Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved. |
| 3 | * |
| 4 | * This program is free software; you can redistribute it and/or modify it |
| 5 | * under the terms and conditions of the GNU General Public License, |
| 6 | * version 2, as published by the Free Software Foundation. |
| 7 | * |
| 8 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 9 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 10 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 11 | * more details. |
| 12 | */ |
| 13 | |
| 14 | #include <soc/tegra/ivc.h> |
| 15 | |
| 16 | #define TEGRA_IVC_ALIGN 64 |
| 17 | |
| 18 | /* |
| 19 | * IVC channel reset protocol. |
| 20 | * |
| 21 | * Each end uses its tx_channel.state to indicate its synchronization state. |
| 22 | */ |
| 23 | enum tegra_ivc_state { |
| 24 | /* |
| 25 | * This value is zero for backwards compatibility with services that |
| 26 | * assume channels to be initially zeroed. Such channels are in an |
| 27 | * initially valid state, but cannot be asynchronously reset, and must |
| 28 | * maintain a valid state at all times. |
| 29 | * |
| 30 | * The transmitting end can enter the established state from the sync or |
| 31 | * ack state when it observes the receiving endpoint in the ack or |
| 32 | * established state, indicating that has cleared the counters in our |
| 33 | * rx_channel. |
| 34 | */ |
| 35 | TEGRA_IVC_STATE_ESTABLISHED = 0, |
| 36 | |
| 37 | /* |
| 38 | * If an endpoint is observed in the sync state, the remote endpoint is |
| 39 | * allowed to clear the counters it owns asynchronously with respect to |
| 40 | * the current endpoint. Therefore, the current endpoint is no longer |
| 41 | * allowed to communicate. |
| 42 | */ |
| 43 | TEGRA_IVC_STATE_SYNC, |
| 44 | |
| 45 | /* |
| 46 | * When the transmitting end observes the receiving end in the sync |
| 47 | * state, it can clear the w_count and r_count and transition to the ack |
| 48 | * state. If the remote endpoint observes us in the ack state, it can |
| 49 | * return to the established state once it has cleared its counters. |
| 50 | */ |
| 51 | TEGRA_IVC_STATE_ACK |
| 52 | }; |
| 53 | |
| 54 | /* |
| 55 | * This structure is divided into two-cache aligned parts, the first is only |
| 56 | * written through the tx.channel pointer, while the second is only written |
| 57 | * through the rx.channel pointer. This delineates ownership of the cache |
| 58 | * lines, which is critical to performance and necessary in non-cache coherent |
| 59 | * implementations. |
| 60 | */ |
| 61 | struct tegra_ivc_header { |
| 62 | union { |
| 63 | struct { |
| 64 | /* fields owned by the transmitting end */ |
| 65 | u32 count; |
| 66 | u32 state; |
| 67 | }; |
| 68 | |
| 69 | u8 pad[TEGRA_IVC_ALIGN]; |
| 70 | } tx; |
| 71 | |
| 72 | union { |
| 73 | /* fields owned by the receiving end */ |
| 74 | u32 count; |
| 75 | u8 pad[TEGRA_IVC_ALIGN]; |
| 76 | } rx; |
| 77 | }; |
| 78 | |
| 79 | static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys) |
| 80 | { |
| 81 | if (!ivc->peer) |
| 82 | return; |
| 83 | |
| 84 | dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN, |
| 85 | DMA_FROM_DEVICE); |
| 86 | } |
| 87 | |
| 88 | static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys) |
| 89 | { |
| 90 | if (!ivc->peer) |
| 91 | return; |
| 92 | |
| 93 | dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN, |
| 94 | DMA_TO_DEVICE); |
| 95 | } |
| 96 | |
| 97 | static inline bool tegra_ivc_empty(struct tegra_ivc *ivc, |
