Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Driver for I2C adapter in Rockchip RK3xxx SoC |
| 3 | * |
| 4 | * Max Schwarz <max.schwarz@online.de> |
| 5 | * based on the patches by Rockchip Inc. |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | */ |
| 11 | |
| 12 | #include <linux/kernel.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/i2c.h> |
| 15 | #include <linux/interrupt.h> |
| 16 | #include <linux/errno.h> |
| 17 | #include <linux/err.h> |
| 18 | #include <linux/platform_device.h> |
| 19 | #include <linux/io.h> |
| 20 | #include <linux/of_address.h> |
| 21 | #include <linux/of_irq.h> |
| 22 | #include <linux/spinlock.h> |
| 23 | #include <linux/clk.h> |
| 24 | #include <linux/wait.h> |
| 25 | #include <linux/mfd/syscon.h> |
| 26 | #include <linux/regmap.h> |
| 27 | #include <linux/math64.h> |
| 28 | |
| 29 | |
| 30 | /* Register Map */ |
| 31 | #define REG_CON 0x00 /* control register */ |
| 32 | #define REG_CLKDIV 0x04 /* clock divisor register */ |
| 33 | #define REG_MRXADDR 0x08 /* slave address for REGISTER_TX */ |
| 34 | #define REG_MRXRADDR 0x0c /* slave register address for REGISTER_TX */ |
| 35 | #define REG_MTXCNT 0x10 /* number of bytes to be transmitted */ |
| 36 | #define REG_MRXCNT 0x14 /* number of bytes to be received */ |
| 37 | #define REG_IEN 0x18 /* interrupt enable */ |
| 38 | #define REG_IPD 0x1c /* interrupt pending */ |
| 39 | #define REG_FCNT 0x20 /* finished count */ |
| 40 | |
| 41 | /* Data buffer offsets */ |
| 42 | #define TXBUFFER_BASE 0x100 |
| 43 | #define RXBUFFER_BASE 0x200 |
| 44 | |
| 45 | /* REG_CON bits */ |
| 46 | #define REG_CON_EN BIT(0) |
| 47 | enum { |
| 48 | REG_CON_MOD_TX = 0, /* transmit data */ |
| 49 | REG_CON_MOD_REGISTER_TX, /* select register and restart */ |
| 50 | REG_CON_MOD_RX, /* receive data */ |
| 51 | REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes |
| 52 | * register addr */ |
| 53 | }; |
| 54 | #define REG_CON_MOD(mod) ((mod) << 1) |
| 55 | #define REG_CON_MOD_MASK (BIT(1) | BIT(2)) |
| 56 | #define REG_CON_START BIT(3) |
| 57 | #define REG_CON_STOP BIT(4) |
| 58 | #define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */ |
| 59 | #define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */ |
| 60 | |
| 61 | #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8) |
| 62 | |
| 63 | #define REG_CON_SDA_CFG(cfg) ((cfg) << 8) |
| 64 | #define REG_CON_STA_CFG(cfg) ((cfg) << 12) |
| 65 | #define REG_CON_STO_CFG(cfg) ((cfg) << 14) |
| 66 | |
| 67 | /* REG_MRXADDR bits */ |
| 68 | #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ |
| 69 | |
| 70 | /* REG_IEN/REG_IPD bits */ |
| 71 | #define REG_INT_BTF BIT(0) /* a byte was transmitted */ |
| 72 | #define REG_INT_BRF BIT(1) /* a byte was received */ |
| 73 | #define REG_INT_MBTF BIT(2) /* master data transmit finished */ |
| 74 | #define REG_INT_MBRF BIT(3) /* master data receive finished */ |
| 75 | #define REG_INT_START BIT(4) /* START condition generated */ |
| 76 | #define REG_INT_STOP BIT(5) /* STOP condition generated */ |
| 77 | #define REG_INT_NAKRCV BIT(6) /* NACK received */ |
| 78 | #define REG_INT_ALL 0x7f |
| 79 | |
| 80 | /* Constants */ |
| 81 | #define WAIT_TIMEOUT 1000 /* ms */ |
| 82 | #define DEFAULT_SCL_RATE (100 * 1000) /* Hz */ |
| 83 | |
| 84 | /** |
| 85 | * struct i2c_spec_values: |
| 86 | * @min_hold_start_ns: min hold time (repeated) START condition |
| 87 | * @min_low_ns: min LOW period of the SCL clock |
| 88 | * @min_high_ns: min HIGH period of the SCL cloc |
| 89 | * @min_setup_start_ns: min set-up time for a repeated START conditio |
| 90 | * @max_data_hold_ns: max data hold time |
| 91 | * @min_data_setup_ns: min data set-up time |
| 92 | * @min_setup_stop_ns: min set-up time for STOP condition |
| 93 | * @min_hold_buffer_ns: min bus free time between a STOP and |
| 94 | * START condition |
| 95 | */ |
| 96 | struct i2c_spec_values { |
| 97 | unsigned long min_hold_start_ns; |
| 98 | unsigned long min_low_ns; |
| 99 | unsigned long min_high_ns; |
| 100 | unsigned long min_setup_start_ns; |
| 101 | unsigned long max_data_hold_ns; |
| 102 | unsigned long min_data_setup_ns; |
| 103 | unsigned long min_setup_stop_ns; |
| 104 | unsigned long min_hold_buffer_ns; |
| 105 | }; |
| 106 | |
| 107 | static const struct i2c_spec_values standard_mode_spec = { |
| 108 | .min_hold_start_ns = 4000, |
| 109 | .min_low_ns = 4700, |
| 110 | .min_high_ns = 4000, |
| 111 | .min_setup_start_ns = 4700, |
| 112 | .max_data_hold_ns = 3450, |
| 113 | .min_data_setup_ns = 250, |
| 114 | .min_setup_stop_ns = 4000, |
| 115 | .min_hold_buffer_ns = 4700, |
| 116 | }; |
| 117 | |
| 118 | static const struct i2c_spec_values fast_mode_spec = { |
| 119 | .min_hold_start_ns = 600, |
| 120 | .min_low_ns = 1300, |
| 121 | .min_high_ns = 600, |
| 122 | .min_setup_start_ns = 600, |
| 123 | .max_data_hold_ns = 900, |
| 124 | .min_data_setup_ns = 100, |
| 125 | .min_setup_stop_ns = 600, |
| 126 | .min_hold_buffer_ns = 1300, |
| 127 | }; |
| 128 | |
| 129 | static const struct i2c_spec_values fast_mode_plus_spec = { |
| 130 | .min_hold_start_ns = 260, |
| 131 | .min_low_ns = 500, |
| 132 | .min_high_ns = 260, |
| 133 | .min_setup_start_ns = 260, |
| 134 | .max_data_hold_ns = 400, |
| 135 | .min_data_setup_ns = 50, |
| 136 | .min_setup_stop_ns = 260, |
| 137 | .min_hold_buffer_ns = 500, |
| 138 | }; |
| 139 | |
| 140 | /** |
| 141 | * struct rk3x_i2c_calced_timings: |
| 142 | * @div_low: Divider output for low |
| 143 | * @div_high: Divider output for high |
| 144 | * @tuning: Used to adjust setup/hold data time, |
| 145 | * setup/hold start time and setup stop time for |
| 146 | * v1's calc_timings, the tuning should all be 0 |
| 147 | * for old hardware anyone using v0's calc_timings. |
| 148 | */ |
| 149 | struct rk3x_i2c_calced_timings { |
| 150 | unsigned long div_low; |
| 151 | unsigned long div_high; |
| 152 | unsigned int tuning; |
| 153 | }; |
| 154 | |
| 155 | enum rk3x_i2c_state { |
| 156 | STATE_IDLE, |
