blob: 29cfe421cf41c4e58f3259bf4dc64b0771155884 [file] [log] [blame]
Andrew Scullb4b6d4a2019-01-02 15:54:55 +00001/*
2 * include/asm-xtensa/pgtable.h
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * Copyright (C) 2001 - 2013 Tensilica Inc.
9 */
10
11#ifndef _XTENSA_PGTABLE_H
12#define _XTENSA_PGTABLE_H
13
14#define __ARCH_USE_5LEVEL_HACK
15#include <asm/page.h>
16#include <asm/kmem_layout.h>
17#include <asm-generic/pgtable-nopmd.h>
18
19/*
20 * We only use two ring levels, user and kernel space.
21 */
22
23#ifdef CONFIG_MMU
24#define USER_RING 1 /* user ring level */
25#else
26#define USER_RING 0
27#endif
28#define KERNEL_RING 0 /* kernel ring level */
29
30/*
31 * The Xtensa architecture port of Linux has a two-level page table system,
32 * i.e. the logical three-level Linux page table layout is folded.
33 * Each task has the following memory page tables:
34 *
35 * PGD table (page directory), ie. 3rd-level page table:
36 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
37 * (Architectures that don't have the PMD folded point to the PMD tables)
38 *
39 * The pointer to the PGD table for a given task can be retrieved from
40 * the task structure (struct task_struct*) t, e.g. current():
41 * (t->mm ? t->mm : t->active_mm)->pgd
42 *
43 * PMD tables (page middle-directory), ie. 2nd-level page tables:
44 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
45 *
46 * PTE tables (page table entry), ie. 1st-level page tables:
47 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
48 * invalid_pte_table for absent mappings.
49 *
50 * The individual pages are 4 kB big with special pages for the empty_zero_page.
51 */
52
53#define PGDIR_SHIFT 22
54#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
55#define PGDIR_MASK (~(PGDIR_SIZE-1))
56
57/*
58 * Entries per page directory level: we use two-level, so
59 * we don't really have any PMD directory physically.
60 */
61#define PTRS_PER_PTE 1024
62#define PTRS_PER_PTE_SHIFT 10
63#define PTRS_PER_PGD 1024
64#define PGD_ORDER 0
65#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
66#define FIRST_USER_ADDRESS 0UL
67#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
68
69#ifdef CONFIG_MMU
70/*
71 * Virtual memory area. We keep a distance to other memory regions to be
72 * on the safe side. We also use this area for cache aliasing.
73 */
74#define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000)
75#define VMALLOC_END (VMALLOC_START + 0x07FEFFFF)
76#define TLBTEMP_BASE_1 (VMALLOC_END + 1)
77#define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
78#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
79#define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE)
80#else
81#define TLBTEMP_SIZE ICACHE_WAY_SIZE
82#endif
83
84#else
85
86#define VMALLOC_START __XTENSA_UL_CONST(0)
87#define VMALLOC_END __XTENSA_UL_CONST(0xffffffff)
88
89#endif
90
91/*
92 * For the Xtensa architecture, the PTE layout is as follows:
93 *
94 * 31------12 11 10-9 8-6 5-4 3-2 1-0
95 * +-----------------------------------------+
96 * | | Software | HARDWARE |
97 * | PPN | ADW | RI |Attribute|
98 * +-----------------------------------------+
99 * pte_none | MBZ | 01 | 11 | 00 |
100 * +-----------------------------------------+
101 * present | PPN | 0 | 00 | ADW | RI | CA | wx |
102 * +- - - - - - - - - - - - - - - - - - - - -+
103 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 |
104 * +-----------------------------------------+
105 * swap | index | type | 01 | 11 | 00 |
106 * +-----------------------------------------+
107 *
108 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
109 * +-----------------------------------------+
110 * present | PPN | 0 | 00 | ADW | RI | CA | w1 |
111 * +-----------------------------------------+
112 * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 |
113 * +-----------------------------------------+
114 *
115 * Legend:
116 * PPN Physical Page Number
117 * ADW software: accessed (young) / dirty / writable
118 * RI ring (0=privileged, 1=user, 2 and 3 are unused)
119 * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough
120 * (11 is invalid and used to mark pages that are not present)
121 * w page is writable (hw)
122 * x page is executable (hw)
123 * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
124 * (note that the index is always non-zero)
125 * type swap type (5 bits -> 32 types)
126 *
127 * Notes:
128 * - (PROT_NONE) is a special case of 'present' but causes an exception for
129 * any access (read, write, and execute).