| 98 | struct tegra_ivc_header *header) |
| 99 | { |
| 100 | /* |
| 101 | * This function performs multiple checks on the same values with |
| 102 | * security implications, so create snapshots with READ_ONCE() to |
| 103 | * ensure that these checks use the same values. |
| 104 | */ |
| 105 | u32 tx = READ_ONCE(header->tx.count); |
| 106 | u32 rx = READ_ONCE(header->rx.count); |
| 107 | |
| 108 | /* |
| 109 | * Perform an over-full check to prevent denial of service attacks |
| 110 | * where a server could be easily fooled into believing that there's |
| 111 | * an extremely large number of frames ready, since receivers are not |
| 112 | * expected to check for full or over-full conditions. |
| 113 | * |
| 114 | * Although the channel isn't empty, this is an invalid case caused by |
| 115 | * a potentially malicious peer, so returning empty is safer, because |
| 116 | * it gives the impression that the channel has gone silent. |
| 117 | */ |
| 118 | if (tx - rx > ivc->num_frames) |
| 119 | return true; |
| 120 | |
| 121 | return tx == rx; |
| 122 | } |
| 123 | |
| 124 | static inline bool tegra_ivc_full(struct tegra_ivc *ivc, |
| 125 | struct tegra_ivc_header *header) |
| 126 | { |
| 127 | u32 tx = READ_ONCE(header->tx.count); |
| 128 | u32 rx = READ_ONCE(header->rx.count); |
| 129 | |
| 130 | /* |
| 131 | * Invalid cases where the counters indicate that the queue is over |
| 132 | * capacity also appear full. |
| 133 | */ |
| 134 | return tx - rx >= ivc->num_frames; |
| 135 | } |
| 136 | |
| 137 | static inline u32 tegra_ivc_available(struct tegra_ivc *ivc, |
| 138 | struct tegra_ivc_header *header) |
| 139 | { |
| 140 | u32 tx = READ_ONCE(header->tx.count); |
| 141 | u32 rx = READ_ONCE(header->rx.count); |
| 142 | |
| 143 | /* |
| 144 | * This function isn't expected to be used in scenarios where an |
| 145 | * over-full situation can lead to denial of service attacks. See the |
| 146 | * comment in tegra_ivc_empty() for an explanation about special |
| 147 | * over-full considerations. |
| 148 | */ |
| 149 | return tx - rx; |
| 150 | } |
| 151 | |
| 152 | static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc) |
| 153 | { |
| 154 | WRITE_ONCE(ivc->tx.channel->tx.count, |
| 155 | READ_ONCE(ivc->tx.channel->tx.count) + 1); |
| 156 | |
| 157 | if (ivc->tx.position == ivc->num_frames - 1) |
| 158 | ivc->tx.position = 0; |
| 159 | else |
| 160 | ivc->tx.position++; |
| 161 | } |
| 162 | |
| 163 | static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc) |
| 164 | { |
| 165 | WRITE_ONCE(ivc->rx.channel->rx.count, |
| 166 | READ_ONCE(ivc->rx.channel->rx.count) + 1); |
| 167 | |
| 168 | if (ivc->rx.position == ivc->num_frames - 1) |
| 169 | ivc->rx.position = 0; |
| 170 | else |
| 171 | ivc->rx.position++; |
| 172 | } |
| 173 | |
| 174 | static inline int tegra_ivc_check_read(struct tegra_ivc *ivc) |
| 175 | { |
| 176 | unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); |
| 177 | |
| 178 | /* |
| 179 | * tx.channel->state is set locally, so it is not synchronized with |
| 180 | * state from the remote peer. The remote peer cannot reset its |
| 181 | * transmit counters until we've acknowledged its synchronization |
| 182 | * request, so no additional synchronization is required because an |
| 183 | * asynchronous transition of rx.channel->state to |
| 184 | * TEGRA_IVC_STATE_ACK is not allowed. |
| 185 | */ |
| 186 | if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) |