| 157 | STATE_START, |
| 158 | STATE_READ, |
| 159 | STATE_WRITE, |
| 160 | STATE_STOP |
| 161 | }; |
| 162 | |
| 163 | /** |
| 164 | * struct rk3x_i2c_soc_data: |
| 165 | * @grf_offset: offset inside the grf regmap for setting the i2c type |
| 166 | * @calc_timings: Callback function for i2c timing information calculated |
| 167 | */ |
| 168 | struct rk3x_i2c_soc_data { |
| 169 | int grf_offset; |
| 170 | int (*calc_timings)(unsigned long, struct i2c_timings *, |
| 171 | struct rk3x_i2c_calced_timings *); |
| 172 | }; |
| 173 | |
| 174 | /** |
| 175 | * struct rk3x_i2c - private data of the controller |
| 176 | * @adap: corresponding I2C adapter |
| 177 | * @dev: device for this controller |
| 178 | * @soc_data: related soc data struct |
| 179 | * @regs: virtual memory area |
| 180 | * @clk: function clk for rk3399 or function & Bus clks for others |
| 181 | * @pclk: Bus clk for rk3399 |
| 182 | * @clk_rate_nb: i2c clk rate change notify |
| 183 | * @t: I2C known timing information |
| 184 | * @lock: spinlock for the i2c bus |
| 185 | * @wait: the waitqueue to wait for i2c transfer |
| 186 | * @busy: the condition for the event to wait for |
| 187 | * @msg: current i2c message |
| 188 | * @addr: addr of i2c slave device |
| 189 | * @mode: mode of i2c transfer |
| 190 | * @is_last_msg: flag determines whether it is the last msg in this transfer |
| 191 | * @state: state of i2c transfer |
| 192 | * @processed: byte length which has been send or received |
| 193 | * @error: error code for i2c transfer |
| 194 | */ |
| 195 | struct rk3x_i2c { |
| 196 | struct i2c_adapter adap; |
| 197 | struct device *dev; |
| 198 | const struct rk3x_i2c_soc_data *soc_data; |
| 199 | |
| 200 | /* Hardware resources */ |
| 201 | void __iomem *regs; |
| 202 | struct clk *clk; |
| 203 | struct clk *pclk; |
| 204 | struct notifier_block clk_rate_nb; |
| 205 | |
| 206 | /* Settings */ |
| 207 | struct i2c_timings t; |
| 208 | |
| 209 | /* Synchronization & notification */ |
| 210 | spinlock_t lock; |
| 211 | wait_queue_head_t wait; |
| 212 | bool busy; |
| 213 | |
| 214 | /* Current message */ |
| 215 | struct i2c_msg *msg; |
| 216 | u8 addr; |
| 217 | unsigned int mode; |
| 218 | bool is_last_msg; |
| 219 | |
| 220 | /* I2C state machine */ |
| 221 | enum rk3x_i2c_state state; |
| 222 | unsigned int processed; |
| 223 | int error; |
| 224 | }; |
| 225 | |
| 226 | static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, |
| 227 | unsigned int offset) |
| 228 | { |
| 229 | writel(value, i2c->regs + offset); |
| 230 | } |
| 231 | |
| 232 | static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) |
| 233 | { |
| 234 | return readl(i2c->regs + offset); |
| 235 | } |
| 236 | |
| 237 | /* Reset all interrupt pending bits */ |
| 238 | static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) |
| 239 | { |
| 240 | i2c_writel(i2c, REG_INT_ALL, REG_IPD); |
| 241 | } |
| 242 | |
| 243 | /** |
| 244 | * Generate a START condition, which triggers a REG_INT_START interrupt. |
| 245 | */ |
| 246 | static void rk3x_i2c_start(struct rk3x_i2c *i2c) |
| 247 | { |
| 248 | u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; |
| 249 | |
| 250 | i2c_writel(i2c, REG_INT_START, REG_IEN); |
| 251 | |
| 252 | /* enable adapter with correct mode, send START condition */ |
| 253 | val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; |
| 254 | |
| 255 | /* if we want to react to NACK, set ACTACK bit */ |
| 256 | if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) |
| 257 | val |= REG_CON_ACTACK; |
| 258 | |
| 259 | i2c_writel(i2c, val, REG_CON); |
| 260 | } |
| 261 | |
| 262 | /** |
| 263 | * Generate a STOP condition, which triggers a REG_INT_STOP interrupt. |
| 264 | * |
| 265 | * @error: Error code to return in rk3x_i2c_xfer |
| 266 | */ |
| 267 | static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) |
| 268 | { |
| 269 | unsigned int ctrl; |
| 270 | |
| 271 | i2c->processed = 0; |
| 272 | i2c->msg = NULL; |
| 273 | i2c->error = error; |
| 274 | |
| 275 | if (i2c->is_last_msg) { |
| 276 | /* Enable stop interrupt */ |
| 277 | i2c_writel(i2c, REG_INT_STOP, REG_IEN); |
| 278 | |
| 279 | i2c->state = STATE_STOP; |
| 280 | |
| 281 | ctrl = i2c_readl(i2c, REG_CON); |
| 282 | ctrl |= REG_CON_STOP; |
| 283 | i2c_writel(i2c, ctrl, REG_CON); |
| 284 | } else { |
| 285 | /* Signal rk3x_i2c_xfer to start the next message. */ |
| 286 | i2c->busy = false; |
| 287 | i2c->state = STATE_IDLE; |
| 288 | |
| 289 | /* |
| 290 | * The HW is actually not capable of REPEATED START. But we can |
| 291 | * get the intended effect by resetting its internal state |
| 292 | * and issuing an ordinary START. |
| 293 | */ |
| 294 | ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; |
| 295 | i2c_writel(i2c, ctrl, REG_CON); |
| 296 | |
| 297 | /* signal that we are finished with the current msg */ |
| 298 | wake_up(&i2c->wait); |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /** |
| 303 | * Setup a read according to i2c->msg |
| 304 | */ |
| 305 | static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c) |
| 306 | { |
| 307 | unsigned int len = i2c->msg->len - i2c->processed; |
| 308 | u32 con; |
| 309 | |
| 310 | con = i2c_readl(i2c, REG_CON); |
| 311 | |
| 312 | /* |
| 313 | * The hw can read up to 32 bytes at a time. If we need more than one |
| 314 | * chunk, send an ACK after the last byte of the current chunk. |
| 315 | */ |
| 316 | if (len > 32) { |
| 317 | len = 32; |
| 318 | con &= ~REG_CON_LASTACK; |
| 319 | } else { |
| 320 | con |= REG_CON_LASTACK; |
| 321 | } |
| 322 | |
| 323 | /* make sure we are in plain RX mode if we read a second chunk */ |
| 324 | if (i2c->processed != 0) { |
| 325 | con &= ~REG_CON_MOD_MASK; |
| 326 | con |= REG_CON_MOD(REG_CON_MOD_RX); |
| 327 | } |
| 328 | |
| 329 | i2c_writel(i2c, con, REG_CON); |
| 330 | i2c_writel(i2c, len, REG_MRXCNT); |
| 331 | } |
| 332 | |
| 333 | /** |
| 334 | * Fill the transmit buffer with data from i2c->msg |
| 335 | */ |
