Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Xen mmu operations |
| 3 | * |
| 4 | * This file contains the various mmu fetch and update operations. |
| 5 | * The most important job they must perform is the mapping between the |
| 6 | * domain's pfn and the overall machine mfns. |
| 7 | * |
| 8 | * Xen allows guests to directly update the pagetable, in a controlled |
| 9 | * fashion. In other words, the guest modifies the same pagetable |
| 10 | * that the CPU actually uses, which eliminates the overhead of having |
| 11 | * a separate shadow pagetable. |
| 12 | * |
| 13 | * In order to allow this, it falls on the guest domain to map its |
| 14 | * notion of a "physical" pfn - which is just a domain-local linear |
| 15 | * address - into a real "machine address" which the CPU's MMU can |
| 16 | * use. |
| 17 | * |
| 18 | * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be |
| 19 | * inserted directly into the pagetable. When creating a new |
| 20 | * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely, |
| 21 | * when reading the content back with __(pgd|pmd|pte)_val, it converts |
| 22 | * the mfn back into a pfn. |
| 23 | * |
| 24 | * The other constraint is that all pages which make up a pagetable |
| 25 | * must be mapped read-only in the guest. This prevents uncontrolled |
| 26 | * guest updates to the pagetable. Xen strictly enforces this, and |
| 27 | * will disallow any pagetable update which will end up mapping a |
| 28 | * pagetable page RW, and will disallow using any writable page as a |
| 29 | * pagetable. |
| 30 | * |
| 31 | * Naively, when loading %cr3 with the base of a new pagetable, Xen |
| 32 | * would need to validate the whole pagetable before going on. |
| 33 | * Naturally, this is quite slow. The solution is to "pin" a |
| 34 | * pagetable, which enforces all the constraints on the pagetable even |
| 35 | * when it is not actively in use. This menas that Xen can be assured |
| 36 | * that it is still valid when you do load it into %cr3, and doesn't |
| 37 | * need to revalidate it. |
| 38 | * |
| 39 | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 |
| 40 | */ |
| 41 | #include <linux/sched/mm.h> |
| 42 | #include <linux/highmem.h> |
| 43 | #include <linux/debugfs.h> |
| 44 | #include <linux/bug.h> |
| 45 | #include <linux/vmalloc.h> |
| 46 | #include <linux/export.h> |
| 47 | #include <linux/init.h> |
| 48 | #include <linux/gfp.h> |
| 49 | #include <linux/memblock.h> |
| 50 | #include <linux/seq_file.h> |
| 51 | #include <linux/crash_dump.h> |
| 52 | #ifdef CONFIG_KEXEC_CORE |
| 53 | #include <linux/kexec.h> |
| 54 | #endif |
| 55 | |
| 56 | #include <trace/events/xen.h> |
| 57 | |
| 58 | #include <asm/pgtable.h> |
| 59 | #include <asm/tlbflush.h> |
| 60 | #include <asm/fixmap.h> |
| 61 | #include <asm/mmu_context.h> |
| 62 | #include <asm/setup.h> |
| 63 | #include <asm/paravirt.h> |
| 64 | #include <asm/e820/api.h> |
| 65 | #include <asm/linkage.h> |
| 66 | #include <asm/page.h> |
| 67 | #include <asm/init.h> |
| 68 | #include <asm/pat.h> |
| 69 | #include <asm/smp.h> |
| 70 | #include <asm/tlb.h> |
| 71 | |
| 72 | #include <asm/xen/hypercall.h> |
| 73 | #include <asm/xen/hypervisor.h> |
| 74 | |
| 75 | #include <xen/xen.h> |
| 76 | #include <xen/page.h> |
| 77 | #include <xen/interface/xen.h> |
| 78 | #include <xen/interface/hvm/hvm_op.h> |
| 79 | #include <xen/interface/version.h> |
| 80 | #include <xen/interface/memory.h> |
| 81 | #include <xen/hvc-console.h> |
| 82 | |
| 83 | #include "multicalls.h" |
| 84 | #include "mmu.h" |
| 85 | #include "debugfs.h" |
| 86 | |
| 87 | #ifdef CONFIG_X86_32 |
| 88 | /* |
| 89 | * Identity map, in addition to plain kernel map. This needs to be |
| 90 | * large enough to allocate page table pages to allocate the rest. |
| 91 | * Each page can map 2MB. |
| 92 | */ |
| 93 | #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4) |
| 94 | static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES); |
| 95 | #endif |
| 96 | #ifdef CONFIG_X86_64 |
| 97 | /* l3 pud for userspace vsyscall mapping */ |
| 98 | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; |
| 99 | #endif /* CONFIG_X86_64 */ |
| 100 | |
| 101 | /* |
| 102 | * Note about cr3 (pagetable base) values: |
| 103 | * |
| 104 | * xen_cr3 contains the current logical cr3 value; it contains the |
| 105 | * last set cr3. This may not be the current effective cr3, because |
| 106 | * its update may be being lazily deferred. However, a vcpu looking |
| 107 | * at its own cr3 can use this value knowing that it everything will |
| 108 | * be self-consistent. |
| 109 | * |
| 110 | * xen_current_cr3 contains the actual vcpu cr3; it is set once the |
| 111 | * hypercall to set the vcpu cr3 is complete (so it may be a little |
| 112 | * out of date, but it will never be set early). If one vcpu is |
| 113 | * looking at another vcpu's cr3 value, it should use this variable. |
| 114 | */ |
| 115 | DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */ |
| 116 | DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */ |
| 117 | |
| 118 | static phys_addr_t xen_pt_base, xen_pt_size __initdata; |
| 119 | |
| 120 | static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready); |
| 121 | |
| 122 | /* |
| 123 | * Just beyond the highest usermode address. STACK_TOP_MAX has a |
| 124 | * redzone above it, so round it up to a PGD boundary. |
| 125 | */ |
| 126 | #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK) |
| 127 | |
| 128 | void make_lowmem_page_readonly(void *vaddr) |
| 129 | { |
| 130 | pte_t *pte, ptev; |
| 131 | unsigned long address = (unsigned long)vaddr; |
| 132 | unsigned int level; |
| 133 | |
| 134 | pte = lookup_address(address, &level); |
| 135 | if (pte == NULL) |
| 136 | return; /* vaddr missing */ |
| 137 | |
| 138 | ptev = pte_wrprotect(*pte); |
| 139 | |
| 140 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 141 | BUG(); |
| 142 | } |
| 143 | |
| 144 | void make_lowmem_page_readwrite(void *vaddr) |
| 145 | { |
| 146 | pte_t *pte, ptev; |
| 147 | unsigned long address = (unsigned long)vaddr; |
| 148 | unsigned int level; |
| 149 | |
| 150 | pte = lookup_address(address, &level); |
| 151 | if (pte == NULL) |
| 152 | return; /* vaddr missing */ |
| 153 | |
| 154 | ptev = pte_mkwrite(*pte); |
| 155 | |
| 156 | if (HYPERVISOR_update_va_mapping(address, ptev, 0)) |
| 157 | BUG(); |
| 158 | } |
| 159 | |
| 160 | |
| 161 | /* |
| 162 | * During early boot all page table pages are pinned, but we do not have struct |
| 163 | * pages, so return true until struct pages are ready. |
| 164 | */ |
| 165 | static bool xen_page_pinned(void *ptr) |
| 166 | { |
| 167 | if (static_branch_likely(&xen_struct_pages_ready)) { |
| 168 | struct page *page = virt_to_page(ptr); |
| 169 | |
| 170 | return PagePinned(page); |
| 171 | } |
| 172 | return true; |
| 173 | } |
| 174 | |
| 175 | static void xen_extend_mmu_update(const struct mmu_update *update) |
| 176 | { |
| 177 | struct multicall_space mcs; |
| 178 | struct mmu_update *u; |
| 179 | |
| 180 | mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u)); |
| 181 | |
| 182 | if (mcs.mc != NULL) { |
| 183 | mcs.mc->args[1]++; |
| 184 | } else { |
| 185 | mcs = __xen_mc_entry(sizeof(*u)); |
| 186 | MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 187 | } |
| 188 | |
| 189 | u = mcs.args; |
| 190 | *u = *update; |
| 191 | } |
| 192 | |
| 193 | static void xen_extend_mmuext_op(const struct mmuext_op *op) |
| 194 | { |
| 195 | struct multicall_space mcs; |
| 196 | struct mmuext_op *u; |
| 197 | |
| 198 | mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u)); |
| 199 | |
| 200 | if (mcs.mc != NULL) { |
| 201 | mcs.mc->args[1]++; |
| 202 | } else { |
| 203 | mcs = __xen_mc_entry(sizeof(*u)); |
| 204 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 205 | } |
| 206 | |
| 207 | u = mcs.args; |
| 208 | *u = *op; |
| 209 | } |
| 210 | |
| 211 | static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val) |
| 212 | { |
| 213 | struct mmu_update u; |
| 214 | |
| 215 | preempt_disable(); |
| 216 | |
| 217 | xen_mc_batch(); |
| 218 | |
| 219 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 220 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 221 | u.val = pmd_val_ma(val); |
| 222 | xen_extend_mmu_update(&u); |
| 223 | |
| 224 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 225 | |
| 226 | preempt_enable(); |
| 227 | } |
| 228 | |
| 229 | static void xen_set_pmd(pmd_t *ptr, pmd_t val) |
| 230 | { |
| 231 | trace_xen_mmu_set_pmd(ptr, val); |
| 232 | |
| 233 | /* If page is not pinned, we can just update the entry |
| 234 | directly */ |
| 235 | if (!xen_page_pinned(ptr)) { |
| 236 | *ptr = val; |
| 237 | return; |
| 238 | } |
| 239 | |
| 240 | xen_set_pmd_hyper(ptr, val); |
| 241 | } |
| 242 | |
| 243 | /* |
| 244 | * Associate a virtual page frame with a given physical page frame |
| 245 | * and protection flags for that frame. |
| 246 | */ |
| 247 | void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags) |
| 248 | { |
| 249 | set_pte_vaddr(vaddr, mfn_pte(mfn, flags)); |
| 250 | } |
| 251 | |
| 252 | static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval) |
| 253 | { |
| 254 | struct mmu_update u; |
| 255 | |
| 256 | if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU) |
| 257 | return false; |
| 258 | |
| 259 | xen_mc_batch(); |
| 260 | |
| 261 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 262 | u.val = pte_val_ma(pteval); |
| 263 | xen_extend_mmu_update(&u); |
| 264 | |
| 265 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 266 | |
| 267 | return true; |
| 268 | } |
| 269 | |
| 270 | static inline void __xen_set_pte(pte_t *ptep, pte_t pteval) |
| 271 | { |
| 272 | if (!xen_batched_set_pte(ptep, pteval)) { |
| 273 | /* |
| 274 | * Could call native_set_pte() here and trap and |
| 275 | * emulate the PTE write but with 32-bit guests this |
| 276 | * needs two traps (one for each of the two 32-bit |
| 277 | * words in the PTE) so do one hypercall directly |
| 278 | * instead. |
| 279 | */ |
| 280 | struct mmu_update u; |
| 281 | |
| 282 | u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE; |
| 283 | u.val = pte_val_ma(pteval); |
| 284 | HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF); |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | static void xen_set_pte(pte_t *ptep, pte_t pteval) |
| 289 | { |
| 290 | trace_xen_mmu_set_pte(ptep, pteval); |
| 291 | __xen_set_pte(ptep, pteval); |
| 292 | } |
| 293 | |
| 294 | static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr, |
| 295 | pte_t *ptep, pte_t pteval) |
| 296 | { |
| 297 | trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval); |
| 298 | __xen_set_pte(ptep, pteval); |
| 299 | } |
| 300 | |
| 301 | pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, |
| 302 | unsigned long addr, pte_t *ptep) |
| 303 | { |
| 304 | /* Just return the pte as-is. We preserve the bits on commit */ |
| 305 | trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep); |
| 306 | return *ptep; |
| 307 | } |
| 308 | |
| 309 | void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr, |
| 310 | pte_t *ptep, pte_t pte) |
| 311 | { |
| 312 | struct mmu_update u; |
| 313 | |
| 314 | trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte); |
| 315 | xen_mc_batch(); |
| 316 | |
| 317 | u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD; |
| 318 | u.val = pte_val_ma(pte); |
| 319 | xen_extend_mmu_update(&u); |
| 320 | |
| 321 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 322 | } |
| 323 | |
| 324 | /* Assume pteval_t is equivalent to all the other *val_t types. */ |
| 325 | static pteval_t pte_mfn_to_pfn(pteval_t val) |
| 326 | { |
| 327 | if (val & _PAGE_PRESENT) { |
| 328 | unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT; |
| 329 | unsigned long pfn = mfn_to_pfn(mfn); |
| 330 | |
| 331 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 332 | if (unlikely(pfn == ~0)) |