| 187 | return -ECONNRESET; |
| 188 | |
| 189 | /* |
| 190 | * Avoid unnecessary invalidations when performing repeated accesses |
| 191 | * to an IVC channel by checking the old queue pointers first. |
| 192 | * |
| 193 | * Synchronization is only necessary when these pointers indicate |
| 194 | * empty or full. |
| 195 | */ |
| 196 | if (!tegra_ivc_empty(ivc, ivc->rx.channel)) |
| 197 | return 0; |
| 198 | |
| 199 | tegra_ivc_invalidate(ivc, ivc->rx.phys + offset); |
| 200 | |
| 201 | if (tegra_ivc_empty(ivc, ivc->rx.channel)) |
| 202 | return -ENOSPC; |
| 203 | |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | static inline int tegra_ivc_check_write(struct tegra_ivc *ivc) |
| 208 | { |
| 209 | unsigned int offset = offsetof(struct tegra_ivc_header, rx.count); |
| 210 | |
| 211 | if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) |
| 212 | return -ECONNRESET; |
| 213 | |
| 214 | if (!tegra_ivc_full(ivc, ivc->tx.channel)) |
| 215 | return 0; |
| 216 | |
| 217 | tegra_ivc_invalidate(ivc, ivc->tx.phys + offset); |
| 218 | |
| 219 | if (tegra_ivc_full(ivc, ivc->tx.channel)) |
| 220 | return -ENOSPC; |
| 221 | |
| 222 | return 0; |
| 223 | } |
| 224 | |
| 225 | static void *tegra_ivc_frame_virt(struct tegra_ivc *ivc, |
| 226 | struct tegra_ivc_header *header, |
| 227 | unsigned int frame) |
| 228 | { |
| 229 | if (WARN_ON(frame >= ivc->num_frames)) |
| 230 | return ERR_PTR(-EINVAL); |
| 231 | |
| 232 | return (void *)(header + 1) + ivc->frame_size * frame; |
| 233 | } |
| 234 | |
| 235 | static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc, |
| 236 | dma_addr_t phys, |
| 237 | unsigned int frame) |
| 238 | { |
| 239 | unsigned long offset; |
| 240 | |
| 241 | offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame; |
| 242 | |
| 243 | return phys + offset; |
| 244 | } |
| 245 | |
| 246 | static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc, |
| 247 | dma_addr_t phys, |
| 248 | unsigned int frame, |
| 249 | unsigned int offset, |
| 250 | size_t size) |
| 251 | { |
| 252 | if (!ivc->peer || WARN_ON(frame >= ivc->num_frames)) |
| 253 | return; |
| 254 | |
| 255 | phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset; |
| 256 | |
| 257 | dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE); |
| 258 | } |
| 259 | |
| 260 | static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc, |
| 261 | dma_addr_t phys, |
| 262 | unsigned int frame, |
| 263 | unsigned int offset, |
| 264 | size_t size) |
| 265 | { |
| 266 | if (!ivc->peer || WARN_ON(frame >= ivc->num_frames)) |
| 267 | return; |
| 268 | |
| 269 | phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset; |
| 270 | |
| 271 | dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE); |
| 272 | } |
| 273 | |
| 274 | /* directly peek at the next frame rx'ed */ |
| 275 | void *tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc) |
| 276 | { |
| 277 | int err; |
| 278 | |
| 279 | if (WARN_ON(ivc == NULL)) |
| 280 | return ERR_PTR(-EINVAL); |
| 281 | |
| 282 | err = tegra_ivc_check_read(ivc); |
| 283 | if (err < 0) |
| 284 | return ERR_PTR(err); |
| 285 | |
| 286 | /* |
| 287 | * Order observation of ivc->rx.position potentially indicating new |
| 288 | * data before data read. |
| 289 | */ |
| 290 | smp_rmb(); |
| 291 | |
| 292 | tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0, |
| 293 | ivc->frame_size); |
| 294 | |
| 295 | return tegra_ivc_frame_virt(ivc, ivc->rx.channel, ivc->rx.position); |