| 336 | static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c) |
| 337 | { |
| 338 | unsigned int i, j; |
| 339 | u32 cnt = 0; |
| 340 | u32 val; |
| 341 | u8 byte; |
| 342 | |
| 343 | for (i = 0; i < 8; ++i) { |
| 344 | val = 0; |
| 345 | for (j = 0; j < 4; ++j) { |
| 346 | if ((i2c->processed == i2c->msg->len) && (cnt != 0)) |
| 347 | break; |
| 348 | |
| 349 | if (i2c->processed == 0 && cnt == 0) |
| 350 | byte = (i2c->addr & 0x7f) << 1; |
| 351 | else |
| 352 | byte = i2c->msg->buf[i2c->processed++]; |
| 353 | |
| 354 | val |= byte << (j * 8); |
| 355 | cnt++; |
| 356 | } |
| 357 | |
| 358 | i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i); |
| 359 | |
| 360 | if (i2c->processed == i2c->msg->len) |
| 361 | break; |
| 362 | } |
| 363 | |
| 364 | i2c_writel(i2c, cnt, REG_MTXCNT); |
| 365 | } |
| 366 | |
| 367 | |
| 368 | /* IRQ handlers for individual states */ |
| 369 | |
| 370 | static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd) |
| 371 | { |
| 372 | if (!(ipd & REG_INT_START)) { |
| 373 | rk3x_i2c_stop(i2c, -EIO); |
| 374 | dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd); |
| 375 | rk3x_i2c_clean_ipd(i2c); |
| 376 | return; |
| 377 | } |
| 378 | |
| 379 | /* ack interrupt */ |
| 380 | i2c_writel(i2c, REG_INT_START, REG_IPD); |
| 381 | |
| 382 | /* disable start bit */ |
| 383 | i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON); |
| 384 | |
| 385 | /* enable appropriate interrupts and transition */ |
| 386 | if (i2c->mode == REG_CON_MOD_TX) { |
| 387 | i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN); |
| 388 | i2c->state = STATE_WRITE; |
| 389 | rk3x_i2c_fill_transmit_buf(i2c); |
| 390 | } else { |
| 391 | /* in any other case, we are going to be reading. */ |
| 392 | i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN); |
| 393 | i2c->state = STATE_READ; |
| 394 | rk3x_i2c_prepare_read(i2c); |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd) |
| 399 | { |
| 400 | if (!(ipd & REG_INT_MBTF)) { |
| 401 | rk3x_i2c_stop(i2c, -EIO); |
| 402 | dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd); |
| 403 | rk3x_i2c_clean_ipd(i2c); |
| 404 | return; |
| 405 | } |
| 406 | |
| 407 | /* ack interrupt */ |
| 408 | i2c_writel(i2c, REG_INT_MBTF, REG_IPD); |
| 409 | |
| 410 | /* are we finished? */ |
| 411 | if (i2c->processed == i2c->msg->len) |
| 412 | rk3x_i2c_stop(i2c, i2c->error); |
| 413 | else |
| 414 | rk3x_i2c_fill_transmit_buf(i2c); |
| 415 | } |
| 416 | |
| 417 | static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd) |
| 418 | { |
| 419 | unsigned int i; |
| 420 | unsigned int len = i2c->msg->len - i2c->processed; |
| 421 | u32 uninitialized_var(val); |
| 422 | u8 byte; |
| 423 | |
| 424 | /* we only care for MBRF here. */ |
| 425 | if (!(ipd & REG_INT_MBRF)) |
| 426 | return; |
| 427 | |
| 428 | /* ack interrupt */ |
| 429 | i2c_writel(i2c, REG_INT_MBRF, REG_IPD); |
| 430 | |
| 431 | /* Can only handle a maximum of 32 bytes at a time */ |
| 432 | if (len > 32) |
| 433 | len = 32; |
| 434 | |
| 435 | /* read the data from receive buffer */ |
| 436 | for (i = 0; i < len; ++i) { |
| 437 | if (i % 4 == 0) |
| 438 | val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4); |
| 439 | |
| 440 | byte = (val >> ((i % 4) * 8)) & 0xff; |
| 441 | i2c->msg->buf[i2c->processed++] = byte; |
| 442 | } |
| 443 | |
| 444 | /* are we finished? */ |
| 445 | if (i2c->processed == i2c->msg->len) |
| 446 | rk3x_i2c_stop(i2c, i2c->error); |
| 447 | else |
| 448 | rk3x_i2c_prepare_read(i2c); |
| 449 | } |
| 450 | |
| 451 | static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd) |
| 452 | { |
| 453 | unsigned int con; |
| 454 | |
| 455 | if (!(ipd & REG_INT_STOP)) { |
| 456 | rk3x_i2c_stop(i2c, -EIO); |
| 457 | dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd); |
| 458 | rk3x_i2c_clean_ipd(i2c); |
| 459 | return; |
| 460 | } |
| 461 | |
| 462 | /* ack interrupt */ |
| 463 | i2c_writel(i2c, REG_INT_STOP, REG_IPD); |
| 464 | |
| 465 | /* disable STOP bit */ |
| 466 | con = i2c_readl(i2c, REG_CON); |
| 467 | con &= ~REG_CON_STOP; |
| 468 | i2c_writel(i2c, con, REG_CON); |
| 469 | |
| 470 | i2c->busy = false; |
| 471 | i2c->state = STATE_IDLE; |
| 472 | |
| 473 | /* signal rk3x_i2c_xfer that we are finished */ |
| 474 | wake_up(&i2c->wait); |
| 475 | } |
| 476 | |
| 477 | static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id) |
| 478 | { |
| 479 | struct rk3x_i2c *i2c = dev_id; |
| 480 | unsigned int ipd; |
| 481 | |
| 482 | spin_lock(&i2c->lock); |
| 483 | |
| 484 | ipd = i2c_readl(i2c, REG_IPD); |
| 485 | if (i2c->state == STATE_IDLE) { |
| 486 | dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd); |
| 487 | rk3x_i2c_clean_ipd(i2c); |
| 488 | goto out; |
| 489 | } |
| 490 | |
| 491 | dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd); |
| 492 | |
| 493 | /* Clean interrupt bits we don't care about */ |
| 494 | ipd &= ~(REG_INT_BRF | REG_INT_BTF); |
| 495 | |
| 496 | if (ipd & REG_INT_NAKRCV) { |
| 497 | /* |
| 498 | * We got a NACK in the last operation. Depending on whether |
| 499 | * IGNORE_NAK is set, we have to stop the operation and report |
| 500 | * an error. |
| 501 | */ |
| 502 | i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD); |
| 503 | |
| 504 | ipd &= ~REG_INT_NAKRCV; |
| 505 | |
| 506 | if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) |
| 507 | rk3x_i2c_stop(i2c, -ENXIO); |
| 508 | } |
| 509 | |
| 510 | /* is there anything left to handle? */ |
| 511 | if ((ipd & REG_INT_ALL) == 0) |
| 512 | goto out; |
| 513 | |
| 514 | switch (i2c->state) { |
| 515 | case STATE_START: |
| 516 | rk3x_i2c_handle_start(i2c, ipd); |
| 517 | break; |
| 518 | case STATE_WRITE: |
| 519 | rk3x_i2c_handle_write(i2c, ipd); |
| 520 | break; |
| 521 | case STATE_READ: |
| 522 | rk3x_i2c_handle_read(i2c, ipd); |
| 523 | break; |
| 524 | case STATE_STOP: |
| 525 | rk3x_i2c_handle_stop(i2c, ipd); |
| 526 | break; |
| 527 | case STATE_IDLE: |
| 528 | break; |
| 529 | } |
| 530 | |
| 531 | out: |