| 333 | val = flags & ~_PAGE_PRESENT; |
| 334 | else |
| 335 | val = ((pteval_t)pfn << PAGE_SHIFT) | flags; |
| 336 | } |
| 337 | |
| 338 | return val; |
| 339 | } |
| 340 | |
| 341 | static pteval_t pte_pfn_to_mfn(pteval_t val) |
| 342 | { |
| 343 | if (val & _PAGE_PRESENT) { |
| 344 | unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 345 | pteval_t flags = val & PTE_FLAGS_MASK; |
| 346 | unsigned long mfn; |
| 347 | |
| 348 | mfn = __pfn_to_mfn(pfn); |
| 349 | |
| 350 | /* |
| 351 | * If there's no mfn for the pfn, then just create an |
| 352 | * empty non-present pte. Unfortunately this loses |
| 353 | * information about the original pfn, so |
| 354 | * pte_mfn_to_pfn is asymmetric. |
| 355 | */ |
| 356 | if (unlikely(mfn == INVALID_P2M_ENTRY)) { |
| 357 | mfn = 0; |
| 358 | flags = 0; |
| 359 | } else |
| 360 | mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT); |
| 361 | val = ((pteval_t)mfn << PAGE_SHIFT) | flags; |
| 362 | } |
| 363 | |
| 364 | return val; |
| 365 | } |
| 366 | |
| 367 | __visible pteval_t xen_pte_val(pte_t pte) |
| 368 | { |
| 369 | pteval_t pteval = pte.pte; |
| 370 | |
| 371 | return pte_mfn_to_pfn(pteval); |
| 372 | } |
| 373 | PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val); |
| 374 | |
| 375 | __visible pgdval_t xen_pgd_val(pgd_t pgd) |
| 376 | { |
| 377 | return pte_mfn_to_pfn(pgd.pgd); |
| 378 | } |
| 379 | PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val); |
| 380 | |
| 381 | __visible pte_t xen_make_pte(pteval_t pte) |
| 382 | { |
| 383 | pte = pte_pfn_to_mfn(pte); |
| 384 | |
| 385 | return native_make_pte(pte); |
| 386 | } |
| 387 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte); |
| 388 | |
| 389 | __visible pgd_t xen_make_pgd(pgdval_t pgd) |
| 390 | { |
| 391 | pgd = pte_pfn_to_mfn(pgd); |
| 392 | return native_make_pgd(pgd); |
| 393 | } |
| 394 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd); |
| 395 | |
| 396 | __visible pmdval_t xen_pmd_val(pmd_t pmd) |
| 397 | { |
| 398 | return pte_mfn_to_pfn(pmd.pmd); |
| 399 | } |
| 400 | PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val); |
| 401 | |
| 402 | static void xen_set_pud_hyper(pud_t *ptr, pud_t val) |
| 403 | { |
| 404 | struct mmu_update u; |
| 405 | |
| 406 | preempt_disable(); |
| 407 | |
| 408 | xen_mc_batch(); |
| 409 | |
| 410 | /* ptr may be ioremapped for 64-bit pagetable setup */ |
| 411 | u.ptr = arbitrary_virt_to_machine(ptr).maddr; |
| 412 | u.val = pud_val_ma(val); |
| 413 | xen_extend_mmu_update(&u); |
| 414 | |
| 415 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 416 | |
| 417 | preempt_enable(); |
| 418 | } |
| 419 | |
| 420 | static void xen_set_pud(pud_t *ptr, pud_t val) |
| 421 | { |
| 422 | trace_xen_mmu_set_pud(ptr, val); |
| 423 | |
| 424 | /* If page is not pinned, we can just update the entry |
| 425 | directly */ |
| 426 | if (!xen_page_pinned(ptr)) { |
| 427 | *ptr = val; |
| 428 | return; |
| 429 | } |
| 430 | |
| 431 | xen_set_pud_hyper(ptr, val); |
| 432 | } |
| 433 | |
| 434 | #ifdef CONFIG_X86_PAE |
| 435 | static void xen_set_pte_atomic(pte_t *ptep, pte_t pte) |
| 436 | { |
| 437 | trace_xen_mmu_set_pte_atomic(ptep, pte); |
| 438 | __xen_set_pte(ptep, pte); |
| 439 | } |
| 440 | |
| 441 | static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| 442 | { |
| 443 | trace_xen_mmu_pte_clear(mm, addr, ptep); |
| 444 | __xen_set_pte(ptep, native_make_pte(0)); |
| 445 | } |
| 446 | |
| 447 | static void xen_pmd_clear(pmd_t *pmdp) |
| 448 | { |
| 449 | trace_xen_mmu_pmd_clear(pmdp); |
| 450 | set_pmd(pmdp, __pmd(0)); |
| 451 | } |
| 452 | #endif /* CONFIG_X86_PAE */ |
| 453 | |
| 454 | __visible pmd_t xen_make_pmd(pmdval_t pmd) |
| 455 | { |
| 456 | pmd = pte_pfn_to_mfn(pmd); |
| 457 | return native_make_pmd(pmd); |
| 458 | } |
| 459 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd); |
| 460 | |
| 461 | #ifdef CONFIG_X86_64 |
| 462 | __visible pudval_t xen_pud_val(pud_t pud) |
| 463 | { |
| 464 | return pte_mfn_to_pfn(pud.pud); |
| 465 | } |
| 466 | PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val); |
| 467 | |
| 468 | __visible pud_t xen_make_pud(pudval_t pud) |
| 469 | { |
| 470 | pud = pte_pfn_to_mfn(pud); |
| 471 | |
| 472 | return native_make_pud(pud); |
| 473 | } |
| 474 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud); |
| 475 | |
| 476 | static pgd_t *xen_get_user_pgd(pgd_t *pgd) |
| 477 | { |
| 478 | pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK); |
| 479 | unsigned offset = pgd - pgd_page; |
| 480 | pgd_t *user_ptr = NULL; |
| 481 | |
| 482 | if (offset < pgd_index(USER_LIMIT)) { |
| 483 | struct page *page = virt_to_page(pgd_page); |
| 484 | user_ptr = (pgd_t *)page->private; |
| 485 | if (user_ptr) |
| 486 | user_ptr += offset; |
| 487 | } |
| 488 | |
| 489 | return user_ptr; |
| 490 | } |
| 491 | |
| 492 | static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 493 | { |
| 494 | struct mmu_update u; |
| 495 | |
| 496 | u.ptr = virt_to_machine(ptr).maddr; |
| 497 | u.val = p4d_val_ma(val); |
| 498 | xen_extend_mmu_update(&u); |
| 499 | } |
| 500 | |
| 501 | /* |
| 502 | * Raw hypercall-based set_p4d, intended for in early boot before |
| 503 | * there's a page structure. This implies: |
| 504 | * 1. The only existing pagetable is the kernel's |
| 505 | * 2. It is always pinned |
| 506 | * 3. It has no user pagetable attached to it |
| 507 | */ |
| 508 | static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val) |
| 509 | { |
| 510 | preempt_disable(); |
| 511 | |
| 512 | xen_mc_batch(); |
| 513 | |
| 514 | __xen_set_p4d_hyper(ptr, val); |
| 515 | |
| 516 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 517 | |
| 518 | preempt_enable(); |
| 519 | } |
| 520 | |
| 521 | static void xen_set_p4d(p4d_t *ptr, p4d_t val) |
| 522 | { |
| 523 | pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr); |
| 524 | pgd_t pgd_val; |
| 525 | |
| 526 | trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val); |
| 527 | |
| 528 | /* If page is not pinned, we can just update the entry |
| 529 | directly */ |
| 530 | if (!xen_page_pinned(ptr)) { |
| 531 | *ptr = val; |
| 532 | if (user_ptr) { |
| 533 | WARN_ON(xen_page_pinned(user_ptr)); |
| 534 | pgd_val.pgd = p4d_val_ma(val); |
| 535 | *user_ptr = pgd_val; |
| 536 | } |
| 537 | return; |
| 538 | } |
| 539 | |
| 540 | /* If it's pinned, then we can at least batch the kernel and |
| 541 | user updates together. */ |
| 542 | xen_mc_batch(); |
| 543 | |
| 544 | __xen_set_p4d_hyper(ptr, val); |
| 545 | if (user_ptr) |
| 546 | __xen_set_p4d_hyper((p4d_t *)user_ptr, val); |
| 547 | |
| 548 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 549 | } |
| 550 | |
| 551 | #if CONFIG_PGTABLE_LEVELS >= 5 |
| 552 | __visible p4dval_t xen_p4d_val(p4d_t p4d) |
| 553 | { |
| 554 | return pte_mfn_to_pfn(p4d.p4d); |
| 555 | } |
| 556 | PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val); |
| 557 | |
| 558 | __visible p4d_t xen_make_p4d(p4dval_t p4d) |
| 559 | { |
| 560 | p4d = pte_pfn_to_mfn(p4d); |
| 561 | |
| 562 | return native_make_p4d(p4d); |
| 563 | } |
| 564 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d); |
| 565 | #endif /* CONFIG_PGTABLE_LEVELS >= 5 */ |
| 566 | #endif /* CONFIG_X86_64 */ |
| 567 | |
| 568 | static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd, |
| 569 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 570 | bool last, unsigned long limit) |
| 571 | { |
| 572 | int i, nr, flush = 0; |
| 573 | |
| 574 | nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD; |
| 575 | for (i = 0; i < nr; i++) { |
| 576 | if (!pmd_none(pmd[i])) |
| 577 | flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE); |
| 578 | } |
| 579 | return flush; |
| 580 | } |
| 581 | |
| 582 | static int xen_pud_walk(struct mm_struct *mm, pud_t *pud, |
| 583 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 584 | bool last, unsigned long limit) |
| 585 | { |
| 586 | int i, nr, flush = 0; |
| 587 | |
| 588 | nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD; |
| 589 | for (i = 0; i < nr; i++) { |
| 590 | pmd_t *pmd; |
| 591 | |
| 592 | if (pud_none(pud[i])) |
| 593 | continue; |
| 594 | |
| 595 | pmd = pmd_offset(&pud[i], 0); |
| 596 | if (PTRS_PER_PMD > 1) |
| 597 | flush |= (*func)(mm, virt_to_page(pmd), PT_PMD); |
| 598 | flush |= xen_pmd_walk(mm, pmd, func, |
| 599 | last && i == nr - 1, limit); |
| 600 | } |
| 601 | return flush; |
| 602 | } |
| 603 | |
| 604 | static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d, |
| 605 | int (*func)(struct mm_struct *mm, struct page *, enum pt_level), |
| 606 | bool last, unsigned long limit) |
| 607 | { |
| 608 | int flush = 0; |
| 609 | pud_t *pud; |
| 610 | |
| 611 | |
| 612 | if (p4d_none(*p4d)) |
| 613 | return flush; |
| 614 | |
| 615 | pud = pud_offset(p4d, 0); |
| 616 | if (PTRS_PER_PUD > 1) |
| 617 | flush |= (*func)(mm, virt_to_page(pud), PT_PUD); |
| 618 | flush |= xen_pud_walk(mm, pud, func, last, limit); |
| 619 | return flush; |
| 620 | } |
| 621 | |
| 622 | /* |
| 623 | * (Yet another) pagetable walker. This one is intended for pinning a |
| 624 | * pagetable. This means that it walks a pagetable and calls the |
| 625 | * callback function on each page it finds making up the page table, |
| 626 | * at every level. It walks the entire pagetable, but it only bothers |
| 627 | * pinning pte pages which are below limit. In the normal case this |
| 628 | * will be STACK_TOP_MAX, but at boot we need to pin up to |
| 629 | * FIXADDR_TOP. |
| 630 | * |
| 631 | * For 32-bit the important bit is that we don't pin beyond there, |
| 632 | * because then we start getting into Xen's ptes. |
| 633 | * |
| 634 | * For 64-bit, we must skip the Xen hole in the middle of the address |
| 635 | * space, just after the big x86-64 virtual hole. |
| 636 | */ |
| 637 | static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd, |
| 638 | int (*func)(struct mm_struct *mm, struct page *, |
| 639 | enum pt_level), |
| 640 | unsigned long limit) |
| 641 | { |
| 642 | int i, nr, flush = 0; |
| 643 | unsigned hole_low, hole_high; |
| 644 | |
| 645 | /* The limit is the last byte to be touched */ |
| 646 | limit--; |
| 647 | BUG_ON(limit >= FIXADDR_TOP); |
| 648 | |
| 649 | /* |
| 650 | * 64-bit has a great big hole in the middle of the address |
| 651 | * space, which contains the Xen mappings. On 32-bit these |
| 652 | * will end up making a zero-sized hole and so is a no-op. |
| 653 | */ |
| 654 | hole_low = pgd_index(USER_LIMIT); |
| 655 | hole_high = pgd_index(PAGE_OFFSET); |
| 656 | |
| 657 | nr = pgd_index(limit) + 1; |
| 658 | for (i = 0; i < nr; i++) { |
| 659 | p4d_t *p4d; |
| 660 | |
| 661 | if (i >= hole_low && i < hole_high) |
| 662 | continue; |
| 663 | |
| 664 | if (pgd_none(pgd[i])) |
| 665 | continue; |
| 666 | |
| 667 | p4d = p4d_offset(&pgd[i], 0); |
| 668 | flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit); |
| 669 | } |
| 670 | |
| 671 | /* Do the top level last, so that the callbacks can use it as |
| 672 | a cue to do final things like tlb flushes. */ |
| 673 | flush |= (*func)(mm, virt_to_page(pgd), PT_PGD); |
| 674 | |
| 675 | return flush; |
| 676 | } |
| 677 | |
| 678 | static int xen_pgd_walk(struct mm_struct *mm, |
| 679 | int (*func)(struct mm_struct *mm, struct page *, |
| 680 | enum pt_level), |
| 681 | unsigned long limit) |
| 682 | { |
| 683 | return __xen_pgd_walk(mm, mm->pgd, func, limit); |
| 684 | } |
| 685 | |
| 686 | /* If we're using split pte locks, then take the page's lock and |
| 687 | return a pointer to it. Otherwise return NULL. */ |
| 688 | static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm) |
| 689 | { |
| 690 | spinlock_t *ptl = NULL; |
| 691 | |
| 692 | #if USE_SPLIT_PTE_PTLOCKS |
| 693 | ptl = ptlock_ptr(page); |
| 694 | spin_lock_nest_lock(ptl, &mm->page_table_lock); |
| 695 | #endif |
| 696 | |
| 697 | return ptl; |
| 698 | } |
| 699 | |
| 700 | static void xen_pte_unlock(void *v) |
| 701 | { |
| 702 | spinlock_t *ptl = v; |