| 296 | } |
| 297 | EXPORT_SYMBOL(tegra_ivc_read_get_next_frame); |
| 298 | |
| 299 | int tegra_ivc_read_advance(struct tegra_ivc *ivc) |
| 300 | { |
| 301 | unsigned int rx = offsetof(struct tegra_ivc_header, rx.count); |
| 302 | unsigned int tx = offsetof(struct tegra_ivc_header, tx.count); |
| 303 | int err; |
| 304 | |
| 305 | /* |
| 306 | * No read barriers or synchronization here: the caller is expected to |
| 307 | * have already observed the channel non-empty. This check is just to |
| 308 | * catch programming errors. |
| 309 | */ |
| 310 | err = tegra_ivc_check_read(ivc); |
| 311 | if (err < 0) |
| 312 | return err; |
| 313 | |
| 314 | tegra_ivc_advance_rx(ivc); |
| 315 | |
| 316 | tegra_ivc_flush(ivc, ivc->rx.phys + rx); |
| 317 | |
| 318 | /* |
| 319 | * Ensure our write to ivc->rx.position occurs before our read from |
| 320 | * ivc->tx.position. |
| 321 | */ |
| 322 | smp_mb(); |
| 323 | |
| 324 | /* |
| 325 | * Notify only upon transition from full to non-full. The available |
| 326 | * count can only asynchronously increase, so the worst possible |
| 327 | * side-effect will be a spurious notification. |
| 328 | */ |
| 329 | tegra_ivc_invalidate(ivc, ivc->rx.phys + tx); |
| 330 | |
| 331 | if (tegra_ivc_available(ivc, ivc->rx.channel) == ivc->num_frames - 1) |
| 332 | ivc->notify(ivc, ivc->notify_data); |
| 333 | |
| 334 | return 0; |
| 335 | } |
| 336 | EXPORT_SYMBOL(tegra_ivc_read_advance); |
| 337 | |
| 338 | /* directly poke at the next frame to be tx'ed */ |
| 339 | void *tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc) |
| 340 | { |
| 341 | int err; |
| 342 | |
| 343 | err = tegra_ivc_check_write(ivc); |
| 344 | if (err < 0) |
| 345 | return ERR_PTR(err); |
| 346 | |
| 347 | return tegra_ivc_frame_virt(ivc, ivc->tx.channel, ivc->tx.position); |
| 348 | } |
| 349 | EXPORT_SYMBOL(tegra_ivc_write_get_next_frame); |
| 350 | |
| 351 | /* advance the tx buffer */ |
| 352 | int tegra_ivc_write_advance(struct tegra_ivc *ivc) |
| 353 | { |
| 354 | unsigned int tx = offsetof(struct tegra_ivc_header, tx.count); |
| 355 | unsigned int rx = offsetof(struct tegra_ivc_header, rx.count); |
| 356 | int err; |
| 357 | |
| 358 | err = tegra_ivc_check_write(ivc); |
| 359 | if (err < 0) |
| 360 | return err; |
| 361 | |
| 362 | tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0, |
| 363 | ivc->frame_size); |
| 364 | |
| 365 | /* |
| 366 | * Order any possible stores to the frame before update of |
| 367 | * ivc->tx.position. |
| 368 | */ |
| 369 | smp_wmb(); |
| 370 | |
| 371 | tegra_ivc_advance_tx(ivc); |
| 372 | tegra_ivc_flush(ivc, ivc->tx.phys + tx); |
| 373 | |
| 374 | /* |
| 375 | * Ensure our write to ivc->tx.position occurs before our read from |
| 376 | * ivc->rx.position. |
| 377 | */ |
| 378 | smp_mb(); |
| 379 | |
| 380 | /* |
| 381 | * Notify only upon transition from empty to non-empty. The available |
| 382 | * count can only asynchronously decrease, so the worst possible |
| 383 | * side-effect will be a spurious notification. |
| 384 | */ |
| 385 | tegra_ivc_invalidate(ivc, ivc->tx.phys + rx); |
| 386 | |
| 387 | if (tegra_ivc_available(ivc, ivc->tx.channel) == 1) |
| 388 | ivc->notify(ivc, ivc->notify_data); |
| 389 | |
| 390 | return 0; |
| 391 | } |
| 392 | EXPORT_SYMBOL(tegra_ivc_write_advance); |
| 393 | |
| 394 | void tegra_ivc_reset(struct tegra_ivc *ivc) |
| 395 | { |
| 396 | unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); |
| 397 | |
