Andrew Scull | b4b6d4a | 2019-01-02 15:54:55 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Suspend support specific for i386/x86-64. |
| 3 | * |
| 4 | * Distribute under GPLv2 |
| 5 | * |
| 6 | * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> |
| 7 | * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> |
| 8 | * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> |
| 9 | */ |
| 10 | |
| 11 | #include <linux/suspend.h> |
| 12 | #include <linux/export.h> |
| 13 | #include <linux/smp.h> |
| 14 | #include <linux/perf_event.h> |
| 15 | #include <linux/tboot.h> |
| 16 | |
| 17 | #include <asm/pgtable.h> |
| 18 | #include <asm/proto.h> |
| 19 | #include <asm/mtrr.h> |
| 20 | #include <asm/page.h> |
| 21 | #include <asm/mce.h> |
| 22 | #include <asm/suspend.h> |
| 23 | #include <asm/fpu/internal.h> |
| 24 | #include <asm/debugreg.h> |
| 25 | #include <asm/cpu.h> |
| 26 | #include <asm/mmu_context.h> |
| 27 | #include <linux/dmi.h> |
| 28 | |
| 29 | #ifdef CONFIG_X86_32 |
| 30 | __visible unsigned long saved_context_ebx; |
| 31 | __visible unsigned long saved_context_esp, saved_context_ebp; |
| 32 | __visible unsigned long saved_context_esi, saved_context_edi; |
| 33 | __visible unsigned long saved_context_eflags; |
| 34 | #endif |
| 35 | struct saved_context saved_context; |
| 36 | |
| 37 | static void msr_save_context(struct saved_context *ctxt) |
| 38 | { |
| 39 | struct saved_msr *msr = ctxt->saved_msrs.array; |
| 40 | struct saved_msr *end = msr + ctxt->saved_msrs.num; |
| 41 | |
| 42 | while (msr < end) { |
| 43 | msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q); |
| 44 | msr++; |
| 45 | } |
| 46 | } |
| 47 | |
| 48 | static void msr_restore_context(struct saved_context *ctxt) |
| 49 | { |
| 50 | struct saved_msr *msr = ctxt->saved_msrs.array; |
| 51 | struct saved_msr *end = msr + ctxt->saved_msrs.num; |
| 52 | |
| 53 | while (msr < end) { |
| 54 | if (msr->valid) |
| 55 | wrmsrl(msr->info.msr_no, msr->info.reg.q); |
| 56 | msr++; |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | /** |
| 61 | * __save_processor_state - save CPU registers before creating a |
| 62 | * hibernation image and before restoring the memory state from it |
| 63 | * @ctxt - structure to store the registers contents in |
| 64 | * |
| 65 | * NOTE: If there is a CPU register the modification of which by the |
| 66 | * boot kernel (ie. the kernel used for loading the hibernation image) |
| 67 | * might affect the operations of the restored target kernel (ie. the one |
| 68 | * saved in the hibernation image), then its contents must be saved by this |
| 69 | * function. In other words, if kernel A is hibernated and different |
| 70 | * kernel B is used for loading the hibernation image into memory, the |
| 71 | * kernel A's __save_processor_state() function must save all registers |
| 72 | * needed by kernel A, so that it can operate correctly after the resume |
| 73 | * regardless of what kernel B does in the meantime. |
| 74 | */ |
| 75 | static void __save_processor_state(struct saved_context *ctxt) |
| 76 | { |
| 77 | #ifdef CONFIG_X86_32 |
| 78 | mtrr_save_fixed_ranges(NULL); |
| 79 | #endif |
| 80 | kernel_fpu_begin(); |
| 81 | |
| 82 | /* |
| 83 | * descriptor tables |
| 84 | */ |
| 85 | store_idt(&ctxt->idt); |