| 703 | spin_unlock(ptl); |
| 704 | } |
| 705 | |
| 706 | static void xen_do_pin(unsigned level, unsigned long pfn) |
| 707 | { |
| 708 | struct mmuext_op op; |
| 709 | |
| 710 | op.cmd = level; |
| 711 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 712 | |
| 713 | xen_extend_mmuext_op(&op); |
| 714 | } |
| 715 | |
| 716 | static int xen_pin_page(struct mm_struct *mm, struct page *page, |
| 717 | enum pt_level level) |
| 718 | { |
| 719 | unsigned pgfl = TestSetPagePinned(page); |
| 720 | int flush; |
| 721 | |
| 722 | if (pgfl) |
| 723 | flush = 0; /* already pinned */ |
| 724 | else if (PageHighMem(page)) |
| 725 | /* kmaps need flushing if we found an unpinned |
| 726 | highpage */ |
| 727 | flush = 1; |
| 728 | else { |
| 729 | void *pt = lowmem_page_address(page); |
| 730 | unsigned long pfn = page_to_pfn(page); |
| 731 | struct multicall_space mcs = __xen_mc_entry(0); |
| 732 | spinlock_t *ptl; |
| 733 | |
| 734 | flush = 0; |
| 735 | |
| 736 | /* |
| 737 | * We need to hold the pagetable lock between the time |
| 738 | * we make the pagetable RO and when we actually pin |
| 739 | * it. If we don't, then other users may come in and |
| 740 | * attempt to update the pagetable by writing it, |
| 741 | * which will fail because the memory is RO but not |
| 742 | * pinned, so Xen won't do the trap'n'emulate. |
| 743 | * |
| 744 | * If we're using split pte locks, we can't hold the |
| 745 | * entire pagetable's worth of locks during the |
| 746 | * traverse, because we may wrap the preempt count (8 |
| 747 | * bits). The solution is to mark RO and pin each PTE |
| 748 | * page while holding the lock. This means the number |
| 749 | * of locks we end up holding is never more than a |
| 750 | * batch size (~32 entries, at present). |
| 751 | * |
| 752 | * If we're not using split pte locks, we needn't pin |
| 753 | * the PTE pages independently, because we're |
| 754 | * protected by the overall pagetable lock. |
| 755 | */ |
| 756 | ptl = NULL; |
| 757 | if (level == PT_PTE) |
| 758 | ptl = xen_pte_lock(page, mm); |
| 759 | |
| 760 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 761 | pfn_pte(pfn, PAGE_KERNEL_RO), |
| 762 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 763 | |
| 764 | if (ptl) { |
| 765 | xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn); |
| 766 | |
| 767 | /* Queue a deferred unlock for when this batch |
| 768 | is completed. */ |
| 769 | xen_mc_callback(xen_pte_unlock, ptl); |
| 770 | } |
| 771 | } |
| 772 | |
| 773 | return flush; |
| 774 | } |
| 775 | |
| 776 | /* This is called just after a mm has been created, but it has not |
| 777 | been used yet. We need to make sure that its pagetable is all |
| 778 | read-only, and can be pinned. */ |
| 779 | static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd) |
| 780 | { |
| 781 | trace_xen_mmu_pgd_pin(mm, pgd); |
| 782 | |
| 783 | xen_mc_batch(); |
| 784 | |
| 785 | if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) { |
| 786 | /* re-enable interrupts for flushing */ |
| 787 | xen_mc_issue(0); |
| 788 | |
| 789 | kmap_flush_unused(); |
| 790 | |
| 791 | xen_mc_batch(); |
| 792 | } |
| 793 | |
| 794 | #ifdef CONFIG_X86_64 |
| 795 | { |
| 796 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 797 | |
| 798 | xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd))); |
| 799 | |
| 800 | if (user_pgd) { |
| 801 | xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| 802 | xen_do_pin(MMUEXT_PIN_L4_TABLE, |
| 803 | PFN_DOWN(__pa(user_pgd))); |
| 804 | } |
| 805 | } |
| 806 | #else /* CONFIG_X86_32 */ |
| 807 | #ifdef CONFIG_X86_PAE |
| 808 | /* Need to make sure unshared kernel PMD is pinnable */ |
| 809 | xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| 810 | PT_PMD); |
| 811 | #endif |
| 812 | xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd))); |
| 813 | #endif /* CONFIG_X86_64 */ |
| 814 | xen_mc_issue(0); |
| 815 | } |
| 816 | |
| 817 | static void xen_pgd_pin(struct mm_struct *mm) |
| 818 | { |
| 819 | __xen_pgd_pin(mm, mm->pgd); |
| 820 | } |
| 821 | |
| 822 | /* |
| 823 | * On save, we need to pin all pagetables to make sure they get their |
| 824 | * mfns turned into pfns. Search the list for any unpinned pgds and pin |
| 825 | * them (unpinned pgds are not currently in use, probably because the |
| 826 | * process is under construction or destruction). |
| 827 | * |
| 828 | * Expected to be called in stop_machine() ("equivalent to taking |
| 829 | * every spinlock in the system"), so the locking doesn't really |
| 830 | * matter all that much. |
| 831 | */ |
| 832 | void xen_mm_pin_all(void) |
| 833 | { |
| 834 | struct page *page; |
| 835 | |
| 836 | spin_lock(&pgd_lock); |
| 837 | |
| 838 | list_for_each_entry(page, &pgd_list, lru) { |
| 839 | if (!PagePinned(page)) { |
| 840 | __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page)); |
| 841 | SetPageSavePinned(page); |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | spin_unlock(&pgd_lock); |
| 846 | } |
| 847 | |
| 848 | static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page, |
| 849 | enum pt_level level) |
| 850 | { |
| 851 | SetPagePinned(page); |
| 852 | return 0; |
| 853 | } |
| 854 | |
| 855 | /* |
| 856 | * The init_mm pagetable is really pinned as soon as its created, but |
| 857 | * that's before we have page structures to store the bits. So do all |
| 858 | * the book-keeping now once struct pages for allocated pages are |
| 859 | * initialized. This happens only after free_all_bootmem() is called. |
| 860 | */ |
| 861 | static void __init xen_after_bootmem(void) |
| 862 | { |
| 863 | static_branch_enable(&xen_struct_pages_ready); |
| 864 | #ifdef CONFIG_X86_64 |
| 865 | SetPagePinned(virt_to_page(level3_user_vsyscall)); |
| 866 | #endif |
| 867 | xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP); |
| 868 | } |
| 869 | |
| 870 | static int xen_unpin_page(struct mm_struct *mm, struct page *page, |
| 871 | enum pt_level level) |
| 872 | { |
| 873 | unsigned pgfl = TestClearPagePinned(page); |
| 874 | |
| 875 | if (pgfl && !PageHighMem(page)) { |
| 876 | void *pt = lowmem_page_address(page); |
| 877 | unsigned long pfn = page_to_pfn(page); |
| 878 | spinlock_t *ptl = NULL; |
| 879 | struct multicall_space mcs; |
| 880 | |
| 881 | /* |
| 882 | * Do the converse to pin_page. If we're using split |
| 883 | * pte locks, we must be holding the lock for while |
| 884 | * the pte page is unpinned but still RO to prevent |
| 885 | * concurrent updates from seeing it in this |
| 886 | * partially-pinned state. |
| 887 | */ |
| 888 | if (level == PT_PTE) { |
| 889 | ptl = xen_pte_lock(page, mm); |
| 890 | |
| 891 | if (ptl) |
| 892 | xen_do_pin(MMUEXT_UNPIN_TABLE, pfn); |
| 893 | } |
| 894 | |
| 895 | mcs = __xen_mc_entry(0); |
| 896 | |
| 897 | MULTI_update_va_mapping(mcs.mc, (unsigned long)pt, |
| 898 | pfn_pte(pfn, PAGE_KERNEL), |
| 899 | level == PT_PGD ? UVMF_TLB_FLUSH : 0); |
| 900 | |
| 901 | if (ptl) { |
| 902 | /* unlock when batch completed */ |
| 903 | xen_mc_callback(xen_pte_unlock, ptl); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | return 0; /* never need to flush on unpin */ |
| 908 | } |
| 909 | |
| 910 | /* Release a pagetables pages back as normal RW */ |
| 911 | static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd) |
| 912 | { |
| 913 | trace_xen_mmu_pgd_unpin(mm, pgd); |
| 914 | |
| 915 | xen_mc_batch(); |
| 916 | |
| 917 | xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 918 | |
| 919 | #ifdef CONFIG_X86_64 |
| 920 | { |
| 921 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 922 | |
| 923 | if (user_pgd) { |
| 924 | xen_do_pin(MMUEXT_UNPIN_TABLE, |
| 925 | PFN_DOWN(__pa(user_pgd))); |
| 926 | xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD); |
| 927 | } |
| 928 | } |
| 929 | #endif |
| 930 | |
| 931 | #ifdef CONFIG_X86_PAE |
| 932 | /* Need to make sure unshared kernel PMD is unpinned */ |
| 933 | xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]), |
| 934 | PT_PMD); |
| 935 | #endif |
| 936 | |
| 937 | __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT); |
| 938 | |
| 939 | xen_mc_issue(0); |
| 940 | } |
| 941 | |
| 942 | static void xen_pgd_unpin(struct mm_struct *mm) |
| 943 | { |
| 944 | __xen_pgd_unpin(mm, mm->pgd); |
| 945 | } |
| 946 | |
| 947 | /* |
| 948 | * On resume, undo any pinning done at save, so that the rest of the |
| 949 | * kernel doesn't see any unexpected pinned pagetables. |
| 950 | */ |
| 951 | void xen_mm_unpin_all(void) |
| 952 | { |
| 953 | struct page *page; |
| 954 | |
| 955 | spin_lock(&pgd_lock); |
| 956 | |
| 957 | list_for_each_entry(page, &pgd_list, lru) { |
| 958 | if (PageSavePinned(page)) { |
| 959 | BUG_ON(!PagePinned(page)); |
| 960 | __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page)); |
| 961 | ClearPageSavePinned(page); |
| 962 | } |
| 963 | } |
| 964 | |
| 965 | spin_unlock(&pgd_lock); |
| 966 | } |
| 967 | |
| 968 | static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next) |
| 969 | { |
| 970 | spin_lock(&next->page_table_lock); |
| 971 | xen_pgd_pin(next); |
| 972 | spin_unlock(&next->page_table_lock); |
| 973 | } |
| 974 | |
| 975 | static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm) |
| 976 | { |
| 977 | spin_lock(&mm->page_table_lock); |
| 978 | xen_pgd_pin(mm); |
| 979 | spin_unlock(&mm->page_table_lock); |
| 980 | } |
| 981 | |
| 982 | static void drop_mm_ref_this_cpu(void *info) |
| 983 | { |
| 984 | struct mm_struct *mm = info; |
| 985 | |
| 986 | if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm) |
| 987 | leave_mm(smp_processor_id()); |
| 988 | |
| 989 | /* |
| 990 | * If this cpu still has a stale cr3 reference, then make sure |
| 991 | * it has been flushed. |
| 992 | */ |
| 993 | if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd)) |
| 994 | xen_mc_flush(); |
| 995 | } |
| 996 | |
| 997 | #ifdef CONFIG_SMP |
| 998 | /* |
| 999 | * Another cpu may still have their %cr3 pointing at the pagetable, so |
| 1000 | * we need to repoint it somewhere else before we can unpin it. |
| 1001 | */ |
| 1002 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 1003 | { |
| 1004 | cpumask_var_t mask; |
| 1005 | unsigned cpu; |
| 1006 | |
| 1007 | drop_mm_ref_this_cpu(mm); |
| 1008 | |
| 1009 | /* Get the "official" set of cpus referring to our pagetable. */ |
| 1010 | if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) { |
| 1011 | for_each_online_cpu(cpu) { |
| 1012 | if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd)) |
| 1013 | continue; |
| 1014 | smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1); |
| 1015 | } |
| 1016 | return; |
| 1017 | } |
| 1018 | |
| 1019 | /* |
| 1020 | * It's possible that a vcpu may have a stale reference to our |
| 1021 | * cr3, because its in lazy mode, and it hasn't yet flushed |
| 1022 | * its set of pending hypercalls yet. In this case, we can |
| 1023 | * look at its actual current cr3 value, and force it to flush |
| 1024 | * if needed. |
| 1025 | */ |
| 1026 | cpumask_clear(mask); |
| 1027 | for_each_online_cpu(cpu) { |
| 1028 | if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd)) |
| 1029 | cpumask_set_cpu(cpu, mask); |
| 1030 | } |
| 1031 | |
| 1032 | smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1); |
| 1033 | free_cpumask_var(mask); |
| 1034 | } |
| 1035 | #else |
| 1036 | static void xen_drop_mm_ref(struct mm_struct *mm) |
| 1037 | { |
| 1038 | drop_mm_ref_this_cpu(mm); |
| 1039 | } |
| 1040 | #endif |
| 1041 | |
| 1042 | /* |
| 1043 | * While a process runs, Xen pins its pagetables, which means that the |
| 1044 | * hypervisor forces it to be read-only, and it controls all updates |
| 1045 | * to it. This means that all pagetable updates have to go via the |
| 1046 | * hypervisor, which is moderately expensive. |
| 1047 | * |
| 1048 | * Since we're pulling the pagetable down, we switch to use init_mm, |
| 1049 | * unpin old process pagetable and mark it all read-write, which |