| 398 | ivc->tx.channel->tx.state = TEGRA_IVC_STATE_SYNC; |
| 399 | tegra_ivc_flush(ivc, ivc->tx.phys + offset); |
| 400 | ivc->notify(ivc, ivc->notify_data); |
| 401 | } |
| 402 | EXPORT_SYMBOL(tegra_ivc_reset); |
| 403 | |
| 404 | /* |
| 405 | * ======================================================= |
| 406 | * IVC State Transition Table - see tegra_ivc_notified() |
| 407 | * ======================================================= |
| 408 | * |
| 409 | * local remote action |
| 410 | * ----- ------ ----------------------------------- |
| 411 | * SYNC EST <none> |
| 412 | * SYNC ACK reset counters; move to EST; notify |
| 413 | * SYNC SYNC reset counters; move to ACK; notify |
| 414 | * ACK EST move to EST; notify |
| 415 | * ACK ACK move to EST; notify |
| 416 | * ACK SYNC reset counters; move to ACK; notify |
| 417 | * EST EST <none> |
| 418 | * EST ACK <none> |
| 419 | * EST SYNC reset counters; move to ACK; notify |
| 420 | * |
| 421 | * =============================================================== |
| 422 | */ |
| 423 | |
| 424 | int tegra_ivc_notified(struct tegra_ivc *ivc) |
| 425 | { |
| 426 | unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); |
| 427 | enum tegra_ivc_state state; |
| 428 | |
| 429 | /* Copy the receiver's state out of shared memory. */ |
| 430 | tegra_ivc_invalidate(ivc, ivc->rx.phys + offset); |
| 431 | state = READ_ONCE(ivc->rx.channel->tx.state); |
| 432 | |
| 433 | if (state == TEGRA_IVC_STATE_SYNC) { |
| 434 | offset = offsetof(struct tegra_ivc_header, tx.count); |
| 435 | |
| 436 | /* |
| 437 | * Order observation of TEGRA_IVC_STATE_SYNC before stores |
| 438 | * clearing tx.channel. |
| 439 | */ |
| 440 | smp_rmb(); |
| 441 | |
| 442 | /* |
| 443 | * Reset tx.channel counters. The remote end is in the SYNC |
| 444 | * state and won't make progress until we change our state, |
| 445 | * so the counters are not in use at this time. |
| 446 | */ |
| 447 | ivc->tx.channel->tx.count = 0; |
| 448 | ivc->rx.channel->rx.count = 0; |
| 449 | |
| 450 | ivc->tx.position = 0; |
| 451 | ivc->rx.position = 0; |
| 452 | |
| 453 | /* |
| 454 | * Ensure that counters appear cleared before new state can be |
| 455 | * observed. |
| 456 | */ |
| 457 | smp_wmb(); |
| 458 | |
| 459 | /* |
| 460 | * Move to ACK state. We have just cleared our counters, so it |
| 461 | * is now safe for the remote end to start using these values. |
| 462 | */ |
| 463 | ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ACK; |
| 464 | tegra_ivc_flush(ivc, ivc->tx.phys + offset); |
| 465 | |
| 466 | /* |
| 467 | * Notify remote end to observe state transition. |
| 468 | */ |
| 469 | ivc->notify(ivc, ivc->notify_data); |
| 470 | |
| 471 | } else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_SYNC && |
| 472 | state == TEGRA_IVC_STATE_ACK) { |
| 473 | offset = offsetof(struct tegra_ivc_header, tx.count); |
| 474 | |
| 475 | /* |
| 476 | * Order observation of ivc_state_sync before stores clearing |
| 477 | * tx_channel. |
| 478 | */ |
| 479 | smp_rmb(); |
| 480 | |
| 481 | /* |
| 482 | * Reset tx.channel counters. The remote end is in the ACK |
| 483 | * state and won't make progress until we change our state, |
| 484 | * so the counters are not in use at this time. |
| 485 | */ |
| 486 | ivc->tx.channel->tx.count = 0; |
| 487 | ivc->rx.channel->rx.count = 0; |
| 488 | |
| 489 | ivc->tx.position = 0; |
| 490 | ivc->rx.position = 0; |
| 491 | |
| 492 | /* |
| 493 | * Ensure that counters appear cleared before new state can be |