| 532 | spin_unlock(&i2c->lock); |
| 533 | return IRQ_HANDLED; |
| 534 | } |
| 535 | |
| 536 | /** |
| 537 | * Get timing values of I2C specification |
| 538 | * |
| 539 | * @speed: Desired SCL frequency |
| 540 | * |
| 541 | * Returns: Matched i2c spec values. |
| 542 | */ |
| 543 | static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed) |
| 544 | { |
| 545 | if (speed <= 100000) |
| 546 | return &standard_mode_spec; |
| 547 | else if (speed <= 400000) |
| 548 | return &fast_mode_spec; |
| 549 | else |
| 550 | return &fast_mode_plus_spec; |
| 551 | } |
| 552 | |
| 553 | /** |
| 554 | * Calculate divider values for desired SCL frequency |
| 555 | * |
| 556 | * @clk_rate: I2C input clock rate |
| 557 | * @t: Known I2C timing information |
| 558 | * @t_calc: Caculated rk3x private timings that would be written into regs |
| 559 | * |
| 560 | * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case |
| 561 | * a best-effort divider value is returned in divs. If the target rate is |
| 562 | * too high, we silently use the highest possible rate. |
| 563 | */ |
| 564 | static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, |
| 565 | struct i2c_timings *t, |
| 566 | struct rk3x_i2c_calced_timings *t_calc) |
| 567 | { |
| 568 | unsigned long min_low_ns, min_high_ns; |
| 569 | unsigned long max_low_ns, min_total_ns; |
| 570 | |
| 571 | unsigned long clk_rate_khz, scl_rate_khz; |
| 572 | |
| 573 | unsigned long min_low_div, min_high_div; |
| 574 | unsigned long max_low_div; |
| 575 | |
| 576 | unsigned long min_div_for_hold, min_total_div; |
| 577 | unsigned long extra_div, extra_low_div, ideal_low_div; |
| 578 | |
| 579 | unsigned long data_hold_buffer_ns = 50; |
| 580 | const struct i2c_spec_values *spec; |
| 581 | int ret = 0; |
| 582 | |
| 583 | /* Only support standard-mode and fast-mode */ |
| 584 | if (WARN_ON(t->bus_freq_hz > 400000)) |
| 585 | t->bus_freq_hz = 400000; |
| 586 | |
| 587 | /* prevent scl_rate_khz from becoming 0 */ |
| 588 | if (WARN_ON(t->bus_freq_hz < 1000)) |
| 589 | t->bus_freq_hz = 1000; |
| 590 | |
| 591 | /* |
| 592 | * min_low_ns: The minimum number of ns we need to hold low to |
| 593 | * meet I2C specification, should include fall time. |
| 594 | * min_high_ns: The minimum number of ns we need to hold high to |
| 595 | * meet I2C specification, should include rise time. |
| 596 | * max_low_ns: The maximum number of ns we can hold low to meet |
| 597 | * I2C specification. |
| 598 | * |
| 599 | * Note: max_low_ns should be (maximum data hold time * 2 - buffer) |
| 600 | * This is because the i2c host on Rockchip holds the data line |
| 601 | * for half the low time. |
| 602 | */ |
| 603 | spec = rk3x_i2c_get_spec(t->bus_freq_hz); |
| 604 | min_high_ns = t->scl_rise_ns + spec->min_high_ns; |
| 605 | |
| 606 | /* |
| 607 | * Timings for repeated start: |
| 608 | * - controller appears to drop SDA at .875x (7/8) programmed clk high. |
| 609 | * - controller appears to keep SCL high for 2x programmed clk high. |
| 610 | * |
| 611 | * We need to account for those rules in picking our "high" time so |
| 612 | * we meet tSU;STA and tHD;STA times. |
| 613 | */ |
| 614 | min_high_ns = max(min_high_ns, DIV_ROUND_UP( |
| 615 | (t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875)); |
| 616 | min_high_ns = max(min_high_ns, DIV_ROUND_UP( |
| 617 | (t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns + |
| 618 | spec->min_high_ns), 2)); |
| 619 | |
| 620 | min_low_ns = t->scl_fall_ns + spec->min_low_ns; |
| 621 | max_low_ns = spec->max_data_hold_ns * 2 - data_hold_buffer_ns; |
| 622 | min_total_ns = min_low_ns + min_high_ns; |
| 623 | |
| 624 | /* Adjust to avoid overflow */ |
| 625 | clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); |
| 626 | scl_rate_khz = t->bus_freq_hz / 1000; |
| 627 | |
| 628 | /* |
| 629 | * We need the total div to be >= this number |
| 630 | * so we don't clock too fast. |
| 631 | */ |
| 632 | min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); |
| 633 | |
| 634 | /* These are the min dividers needed for min hold times. */ |
| 635 | min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); |
| 636 | min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); |
| 637 | min_div_for_hold = (min_low_div + min_high_div); |
| 638 | |
| 639 | /* |
| 640 | * This is the maximum divider so we don't go over the maximum. |
| 641 | * We don't round up here (we round down) since this is a maximum. |
| 642 | */ |
| 643 | max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000); |
| 644 | |
| 645 | if (min_low_div > max_low_div) { |
| 646 | WARN_ONCE(true, |
| 647 | "Conflicting, min_low_div %lu, max_low_div %lu\n", |
| 648 | min_low_div, max_low_div); |
| 649 | max_low_div = min_low_div; |
| 650 | } |
| 651 | |
| 652 | if (min_div_for_hold > min_total_div) { |
| 653 | /* |
| 654 | * Time needed to meet hold requirements is important. |
| 655 | * Just use that. |
| 656 | */ |
| 657 | t_calc->div_low = min_low_div; |
| 658 | t_calc->div_high = min_high_div; |
| 659 | } else { |
| 660 | /* |
| 661 | * We've got to distribute some time among the low and high |
| 662 | * so we don't run too fast. |
| 663 | */ |
| 664 | extra_div = min_total_div - min_div_for_hold; |
| 665 | |
| 666 | /* |
| 667 | * We'll try to split things up perfectly evenly, |
| 668 | * biasing slightly towards having a higher div |
| 669 | * for low (spend more time low). |
| 670 | */ |
| 671 | ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, |
| 672 | scl_rate_khz * 8 * min_total_ns); |
| 673 | |
| 674 | /* Don't allow it to go over the maximum */ |
| 675 | if (ideal_low_div > max_low_div) |
| 676 | ideal_low_div = max_low_div; |
| 677 | |
| 678 | /* |
| 679 | * Handle when the ideal low div is going to take up |
| 680 | * more than we have. |
| 681 | */ |
| 682 | if (ideal_low_div > min_low_div + extra_div) |
| 683 | ideal_low_div = min_low_div + extra_div; |
| 684 | |
| 685 | /* Give low the "ideal" and give high whatever extra is left */ |