| 1050 | * allows further operations on it to be simple memory accesses. |
| 1051 | * |
| 1052 | * The only subtle point is that another CPU may be still using the |
| 1053 | * pagetable because of lazy tlb flushing. This means we need need to |
| 1054 | * switch all CPUs off this pagetable before we can unpin it. |
| 1055 | */ |
| 1056 | static void xen_exit_mmap(struct mm_struct *mm) |
| 1057 | { |
| 1058 | get_cpu(); /* make sure we don't move around */ |
| 1059 | xen_drop_mm_ref(mm); |
| 1060 | put_cpu(); |
| 1061 | |
| 1062 | spin_lock(&mm->page_table_lock); |
| 1063 | |
| 1064 | /* pgd may not be pinned in the error exit path of execve */ |
| 1065 | if (xen_page_pinned(mm->pgd)) |
| 1066 | xen_pgd_unpin(mm); |
| 1067 | |
| 1068 | spin_unlock(&mm->page_table_lock); |
| 1069 | } |
| 1070 | |
| 1071 | static void xen_post_allocator_init(void); |
| 1072 | |
| 1073 | static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 1074 | { |
| 1075 | struct mmuext_op op; |
| 1076 | |
| 1077 | op.cmd = cmd; |
| 1078 | op.arg1.mfn = pfn_to_mfn(pfn); |
| 1079 | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) |
| 1080 | BUG(); |
| 1081 | } |
| 1082 | |
| 1083 | #ifdef CONFIG_X86_64 |
| 1084 | static void __init xen_cleanhighmap(unsigned long vaddr, |
| 1085 | unsigned long vaddr_end) |
| 1086 | { |
| 1087 | unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; |
| 1088 | pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr); |
| 1089 | |
| 1090 | /* NOTE: The loop is more greedy than the cleanup_highmap variant. |
| 1091 | * We include the PMD passed in on _both_ boundaries. */ |
| 1092 | for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD)); |
| 1093 | pmd++, vaddr += PMD_SIZE) { |
| 1094 | if (pmd_none(*pmd)) |
| 1095 | continue; |
| 1096 | if (vaddr < (unsigned long) _text || vaddr > kernel_end) |
| 1097 | set_pmd(pmd, __pmd(0)); |
| 1098 | } |
| 1099 | /* In case we did something silly, we should crash in this function |
| 1100 | * instead of somewhere later and be confusing. */ |
| 1101 | xen_mc_flush(); |
| 1102 | } |
| 1103 | |
| 1104 | /* |
| 1105 | * Make a page range writeable and free it. |
| 1106 | */ |
| 1107 | static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size) |
| 1108 | { |
| 1109 | void *vaddr = __va(paddr); |
| 1110 | void *vaddr_end = vaddr + size; |
| 1111 | |
| 1112 | for (; vaddr < vaddr_end; vaddr += PAGE_SIZE) |
| 1113 | make_lowmem_page_readwrite(vaddr); |
| 1114 | |
| 1115 | memblock_free(paddr, size); |
| 1116 | } |
| 1117 | |
| 1118 | static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin) |
| 1119 | { |
| 1120 | unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK; |
| 1121 | |
| 1122 | if (unpin) |
| 1123 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa)); |
| 1124 | ClearPagePinned(virt_to_page(__va(pa))); |
| 1125 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1126 | } |
| 1127 | |
| 1128 | static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin) |
| 1129 | { |
| 1130 | unsigned long pa; |
| 1131 | pte_t *pte_tbl; |
| 1132 | int i; |
| 1133 | |
| 1134 | if (pmd_large(*pmd)) { |
| 1135 | pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK; |
| 1136 | xen_free_ro_pages(pa, PMD_SIZE); |
| 1137 | return; |
| 1138 | } |
| 1139 | |
| 1140 | pte_tbl = pte_offset_kernel(pmd, 0); |
| 1141 | for (i = 0; i < PTRS_PER_PTE; i++) { |
| 1142 | if (pte_none(pte_tbl[i])) |
| 1143 | continue; |
| 1144 | pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT; |
| 1145 | xen_free_ro_pages(pa, PAGE_SIZE); |
| 1146 | } |
| 1147 | set_pmd(pmd, __pmd(0)); |
| 1148 | xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin); |
| 1149 | } |
| 1150 | |
| 1151 | static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin) |
| 1152 | { |
| 1153 | unsigned long pa; |
| 1154 | pmd_t *pmd_tbl; |
| 1155 | int i; |
| 1156 | |
| 1157 | if (pud_large(*pud)) { |
| 1158 | pa = pud_val(*pud) & PHYSICAL_PAGE_MASK; |
| 1159 | xen_free_ro_pages(pa, PUD_SIZE); |
| 1160 | return; |
| 1161 | } |
| 1162 | |
| 1163 | pmd_tbl = pmd_offset(pud, 0); |
| 1164 | for (i = 0; i < PTRS_PER_PMD; i++) { |
| 1165 | if (pmd_none(pmd_tbl[i])) |
| 1166 | continue; |
| 1167 | xen_cleanmfnmap_pmd(pmd_tbl + i, unpin); |
| 1168 | } |
| 1169 | set_pud(pud, __pud(0)); |
| 1170 | xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin); |
| 1171 | } |
| 1172 | |
| 1173 | static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin) |
| 1174 | { |
| 1175 | unsigned long pa; |
| 1176 | pud_t *pud_tbl; |
| 1177 | int i; |
| 1178 | |
| 1179 | if (p4d_large(*p4d)) { |
| 1180 | pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK; |
| 1181 | xen_free_ro_pages(pa, P4D_SIZE); |
| 1182 | return; |
| 1183 | } |
| 1184 | |
| 1185 | pud_tbl = pud_offset(p4d, 0); |
| 1186 | for (i = 0; i < PTRS_PER_PUD; i++) { |
| 1187 | if (pud_none(pud_tbl[i])) |
| 1188 | continue; |
| 1189 | xen_cleanmfnmap_pud(pud_tbl + i, unpin); |
| 1190 | } |
| 1191 | set_p4d(p4d, __p4d(0)); |
| 1192 | xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin); |
| 1193 | } |
| 1194 | |
| 1195 | /* |
| 1196 | * Since it is well isolated we can (and since it is perhaps large we should) |
| 1197 | * also free the page tables mapping the initial P->M table. |
| 1198 | */ |
| 1199 | static void __init xen_cleanmfnmap(unsigned long vaddr) |
| 1200 | { |
| 1201 | pgd_t *pgd; |
| 1202 | p4d_t *p4d; |
| 1203 | bool unpin; |
| 1204 | |
| 1205 | unpin = (vaddr == 2 * PGDIR_SIZE); |
| 1206 | vaddr &= PMD_MASK; |
| 1207 | pgd = pgd_offset_k(vaddr); |
| 1208 | p4d = p4d_offset(pgd, 0); |
| 1209 | if (!p4d_none(*p4d)) |
| 1210 | xen_cleanmfnmap_p4d(p4d, unpin); |
| 1211 | } |
| 1212 | |
| 1213 | static void __init xen_pagetable_p2m_free(void) |
| 1214 | { |
| 1215 | unsigned long size; |
| 1216 | unsigned long addr; |
| 1217 | |
| 1218 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 1219 | |
| 1220 | /* No memory or already called. */ |
| 1221 | if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list) |
| 1222 | return; |
| 1223 | |
| 1224 | /* using __ka address and sticking INVALID_P2M_ENTRY! */ |
| 1225 | memset((void *)xen_start_info->mfn_list, 0xff, size); |
| 1226 | |
| 1227 | addr = xen_start_info->mfn_list; |
| 1228 | /* |
| 1229 | * We could be in __ka space. |
| 1230 | * We roundup to the PMD, which means that if anybody at this stage is |
| 1231 | * using the __ka address of xen_start_info or |
| 1232 | * xen_start_info->shared_info they are in going to crash. Fortunatly |
| 1233 | * we have already revectored in xen_setup_kernel_pagetable. |
| 1234 | */ |
| 1235 | size = roundup(size, PMD_SIZE); |
| 1236 | |
| 1237 | if (addr >= __START_KERNEL_map) { |
| 1238 | xen_cleanhighmap(addr, addr + size); |
| 1239 | size = PAGE_ALIGN(xen_start_info->nr_pages * |
| 1240 | sizeof(unsigned long)); |
| 1241 | memblock_free(__pa(addr), size); |
| 1242 | } else { |
| 1243 | xen_cleanmfnmap(addr); |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | static void __init xen_pagetable_cleanhighmap(void) |
| 1248 | { |
| 1249 | unsigned long size; |
| 1250 | unsigned long addr; |
| 1251 | |
| 1252 | /* At this stage, cleanup_highmap has already cleaned __ka space |
| 1253 | * from _brk_limit way up to the max_pfn_mapped (which is the end of |
| 1254 | * the ramdisk). We continue on, erasing PMD entries that point to page |
| 1255 | * tables - do note that they are accessible at this stage via __va. |
| 1256 | * As Xen is aligning the memory end to a 4MB boundary, for good |
| 1257 | * measure we also round up to PMD_SIZE * 2 - which means that if |
| 1258 | * anybody is using __ka address to the initial boot-stack - and try |
| 1259 | * to use it - they are going to crash. The xen_start_info has been |
| 1260 | * taken care of already in xen_setup_kernel_pagetable. */ |
| 1261 | addr = xen_start_info->pt_base; |
| 1262 | size = xen_start_info->nr_pt_frames * PAGE_SIZE; |
| 1263 | |
| 1264 | xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2)); |
| 1265 | xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base)); |
| 1266 | } |
| 1267 | #endif |
| 1268 | |
| 1269 | static void __init xen_pagetable_p2m_setup(void) |
| 1270 | { |
| 1271 | xen_vmalloc_p2m_tree(); |
| 1272 | |
| 1273 | #ifdef CONFIG_X86_64 |
| 1274 | xen_pagetable_p2m_free(); |
| 1275 | |
| 1276 | xen_pagetable_cleanhighmap(); |
| 1277 | #endif |
| 1278 | /* And revector! Bye bye old array */ |
| 1279 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 1280 | } |
| 1281 | |
| 1282 | static void __init xen_pagetable_init(void) |
| 1283 | { |
| 1284 | paging_init(); |
| 1285 | xen_post_allocator_init(); |
| 1286 | |
| 1287 | xen_pagetable_p2m_setup(); |
| 1288 | |
| 1289 | /* Allocate and initialize top and mid mfn levels for p2m structure */ |
| 1290 | xen_build_mfn_list_list(); |
| 1291 | |
| 1292 | /* Remap memory freed due to conflicts with E820 map */ |
| 1293 | xen_remap_memory(); |
| 1294 | xen_setup_mfn_list_list(); |
| 1295 | } |
| 1296 | static void xen_write_cr2(unsigned long cr2) |
| 1297 | { |
| 1298 | this_cpu_read(xen_vcpu)->arch.cr2 = cr2; |
| 1299 | } |
| 1300 | |
| 1301 | static unsigned long xen_read_cr2(void) |
| 1302 | { |
| 1303 | return this_cpu_read(xen_vcpu)->arch.cr2; |
| 1304 | } |
| 1305 | |
| 1306 | unsigned long xen_read_cr2_direct(void) |
| 1307 | { |
| 1308 | return this_cpu_read(xen_vcpu_info.arch.cr2); |
| 1309 | } |
| 1310 | |
| 1311 | static noinline void xen_flush_tlb(void) |
| 1312 | { |
| 1313 | struct mmuext_op *op; |
| 1314 | struct multicall_space mcs; |
| 1315 | |
| 1316 | preempt_disable(); |
| 1317 | |
| 1318 | mcs = xen_mc_entry(sizeof(*op)); |
| 1319 | |
| 1320 | op = mcs.args; |
| 1321 | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; |
| 1322 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1323 | |
| 1324 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1325 | |
| 1326 | preempt_enable(); |
| 1327 | } |
| 1328 | |
| 1329 | static void xen_flush_tlb_one_user(unsigned long addr) |
| 1330 | { |
| 1331 | struct mmuext_op *op; |
| 1332 | struct multicall_space mcs; |
| 1333 | |
| 1334 | trace_xen_mmu_flush_tlb_one_user(addr); |
| 1335 | |
| 1336 | preempt_disable(); |
| 1337 | |
| 1338 | mcs = xen_mc_entry(sizeof(*op)); |
| 1339 | op = mcs.args; |
| 1340 | op->cmd = MMUEXT_INVLPG_LOCAL; |
| 1341 | op->arg1.linear_addr = addr & PAGE_MASK; |
| 1342 | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); |
| 1343 | |
| 1344 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1345 | |
| 1346 | preempt_enable(); |
| 1347 | } |
| 1348 | |
| 1349 | static void xen_flush_tlb_others(const struct cpumask *cpus, |
| 1350 | const struct flush_tlb_info *info) |
| 1351 | { |
| 1352 | struct { |
| 1353 | struct mmuext_op op; |
| 1354 | DECLARE_BITMAP(mask, NR_CPUS); |
| 1355 | } *args; |
| 1356 | struct multicall_space mcs; |
| 1357 | const size_t mc_entry_size = sizeof(args->op) + |
| 1358 | sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus()); |
| 1359 | |
| 1360 | trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end); |
| 1361 | |
| 1362 | if (cpumask_empty(cpus)) |
| 1363 | return; /* nothing to do */ |
| 1364 | |
| 1365 | mcs = xen_mc_entry(mc_entry_size); |
| 1366 | args = mcs.args; |
| 1367 | args->op.arg2.vcpumask = to_cpumask(args->mask); |
| 1368 | |
| 1369 | /* Remove us, and any offline CPUS. */ |
| 1370 | cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask); |
| 1371 | cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask)); |
| 1372 | |
| 1373 | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; |
| 1374 | if (info->end != TLB_FLUSH_ALL && |
| 1375 | (info->end - info->start) <= PAGE_SIZE) { |
| 1376 | args->op.cmd = MMUEXT_INVLPG_MULTI; |
| 1377 | args->op.arg1.linear_addr = info->start; |
| 1378 | } |
| 1379 | |
| 1380 | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); |
| 1381 | |
| 1382 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1383 | } |