| 494 | * observed. |
| 495 | */ |
| 496 | smp_wmb(); |
| 497 | |
| 498 | /* |
| 499 | * Move to ESTABLISHED state. We know that the remote end has |
| 500 | * already cleared its counters, so it is safe to start |
| 501 | * writing/reading on this channel. |
| 502 | */ |
| 503 | ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED; |
| 504 | tegra_ivc_flush(ivc, ivc->tx.phys + offset); |
| 505 | |
| 506 | /* |
| 507 | * Notify remote end to observe state transition. |
| 508 | */ |
| 509 | ivc->notify(ivc, ivc->notify_data); |
| 510 | |
| 511 | } else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_ACK) { |
| 512 | offset = offsetof(struct tegra_ivc_header, tx.count); |
| 513 | |
| 514 | /* |
| 515 | * At this point, we have observed the peer to be in either |
| 516 | * the ACK or ESTABLISHED state. Next, order observation of |
| 517 | * peer state before storing to tx.channel. |
| 518 | */ |
| 519 | smp_rmb(); |
| 520 | |
| 521 | /* |
| 522 | * Move to ESTABLISHED state. We know that we have previously |
| 523 | * cleared our counters, and we know that the remote end has |
| 524 | * cleared its counters, so it is safe to start writing/reading |
| 525 | * on this channel. |
| 526 | */ |
| 527 | ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED; |
| 528 | tegra_ivc_flush(ivc, ivc->tx.phys + offset); |
| 529 | |
| 530 | /* |
| 531 | * Notify remote end to observe state transition. |
| 532 | */ |
| 533 | ivc->notify(ivc, ivc->notify_data); |
| 534 | |
| 535 | } else { |
| 536 | /* |
| 537 | * There is no need to handle any further action. Either the |
| 538 | * channel is already fully established, or we are waiting for |
| 539 | * the remote end to catch up with our current state. Refer |
| 540 | * to the diagram in "IVC State Transition Table" above. |
| 541 | */ |
| 542 | } |
| 543 | |
| 544 | if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) |
| 545 | return -EAGAIN; |
| 546 | |
| 547 | return 0; |
| 548 | } |
| 549 | EXPORT_SYMBOL(tegra_ivc_notified); |
| 550 | |
| 551 | size_t tegra_ivc_align(size_t size) |
| 552 | { |
| 553 | return ALIGN(size, TEGRA_IVC_ALIGN); |
| 554 | } |
| 555 | EXPORT_SYMBOL(tegra_ivc_align); |
| 556 | |
| 557 | unsigned tegra_ivc_total_queue_size(unsigned queue_size) |
| 558 | { |
| 559 | if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) { |
| 560 | pr_err("%s: queue_size (%u) must be %u-byte aligned\n", |
| 561 | __func__, queue_size, TEGRA_IVC_ALIGN); |
| 562 | return 0; |
| 563 | } |
| 564 | |
| 565 | return queue_size + sizeof(struct tegra_ivc_header); |
| 566 | } |
| 567 | EXPORT_SYMBOL(tegra_ivc_total_queue_size); |
| 568 | |
| 569 | static int tegra_ivc_check_params(unsigned long rx, unsigned long tx, |
| 570 | unsigned int num_frames, size_t frame_size) |
| 571 | { |
| 572 | BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count), |
| 573 | TEGRA_IVC_ALIGN)); |
| 574 | BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count), |
| 575 | TEGRA_IVC_ALIGN)); |
| 576 | BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header), |
| 577 | TEGRA_IVC_ALIGN)); |
| 578 | |
| 579 | if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) { |
| 580 | pr_err("num_frames * frame_size overflows\n"); |
| 581 | return -EINVAL; |
| 582 | } |
| 583 | |
| 584 | if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) { |
| 585 | pr_err("frame size not adequately aligned: %zu\n", frame_size); |
| 586 | return -EINVAL; |