| 686 | extra_low_div = ideal_low_div - min_low_div; |
| 687 | t_calc->div_low = ideal_low_div; |
| 688 | t_calc->div_high = min_high_div + (extra_div - extra_low_div); |
| 689 | } |
| 690 | |
| 691 | /* |
| 692 | * Adjust to the fact that the hardware has an implicit "+1". |
| 693 | * NOTE: Above calculations always produce div_low > 0 and div_high > 0. |
| 694 | */ |
| 695 | t_calc->div_low--; |
| 696 | t_calc->div_high--; |
| 697 | |
| 698 | /* Give the tuning value 0, that would not update con register */ |
| 699 | t_calc->tuning = 0; |
| 700 | /* Maximum divider supported by hw is 0xffff */ |
| 701 | if (t_calc->div_low > 0xffff) { |
| 702 | t_calc->div_low = 0xffff; |
| 703 | ret = -EINVAL; |
| 704 | } |
| 705 | |
| 706 | if (t_calc->div_high > 0xffff) { |
| 707 | t_calc->div_high = 0xffff; |
| 708 | ret = -EINVAL; |
| 709 | } |
| 710 | |
| 711 | return ret; |
| 712 | } |
| 713 | |
| 714 | /** |
| 715 | * Calculate timing values for desired SCL frequency |
| 716 | * |
| 717 | * @clk_rate: I2C input clock rate |
| 718 | * @t: Known I2C timing information |
| 719 | * @t_calc: Caculated rk3x private timings that would be written into regs |
| 720 | * |
| 721 | * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case |
| 722 | * a best-effort divider value is returned in divs. If the target rate is |
| 723 | * too high, we silently use the highest possible rate. |
| 724 | * The following formulas are v1's method to calculate timings. |
| 725 | * |
| 726 | * l = divl + 1; |
| 727 | * h = divh + 1; |
| 728 | * s = sda_update_config + 1; |
| 729 | * u = start_setup_config + 1; |
| 730 | * p = stop_setup_config + 1; |
| 731 | * T = Tclk_i2c; |
| 732 | * |
| 733 | * tHigh = 8 * h * T; |
| 734 | * tLow = 8 * l * T; |
| 735 | * |
| 736 | * tHD;sda = (l * s + 1) * T; |
| 737 | * tSU;sda = [(8 - s) * l + 1] * T; |
| 738 | * tI2C = 8 * (l + h) * T; |
| 739 | * |
| 740 | * tSU;sta = (8h * u + 1) * T; |
| 741 | * tHD;sta = [8h * (u + 1) - 1] * T; |
| 742 | * tSU;sto = (8h * p + 1) * T; |
| 743 | */ |
| 744 | static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, |
| 745 | struct i2c_timings *t, |
| 746 | struct rk3x_i2c_calced_timings *t_calc) |
| 747 | { |
| 748 | unsigned long min_low_ns, min_high_ns; |
| 749 | unsigned long min_setup_start_ns, min_setup_data_ns; |
| 750 | unsigned long min_setup_stop_ns, max_hold_data_ns; |
| 751 | |
| 752 | unsigned long clk_rate_khz, scl_rate_khz; |
| 753 | |
| 754 | unsigned long min_low_div, min_high_div; |
| 755 | |
| 756 | unsigned long min_div_for_hold, min_total_div; |
| 757 | unsigned long extra_div, extra_low_div; |
| 758 | unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg; |
| 759 | |
| 760 | const struct i2c_spec_values *spec; |
| 761 | int ret = 0; |
| 762 | |
| 763 | /* Support standard-mode, fast-mode and fast-mode plus */ |
| 764 | if (WARN_ON(t->bus_freq_hz > 1000000)) |
| 765 | t->bus_freq_hz = 1000000; |
| 766 | |
| 767 | /* prevent scl_rate_khz from becoming 0 */ |
| 768 | if (WARN_ON(t->bus_freq_hz < 1000)) |
| 769 | t->bus_freq_hz = 1000; |
| 770 | |
| 771 | /* |
| 772 | * min_low_ns: The minimum number of ns we need to hold low to |
| 773 | * meet I2C specification, should include fall time. |
| 774 | * min_high_ns: The minimum number of ns we need to hold high to |
| 775 | * meet I2C specification, should include rise time. |
| 776 | */ |
| 777 | spec = rk3x_i2c_get_spec(t->bus_freq_hz); |
| 778 | |
| 779 | /* calculate min-divh and min-divl */ |
| 780 | clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); |
| 781 | scl_rate_khz = t->bus_freq_hz / 1000; |
| 782 | min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); |
| 783 | |
| 784 | min_high_ns = t->scl_rise_ns + spec->min_high_ns; |
| 785 | min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); |
| 786 | |
| 787 | min_low_ns = t->scl_fall_ns + spec->min_low_ns; |
| 788 | min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); |
| 789 | |
| 790 | /* |
| 791 | * Final divh and divl must be greater than 0, otherwise the |
| 792 | * hardware would not output the i2c clk. |
| 793 | */ |
| 794 | min_high_div = (min_high_div < 1) ? 2 : min_high_div; |
| 795 | min_low_div = (min_low_div < 1) ? 2 : min_low_div; |
| 796 | |
| 797 | /* These are the min dividers needed for min hold times. */ |
| 798 | min_div_for_hold = (min_low_div + min_high_div); |
| 799 | |
| 800 | /* |
| 801 | * This is the maximum divider so we don't go over the maximum. |
| 802 | * We don't round up here (we round down) since this is a maximum. |
| 803 | */ |
| 804 | if (min_div_for_hold >= min_total_div) { |
| 805 | /* |
| 806 | * Time needed to meet hold requirements is important. |
| 807 | * Just use that. |
| 808 | */ |
| 809 | t_calc->div_low = min_low_div; |
| 810 | t_calc->div_high = min_high_div; |
| 811 | } else { |
| 812 | /* |
| 813 | * We've got to distribute some time among the low and high |
| 814 | * so we don't run too fast. |
| 815 | * We'll try to split things up by the scale of min_low_div and |
| 816 | * min_high_div, biasing slightly towards having a higher div |
| 817 | * for low (spend more time low). |
| 818 | */ |
| 819 | extra_div = min_total_div - min_div_for_hold; |
| 820 | extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, |
| 821 | min_div_for_hold); |
| 822 | |
| 823 | t_calc->div_low = min_low_div + extra_low_div; |
| 824 | t_calc->div_high = min_high_div + (extra_div - extra_low_div); |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * calculate sda data hold count by the rules, data_upd_st:3 |
| 829 | * is a appropriate value to reduce calculated times. |
| 830 | */ |
| 831 | for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) { |
| 832 | max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg |
| 833 | * (t_calc->div_low) + 1) |
| 834 | * 1000000, clk_rate_khz); |
| 835 | min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg) |
| 836 | * (t_calc->div_low) + 1) |
| 837 | * 1000000, clk_rate_khz); |