| 1384 | |
| 1385 | static unsigned long xen_read_cr3(void) |
| 1386 | { |
| 1387 | return this_cpu_read(xen_cr3); |
| 1388 | } |
| 1389 | |
| 1390 | static void set_current_cr3(void *v) |
| 1391 | { |
| 1392 | this_cpu_write(xen_current_cr3, (unsigned long)v); |
| 1393 | } |
| 1394 | |
| 1395 | static void __xen_write_cr3(bool kernel, unsigned long cr3) |
| 1396 | { |
| 1397 | struct mmuext_op op; |
| 1398 | unsigned long mfn; |
| 1399 | |
| 1400 | trace_xen_mmu_write_cr3(kernel, cr3); |
| 1401 | |
| 1402 | if (cr3) |
| 1403 | mfn = pfn_to_mfn(PFN_DOWN(cr3)); |
| 1404 | else |
| 1405 | mfn = 0; |
| 1406 | |
| 1407 | WARN_ON(mfn == 0 && kernel); |
| 1408 | |
| 1409 | op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; |
| 1410 | op.arg1.mfn = mfn; |
| 1411 | |
| 1412 | xen_extend_mmuext_op(&op); |
| 1413 | |
| 1414 | if (kernel) { |
| 1415 | this_cpu_write(xen_cr3, cr3); |
| 1416 | |
| 1417 | /* Update xen_current_cr3 once the batch has actually |
| 1418 | been submitted. */ |
| 1419 | xen_mc_callback(set_current_cr3, (void *)cr3); |
| 1420 | } |
| 1421 | } |
| 1422 | static void xen_write_cr3(unsigned long cr3) |
| 1423 | { |
| 1424 | BUG_ON(preemptible()); |
| 1425 | |
| 1426 | xen_mc_batch(); /* disables interrupts */ |
| 1427 | |
| 1428 | /* Update while interrupts are disabled, so its atomic with |
| 1429 | respect to ipis */ |
| 1430 | this_cpu_write(xen_cr3, cr3); |
| 1431 | |
| 1432 | __xen_write_cr3(true, cr3); |
| 1433 | |
| 1434 | #ifdef CONFIG_X86_64 |
| 1435 | { |
| 1436 | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); |
| 1437 | if (user_pgd) |
| 1438 | __xen_write_cr3(false, __pa(user_pgd)); |
| 1439 | else |
| 1440 | __xen_write_cr3(false, 0); |
| 1441 | } |
| 1442 | #endif |
| 1443 | |
| 1444 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1445 | } |
| 1446 | |
| 1447 | #ifdef CONFIG_X86_64 |
| 1448 | /* |
| 1449 | * At the start of the day - when Xen launches a guest, it has already |
| 1450 | * built pagetables for the guest. We diligently look over them |
| 1451 | * in xen_setup_kernel_pagetable and graft as appropriate them in the |
| 1452 | * init_top_pgt and its friends. Then when we are happy we load |
| 1453 | * the new init_top_pgt - and continue on. |
| 1454 | * |
| 1455 | * The generic code starts (start_kernel) and 'init_mem_mapping' sets |
| 1456 | * up the rest of the pagetables. When it has completed it loads the cr3. |
| 1457 | * N.B. that baremetal would start at 'start_kernel' (and the early |
| 1458 | * #PF handler would create bootstrap pagetables) - so we are running |
| 1459 | * with the same assumptions as what to do when write_cr3 is executed |
| 1460 | * at this point. |
| 1461 | * |
| 1462 | * Since there are no user-page tables at all, we have two variants |
| 1463 | * of xen_write_cr3 - the early bootup (this one), and the late one |
| 1464 | * (xen_write_cr3). The reason we have to do that is that in 64-bit |
| 1465 | * the Linux kernel and user-space are both in ring 3 while the |
| 1466 | * hypervisor is in ring 0. |
| 1467 | */ |
| 1468 | static void __init xen_write_cr3_init(unsigned long cr3) |
| 1469 | { |
| 1470 | BUG_ON(preemptible()); |
| 1471 | |
| 1472 | xen_mc_batch(); /* disables interrupts */ |
| 1473 | |
| 1474 | /* Update while interrupts are disabled, so its atomic with |
| 1475 | respect to ipis */ |
| 1476 | this_cpu_write(xen_cr3, cr3); |
| 1477 | |
| 1478 | __xen_write_cr3(true, cr3); |
| 1479 | |
| 1480 | xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */ |
| 1481 | } |
| 1482 | #endif |
| 1483 | |
| 1484 | static int xen_pgd_alloc(struct mm_struct *mm) |
| 1485 | { |
| 1486 | pgd_t *pgd = mm->pgd; |
| 1487 | int ret = 0; |
| 1488 | |
| 1489 | BUG_ON(PagePinned(virt_to_page(pgd))); |
| 1490 | |
| 1491 | #ifdef CONFIG_X86_64 |
| 1492 | { |
| 1493 | struct page *page = virt_to_page(pgd); |
| 1494 | pgd_t *user_pgd; |
| 1495 | |
| 1496 | BUG_ON(page->private != 0); |
| 1497 | |
| 1498 | ret = -ENOMEM; |
| 1499 | |
| 1500 | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); |
| 1501 | page->private = (unsigned long)user_pgd; |
| 1502 | |
| 1503 | if (user_pgd != NULL) { |
| 1504 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| 1505 | user_pgd[pgd_index(VSYSCALL_ADDR)] = |
| 1506 | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); |
| 1507 | #endif |
| 1508 | ret = 0; |
| 1509 | } |
| 1510 | |
| 1511 | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); |
| 1512 | } |
| 1513 | #endif |
| 1514 | return ret; |
| 1515 | } |
| 1516 | |
| 1517 | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) |
| 1518 | { |
| 1519 | #ifdef CONFIG_X86_64 |
| 1520 | pgd_t *user_pgd = xen_get_user_pgd(pgd); |
| 1521 | |
| 1522 | if (user_pgd) |
| 1523 | free_page((unsigned long)user_pgd); |
| 1524 | #endif |
| 1525 | } |
| 1526 | |
| 1527 | /* |
| 1528 | * Init-time set_pte while constructing initial pagetables, which |
| 1529 | * doesn't allow RO page table pages to be remapped RW. |
| 1530 | * |
| 1531 | * If there is no MFN for this PFN then this page is initially |
| 1532 | * ballooned out so clear the PTE (as in decrease_reservation() in |
| 1533 | * drivers/xen/balloon.c). |
| 1534 | * |
| 1535 | * Many of these PTE updates are done on unpinned and writable pages |
| 1536 | * and doing a hypercall for these is unnecessary and expensive. At |
| 1537 | * this point it is not possible to tell if a page is pinned or not, |
| 1538 | * so always write the PTE directly and rely on Xen trapping and |
| 1539 | * emulating any updates as necessary. |
| 1540 | */ |
| 1541 | __visible pte_t xen_make_pte_init(pteval_t pte) |
| 1542 | { |
| 1543 | #ifdef CONFIG_X86_64 |
| 1544 | unsigned long pfn; |
| 1545 | |
| 1546 | /* |
| 1547 | * Pages belonging to the initial p2m list mapped outside the default |
| 1548 | * address range must be mapped read-only. This region contains the |
| 1549 | * page tables for mapping the p2m list, too, and page tables MUST be |
| 1550 | * mapped read-only. |
| 1551 | */ |
| 1552 | pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT; |
| 1553 | if (xen_start_info->mfn_list < __START_KERNEL_map && |
| 1554 | pfn >= xen_start_info->first_p2m_pfn && |
| 1555 | pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames) |
| 1556 | pte &= ~_PAGE_RW; |
| 1557 | #endif |
| 1558 | pte = pte_pfn_to_mfn(pte); |
| 1559 | return native_make_pte(pte); |
| 1560 | } |
| 1561 | PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init); |
| 1562 | |
| 1563 | static void __init xen_set_pte_init(pte_t *ptep, pte_t pte) |
| 1564 | { |
| 1565 | #ifdef CONFIG_X86_32 |
| 1566 | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ |
| 1567 | if (pte_mfn(pte) != INVALID_P2M_ENTRY |
| 1568 | && pte_val_ma(*ptep) & _PAGE_PRESENT) |
| 1569 | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & |
| 1570 | pte_val_ma(pte)); |
| 1571 | #endif |
| 1572 | __xen_set_pte(ptep, pte); |
| 1573 | } |
| 1574 | |
| 1575 | /* Early in boot, while setting up the initial pagetable, assume |
| 1576 | everything is pinned. */ |
| 1577 | static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) |
| 1578 | { |
| 1579 | #ifdef CONFIG_FLATMEM |
| 1580 | BUG_ON(mem_map); /* should only be used early */ |
| 1581 | #endif |
| 1582 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1583 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
| 1584 | } |
| 1585 | |
| 1586 | /* Used for pmd and pud */ |
| 1587 | static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn) |
| 1588 | { |
| 1589 | #ifdef CONFIG_FLATMEM |
| 1590 | BUG_ON(mem_map); /* should only be used early */ |
| 1591 | #endif |
| 1592 | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); |
| 1593 | } |
| 1594 | |
| 1595 | /* Early release_pte assumes that all pts are pinned, since there's |
| 1596 | only init_mm and anything attached to that is pinned. */ |
| 1597 | static void __init xen_release_pte_init(unsigned long pfn) |
| 1598 | { |
| 1599 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
| 1600 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1601 | } |
| 1602 | |
| 1603 | static void __init xen_release_pmd_init(unsigned long pfn) |
| 1604 | { |
| 1605 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 1606 | } |
| 1607 | |
| 1608 | static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn) |
| 1609 | { |
| 1610 | struct multicall_space mcs; |
| 1611 | struct mmuext_op *op; |
| 1612 | |
| 1613 | mcs = __xen_mc_entry(sizeof(*op)); |
| 1614 | op = mcs.args; |
| 1615 | op->cmd = cmd; |
| 1616 | op->arg1.mfn = pfn_to_mfn(pfn); |
| 1617 | |
| 1618 | MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF); |
| 1619 | } |
| 1620 | |
| 1621 | static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot) |
| 1622 | { |
| 1623 | struct multicall_space mcs; |
| 1624 | unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT); |
| 1625 | |
| 1626 | mcs = __xen_mc_entry(0); |
| 1627 | MULTI_update_va_mapping(mcs.mc, (unsigned long)addr, |
| 1628 | pfn_pte(pfn, prot), 0); |
| 1629 | } |
| 1630 | |
| 1631 | /* This needs to make sure the new pte page is pinned iff its being |
| 1632 | attached to a pinned pagetable. */ |
| 1633 | static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, |
| 1634 | unsigned level) |
| 1635 | { |
| 1636 | bool pinned = xen_page_pinned(mm->pgd); |
| 1637 | |
| 1638 | trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned); |
| 1639 | |
| 1640 | if (pinned) { |
| 1641 | struct page *page = pfn_to_page(pfn); |
| 1642 | |
| 1643 | if (static_branch_likely(&xen_struct_pages_ready)) |
| 1644 | SetPagePinned(page); |
| 1645 | |
| 1646 | if (!PageHighMem(page)) { |
| 1647 | xen_mc_batch(); |
| 1648 | |
| 1649 | __set_pfn_prot(pfn, PAGE_KERNEL_RO); |
| 1650 | |
| 1651 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1652 | __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); |
| 1653 | |
| 1654 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1655 | } else { |
| 1656 | /* make sure there are no stray mappings of |
| 1657 | this page */ |
| 1658 | kmap_flush_unused(); |
| 1659 | } |
| 1660 | } |
| 1661 | } |
| 1662 | |
| 1663 | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) |
| 1664 | { |
| 1665 | xen_alloc_ptpage(mm, pfn, PT_PTE); |
| 1666 | } |
| 1667 | |
| 1668 | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) |
| 1669 | { |
| 1670 | xen_alloc_ptpage(mm, pfn, PT_PMD); |
| 1671 | } |
| 1672 | |
| 1673 | /* This should never happen until we're OK to use struct page */ |
| 1674 | static inline void xen_release_ptpage(unsigned long pfn, unsigned level) |
| 1675 | { |
| 1676 | struct page *page = pfn_to_page(pfn); |
| 1677 | bool pinned = PagePinned(page); |
| 1678 | |
| 1679 | trace_xen_mmu_release_ptpage(pfn, level, pinned); |
| 1680 | |
| 1681 | if (pinned) { |
| 1682 | if (!PageHighMem(page)) { |
| 1683 | xen_mc_batch(); |
| 1684 | |
| 1685 | if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS) |
| 1686 | __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); |
| 1687 | |
| 1688 | __set_pfn_prot(pfn, PAGE_KERNEL); |
| 1689 | |
| 1690 | xen_mc_issue(PARAVIRT_LAZY_MMU); |
| 1691 | } |
| 1692 | ClearPagePinned(page); |
| 1693 | } |
| 1694 | } |
| 1695 | |
| 1696 | static void xen_release_pte(unsigned long pfn) |
| 1697 | { |
| 1698 | xen_release_ptpage(pfn, PT_PTE); |
| 1699 | } |
| 1700 | |
| 1701 | static void xen_release_pmd(unsigned long pfn) |
| 1702 | { |
| 1703 | xen_release_ptpage(pfn, PT_PMD); |
| 1704 | } |
| 1705 | |
| 1706 | #ifdef CONFIG_X86_64 |
| 1707 | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) |
| 1708 | { |
| 1709 | xen_alloc_ptpage(mm, pfn, PT_PUD); |
| 1710 | } |
| 1711 | |
| 1712 | static void xen_release_pud(unsigned long pfn) |
| 1713 | { |
| 1714 | xen_release_ptpage(pfn, PT_PUD); |
| 1715 | } |
| 1716 | #endif |
| 1717 | |
| 1718 | void __init xen_reserve_top(void) |
| 1719 | { |
| 1720 | #ifdef CONFIG_X86_32 |
| 1721 | unsigned long top = HYPERVISOR_VIRT_START; |