| 587 | } |
| 588 | |
| 589 | /* |
| 590 | * The headers must at least be aligned enough for counters |
| 591 | * to be accessed atomically. |
| 592 | */ |
| 593 | if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) { |
| 594 | pr_err("IVC channel start not aligned: %#lx\n", rx); |
| 595 | return -EINVAL; |
| 596 | } |
| 597 | |
| 598 | if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) { |
| 599 | pr_err("IVC channel start not aligned: %#lx\n", tx); |
| 600 | return -EINVAL; |
| 601 | } |
| 602 | |
| 603 | if (rx < tx) { |
| 604 | if (rx + frame_size * num_frames > tx) { |
| 605 | pr_err("queue regions overlap: %#lx + %zx > %#lx\n", |
| 606 | rx, frame_size * num_frames, tx); |
| 607 | return -EINVAL; |
| 608 | } |
| 609 | } else { |
| 610 | if (tx + frame_size * num_frames > rx) { |
| 611 | pr_err("queue regions overlap: %#lx + %zx > %#lx\n", |
| 612 | tx, frame_size * num_frames, rx); |
| 613 | return -EINVAL; |
| 614 | } |
| 615 | } |
| 616 | |
| 617 | return 0; |
| 618 | } |
| 619 | |
| 620 | int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, void *rx, |
| 621 | dma_addr_t rx_phys, void *tx, dma_addr_t tx_phys, |
| 622 | unsigned int num_frames, size_t frame_size, |
| 623 | void (*notify)(struct tegra_ivc *ivc, void *data), |
| 624 | void *data) |
| 625 | { |
| 626 | size_t queue_size; |
| 627 | int err; |
| 628 | |
| 629 | if (WARN_ON(!ivc || !notify)) |
| 630 | return -EINVAL; |
| 631 | |
| 632 | /* |
| 633 | * All sizes that can be returned by communication functions should |
| 634 | * fit in an int. |
| 635 | */ |
| 636 | if (frame_size > INT_MAX) |
| 637 | return -E2BIG; |
| 638 | |
| 639 | err = tegra_ivc_check_params((unsigned long)rx, (unsigned long)tx, |
| 640 | num_frames, frame_size); |
| 641 | if (err < 0) |
| 642 | return err; |
| 643 | |
| 644 | queue_size = tegra_ivc_total_queue_size(num_frames * frame_size); |
| 645 | |
| 646 | if (peer) { |
| 647 | ivc->rx.phys = dma_map_single(peer, rx, queue_size, |
| 648 | DMA_BIDIRECTIONAL); |
| 649 | if (dma_mapping_error(peer, ivc->rx.phys)) |
| 650 | return -ENOMEM; |
| 651 | |
| 652 | ivc->tx.phys = dma_map_single(peer, tx, queue_size, |
| 653 | DMA_BIDIRECTIONAL); |
| 654 | if (dma_mapping_error(peer, ivc->tx.phys)) { |
| 655 | dma_unmap_single(peer, ivc->rx.phys, queue_size, |
| 656 | DMA_BIDIRECTIONAL); |
| 657 | return -ENOMEM; |
| 658 | } |
| 659 | } else { |
| 660 | ivc->rx.phys = rx_phys; |
| 661 | ivc->tx.phys = tx_phys; |
| 662 | } |
| 663 | |
| 664 | ivc->rx.channel = rx; |
| 665 | ivc->tx.channel = tx; |
| 666 | ivc->peer = peer; |
| 667 | ivc->notify = notify; |
| 668 | ivc->notify_data = data; |
| 669 | ivc->frame_size = frame_size; |
| 670 | ivc->num_frames = num_frames; |
| 671 | |
| 672 | /* |
| 673 | * These values aren't necessarily correct until the channel has been |
| 674 | * reset. |
| 675 | */ |
| 676 | ivc->tx.position = 0; |
| 677 | ivc->rx.position = 0; |
| 678 | |
| 679 | return 0; |
| 680 | } |
| 681 | EXPORT_SYMBOL(tegra_ivc_init); |
| 682 | |
| 683 | void tegra_ivc_cleanup(struct tegra_ivc *ivc) |
| 684 | { |
| 685 | if (ivc->peer) { |
| 686 | size_t size = tegra_ivc_total_queue_size(ivc->num_frames * |
| 687 | ivc->frame_size); |
| 688 | |
| 689 | dma_unmap_single(ivc->peer, ivc->rx.phys, size, |
| 690 | DMA_BIDIRECTIONAL); |
| 691 | dma_unmap_single(ivc->peer, ivc->tx.phys, size, |
| 692 | DMA_BIDIRECTIONAL); |
| 693 | } |
| 694 | } |
| 695 | EXPORT_SYMBOL(tegra_ivc_cleanup); |