| 838 | if ((max_hold_data_ns < spec->max_data_hold_ns) && |
| 839 | (min_setup_data_ns > spec->min_data_setup_ns)) |
| 840 | break; |
| 841 | } |
| 842 | |
| 843 | /* calculate setup start config */ |
| 844 | min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns; |
| 845 | stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns |
| 846 | - 1000000, 8 * 1000000 * (t_calc->div_high)); |
| 847 | |
| 848 | /* calculate setup stop config */ |
| 849 | min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns; |
| 850 | stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns |
| 851 | - 1000000, 8 * 1000000 * (t_calc->div_high)); |
| 852 | |
| 853 | t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) | |
| 854 | REG_CON_STA_CFG(--stp_sta_cfg) | |
| 855 | REG_CON_STO_CFG(--stp_sto_cfg); |
| 856 | |
| 857 | t_calc->div_low--; |
| 858 | t_calc->div_high--; |
| 859 | |
| 860 | /* Maximum divider supported by hw is 0xffff */ |
| 861 | if (t_calc->div_low > 0xffff) { |
| 862 | t_calc->div_low = 0xffff; |
| 863 | ret = -EINVAL; |
| 864 | } |
| 865 | |
| 866 | if (t_calc->div_high > 0xffff) { |
| 867 | t_calc->div_high = 0xffff; |
| 868 | ret = -EINVAL; |
| 869 | } |
| 870 | |
| 871 | return ret; |
| 872 | } |
| 873 | |
| 874 | static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) |
| 875 | { |
| 876 | struct i2c_timings *t = &i2c->t; |
| 877 | struct rk3x_i2c_calced_timings calc; |
| 878 | u64 t_low_ns, t_high_ns; |
| 879 | unsigned long flags; |
| 880 | u32 val; |
| 881 | int ret; |
| 882 | |
| 883 | ret = i2c->soc_data->calc_timings(clk_rate, t, &calc); |
| 884 | WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz); |
| 885 | |
| 886 | clk_enable(i2c->pclk); |
| 887 | |
| 888 | spin_lock_irqsave(&i2c->lock, flags); |
| 889 | val = i2c_readl(i2c, REG_CON); |
| 890 | val &= ~REG_CON_TUNING_MASK; |
| 891 | val |= calc.tuning; |
| 892 | i2c_writel(i2c, val, REG_CON); |
| 893 | i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff), |
| 894 | REG_CLKDIV); |
| 895 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 896 | |
| 897 | clk_disable(i2c->pclk); |
| 898 | |
| 899 | t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate); |
| 900 | t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000, |
| 901 | clk_rate); |
| 902 | dev_dbg(i2c->dev, |
| 903 | "CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", |
| 904 | clk_rate / 1000, |
| 905 | 1000000000 / t->bus_freq_hz, |
| 906 | t_low_ns, t_high_ns); |
| 907 | } |
| 908 | |
| 909 | /** |
| 910 | * rk3x_i2c_clk_notifier_cb - Clock rate change callback |
| 911 | * @nb: Pointer to notifier block |
| 912 | * @event: Notification reason |
| 913 | * @data: Pointer to notification data object |
| 914 | * |
| 915 | * The callback checks whether a valid bus frequency can be generated after the |
| 916 | * change. If so, the change is acknowledged, otherwise the change is aborted. |
| 917 | * New dividers are written to the HW in the pre- or post change notification |
| 918 | * depending on the scaling direction. |
| 919 | * |
| 920 | * Code adapted from i2c-cadence.c. |
| 921 | * |
| 922 | * Return: NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK |
| 923 | * to acknowledge the change, NOTIFY_DONE if the notification is |
| 924 | * considered irrelevant. |
| 925 | */ |
| 926 | static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long |
| 927 | event, void *data) |
| 928 | { |
| 929 | struct clk_notifier_data *ndata = data; |
| 930 | struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); |
| 931 | struct rk3x_i2c_calced_timings calc; |
| 932 | |
| 933 | switch (event) { |
| 934 | case PRE_RATE_CHANGE: |
| 935 | /* |
| 936 | * Try the calculation (but don't store the result) ahead of |
| 937 | * time to see if we need to block the clock change. Timings |
| 938 | * shouldn't actually take effect until rk3x_i2c_adapt_div(). |
| 939 | */ |
| 940 | if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t, |
| 941 | &calc) != 0) |
| 942 | return NOTIFY_STOP; |
| 943 | |
| 944 | /* scale up */ |
| 945 | if (ndata->new_rate > ndata->old_rate) |
| 946 | rk3x_i2c_adapt_div(i2c, ndata->new_rate); |
| 947 | |
| 948 | return NOTIFY_OK; |
| 949 | case POST_RATE_CHANGE: |
| 950 | /* scale down */ |
| 951 | if (ndata->new_rate < ndata->old_rate) |
| 952 | rk3x_i2c_adapt_div(i2c, ndata->new_rate); |
| 953 | return NOTIFY_OK; |
| 954 | case ABORT_RATE_CHANGE: |
| 955 | /* scale up */ |
| 956 | if (ndata->new_rate > ndata->old_rate) |
| 957 | rk3x_i2c_adapt_div(i2c, ndata->old_rate); |
| 958 | return NOTIFY_OK; |
| 959 | default: |
| 960 | return NOTIFY_DONE; |
| 961 | } |
| 962 | } |
| 963 | |
| 964 | /** |
| 965 | * Setup I2C registers for an I2C operation specified by msgs, num. |
| 966 | * |
| 967 | * Must be called with i2c->lock held. |
| 968 | * |
| 969 | * @msgs: I2C msgs to process |
| 970 | * @num: Number of msgs |
| 971 | * |
| 972 | * returns: Number of I2C msgs processed or negative in case of error |
| 973 | */ |
| 974 | static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num) |
| 975 | { |
| 976 | u32 addr = (msgs[0].addr & 0x7f) << 1; |
| 977 | int ret = 0; |
| 978 | |
| 979 | /* |
| 980 | * The I2C adapter can issue a small (len < 4) write packet before |
| 981 | * reading. This speeds up SMBus-style register reads. |
| 982 | * The MRXADDR/MRXRADDR hold the slave address and the slave register |
| 983 | * address in this case. |
| 984 | */ |
| 985 | |
| 986 | if (num >= 2 && msgs[0].len < 4 && |
| 987 | !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) { |
| 988 | u32 reg_addr = 0; |
| 989 | int i; |
| 990 | |
| 991 | dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", |
| 992 | addr >> 1); |
| 993 | |
| 994 | /* Fill MRXRADDR with the register address(es) */ |
| 995 | for (i = 0; i < msgs[0].len; ++i) { |
| 996 | reg_addr |= msgs[0].buf[i] << (i * 8); |
| 997 | reg_addr |= REG_MRXADDR_VALID(i); |
| 998 | } |
| 999 | |
| 1000 | /* msgs[0] is handled by hw. */ |