| 86 | |
| 87 | /* |
| 88 | * We save it here, but restore it only in the hibernate case. |
| 89 | * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit |
| 90 | * mode in "secondary_startup_64". In 32-bit mode it is done via |
| 91 | * 'pmode_gdt' in wakeup_start. |
| 92 | */ |
| 93 | ctxt->gdt_desc.size = GDT_SIZE - 1; |
| 94 | ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id()); |
| 95 | |
| 96 | store_tr(ctxt->tr); |
| 97 | |
| 98 | /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ |
| 99 | /* |
| 100 | * segment registers |
| 101 | */ |
| 102 | #ifdef CONFIG_X86_32_LAZY_GS |
| 103 | savesegment(gs, ctxt->gs); |
| 104 | #endif |
| 105 | #ifdef CONFIG_X86_64 |
| 106 | savesegment(gs, ctxt->gs); |
| 107 | savesegment(fs, ctxt->fs); |
| 108 | savesegment(ds, ctxt->ds); |
| 109 | savesegment(es, ctxt->es); |
| 110 | |
| 111 | rdmsrl(MSR_FS_BASE, ctxt->fs_base); |
| 112 | rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); |
| 113 | rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); |
| 114 | mtrr_save_fixed_ranges(NULL); |
| 115 | |
| 116 | rdmsrl(MSR_EFER, ctxt->efer); |
| 117 | #endif |
| 118 | |
| 119 | /* |
| 120 | * control registers |
| 121 | */ |
| 122 | ctxt->cr0 = read_cr0(); |
| 123 | ctxt->cr2 = read_cr2(); |
| 124 | ctxt->cr3 = __read_cr3(); |
| 125 | ctxt->cr4 = __read_cr4(); |
| 126 | #ifdef CONFIG_X86_64 |
| 127 | ctxt->cr8 = read_cr8(); |
| 128 | #endif |
| 129 | ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, |
| 130 | &ctxt->misc_enable); |
| 131 | msr_save_context(ctxt); |
| 132 | } |
| 133 | |
| 134 | /* Needed by apm.c */ |
| 135 | void save_processor_state(void) |
| 136 | { |
| 137 | __save_processor_state(&saved_context); |
| 138 | x86_platform.save_sched_clock_state(); |
| 139 | } |
| 140 | #ifdef CONFIG_X86_32 |
| 141 | EXPORT_SYMBOL(save_processor_state); |
| 142 | #endif |
| 143 | |
| 144 | static void do_fpu_end(void) |
| 145 | { |
| 146 | /* |
| 147 | * Restore FPU regs if necessary. |
| 148 | */ |
| 149 | kernel_fpu_end(); |
| 150 | } |
| 151 | |
| 152 | static void fix_processor_context(void) |
| 153 | { |
| 154 | int cpu = smp_processor_id(); |
| 155 | #ifdef CONFIG_X86_64 |
| 156 | struct desc_struct *desc = get_cpu_gdt_rw(cpu); |
| 157 | tss_desc tss; |
| 158 | #endif |
| 159 | |
| 160 | /* |
| 161 | * We need to reload TR, which requires that we change the |
| 162 | * GDT entry to indicate "available" first. |
| 163 | * |
| 164 | * XXX: This could probably all be replaced by a call to |
| 165 | * force_reload_TR(). |
| 166 | */ |
| 167 | set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss); |
| 168 | |
| 169 | #ifdef CONFIG_X86_64 |
| 170 | memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); |
| 171 | tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ |
| 172 | write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); |
| 173 | |
| 174 | syscall_init(); /* This sets MSR_*STAR and related */ |
| 175 | #else |
| 176 | if (boot_cpu_has(X86_FEATURE_SEP)) |
| 177 | enable_sep_cpu(); |
| 178 | #endif |
| 179 | load_TR_desc(); /* This does ltr */ |
| 180 | load_mm_ldt(current->active_mm); /* This does lldt */ |
| 181 | initialize_tlbstate_and_flush(); |
| 182 | |
| 183 | fpu__resume_cpu(); |
| 184 | |