| 1722 | struct xen_platform_parameters pp; |
| 1723 | |
| 1724 | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) |
| 1725 | top = pp.virt_start; |
| 1726 | |
| 1727 | reserve_top_address(-top); |
| 1728 | #endif /* CONFIG_X86_32 */ |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * Like __va(), but returns address in the kernel mapping (which is |
| 1733 | * all we have until the physical memory mapping has been set up. |
| 1734 | */ |
| 1735 | static void * __init __ka(phys_addr_t paddr) |
| 1736 | { |
| 1737 | #ifdef CONFIG_X86_64 |
| 1738 | return (void *)(paddr + __START_KERNEL_map); |
| 1739 | #else |
| 1740 | return __va(paddr); |
| 1741 | #endif |
| 1742 | } |
| 1743 | |
| 1744 | /* Convert a machine address to physical address */ |
| 1745 | static unsigned long __init m2p(phys_addr_t maddr) |
| 1746 | { |
| 1747 | phys_addr_t paddr; |
| 1748 | |
| 1749 | maddr &= XEN_PTE_MFN_MASK; |
| 1750 | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; |
| 1751 | |
| 1752 | return paddr; |
| 1753 | } |
| 1754 | |
| 1755 | /* Convert a machine address to kernel virtual */ |
| 1756 | static void * __init m2v(phys_addr_t maddr) |
| 1757 | { |
| 1758 | return __ka(m2p(maddr)); |
| 1759 | } |
| 1760 | |
| 1761 | /* Set the page permissions on an identity-mapped pages */ |
| 1762 | static void __init set_page_prot_flags(void *addr, pgprot_t prot, |
| 1763 | unsigned long flags) |
| 1764 | { |
| 1765 | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; |
| 1766 | pte_t pte = pfn_pte(pfn, prot); |
| 1767 | |
| 1768 | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags)) |
| 1769 | BUG(); |
| 1770 | } |
| 1771 | static void __init set_page_prot(void *addr, pgprot_t prot) |
| 1772 | { |
| 1773 | return set_page_prot_flags(addr, prot, UVMF_NONE); |
| 1774 | } |
| 1775 | #ifdef CONFIG_X86_32 |
| 1776 | static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) |
| 1777 | { |
| 1778 | unsigned pmdidx, pteidx; |
| 1779 | unsigned ident_pte; |
| 1780 | unsigned long pfn; |
| 1781 | |
| 1782 | level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES, |
| 1783 | PAGE_SIZE); |
| 1784 | |
| 1785 | ident_pte = 0; |
| 1786 | pfn = 0; |
| 1787 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { |
| 1788 | pte_t *pte_page; |
| 1789 | |
| 1790 | /* Reuse or allocate a page of ptes */ |
| 1791 | if (pmd_present(pmd[pmdidx])) |
| 1792 | pte_page = m2v(pmd[pmdidx].pmd); |
| 1793 | else { |
| 1794 | /* Check for free pte pages */ |
| 1795 | if (ident_pte == LEVEL1_IDENT_ENTRIES) |
| 1796 | break; |
| 1797 | |
| 1798 | pte_page = &level1_ident_pgt[ident_pte]; |
| 1799 | ident_pte += PTRS_PER_PTE; |
| 1800 | |
| 1801 | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); |
| 1802 | } |
| 1803 | |
| 1804 | /* Install mappings */ |
| 1805 | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { |
| 1806 | pte_t pte; |
| 1807 | |
| 1808 | if (pfn > max_pfn_mapped) |
| 1809 | max_pfn_mapped = pfn; |
| 1810 | |
| 1811 | if (!pte_none(pte_page[pteidx])) |
| 1812 | continue; |
| 1813 | |
| 1814 | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); |
| 1815 | pte_page[pteidx] = pte; |
| 1816 | } |
| 1817 | } |
| 1818 | |
| 1819 | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) |
| 1820 | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); |
| 1821 | |
| 1822 | set_page_prot(pmd, PAGE_KERNEL_RO); |
| 1823 | } |
| 1824 | #endif |
| 1825 | void __init xen_setup_machphys_mapping(void) |
| 1826 | { |
| 1827 | struct xen_machphys_mapping mapping; |
| 1828 | |
| 1829 | if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) { |
| 1830 | machine_to_phys_mapping = (unsigned long *)mapping.v_start; |
| 1831 | machine_to_phys_nr = mapping.max_mfn + 1; |
| 1832 | } else { |
| 1833 | machine_to_phys_nr = MACH2PHYS_NR_ENTRIES; |
| 1834 | } |
| 1835 | #ifdef CONFIG_X86_32 |
| 1836 | WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1)) |
| 1837 | < machine_to_phys_mapping); |
| 1838 | #endif |
| 1839 | } |
| 1840 | |
| 1841 | #ifdef CONFIG_X86_64 |
| 1842 | static void __init convert_pfn_mfn(void *v) |
| 1843 | { |
| 1844 | pte_t *pte = v; |
| 1845 | int i; |
| 1846 | |
| 1847 | /* All levels are converted the same way, so just treat them |
| 1848 | as ptes. */ |
| 1849 | for (i = 0; i < PTRS_PER_PTE; i++) |
| 1850 | pte[i] = xen_make_pte(pte[i].pte); |
| 1851 | } |
| 1852 | static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end, |
| 1853 | unsigned long addr) |
| 1854 | { |
| 1855 | if (*pt_base == PFN_DOWN(__pa(addr))) { |
| 1856 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1857 | clear_page((void *)addr); |
| 1858 | (*pt_base)++; |
| 1859 | } |
| 1860 | if (*pt_end == PFN_DOWN(__pa(addr))) { |
| 1861 | set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG); |
| 1862 | clear_page((void *)addr); |
| 1863 | (*pt_end)--; |
| 1864 | } |
| 1865 | } |
| 1866 | /* |
| 1867 | * Set up the initial kernel pagetable. |
| 1868 | * |
| 1869 | * We can construct this by grafting the Xen provided pagetable into |
| 1870 | * head_64.S's preconstructed pagetables. We copy the Xen L2's into |
| 1871 | * level2_ident_pgt, and level2_kernel_pgt. This means that only the |
| 1872 | * kernel has a physical mapping to start with - but that's enough to |
| 1873 | * get __va working. We need to fill in the rest of the physical |
| 1874 | * mapping once some sort of allocator has been set up. |
| 1875 | */ |
| 1876 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
| 1877 | { |
| 1878 | pud_t *l3; |
| 1879 | pmd_t *l2; |
| 1880 | unsigned long addr[3]; |
| 1881 | unsigned long pt_base, pt_end; |
| 1882 | unsigned i; |
| 1883 | |
| 1884 | /* max_pfn_mapped is the last pfn mapped in the initial memory |
| 1885 | * mappings. Considering that on Xen after the kernel mappings we |
| 1886 | * have the mappings of some pages that don't exist in pfn space, we |
| 1887 | * set max_pfn_mapped to the last real pfn mapped. */ |
| 1888 | if (xen_start_info->mfn_list < __START_KERNEL_map) |
| 1889 | max_pfn_mapped = xen_start_info->first_p2m_pfn; |
| 1890 | else |
| 1891 | max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list)); |
| 1892 | |
| 1893 | pt_base = PFN_DOWN(__pa(xen_start_info->pt_base)); |
| 1894 | pt_end = pt_base + xen_start_info->nr_pt_frames; |
| 1895 | |
| 1896 | /* Zap identity mapping */ |
| 1897 | init_top_pgt[0] = __pgd(0); |
| 1898 | |
| 1899 | /* Pre-constructed entries are in pfn, so convert to mfn */ |
| 1900 | /* L4[273] -> level3_ident_pgt */ |
| 1901 | /* L4[511] -> level3_kernel_pgt */ |
| 1902 | convert_pfn_mfn(init_top_pgt); |
| 1903 | |
| 1904 | /* L3_i[0] -> level2_ident_pgt */ |
| 1905 | convert_pfn_mfn(level3_ident_pgt); |
| 1906 | /* L3_k[510] -> level2_kernel_pgt */ |
| 1907 | /* L3_k[511] -> level2_fixmap_pgt */ |
| 1908 | convert_pfn_mfn(level3_kernel_pgt); |
| 1909 | |
| 1910 | /* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */ |
| 1911 | convert_pfn_mfn(level2_fixmap_pgt); |
| 1912 | |
| 1913 | /* We get [511][511] and have Xen's version of level2_kernel_pgt */ |
| 1914 | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); |
| 1915 | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); |
| 1916 | |
| 1917 | addr[0] = (unsigned long)pgd; |
| 1918 | addr[1] = (unsigned long)l3; |
| 1919 | addr[2] = (unsigned long)l2; |
| 1920 | /* Graft it onto L4[273][0]. Note that we creating an aliasing problem: |
| 1921 | * Both L4[273][0] and L4[511][510] have entries that point to the same |
| 1922 | * L2 (PMD) tables. Meaning that if you modify it in __va space |
| 1923 | * it will be also modified in the __ka space! (But if you just |
| 1924 | * modify the PMD table to point to other PTE's or none, then you |
| 1925 | * are OK - which is what cleanup_highmap does) */ |
| 1926 | copy_page(level2_ident_pgt, l2); |
| 1927 | /* Graft it onto L4[511][510] */ |
| 1928 | copy_page(level2_kernel_pgt, l2); |
| 1929 | |
| 1930 | /* |
| 1931 | * Zap execute permission from the ident map. Due to the sharing of |
| 1932 | * L1 entries we need to do this in the L2. |
| 1933 | */ |
| 1934 | if (__supported_pte_mask & _PAGE_NX) { |
| 1935 | for (i = 0; i < PTRS_PER_PMD; ++i) { |
| 1936 | if (pmd_none(level2_ident_pgt[i])) |
| 1937 | continue; |
| 1938 | level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX); |
| 1939 | } |
| 1940 | } |
| 1941 | |
| 1942 | /* Copy the initial P->M table mappings if necessary. */ |
| 1943 | i = pgd_index(xen_start_info->mfn_list); |
| 1944 | if (i && i < pgd_index(__START_KERNEL_map)) |
| 1945 | init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i]; |
| 1946 | |
| 1947 | /* Make pagetable pieces RO */ |
| 1948 | set_page_prot(init_top_pgt, PAGE_KERNEL_RO); |
| 1949 | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); |
| 1950 | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); |
| 1951 | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); |
| 1952 | set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO); |
| 1953 | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); |
| 1954 | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); |
| 1955 | |
| 1956 | for (i = 0; i < FIXMAP_PMD_NUM; i++) { |
| 1957 | set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE, |
| 1958 | PAGE_KERNEL_RO); |
| 1959 | } |
| 1960 | |
| 1961 | /* Pin down new L4 */ |
| 1962 | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, |
| 1963 | PFN_DOWN(__pa_symbol(init_top_pgt))); |
| 1964 | |
| 1965 | /* Unpin Xen-provided one */ |
| 1966 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 1967 | |
| 1968 | /* |
| 1969 | * At this stage there can be no user pgd, and no page structure to |
| 1970 | * attach it to, so make sure we just set kernel pgd. |
| 1971 | */ |
| 1972 | xen_mc_batch(); |
| 1973 | __xen_write_cr3(true, __pa(init_top_pgt)); |
| 1974 | xen_mc_issue(PARAVIRT_LAZY_CPU); |
| 1975 | |
| 1976 | /* We can't that easily rip out L3 and L2, as the Xen pagetables are |
| 1977 | * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for |
| 1978 | * the initial domain. For guests using the toolstack, they are in: |
| 1979 | * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only |
| 1980 | * rip out the [L4] (pgd), but for guests we shave off three pages. |
| 1981 | */ |
| 1982 | for (i = 0; i < ARRAY_SIZE(addr); i++) |
| 1983 | check_pt_base(&pt_base, &pt_end, addr[i]); |
| 1984 | |
| 1985 | /* Our (by three pages) smaller Xen pagetable that we are using */ |
| 1986 | xen_pt_base = PFN_PHYS(pt_base); |
| 1987 | xen_pt_size = (pt_end - pt_base) * PAGE_SIZE; |
| 1988 | memblock_reserve(xen_pt_base, xen_pt_size); |
| 1989 | |
| 1990 | /* Revector the xen_start_info */ |
| 1991 | xen_start_info = (struct start_info *)__va(__pa(xen_start_info)); |
| 1992 | } |
| 1993 | |
| 1994 | /* |
| 1995 | * Read a value from a physical address. |
| 1996 | */ |
| 1997 | static unsigned long __init xen_read_phys_ulong(phys_addr_t addr) |
| 1998 | { |
| 1999 | unsigned long *vaddr; |
| 2000 | unsigned long val; |
| 2001 | |
| 2002 | vaddr = early_memremap_ro(addr, sizeof(val)); |
| 2003 | val = *vaddr; |
| 2004 | early_memunmap(vaddr, sizeof(val)); |
| 2005 | return val; |
| 2006 | } |
| 2007 | |
| 2008 | /* |
| 2009 | * Translate a virtual address to a physical one without relying on mapped |
| 2010 | * page tables. Don't rely on big pages being aligned in (guest) physical |
| 2011 | * space! |
| 2012 | */ |
| 2013 | static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr) |
| 2014 | { |
| 2015 | phys_addr_t pa; |
| 2016 | pgd_t pgd; |
| 2017 | pud_t pud; |
| 2018 | pmd_t pmd; |
| 2019 | pte_t pte; |
| 2020 | |
| 2021 | pa = read_cr3_pa(); |
| 2022 | pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) * |
| 2023 | sizeof(pgd))); |
| 2024 | if (!pgd_present(pgd)) |
| 2025 | return 0; |
| 2026 | |
| 2027 | pa = pgd_val(pgd) & PTE_PFN_MASK; |
| 2028 | pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) * |
| 2029 | sizeof(pud))); |