| 1001 | i2c->msg = &msgs[1]; |
| 1002 | |
| 1003 | i2c->mode = REG_CON_MOD_REGISTER_TX; |
| 1004 | |
| 1005 | i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); |
| 1006 | i2c_writel(i2c, reg_addr, REG_MRXRADDR); |
| 1007 | |
| 1008 | ret = 2; |
| 1009 | } else { |
| 1010 | /* |
| 1011 | * We'll have to do it the boring way and process the msgs |
| 1012 | * one-by-one. |
| 1013 | */ |
| 1014 | |
| 1015 | if (msgs[0].flags & I2C_M_RD) { |
| 1016 | addr |= 1; /* set read bit */ |
| 1017 | |
| 1018 | /* |
| 1019 | * We have to transmit the slave addr first. Use |
| 1020 | * MOD_REGISTER_TX for that purpose. |
| 1021 | */ |
| 1022 | i2c->mode = REG_CON_MOD_REGISTER_TX; |
| 1023 | i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), |
| 1024 | REG_MRXADDR); |
| 1025 | i2c_writel(i2c, 0, REG_MRXRADDR); |
| 1026 | } else { |
| 1027 | i2c->mode = REG_CON_MOD_TX; |
| 1028 | } |
| 1029 | |
| 1030 | i2c->msg = &msgs[0]; |
| 1031 | |
| 1032 | ret = 1; |
| 1033 | } |
| 1034 | |
| 1035 | i2c->addr = msgs[0].addr; |
| 1036 | i2c->busy = true; |
| 1037 | i2c->state = STATE_START; |
| 1038 | i2c->processed = 0; |
| 1039 | i2c->error = 0; |
| 1040 | |
| 1041 | rk3x_i2c_clean_ipd(i2c); |
| 1042 | |
| 1043 | return ret; |
| 1044 | } |
| 1045 | |
| 1046 | static int rk3x_i2c_xfer(struct i2c_adapter *adap, |
| 1047 | struct i2c_msg *msgs, int num) |
| 1048 | { |
| 1049 | struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data; |
| 1050 | unsigned long timeout, flags; |
| 1051 | u32 val; |
| 1052 | int ret = 0; |
| 1053 | int i; |
| 1054 | |
| 1055 | spin_lock_irqsave(&i2c->lock, flags); |
| 1056 | |
| 1057 | clk_enable(i2c->clk); |
| 1058 | clk_enable(i2c->pclk); |
| 1059 | |
| 1060 | i2c->is_last_msg = false; |
| 1061 | |
| 1062 | /* |
| 1063 | * Process msgs. We can handle more than one message at once (see |
| 1064 | * rk3x_i2c_setup()). |
| 1065 | */ |
| 1066 | for (i = 0; i < num; i += ret) { |
| 1067 | ret = rk3x_i2c_setup(i2c, msgs + i, num - i); |
| 1068 | |
| 1069 | if (ret < 0) { |
| 1070 | dev_err(i2c->dev, "rk3x_i2c_setup() failed\n"); |
| 1071 | break; |
| 1072 | } |
| 1073 | |
| 1074 | if (i + ret >= num) |
| 1075 | i2c->is_last_msg = true; |
| 1076 | |
| 1077 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 1078 | |
| 1079 | rk3x_i2c_start(i2c); |
| 1080 | |
| 1081 | timeout = wait_event_timeout(i2c->wait, !i2c->busy, |
| 1082 | msecs_to_jiffies(WAIT_TIMEOUT)); |
| 1083 | |
| 1084 | spin_lock_irqsave(&i2c->lock, flags); |
| 1085 | |
| 1086 | if (timeout == 0) { |
| 1087 | dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", |
| 1088 | i2c_readl(i2c, REG_IPD), i2c->state); |
| 1089 | |
| 1090 | /* Force a STOP condition without interrupt */ |
| 1091 | i2c_writel(i2c, 0, REG_IEN); |
| 1092 | val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; |
| 1093 | val |= REG_CON_EN | REG_CON_STOP; |
| 1094 | i2c_writel(i2c, val, REG_CON); |
| 1095 | |
| 1096 | i2c->state = STATE_IDLE; |
| 1097 | |
| 1098 | ret = -ETIMEDOUT; |
| 1099 | break; |
| 1100 | } |
| 1101 | |
| 1102 | if (i2c->error) { |
| 1103 | ret = i2c->error; |
| 1104 | break; |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | clk_disable(i2c->pclk); |
| 1109 | clk_disable(i2c->clk); |
| 1110 | |
| 1111 | spin_unlock_irqrestore(&i2c->lock, flags); |
| 1112 | |
| 1113 | return ret < 0 ? ret : num; |
| 1114 | } |
| 1115 | |
| 1116 | static __maybe_unused int rk3x_i2c_resume(struct device *dev) |
| 1117 | { |
| 1118 | struct rk3x_i2c *i2c = dev_get_drvdata(dev); |
| 1119 | |
| 1120 | rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk)); |
| 1121 | |
| 1122 | return 0; |
| 1123 | } |
| 1124 | |
| 1125 | static u32 rk3x_i2c_func(struct i2c_adapter *adap) |
| 1126 | { |
| 1127 | return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; |
| 1128 | } |
| 1129 | |
| 1130 | static const struct i2c_algorithm rk3x_i2c_algorithm = { |
| 1131 | .master_xfer = rk3x_i2c_xfer, |
| 1132 | .functionality = rk3x_i2c_func, |
| 1133 | }; |
| 1134 | |
| 1135 | static const struct rk3x_i2c_soc_data rv1108_soc_data = { |
| 1136 | .grf_offset = -1, |
| 1137 | .calc_timings = rk3x_i2c_v1_calc_timings, |
| 1138 | }; |
| 1139 | |
| 1140 | static const struct rk3x_i2c_soc_data rk3066_soc_data = { |
| 1141 | .grf_offset = 0x154, |
| 1142 | .calc_timings = rk3x_i2c_v0_calc_timings, |
| 1143 | }; |
| 1144 | |
| 1145 | static const struct rk3x_i2c_soc_data rk3188_soc_data = { |
| 1146 | .grf_offset = 0x0a4, |
| 1147 | .calc_timings = rk3x_i2c_v0_calc_timings, |
| 1148 | }; |
| 1149 | |
| 1150 | static const struct rk3x_i2c_soc_data rk3228_soc_data = { |
| 1151 | .grf_offset = -1, |
| 1152 | .calc_timings = rk3x_i2c_v0_calc_timings, |
| 1153 | }; |
| 1154 | |
| 1155 | static const struct rk3x_i2c_soc_data rk3288_soc_data = { |
| 1156 | .grf_offset = -1, |
| 1157 | .calc_timings = rk3x_i2c_v0_calc_timings, |
| 1158 | }; |
| 1159 | |
| 1160 | static const struct rk3x_i2c_soc_data rk3399_soc_data = { |
| 1161 | .grf_offset = -1, |
| 1162 | .calc_timings = rk3x_i2c_v1_calc_timings, |
| 1163 | }; |
| 1164 | |
| 1165 | static const struct of_device_id rk3x_i2c_match[] = { |
| 1166 | { |
| 1167 | .compatible = "rockchip,rv1108-i2c", |
| 1168 | .data = &rv1108_soc_data |
| 1169 | }, |
| 1170 | { |
| 1171 | .compatible = "rockchip,rk3066-i2c", |
| 1172 | .data = &rk3066_soc_data |
| 1173 | }, |
| 1174 | { |
| 1175 | .compatible = "rockchip,rk3188-i2c", |
| 1176 | .data = &rk3188_soc_data |
| 1177 | }, |
| 1178 | { |
| 1179 | .compatible = "rockchip,rk3228-i2c", |
| 1180 | .data = &rk3228_soc_data |
| 1181 | }, |
| 1182 | { |
| 1183 | .compatible = "rockchip,rk3288-i2c", |
| 1184 | .data = &rk3288_soc_data |
| 1185 | }, |
| 1186 | { |
| 1187 | .compatible = "rockchip,rk3399-i2c", |
| 1188 | .data = &rk3399_soc_data |
| 1189 | }, |
| 1190 | {}, |
| 1191 | }; |
| 1192 | MODULE_DEVICE_TABLE(of, rk3x_i2c_match); |
| 1193 | |
| 1194 | static int rk3x_i2c_probe(struct platform_device *pdev) |
| 1195 | { |