| 185 | /* The processor is back on the direct GDT, load back the fixmap */ |
| 186 | load_fixmap_gdt(cpu); |
| 187 | } |
| 188 | |
| 189 | /** |
| 190 | * __restore_processor_state - restore the contents of CPU registers saved |
| 191 | * by __save_processor_state() |
| 192 | * @ctxt - structure to load the registers contents from |
| 193 | * |
| 194 | * The asm code that gets us here will have restored a usable GDT, although |
| 195 | * it will be pointing to the wrong alias. |
| 196 | */ |
| 197 | static void notrace __restore_processor_state(struct saved_context *ctxt) |
| 198 | { |
| 199 | if (ctxt->misc_enable_saved) |
| 200 | wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); |
| 201 | /* |
| 202 | * control registers |
| 203 | */ |
| 204 | /* cr4 was introduced in the Pentium CPU */ |
| 205 | #ifdef CONFIG_X86_32 |
| 206 | if (ctxt->cr4) |
| 207 | __write_cr4(ctxt->cr4); |
| 208 | #else |
| 209 | /* CONFIG X86_64 */ |
| 210 | wrmsrl(MSR_EFER, ctxt->efer); |
| 211 | write_cr8(ctxt->cr8); |
| 212 | __write_cr4(ctxt->cr4); |
| 213 | #endif |
| 214 | write_cr3(ctxt->cr3); |
| 215 | write_cr2(ctxt->cr2); |
| 216 | write_cr0(ctxt->cr0); |
| 217 | |
| 218 | /* Restore the IDT. */ |
| 219 | load_idt(&ctxt->idt); |
| 220 | |
| 221 | /* |
| 222 | * Just in case the asm code got us here with the SS, DS, or ES |
| 223 | * out of sync with the GDT, update them. |
| 224 | */ |
| 225 | loadsegment(ss, __KERNEL_DS); |
| 226 | loadsegment(ds, __USER_DS); |
| 227 | loadsegment(es, __USER_DS); |
| 228 | |
| 229 | /* |
| 230 | * Restore percpu access. Percpu access can happen in exception |
| 231 | * handlers or in complicated helpers like load_gs_index(). |
| 232 | */ |
| 233 | #ifdef CONFIG_X86_64 |
| 234 | wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base); |
| 235 | #else |
| 236 | loadsegment(fs, __KERNEL_PERCPU); |
| 237 | loadsegment(gs, __KERNEL_STACK_CANARY); |
| 238 | #endif |
| 239 | |
| 240 | /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */ |
| 241 | fix_processor_context(); |
| 242 | |
| 243 | /* |
| 244 | * Now that we have descriptor tables fully restored and working |
| 245 | * exception handling, restore the usermode segments. |
| 246 | */ |
| 247 | #ifdef CONFIG_X86_64 |
| 248 | loadsegment(ds, ctxt->es); |
| 249 | loadsegment(es, ctxt->es); |
| 250 | loadsegment(fs, ctxt->fs); |
| 251 | load_gs_index(ctxt->gs); |
| 252 | |
| 253 | /* |
| 254 | * Restore FSBASE and GSBASE after restoring the selectors, since |
| 255 | * restoring the selectors clobbers the bases. Keep in mind |
| 256 | * that MSR_KERNEL_GS_BASE is horribly misnamed. |
| 257 | */ |
| 258 | wrmsrl(MSR_FS_BASE, ctxt->fs_base); |
| 259 | wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base); |
| 260 | #elif defined(CONFIG_X86_32_LAZY_GS) |
| 261 | loadsegment(gs, ctxt->gs); |
| 262 | #endif |
| 263 | |
| 264 | do_fpu_end(); |
| 265 | tsc_verify_tsc_adjust(true); |
| 266 | x86_platform.restore_sched_clock_state(); |
| 267 | mtrr_bp_restore(); |
| 268 | perf_restore_debug_store(); |
| 269 | msr_restore_context(ctxt); |
| 270 | } |
| 271 | |
| 272 | /* Needed by apm.c */ |
| 273 | void notrace restore_processor_state(void) |
| 274 | { |
| 275 | __restore_processor_state(&saved_context); |
| 276 | } |
| 277 | #ifdef CONFIG_X86_32 |