| 2030 | if (!pud_present(pud)) |
| 2031 | return 0; |
| 2032 | pa = pud_val(pud) & PTE_PFN_MASK; |
| 2033 | if (pud_large(pud)) |
| 2034 | return pa + (vaddr & ~PUD_MASK); |
| 2035 | |
| 2036 | pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) * |
| 2037 | sizeof(pmd))); |
| 2038 | if (!pmd_present(pmd)) |
| 2039 | return 0; |
| 2040 | pa = pmd_val(pmd) & PTE_PFN_MASK; |
| 2041 | if (pmd_large(pmd)) |
| 2042 | return pa + (vaddr & ~PMD_MASK); |
| 2043 | |
| 2044 | pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) * |
| 2045 | sizeof(pte))); |
| 2046 | if (!pte_present(pte)) |
| 2047 | return 0; |
| 2048 | pa = pte_pfn(pte) << PAGE_SHIFT; |
| 2049 | |
| 2050 | return pa | (vaddr & ~PAGE_MASK); |
| 2051 | } |
| 2052 | |
| 2053 | /* |
| 2054 | * Find a new area for the hypervisor supplied p2m list and relocate the p2m to |
| 2055 | * this area. |
| 2056 | */ |
| 2057 | void __init xen_relocate_p2m(void) |
| 2058 | { |
| 2059 | phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys; |
| 2060 | unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end; |
| 2061 | int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud; |
| 2062 | pte_t *pt; |
| 2063 | pmd_t *pmd; |
| 2064 | pud_t *pud; |
| 2065 | pgd_t *pgd; |
| 2066 | unsigned long *new_p2m; |
| 2067 | |
| 2068 | size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long)); |
| 2069 | n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT; |
| 2070 | n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT; |
| 2071 | n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT; |
| 2072 | n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT; |
| 2073 | n_frames = n_pte + n_pt + n_pmd + n_pud; |
| 2074 | |
| 2075 | new_area = xen_find_free_area(PFN_PHYS(n_frames)); |
| 2076 | if (!new_area) { |
| 2077 | xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n"); |
| 2078 | BUG(); |
| 2079 | } |
| 2080 | |
| 2081 | /* |
| 2082 | * Setup the page tables for addressing the new p2m list. |
| 2083 | * We have asked the hypervisor to map the p2m list at the user address |
| 2084 | * PUD_SIZE. It may have done so, or it may have used a kernel space |
| 2085 | * address depending on the Xen version. |
| 2086 | * To avoid any possible virtual address collision, just use |
| 2087 | * 2 * PUD_SIZE for the new area. |
| 2088 | */ |
| 2089 | pud_phys = new_area; |
| 2090 | pmd_phys = pud_phys + PFN_PHYS(n_pud); |
| 2091 | pt_phys = pmd_phys + PFN_PHYS(n_pmd); |
| 2092 | p2m_pfn = PFN_DOWN(pt_phys) + n_pt; |
| 2093 | |
| 2094 | pgd = __va(read_cr3_pa()); |
| 2095 | new_p2m = (unsigned long *)(2 * PGDIR_SIZE); |
| 2096 | for (idx_pud = 0; idx_pud < n_pud; idx_pud++) { |
| 2097 | pud = early_memremap(pud_phys, PAGE_SIZE); |
| 2098 | clear_page(pud); |
| 2099 | for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD); |
| 2100 | idx_pmd++) { |
| 2101 | pmd = early_memremap(pmd_phys, PAGE_SIZE); |
| 2102 | clear_page(pmd); |
| 2103 | for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD); |
| 2104 | idx_pt++) { |
| 2105 | pt = early_memremap(pt_phys, PAGE_SIZE); |
| 2106 | clear_page(pt); |
| 2107 | for (idx_pte = 0; |
| 2108 | idx_pte < min(n_pte, PTRS_PER_PTE); |
| 2109 | idx_pte++) { |
| 2110 | set_pte(pt + idx_pte, |
| 2111 | pfn_pte(p2m_pfn, PAGE_KERNEL)); |
| 2112 | p2m_pfn++; |
| 2113 | } |
| 2114 | n_pte -= PTRS_PER_PTE; |
| 2115 | early_memunmap(pt, PAGE_SIZE); |
| 2116 | make_lowmem_page_readonly(__va(pt_phys)); |
| 2117 | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, |
| 2118 | PFN_DOWN(pt_phys)); |
| 2119 | set_pmd(pmd + idx_pt, |
| 2120 | __pmd(_PAGE_TABLE | pt_phys)); |
| 2121 | pt_phys += PAGE_SIZE; |
| 2122 | } |
| 2123 | n_pt -= PTRS_PER_PMD; |
| 2124 | early_memunmap(pmd, PAGE_SIZE); |
| 2125 | make_lowmem_page_readonly(__va(pmd_phys)); |
| 2126 | pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE, |
| 2127 | PFN_DOWN(pmd_phys)); |
| 2128 | set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys)); |
| 2129 | pmd_phys += PAGE_SIZE; |
| 2130 | } |
| 2131 | n_pmd -= PTRS_PER_PUD; |
| 2132 | early_memunmap(pud, PAGE_SIZE); |
| 2133 | make_lowmem_page_readonly(__va(pud_phys)); |
| 2134 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys)); |
| 2135 | set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys)); |
| 2136 | pud_phys += PAGE_SIZE; |
| 2137 | } |
| 2138 | |
| 2139 | /* Now copy the old p2m info to the new area. */ |
| 2140 | memcpy(new_p2m, xen_p2m_addr, size); |
| 2141 | xen_p2m_addr = new_p2m; |
| 2142 | |
| 2143 | /* Release the old p2m list and set new list info. */ |
| 2144 | p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list)); |
| 2145 | BUG_ON(!p2m_pfn); |
| 2146 | p2m_pfn_end = p2m_pfn + PFN_DOWN(size); |
| 2147 | |
| 2148 | if (xen_start_info->mfn_list < __START_KERNEL_map) { |
| 2149 | pfn = xen_start_info->first_p2m_pfn; |
| 2150 | pfn_end = xen_start_info->first_p2m_pfn + |
| 2151 | xen_start_info->nr_p2m_frames; |
| 2152 | set_pgd(pgd + 1, __pgd(0)); |
| 2153 | } else { |
| 2154 | pfn = p2m_pfn; |
| 2155 | pfn_end = p2m_pfn_end; |
| 2156 | } |
| 2157 | |
| 2158 | memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn)); |
| 2159 | while (pfn < pfn_end) { |
| 2160 | if (pfn == p2m_pfn) { |
| 2161 | pfn = p2m_pfn_end; |
| 2162 | continue; |
| 2163 | } |
| 2164 | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); |
| 2165 | pfn++; |
| 2166 | } |
| 2167 | |
| 2168 | xen_start_info->mfn_list = (unsigned long)xen_p2m_addr; |
| 2169 | xen_start_info->first_p2m_pfn = PFN_DOWN(new_area); |
| 2170 | xen_start_info->nr_p2m_frames = n_frames; |
| 2171 | } |
| 2172 | |
| 2173 | #else /* !CONFIG_X86_64 */ |
| 2174 | static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD); |
| 2175 | static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD); |
| 2176 | RESERVE_BRK(fixup_kernel_pmd, PAGE_SIZE); |
| 2177 | RESERVE_BRK(fixup_kernel_pte, PAGE_SIZE); |
| 2178 | |
| 2179 | static void __init xen_write_cr3_init(unsigned long cr3) |
| 2180 | { |
| 2181 | unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir)); |
| 2182 | |
| 2183 | BUG_ON(read_cr3_pa() != __pa(initial_page_table)); |
| 2184 | BUG_ON(cr3 != __pa(swapper_pg_dir)); |
| 2185 | |
| 2186 | /* |
| 2187 | * We are switching to swapper_pg_dir for the first time (from |
| 2188 | * initial_page_table) and therefore need to mark that page |
| 2189 | * read-only and then pin it. |
| 2190 | * |
| 2191 | * Xen disallows sharing of kernel PMDs for PAE |
| 2192 | * guests. Therefore we must copy the kernel PMD from |
| 2193 | * initial_page_table into a new kernel PMD to be used in |
| 2194 | * swapper_pg_dir. |
| 2195 | */ |
| 2196 | swapper_kernel_pmd = |
| 2197 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
| 2198 | copy_page(swapper_kernel_pmd, initial_kernel_pmd); |
| 2199 | swapper_pg_dir[KERNEL_PGD_BOUNDARY] = |
| 2200 | __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT); |
| 2201 | set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO); |
| 2202 | |
| 2203 | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); |
| 2204 | xen_write_cr3(cr3); |
| 2205 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn); |
| 2206 | |
| 2207 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, |
| 2208 | PFN_DOWN(__pa(initial_page_table))); |
| 2209 | set_page_prot(initial_page_table, PAGE_KERNEL); |
| 2210 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL); |
| 2211 | |
| 2212 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
| 2213 | } |
| 2214 | |
| 2215 | /* |
| 2216 | * For 32 bit domains xen_start_info->pt_base is the pgd address which might be |
| 2217 | * not the first page table in the page table pool. |
| 2218 | * Iterate through the initial page tables to find the real page table base. |
| 2219 | */ |
| 2220 | static phys_addr_t __init xen_find_pt_base(pmd_t *pmd) |
| 2221 | { |
| 2222 | phys_addr_t pt_base, paddr; |
| 2223 | unsigned pmdidx; |
| 2224 | |
| 2225 | pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd)); |
| 2226 | |
| 2227 | for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) |
| 2228 | if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) { |
| 2229 | paddr = m2p(pmd[pmdidx].pmd); |
| 2230 | pt_base = min(pt_base, paddr); |
| 2231 | } |
| 2232 | |
| 2233 | return pt_base; |
| 2234 | } |
| 2235 | |
| 2236 | void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn) |
| 2237 | { |
| 2238 | pmd_t *kernel_pmd; |
| 2239 | |
| 2240 | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); |
| 2241 | |
| 2242 | xen_pt_base = xen_find_pt_base(kernel_pmd); |
| 2243 | xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE; |
| 2244 | |
| 2245 | initial_kernel_pmd = |
| 2246 | extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE); |
| 2247 | |
| 2248 | max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024); |
| 2249 | |
| 2250 | copy_page(initial_kernel_pmd, kernel_pmd); |
| 2251 | |
| 2252 | xen_map_identity_early(initial_kernel_pmd, max_pfn); |
| 2253 | |
| 2254 | copy_page(initial_page_table, pgd); |
| 2255 | initial_page_table[KERNEL_PGD_BOUNDARY] = |
| 2256 | __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT); |
| 2257 | |
| 2258 | set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO); |
| 2259 | set_page_prot(initial_page_table, PAGE_KERNEL_RO); |
| 2260 | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); |
| 2261 | |
| 2262 | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); |
| 2263 | |
| 2264 | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, |
| 2265 | PFN_DOWN(__pa(initial_page_table))); |
| 2266 | xen_write_cr3(__pa(initial_page_table)); |
| 2267 | |
| 2268 | memblock_reserve(xen_pt_base, xen_pt_size); |
| 2269 | } |
| 2270 | #endif /* CONFIG_X86_64 */ |
| 2271 | |
| 2272 | void __init xen_reserve_special_pages(void) |
| 2273 | { |
| 2274 | phys_addr_t paddr; |
| 2275 | |
| 2276 | memblock_reserve(__pa(xen_start_info), PAGE_SIZE); |
| 2277 | if (xen_start_info->store_mfn) { |
| 2278 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn)); |
| 2279 | memblock_reserve(paddr, PAGE_SIZE); |
| 2280 | } |
| 2281 | if (!xen_initial_domain()) { |
| 2282 | paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn)); |
| 2283 | memblock_reserve(paddr, PAGE_SIZE); |
| 2284 | } |
| 2285 | } |
| 2286 | |
| 2287 | void __init xen_pt_check_e820(void) |
| 2288 | { |
| 2289 | if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) { |
| 2290 | xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n"); |
| 2291 | BUG(); |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss; |
| 2296 | |
| 2297 | static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot) |
| 2298 | { |
| 2299 | pte_t pte; |
| 2300 | |
| 2301 | phys >>= PAGE_SHIFT; |
| 2302 | |
| 2303 | switch (idx) { |
| 2304 | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: |
| 2305 | #ifdef CONFIG_X86_32 |
| 2306 | case FIX_WP_TEST: |
| 2307 | # ifdef CONFIG_HIGHMEM |
| 2308 | case FIX_KMAP_BEGIN ... FIX_KMAP_END: |
| 2309 | # endif |
| 2310 | #elif defined(CONFIG_X86_VSYSCALL_EMULATION) |
| 2311 | case VSYSCALL_PAGE: |
| 2312 | #endif |
| 2313 | case FIX_TEXT_POKE0: |
| 2314 | case FIX_TEXT_POKE1: |
| 2315 | /* All local page mappings */ |
| 2316 | pte = pfn_pte(phys, prot); |
| 2317 | break; |
| 2318 | |
| 2319 | #ifdef CONFIG_X86_LOCAL_APIC |
| 2320 | case FIX_APIC_BASE: /* maps dummy local APIC */ |
| 2321 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2322 | break; |
| 2323 | #endif |
| 2324 | |
| 2325 | #ifdef CONFIG_X86_IO_APIC |
| 2326 | case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END: |
| 2327 | /* |
| 2328 | * We just don't map the IO APIC - all access is via |
| 2329 | * hypercalls. Keep the address in the pte for reference. |
| 2330 | */ |
| 2331 | pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL); |
| 2332 | break; |
| 2333 | #endif |
| 2334 | |
| 2335 | case FIX_PARAVIRT_BOOTMAP: |
| 2336 | /* This is an MFN, but it isn't an IO mapping from the |
| 2337 | IO domain */ |