| 1196 | struct device_node *np = pdev->dev.of_node; |
| 1197 | const struct of_device_id *match; |
| 1198 | struct rk3x_i2c *i2c; |
| 1199 | struct resource *mem; |
| 1200 | int ret = 0; |
| 1201 | int bus_nr; |
| 1202 | u32 value; |
| 1203 | int irq; |
| 1204 | unsigned long clk_rate; |
| 1205 | |
| 1206 | i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); |
| 1207 | if (!i2c) |
| 1208 | return -ENOMEM; |
| 1209 | |
| 1210 | match = of_match_node(rk3x_i2c_match, np); |
| 1211 | i2c->soc_data = match->data; |
| 1212 | |
| 1213 | /* use common interface to get I2C timing properties */ |
| 1214 | i2c_parse_fw_timings(&pdev->dev, &i2c->t, true); |
| 1215 | |
| 1216 | strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name)); |
| 1217 | i2c->adap.owner = THIS_MODULE; |
| 1218 | i2c->adap.algo = &rk3x_i2c_algorithm; |
| 1219 | i2c->adap.retries = 3; |
| 1220 | i2c->adap.dev.of_node = np; |
| 1221 | i2c->adap.algo_data = i2c; |
| 1222 | i2c->adap.dev.parent = &pdev->dev; |
| 1223 | |
| 1224 | i2c->dev = &pdev->dev; |
| 1225 | |
| 1226 | spin_lock_init(&i2c->lock); |
| 1227 | init_waitqueue_head(&i2c->wait); |
| 1228 | |
| 1229 | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| 1230 | i2c->regs = devm_ioremap_resource(&pdev->dev, mem); |
| 1231 | if (IS_ERR(i2c->regs)) |
| 1232 | return PTR_ERR(i2c->regs); |
| 1233 | |
| 1234 | /* Try to set the I2C adapter number from dt */ |
| 1235 | bus_nr = of_alias_get_id(np, "i2c"); |
| 1236 | |
| 1237 | /* |
| 1238 | * Switch to new interface if the SoC also offers the old one. |
| 1239 | * The control bit is located in the GRF register space. |
| 1240 | */ |
| 1241 | if (i2c->soc_data->grf_offset >= 0) { |
| 1242 | struct regmap *grf; |
| 1243 | |
| 1244 | grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); |
| 1245 | if (IS_ERR(grf)) { |
| 1246 | dev_err(&pdev->dev, |
| 1247 | "rk3x-i2c needs 'rockchip,grf' property\n"); |
| 1248 | return PTR_ERR(grf); |
| 1249 | } |
| 1250 | |
| 1251 | if (bus_nr < 0) { |
| 1252 | dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias"); |
| 1253 | return -EINVAL; |
| 1254 | } |
| 1255 | |
| 1256 | /* 27+i: write mask, 11+i: value */ |
| 1257 | value = BIT(27 + bus_nr) | BIT(11 + bus_nr); |
| 1258 | |
| 1259 | ret = regmap_write(grf, i2c->soc_data->grf_offset, value); |
| 1260 | if (ret != 0) { |
| 1261 | dev_err(i2c->dev, "Could not write to GRF: %d\n", ret); |
| 1262 | return ret; |
| 1263 | } |
| 1264 | } |
| 1265 | |
| 1266 | /* IRQ setup */ |
| 1267 | irq = platform_get_irq(pdev, 0); |
| 1268 | if (irq < 0) { |
| 1269 | dev_err(&pdev->dev, "cannot find rk3x IRQ\n"); |
| 1270 | return irq; |
| 1271 | } |
| 1272 | |
| 1273 | ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, |
| 1274 | 0, dev_name(&pdev->dev), i2c); |
| 1275 | if (ret < 0) { |
| 1276 | dev_err(&pdev->dev, "cannot request IRQ\n"); |
| 1277 | return ret; |
| 1278 | } |
| 1279 | |
| 1280 | platform_set_drvdata(pdev, i2c); |
| 1281 | |
| 1282 | if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) { |
| 1283 | /* Only one clock to use for bus clock and peripheral clock */ |
| 1284 | i2c->clk = devm_clk_get(&pdev->dev, NULL); |
| 1285 | i2c->pclk = i2c->clk; |
| 1286 | } else { |
| 1287 | i2c->clk = devm_clk_get(&pdev->dev, "i2c"); |
| 1288 | i2c->pclk = devm_clk_get(&pdev->dev, "pclk"); |
| 1289 | } |
| 1290 | |
| 1291 | if (IS_ERR(i2c->clk)) { |
| 1292 | ret = PTR_ERR(i2c->clk); |
| 1293 | if (ret != -EPROBE_DEFER) |
| 1294 | dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret); |
| 1295 | return ret; |
| 1296 | } |
| 1297 | if (IS_ERR(i2c->pclk)) { |
| 1298 | ret = PTR_ERR(i2c->pclk); |
| 1299 | if (ret != -EPROBE_DEFER) |
| 1300 | dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret); |
| 1301 | return ret; |
| 1302 | } |
| 1303 | |
| 1304 | ret = clk_prepare(i2c->clk); |
| 1305 | if (ret < 0) { |
| 1306 | dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret); |
| 1307 | return ret; |
| 1308 | } |
| 1309 | ret = clk_prepare(i2c->pclk); |
| 1310 | if (ret < 0) { |
| 1311 | dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret); |
| 1312 | goto err_clk; |
| 1313 | } |
| 1314 | |
| 1315 | i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; |
| 1316 | ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); |
| 1317 | if (ret != 0) { |
| 1318 | dev_err(&pdev->dev, "Unable to register clock notifier\n"); |
| 1319 | goto err_pclk; |
| 1320 | } |
| 1321 | |
| 1322 | clk_rate = clk_get_rate(i2c->clk); |
| 1323 | rk3x_i2c_adapt_div(i2c, clk_rate); |
| 1324 | |
| 1325 | ret = i2c_add_adapter(&i2c->adap); |
| 1326 | if (ret < 0) |
| 1327 | goto err_clk_notifier; |
| 1328 | |
| 1329 | return 0; |
| 1330 | |
| 1331 | err_clk_notifier: |
| 1332 | clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); |
| 1333 | err_pclk: |
| 1334 | clk_unprepare(i2c->pclk); |
| 1335 | err_clk: |
| 1336 | clk_unprepare(i2c->clk); |
| 1337 | return ret; |
| 1338 | } |
| 1339 | |
| 1340 | static int rk3x_i2c_remove(struct platform_device *pdev) |
| 1341 | { |
| 1342 | struct rk3x_i2c *i2c = platform_get_drvdata(pdev); |
| 1343 | |
| 1344 | i2c_del_adapter(&i2c->adap); |
| 1345 | |
| 1346 | clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); |
| 1347 | clk_unprepare(i2c->pclk); |
| 1348 | clk_unprepare(i2c->clk); |
| 1349 | |
| 1350 | return 0; |
| 1351 | } |
| 1352 | |
| 1353 | static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume); |
| 1354 | |
| 1355 | static struct platform_driver rk3x_i2c_driver = { |
| 1356 | .probe = rk3x_i2c_probe, |
| 1357 | .remove = rk3x_i2c_remove, |
| 1358 | .driver = { |
| 1359 | .name = "rk3x-i2c", |
| 1360 | .of_match_table = rk3x_i2c_match, |
| 1361 | .pm = &rk3x_i2c_pm_ops, |
| 1362 | }, |
| 1363 | }; |
| 1364 | |
| 1365 | module_platform_driver(rk3x_i2c_driver); |
| 1366 | |
| 1367 | MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver"); |
| 1368 | MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>"); |
| 1369 | MODULE_LICENSE("GPL v2"); |