| 278 | EXPORT_SYMBOL(restore_processor_state); |
| 279 | #endif |
| 280 | |
| 281 | #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU) |
| 282 | static void resume_play_dead(void) |
| 283 | { |
| 284 | play_dead_common(); |
| 285 | tboot_shutdown(TB_SHUTDOWN_WFS); |
| 286 | hlt_play_dead(); |
| 287 | } |
| 288 | |
| 289 | int hibernate_resume_nonboot_cpu_disable(void) |
| 290 | { |
| 291 | void (*play_dead)(void) = smp_ops.play_dead; |
| 292 | int ret; |
| 293 | |
| 294 | /* |
| 295 | * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop |
| 296 | * during hibernate image restoration, because it is likely that the |
| 297 | * monitored address will be actually written to at that time and then |
| 298 | * the "dead" CPU will attempt to execute instructions again, but the |
| 299 | * address in its instruction pointer may not be possible to resolve |
| 300 | * any more at that point (the page tables used by it previously may |
| 301 | * have been overwritten by hibernate image data). |
| 302 | */ |
| 303 | smp_ops.play_dead = resume_play_dead; |
| 304 | ret = disable_nonboot_cpus(); |
| 305 | smp_ops.play_dead = play_dead; |
| 306 | return ret; |
| 307 | } |
| 308 | #endif |
| 309 | |
| 310 | /* |
| 311 | * When bsp_check() is called in hibernate and suspend, cpu hotplug |
| 312 | * is disabled already. So it's unnessary to handle race condition between |
| 313 | * cpumask query and cpu hotplug. |
| 314 | */ |
| 315 | static int bsp_check(void) |
| 316 | { |
| 317 | if (cpumask_first(cpu_online_mask) != 0) { |
| 318 | pr_warn("CPU0 is offline.\n"); |
| 319 | return -ENODEV; |
| 320 | } |
| 321 | |
| 322 | return 0; |
| 323 | } |
| 324 | |
| 325 | static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, |
| 326 | void *ptr) |
| 327 | { |
| 328 | int ret = 0; |
| 329 | |
| 330 | switch (action) { |
| 331 | case PM_SUSPEND_PREPARE: |
| 332 | case PM_HIBERNATION_PREPARE: |
| 333 | ret = bsp_check(); |
| 334 | break; |
| 335 | #ifdef CONFIG_DEBUG_HOTPLUG_CPU0 |
| 336 | case PM_RESTORE_PREPARE: |
| 337 | /* |
| 338 | * When system resumes from hibernation, online CPU0 because |
| 339 | * 1. it's required for resume and |
| 340 | * 2. the CPU was online before hibernation |
| 341 | */ |
| 342 | if (!cpu_online(0)) |
| 343 | _debug_hotplug_cpu(0, 1); |
| 344 | break; |
| 345 | case PM_POST_RESTORE: |
| 346 | /* |
| 347 | * When a resume really happens, this code won't be called. |
| 348 | * |
| 349 | * This code is called only when user space hibernation software |
| 350 | * prepares for snapshot device during boot time. So we just |
| 351 | * call _debug_hotplug_cpu() to restore to CPU0's state prior to |
| 352 | * preparing the snapshot device. |
| 353 | * |
| 354 | * This works for normal boot case in our CPU0 hotplug debug |
| 355 | * mode, i.e. CPU0 is offline and user mode hibernation |
| 356 | * software initializes during boot time. |
| 357 | * |
| 358 | * If CPU0 is online and user application accesses snapshot |
| 359 | * device after boot time, this will offline CPU0 and user may |
| 360 | * see different CPU0 state before and after accessing |
| 361 | * the snapshot device. But hopefully this is not a case when |
| 362 | * user debugging CPU0 hotplug. Even if users hit this case, |