| 2338 | pte = mfn_pte(phys, prot); |
| 2339 | break; |
| 2340 | |
| 2341 | default: |
| 2342 | /* By default, set_fixmap is used for hardware mappings */ |
| 2343 | pte = mfn_pte(phys, prot); |
| 2344 | break; |
| 2345 | } |
| 2346 | |
| 2347 | __native_set_fixmap(idx, pte); |
| 2348 | |
| 2349 | #ifdef CONFIG_X86_VSYSCALL_EMULATION |
| 2350 | /* Replicate changes to map the vsyscall page into the user |
| 2351 | pagetable vsyscall mapping. */ |
| 2352 | if (idx == VSYSCALL_PAGE) { |
| 2353 | unsigned long vaddr = __fix_to_virt(idx); |
| 2354 | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); |
| 2355 | } |
| 2356 | #endif |
| 2357 | } |
| 2358 | |
| 2359 | static void __init xen_post_allocator_init(void) |
| 2360 | { |
| 2361 | pv_mmu_ops.set_pte = xen_set_pte; |
| 2362 | pv_mmu_ops.set_pmd = xen_set_pmd; |
| 2363 | pv_mmu_ops.set_pud = xen_set_pud; |
| 2364 | #ifdef CONFIG_X86_64 |
| 2365 | pv_mmu_ops.set_p4d = xen_set_p4d; |
| 2366 | #endif |
| 2367 | |
| 2368 | /* This will work as long as patching hasn't happened yet |
| 2369 | (which it hasn't) */ |
| 2370 | pv_mmu_ops.alloc_pte = xen_alloc_pte; |
| 2371 | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; |
| 2372 | pv_mmu_ops.release_pte = xen_release_pte; |
| 2373 | pv_mmu_ops.release_pmd = xen_release_pmd; |
| 2374 | #ifdef CONFIG_X86_64 |
| 2375 | pv_mmu_ops.alloc_pud = xen_alloc_pud; |
| 2376 | pv_mmu_ops.release_pud = xen_release_pud; |
| 2377 | #endif |
| 2378 | pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte); |
| 2379 | |
| 2380 | #ifdef CONFIG_X86_64 |
| 2381 | pv_mmu_ops.write_cr3 = &xen_write_cr3; |
| 2382 | #endif |
| 2383 | } |
| 2384 | |
| 2385 | static void xen_leave_lazy_mmu(void) |
| 2386 | { |
| 2387 | preempt_disable(); |
| 2388 | xen_mc_flush(); |
| 2389 | paravirt_leave_lazy_mmu(); |
| 2390 | preempt_enable(); |
| 2391 | } |
| 2392 | |
| 2393 | static const struct pv_mmu_ops xen_mmu_ops __initconst = { |
| 2394 | .read_cr2 = xen_read_cr2, |
| 2395 | .write_cr2 = xen_write_cr2, |
| 2396 | |
| 2397 | .read_cr3 = xen_read_cr3, |
| 2398 | .write_cr3 = xen_write_cr3_init, |
| 2399 | |
| 2400 | .flush_tlb_user = xen_flush_tlb, |
| 2401 | .flush_tlb_kernel = xen_flush_tlb, |
| 2402 | .flush_tlb_one_user = xen_flush_tlb_one_user, |
| 2403 | .flush_tlb_others = xen_flush_tlb_others, |
| 2404 | .tlb_remove_table = tlb_remove_table, |
| 2405 | |
| 2406 | .pgd_alloc = xen_pgd_alloc, |
| 2407 | .pgd_free = xen_pgd_free, |
| 2408 | |
| 2409 | .alloc_pte = xen_alloc_pte_init, |
| 2410 | .release_pte = xen_release_pte_init, |
| 2411 | .alloc_pmd = xen_alloc_pmd_init, |
| 2412 | .release_pmd = xen_release_pmd_init, |
| 2413 | |
| 2414 | .set_pte = xen_set_pte_init, |
| 2415 | .set_pte_at = xen_set_pte_at, |
| 2416 | .set_pmd = xen_set_pmd_hyper, |
| 2417 | |
| 2418 | .ptep_modify_prot_start = __ptep_modify_prot_start, |
| 2419 | .ptep_modify_prot_commit = __ptep_modify_prot_commit, |
| 2420 | |
| 2421 | .pte_val = PV_CALLEE_SAVE(xen_pte_val), |
| 2422 | .pgd_val = PV_CALLEE_SAVE(xen_pgd_val), |
| 2423 | |
| 2424 | .make_pte = PV_CALLEE_SAVE(xen_make_pte_init), |
| 2425 | .make_pgd = PV_CALLEE_SAVE(xen_make_pgd), |
| 2426 | |
| 2427 | #ifdef CONFIG_X86_PAE |
| 2428 | .set_pte_atomic = xen_set_pte_atomic, |
| 2429 | .pte_clear = xen_pte_clear, |
| 2430 | .pmd_clear = xen_pmd_clear, |
| 2431 | #endif /* CONFIG_X86_PAE */ |
| 2432 | .set_pud = xen_set_pud_hyper, |
| 2433 | |
| 2434 | .make_pmd = PV_CALLEE_SAVE(xen_make_pmd), |
| 2435 | .pmd_val = PV_CALLEE_SAVE(xen_pmd_val), |
| 2436 | |
| 2437 | #ifdef CONFIG_X86_64 |
| 2438 | .pud_val = PV_CALLEE_SAVE(xen_pud_val), |
| 2439 | .make_pud = PV_CALLEE_SAVE(xen_make_pud), |
| 2440 | .set_p4d = xen_set_p4d_hyper, |
| 2441 | |
| 2442 | .alloc_pud = xen_alloc_pmd_init, |
| 2443 | .release_pud = xen_release_pmd_init, |
| 2444 | |
| 2445 | #if CONFIG_PGTABLE_LEVELS >= 5 |
| 2446 | .p4d_val = PV_CALLEE_SAVE(xen_p4d_val), |
| 2447 | .make_p4d = PV_CALLEE_SAVE(xen_make_p4d), |
| 2448 | #endif |
| 2449 | #endif /* CONFIG_X86_64 */ |
| 2450 | |
| 2451 | .activate_mm = xen_activate_mm, |
| 2452 | .dup_mmap = xen_dup_mmap, |
| 2453 | .exit_mmap = xen_exit_mmap, |
| 2454 | |
| 2455 | .lazy_mode = { |
| 2456 | .enter = paravirt_enter_lazy_mmu, |
| 2457 | .leave = xen_leave_lazy_mmu, |
| 2458 | .flush = paravirt_flush_lazy_mmu, |
| 2459 | }, |
| 2460 | |
| 2461 | .set_fixmap = xen_set_fixmap, |
| 2462 | }; |
| 2463 | |
| 2464 | void __init xen_init_mmu_ops(void) |
| 2465 | { |
| 2466 | x86_init.paging.pagetable_init = xen_pagetable_init; |
| 2467 | x86_init.hyper.init_after_bootmem = xen_after_bootmem; |
| 2468 | |
| 2469 | pv_mmu_ops = xen_mmu_ops; |
| 2470 | |
| 2471 | memset(dummy_mapping, 0xff, PAGE_SIZE); |
| 2472 | } |
| 2473 | |
| 2474 | /* Protected by xen_reservation_lock. */ |
| 2475 | #define MAX_CONTIG_ORDER 9 /* 2MB */ |
| 2476 | static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER]; |
| 2477 | |
| 2478 | #define VOID_PTE (mfn_pte(0, __pgprot(0))) |
| 2479 | static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order, |
| 2480 | unsigned long *in_frames, |
| 2481 | unsigned long *out_frames) |
| 2482 | { |
| 2483 | int i; |
| 2484 | struct multicall_space mcs; |
| 2485 | |
| 2486 | xen_mc_batch(); |
| 2487 | for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) { |
| 2488 | mcs = __xen_mc_entry(0); |
| 2489 | |
| 2490 | if (in_frames) |
| 2491 | in_frames[i] = virt_to_mfn(vaddr); |
| 2492 | |
| 2493 | MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0); |
| 2494 | __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY); |
| 2495 | |
| 2496 | if (out_frames) |
| 2497 | out_frames[i] = virt_to_pfn(vaddr); |
| 2498 | } |
| 2499 | xen_mc_issue(0); |
| 2500 | } |
| 2501 | |
| 2502 | /* |
| 2503 | * Update the pfn-to-mfn mappings for a virtual address range, either to |
| 2504 | * point to an array of mfns, or contiguously from a single starting |
| 2505 | * mfn. |
| 2506 | */ |
| 2507 | static void xen_remap_exchanged_ptes(unsigned long vaddr, int order, |
| 2508 | unsigned long *mfns, |
| 2509 | unsigned long first_mfn) |
| 2510 | { |
| 2511 | unsigned i, limit; |
| 2512 | unsigned long mfn; |
| 2513 | |
| 2514 | xen_mc_batch(); |
| 2515 | |
| 2516 | limit = 1u << order; |
| 2517 | for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) { |
| 2518 | struct multicall_space mcs; |
| 2519 | unsigned flags; |
| 2520 | |
| 2521 | mcs = __xen_mc_entry(0); |
| 2522 | if (mfns) |
| 2523 | mfn = mfns[i]; |
| 2524 | else |
| 2525 | mfn = first_mfn + i; |
| 2526 | |
| 2527 | if (i < (limit - 1)) |
| 2528 | flags = 0; |
| 2529 | else { |
| 2530 | if (order == 0) |
| 2531 | flags = UVMF_INVLPG | UVMF_ALL; |
| 2532 | else |
| 2533 | flags = UVMF_TLB_FLUSH | UVMF_ALL; |
| 2534 | } |
| 2535 | |
| 2536 | MULTI_update_va_mapping(mcs.mc, vaddr, |
| 2537 | mfn_pte(mfn, PAGE_KERNEL), flags); |
| 2538 | |
| 2539 | set_phys_to_machine(virt_to_pfn(vaddr), mfn); |
| 2540 | } |
| 2541 | |
| 2542 | xen_mc_issue(0); |
| 2543 | } |
| 2544 | |
| 2545 | /* |
| 2546 | * Perform the hypercall to exchange a region of our pfns to point to |
| 2547 | * memory with the required contiguous alignment. Takes the pfns as |
| 2548 | * input, and populates mfns as output. |
| 2549 | * |
| 2550 | * Returns a success code indicating whether the hypervisor was able to |
| 2551 | * satisfy the request or not. |
| 2552 | */ |
| 2553 | static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in, |
| 2554 | unsigned long *pfns_in, |
| 2555 | unsigned long extents_out, |
| 2556 | unsigned int order_out, |
| 2557 | unsigned long *mfns_out, |
| 2558 | unsigned int address_bits) |
| 2559 | { |
| 2560 | long rc; |
| 2561 | int success; |
| 2562 | |
| 2563 | struct xen_memory_exchange exchange = { |
| 2564 | .in = { |
| 2565 | .nr_extents = extents_in, |
| 2566 | .extent_order = order_in, |
| 2567 | .extent_start = pfns_in, |
| 2568 | .domid = DOMID_SELF |
| 2569 | }, |
| 2570 | .out = { |
| 2571 | .nr_extents = extents_out, |
| 2572 | .extent_order = order_out, |
| 2573 | .extent_start = mfns_out, |
| 2574 | .address_bits = address_bits, |
| 2575 | .domid = DOMID_SELF |
| 2576 | } |
| 2577 | }; |
| 2578 | |
| 2579 | BUG_ON(extents_in << order_in != extents_out << order_out); |
| 2580 | |
| 2581 | rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange); |
| 2582 | success = (exchange.nr_exchanged == extents_in); |
| 2583 | |
| 2584 | BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0))); |
| 2585 | BUG_ON(success && (rc != 0)); |
| 2586 | |
| 2587 | return success; |
| 2588 | } |
| 2589 | |
| 2590 | int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order, |
| 2591 | unsigned int address_bits, |
| 2592 | dma_addr_t *dma_handle) |
| 2593 | { |
| 2594 | unsigned long *in_frames = discontig_frames, out_frame; |
| 2595 | unsigned long flags; |
| 2596 | int success; |
| 2597 | unsigned long vstart = (unsigned long)phys_to_virt(pstart); |
| 2598 | |
| 2599 | /* |
| 2600 | * Currently an auto-translated guest will not perform I/O, nor will |
| 2601 | * it require PAE page directories below 4GB. Therefore any calls to |
| 2602 | * this function are redundant and can be ignored. |
| 2603 | */ |
| 2604 | |
| 2605 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2606 | return -ENOMEM; |
| 2607 | |
| 2608 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2609 | |
| 2610 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2611 | |
| 2612 | /* 1. Zap current PTEs, remembering MFNs. */ |
| 2613 | xen_zap_pfn_range(vstart, order, in_frames, NULL); |
| 2614 | |
| 2615 | /* 2. Get a new contiguous memory extent. */ |
| 2616 | out_frame = virt_to_pfn(vstart); |
| 2617 | success = xen_exchange_memory(1UL << order, 0, in_frames, |
| 2618 | 1, order, &out_frame, |
| 2619 | address_bits); |
| 2620 | |
| 2621 | /* 3. Map the new extent in place of old pages. */ |
| 2622 | if (success) |
| 2623 | xen_remap_exchanged_ptes(vstart, order, NULL, out_frame); |
| 2624 | else |
| 2625 | xen_remap_exchanged_ptes(vstart, order, in_frames, 0); |
| 2626 | |
| 2627 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2628 | |
| 2629 | *dma_handle = virt_to_machine(vstart).maddr; |
| 2630 | return success ? 0 : -ENOMEM; |
| 2631 | } |
| 2632 | EXPORT_SYMBOL_GPL(xen_create_contiguous_region); |
| 2633 | |
| 2634 | void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order) |
| 2635 | { |
| 2636 | unsigned long *out_frames = discontig_frames, in_frame; |
| 2637 | unsigned long flags; |
| 2638 | int success; |
| 2639 | unsigned long vstart; |
| 2640 | |
| 2641 | if (unlikely(order > MAX_CONTIG_ORDER)) |
| 2642 | return; |
| 2643 | |
| 2644 | vstart = (unsigned long)phys_to_virt(pstart); |
| 2645 | memset((void *) vstart, 0, PAGE_SIZE << order); |
| 2646 | |
| 2647 | spin_lock_irqsave(&xen_reservation_lock, flags); |
| 2648 | |
| 2649 | /* 1. Find start MFN of contiguous extent. */ |
| 2650 | in_frame = virt_to_mfn(vstart); |
| 2651 | |
| 2652 | /* 2. Zap current PTEs. */ |
| 2653 | xen_zap_pfn_range(vstart, order, NULL, out_frames); |
| 2654 | |
| 2655 | /* 3. Do the exchange for non-contiguous MFNs. */ |
| 2656 | success = xen_exchange_memory(1, order, &in_frame, 1UL << order, |
| 2657 | 0, out_frames, 0); |
| 2658 | |
| 2659 | /* 4. Map new pages in place of old pages. */ |
| 2660 | if (success) |
| 2661 | xen_remap_exchanged_ptes(vstart, order, out_frames, 0); |
| 2662 | else |
| 2663 | xen_remap_exchanged_ptes(vstart, order, NULL, in_frame); |
| 2664 | |
| 2665 | spin_unlock_irqrestore(&xen_reservation_lock, flags); |
| 2666 | } |
| 2667 | EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region); |
| 2668 | |
| 2669 | #ifdef CONFIG_KEXEC_CORE |
| 2670 | phys_addr_t paddr_vmcoreinfo_note(void) |
| 2671 | { |
| 2672 | if (xen_pv_domain()) |
| 2673 | return virt_to_machine(vmcoreinfo_note).maddr; |
| 2674 | else |
| 2675 | return __pa(vmcoreinfo_note); |
| 2676 | } |
| 2677 | #endif /* CONFIG_KEXEC_CORE */ |