4842 if (mddev->delta_disks > 0) {
4843 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4844 mddev->recovery_cp = mddev->resync_max_sectors;
4845 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4846 }
4847 mddev->resync_max_sectors = mddev->array_sectors;
4848 } else {
4849 int d;
4850 rcu_read_lock();
4851 for (d = conf->geo.raid_disks ;
4852 d < conf->geo.raid_disks - mddev->delta_disks;
4853 d++) {
4854 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4855 if (rdev)
4856 clear_bit(In_sync, &rdev->flags);
4857 rdev = rcu_dereference(conf->mirrors[d].replacement);
4858 if (rdev)
4859 clear_bit(In_sync, &rdev->flags);
4860 }
4861 rcu_read_unlock();
4862 }
4863 mddev->layout = mddev->new_layout;
4864 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4865 mddev->reshape_position = MaxSector;
4866 mddev->delta_disks = 0;
4867 mddev->reshape_backwards = 0;
4868}
4869
4870static struct md_personality raid10_personality =
4871{
4872 .name = "raid10",
4873 .level = 10,
4874 .owner = THIS_MODULE,
4875 .make_request = raid10_make_request,
4876 .run = raid10_run,
4877 .free = raid10_free,
4878 .status = raid10_status,
4879 .error_handler = raid10_error,
4880 .hot_add_disk = raid10_add_disk,
4881 .hot_remove_disk= raid10_remove_disk,
4882 .spare_active = raid10_spare_active,
4883 .sync_request = raid10_sync_request,
4884 .quiesce = raid10_quiesce,
4885 .size = raid10_size,
4886 .resize = raid10_resize,
4887 .takeover = raid10_takeover,
4888 .check_reshape = raid10_check_reshape,
4889 .start_reshape = raid10_start_reshape,
4890 .finish_reshape = raid10_finish_reshape,
4891 .congested = raid10_congested,
4892};
4893
4894static int __init raid_init(void)
4895{
4896 return register_md_personality(&raid10_personality);
4897}
4898
4899static void raid_exit(void)
4900{
4901 unregister_md_personality(&raid10_personality);
4902}
4903
4904module_init(raid_init);
4905module_exit(raid_exit);
4906MODULE_LICENSE("GPL");
4907MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4908MODULE_ALIAS("md-personality-9"); /* RAID10 */
4909MODULE_ALIAS("md-raid10");
4910MODULE_ALIAS("md-level-10");
4911
4912module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);