| 363 | * they can easily online CPU0 back. |
| 364 | * |
| 365 | * To simplify this debug code, we only consider normal boot |
| 366 | * case. Otherwise we need to remember CPU0's state and restore |
| 367 | * to that state and resolve racy conditions etc. |
| 368 | */ |
| 369 | _debug_hotplug_cpu(0, 0); |
| 370 | break; |
| 371 | #endif |
| 372 | default: |
| 373 | break; |
| 374 | } |
| 375 | return notifier_from_errno(ret); |
| 376 | } |
| 377 | |
| 378 | static int __init bsp_pm_check_init(void) |
| 379 | { |
| 380 | /* |
| 381 | * Set this bsp_pm_callback as lower priority than |
| 382 | * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called |
| 383 | * earlier to disable cpu hotplug before bsp online check. |
| 384 | */ |
| 385 | pm_notifier(bsp_pm_callback, -INT_MAX); |
| 386 | return 0; |
| 387 | } |
| 388 | |
| 389 | core_initcall(bsp_pm_check_init); |
| 390 | |
| 391 | static int msr_init_context(const u32 *msr_id, const int total_num) |
| 392 | { |
| 393 | int i = 0; |
| 394 | struct saved_msr *msr_array; |
| 395 | |
| 396 | if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) { |
| 397 | pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n"); |
| 398 | return -EINVAL; |
| 399 | } |
| 400 | |
| 401 | msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL); |
| 402 | if (!msr_array) { |
| 403 | pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n"); |
| 404 | return -ENOMEM; |
| 405 | } |
| 406 | |
| 407 | for (i = 0; i < total_num; i++) { |
| 408 | msr_array[i].info.msr_no = msr_id[i]; |
| 409 | msr_array[i].valid = false; |
| 410 | msr_array[i].info.reg.q = 0; |
| 411 | } |
| 412 | saved_context.saved_msrs.num = total_num; |
| 413 | saved_context.saved_msrs.array = msr_array; |
| 414 | |
| 415 | return 0; |
| 416 | } |
| 417 | |
| 418 | /* |
| 419 | * The following section is a quirk framework for problematic BIOSen: |
| 420 | * Sometimes MSRs are modified by the BIOSen after suspended to |
| 421 | * RAM, this might cause unexpected behavior after wakeup. |
| 422 | * Thus we save/restore these specified MSRs across suspend/resume |
| 423 | * in order to work around it. |
| 424 | * |
| 425 | * For any further problematic BIOSen/platforms, |
| 426 | * please add your own function similar to msr_initialize_bdw. |
| 427 | */ |
| 428 | static int msr_initialize_bdw(const struct dmi_system_id *d) |
| 429 | { |
| 430 | /* Add any extra MSR ids into this array. */ |
| 431 | u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL }; |
| 432 | |
| 433 | pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident); |
| 434 | return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id)); |
| 435 | } |
| 436 | |
| 437 | static const struct dmi_system_id msr_save_dmi_table[] = { |
| 438 | { |
| 439 | .callback = msr_initialize_bdw, |
| 440 | .ident = "BROADWELL BDX_EP", |
| 441 | .matches = { |
| 442 | DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"), |
| 443 | DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"), |
| 444 | }, |
| 445 | }, |
| 446 | {} |
| 447 | }; |
| 448 | |
| 449 | static int pm_check_save_msr(void) |
| 450 | { |
| 451 | dmi_check_system(msr_save_dmi_table); |
| 452 | return 0; |
| 453 | } |
| 454 | |
| 455 | device_initcall(pm_check_save_msr); |