130 * - 'multihit-exception' has the highest priority of all MMU exceptions,
131 * so the ring must be set to 'RING_USER' even for 'non-present' pages.
132 * - on older hardware, the exectuable flag was not supported and
133 * used as a 'valid' flag, so it needs to be always set.
134 * - we need to keep track of certain flags in software (dirty and young)
135 * to do this, we use write exceptions and have a separate software w-flag.
136 * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
137 */
138
139#define _PAGE_ATTRIB_MASK 0xf
140
141#define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */
142#define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */
143
144#define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */
145#define _PAGE_CA_WB (1<<2) /* write-back */
146#define _PAGE_CA_WT (2<<2) /* write-through */
147#define _PAGE_CA_MASK (3<<2)
148#define _PAGE_CA_INVALID (3<<2)
149
150/* We use invalid attribute values to distinguish special pte entries */
151#if XCHAL_HW_VERSION_MAJOR < 2000
152#define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */
153#define _PAGE_NONE 0x04
154#else
155#define _PAGE_HW_VALID 0x00
156#define _PAGE_NONE 0x0f
157#endif
158
159#define _PAGE_USER (1<<4) /* user access (ring=1) */
160
161/* Software */
162#define _PAGE_WRITABLE_BIT 6
163#define _PAGE_WRITABLE (1<<6) /* software: page writable */
164#define _PAGE_DIRTY (1<<7) /* software: page dirty */
165#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */
166
167#ifdef CONFIG_MMU
168
169#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
170#define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
171
172#define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER)
173#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER)
174#define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
175#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER)
176#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
177#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
178#define PAGE_SHARED_EXEC \
179 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
180#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
181#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT)
182#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
183
184#if (DCACHE_WAY_SIZE > PAGE_SIZE)
185# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
186#else
187# define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
188#endif
189
190#else /* no mmu */
191
192# define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
193# define PAGE_NONE __pgprot(0)
194# define PAGE_SHARED __pgprot(0)
195# define PAGE_COPY __pgprot(0)
196# define PAGE_READONLY __pgprot(0)
197# define PAGE_KERNEL __pgprot(0)
198
199#endif
200
201/*
202 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
203 * the MMU can't do page protection for execute, and considers that the same as
204 * read. Also, write permissions may imply read permissions.
205 * What follows is the closest we can get by reasonable means..
206 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
207 */
208#define __P000 PAGE_NONE /* private --- */
209#define __P001 PAGE_READONLY /* private --r */
210#define __P010 PAGE_COPY /* private -w- */
211#define __P011 PAGE_COPY /* private -wr */
212#define __P100 PAGE_READONLY_EXEC /* private x-- */
213#define __P101 PAGE_READONLY_EXEC /* private x-r */
214#define __P110 PAGE_COPY_EXEC /* private xw- */
215#define __P111 PAGE_COPY_EXEC /* private xwr */
216
217#define __S000 PAGE_NONE /* shared --- */
218#define __S001 PAGE_READONLY /* shared --r */
219#define __S010 PAGE_SHARED /* shared -w- */
220#define __S011 PAGE_SHARED /* shared -wr */
221#define __S100 PAGE_READONLY_EXEC /* shared x-- */
222#define __S101 PAGE_READONLY_EXEC /* shared x-r */
223#define __S110 PAGE_SHARED_EXEC /* shared xw- */
224#define __S111 PAGE_SHARED_EXEC /* shared xwr */
225
226#ifndef __ASSEMBLY__
227
228#define pte_ERROR(e) \
229 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
230#define pgd_ERROR(e) \
231 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
232
233extern unsigned long empty_zero_page[1024];
234
235#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
236
237#ifdef CONFIG_MMU
238extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
239extern void paging_init(void);
240#else
241# define swapper_pg_dir NULL
242static inline void paging_init(void) { }
243#endif
244static inline void pgtable_cache_init(void) { }
245
246/*
247 * The pmd contains the kernel virtual address of the pte page.
248 */
249#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
250#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
251
252/*
253 * pte status.
254 */
255# define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
256#if XCHAL_HW_VERSION_MAJOR < 2000
257# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
258#else
259# define pte_present(pte) \
260 (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \
261 || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
262#endif
263#define pte_clear(mm,addr,ptep) \
264 do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
265
266#define pmd_none(pmd) (!pmd_val(pmd))
267#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
268#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK)
269#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0)
270
271static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
272static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
273static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
274static inline int pte_special(pte_t pte) { return 0; }
275
276static inline pte_t pte_wrprotect(pte_t pte)
277 { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
278static inline pte_t pte_mkclean(pte_t pte)
279 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
280static inline pte_t pte_mkold(pte_t pte)
281 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
282static inline pte_t pte_mkdirty(pte_t pte)
283 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
284static inline pte_t pte_mkyoung(pte_t pte)
285 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
286static inline pte_t pte_mkwrite(pte_t pte)
287 { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
288static inline pte_t pte_mkspecial(pte_t pte)
289 { return pte; }
290
291#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
292
293/*
294 * Conversion functions: convert a page and protection to a page entry,
295 * and a page entry and page directory to the page they refer to.
296 */
297
298#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
299#define pte_same(a,b) (pte_val(a) == pte_val(b))
300#define pte_page(x) pfn_to_page(pte_pfn(x))
301#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
302#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
303
304static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
305{
306 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
307}
308
309/*
310 * Certain architectures need to do special things when pte's
311 * within a page table are directly modified. Thus, the following
312 * hook is made available.
313 */
314static inline void update_pte(pte_t *ptep, pte_t pteval)
315{
316 *ptep = pteval;
317#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
318 __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
319#endif
320
321}
322
323struct mm_struct;
324
325static inline void
326set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
327{
328 update_pte(ptep, pteval);
329}
330
331static inline void set_pte(pte_t *ptep, pte_t pteval)
332{
333 update_pte(ptep, pteval);
334}
335
336static inline void
337set_pmd(pmd_t *pmdp, pmd_t pmdval)
338{
339 *pmdp = pmdval;
340}
341
342struct vm_area_struct;
343
344static inline int
345ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
346 pte_t *ptep)
347{
348 pte_t pte = *ptep;
349 if (!pte_young(pte))
350 return 0;
351 update_pte(ptep, pte_mkold(pte));
352 return 1;
353}
354
355static inline pte_t
356ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
357{
358 pte_t pte = *ptep;
359 pte_clear(mm, addr, ptep);
360 return pte;
361}
362
363static inline void
364ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
365{
366 pte_t pte = *ptep;
367 update_pte(ptep, pte_wrprotect(pte));
368}
369
370/* to find an entry in a kernel page-table-directory */
371#define pgd_offset_k(address) pgd_offset(&init_mm, address)
372
373/* to find an entry in a page-table-directory */
374#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address))
375
376#define pgd_index(address) ((address) >> PGDIR_SHIFT)
377
378/* Find an entry in the second-level page table.. */
379#define pmd_offset(dir,address) ((pmd_t*)(dir))
380
381/* Find an entry in the third-level page table.. */
382#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
383#define pte_offset_kernel(dir,addr) \
384 ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
385#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr))
386#define pte_unmap(pte) do { } while (0)
387
388
389/*
390 * Encode and decode a swap and file entry.
391 */
392#define SWP_TYPE_BITS 5
393#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
394
395#define __swp_type(entry) (((entry).val >> 6) & 0x1f)
396#define __swp_offset(entry) ((entry).val >> 11)
397#define __swp_entry(type,offs) \
398 ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
399 _PAGE_CA_INVALID | _PAGE_USER})
400#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
401#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
402
403#endif /* !defined (__ASSEMBLY__) */
404
405
406#ifdef __ASSEMBLY__
407
408/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
409 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
410 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
411 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
412 *
413 * Note: We require an additional temporary register which can be the same as
414 * the register that holds the address.
415 *
416 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
417 *
418 */
419#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
420#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
421
422#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \
423 _PGD_INDEX(tmp, adr); \
424 addx4 mm, tmp, mm
425
426#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \
427 srli pmd, pmd, PAGE_SHIFT; \
428 slli pmd, pmd, PAGE_SHIFT; \
429 addx4 pmd, tmp, pmd
430
431#else
432
433#define kern_addr_valid(addr) (1)
434
435extern void update_mmu_cache(struct vm_area_struct * vma,
436 unsigned long address, pte_t *ptep);
437
438typedef pte_t *pte_addr_t;
439
440#endif /* !defined (__ASSEMBLY__) */
441
442#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
443#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
444#define __HAVE_ARCH_PTEP_SET_WRPROTECT
445#define __HAVE_ARCH_PTEP_MKDIRTY
446#define __HAVE_ARCH_PTE_SAME
447/* We provide our own get_unmapped_area to cope with
448 * SHM area cache aliasing for userland.
449 */
450#define HAVE_ARCH_UNMAPPED_AREA
451
452#include <asm-generic/pgtable.h>
453
454#endif /* _XTENSA_PGTABLE_H */